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Abstract

Large language model (LLM) routers improve the efficiency of multi-model sys-
tems by directing each query to the most appropriate model while leveraging the
diverse strengths of heterogeneous LLMs. Most existing approaches frame routing
as a classification problem based solely on the input query. While this reduces
overhead by avoiding inference across all models, it overlooks valuable information
that could be gleaned from potential outputs and fails to capture implicit intent
or contextual nuances that often emerge only during response generation. These
limitations can result in suboptimal routing decisions, particularly for complex
or ambiguous queries that require deeper semantic understanding. To address
this challenge, we propose Lookahead, a routing framework that “foresees” po-
tential model outputs by predicting their latent representations and uses these
predictions to guide model selection, thus enabling more informed routing without
full inference. Within this framework, we implement two approaches based on
causal and masked language models. Empirical evaluations across seven public
benchmarks—spanning instruction following, mathematical reasoning, and code
generation—show that Lookahead consistently outperforms existing routing base-
lines, achieving an average performance gain of 7.7% over the state-of-the-art. Our
code is available at https://github.com/huangcb01/lookahead-routing.
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Figure 1: Effect of response-aware routing across benchmarks. Left: Including responses improves
classifier-based routing performance. Right: Lookahead outperforms existing routing methods.

1 Introduction
Large language models (LLMs) have achieved remarkable success across a wide array of tasks.
As different LLMs often exhibit varying strengths, there is growing interest in leveraging multiple
LLMs together to build more robust and versatile systems [21]. A straightforward way to combine
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multiple LLMs is to query all models in parallel and then select the best response [31, 38]. While
this ensemble-based approach can enhance output quality by considering multiple candidate outputs,
executing every model for each input query incurs substantial computational cost. To address this,
recent work has explored routing-based approaches [9, 17, 30], where a dedicated router selects a
single model to handle each query. By directing the input to the most suitable model, these systems
aim to retain the benefits of model specialization while significantly reducing inference cost.

Most existing routing methods formulate the task as a classification problem [30, 32, 39], where a
router is trained to assign each input query to the most suitable model among a pool of candidate
LLMs. However, these approaches typically base the routing decision solely on the input query,
without considering how different models would actually respond. As a result, the router lacks
access to potentially critical information such as the semantic intent that emerges during generation
or the actual quality of the output that each model might produce. This limitation is especially
problematic for queries that are ambiguous, underspecified, or require multi-step reasoning, where
the true difficulty or requirements of the task only become apparent during response generation.
Therefore, this observation raises a fundamental question:

Should LLM routing depend only on the query, or also consider potential response quality?

To better understand the limitations of query-only routing, we conduct a preliminary study to examine
how access to response content influences the performance of classifier-based routers2. We compare
two settings: one where the router is trained solely on the input queries, and another where it also
has access to the actual responses during training. As shown in Figure 1 (left), normalized scores3

improve markedly when the router has access to actual responses, which highlights the rich semantic
and task-specific information embedded in LLM outputs. Despite these benefits, incorporating
response content during inference presents a practical challenge. While actual model responses are
not available at test time, generating proxy responses directly from the router is generally infeasible,
as the router is typically designed to be lightweight and lacks sufficient generative capability.

To address this limitation, we propose an alternative to generating full responses. Rather than decoding
explicit outputs, we train the router to predict the latent representations of potential responses. This
approach reduces complexity, as the router only needs to identify key signals linking the input
query to likely responses, avoiding the overhead of full-text generation. Based on this insight,
we introduce Lookahead, a routing framework that allows the router to “foresee” model behavior
without performing full decoding. Lookahead is trained to jointly estimate model selection scores
and reconstruct the latent features associated with the responses that each candidate LLM would
generate. By accessing response-level information in latent space, the router can make more accurate
and contextually appropriate routing decisions while maintaining low computational cost.

We instantiate the Lookahead framework in two complementary forms. In the sequence-level variant,
a small causal language model (CLM) is trained to autoregressively generate a reference response,
conditioned on a special model identifier (MID) token. The hidden state at this identifier is extracted
and used as a compact representation of the expected response. In the token-level variant, a masked
language model (MLM) is provided with input sequences in which the entire response is masked
using repeated model ID tokens. The model processes this input, and the hidden states are aggregated
using attention from the [CLS] token to produce a global response representation. Both variants
generate response-aware features without requiring explicit output generation during inference.
As demonstrated by the empirical results in Figure 1 (right), these features lead to substantial
improvements in routing performance, with particularly strong gains from the token-level variant.

In summary, this work reveals the inherent suboptimality of query-only routing strategies and ad-
dresses this limitation by introducing Lookahead, a response-aware routing framework. Lookahead
predicts the latent representations of model responses without decoding them, and enables more
informed routing decisions at reduced computational cost. To support this capability, we propose a
dual-task training objective that jointly estimates model selection scores and reconstructs the latent
features corresponding to the responses generated by each candidate LLM during training. Empiri-
cally, Lookahead consistently outperforms traditional routing baselines across diverse benchmarks,
which demonstrates the value of incorporating response-aware signals. Further analysis indicates
that Lookahead learns latent representations that simulate the presence of model responses. These
representations complement the query and contribute to more accurate routing decisions.

2Implementation details can be found in Appendix C.2.
3Definition can be found in Section 5.1.
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2 Related work
LLM ensembling. Ensembling [5, 15] is a well-established technique that aims to leverage the
diversity and complementary strengths of multiple models to produce more robust and accurate
outputs than any single model alone. In the context of LLMs, the motivation for ensembling arises
from the observation that different LLMs—even when trained on similar data—often exhibit distinct
strengths, biases, and failure modes [21]. Existing ensemble methods can be broadly categorized into
static and dynamic strategies, distinguished by whether all models are executed for every input.

Static ensemble methods execute all candidate LLMs for each query and aggregate their outputs post
hoc. Within this class, response selection approaches generate one response per model and choose
the best. MoRE [31] follows this strategy by training a classifier that scores responses using model
expertise, confidence, and inter-response agreement. In contrast, response aggregation methods
synthesize a unified output from multiple candidates. LLM-Blender [21] applies pairwise scoring
followed by generative fusion; URG [27] combines ranking and rewriting via cross-attention; and
LLM-TOPLA [35] improves diversity by pruning near-duplicate candidates. While static ensembles
often improve output quality, they incur high computational cost due to full-model invocation.

Dynamic ensemble methods reduce this cost by adaptively selecting which models to run. A common
strategy is cascaded inference, where models are ordered by cost and executed sequentially. Execution
halts early if a cheaper model’s output is deemed sufficient. However, such deferral strategies can
be fragile under distribution shift or when model-specific error patterns are not well calibrated [22].
FrugalGPT [7] employs a lightweight verifier to determine whether to halt execution, while Yue et al.
[44] validate outputs before escalating to stronger models. Although dynamic ensembles improve
efficiency, they often introduce latency and require careful tuning to maintain reliability.

LLM routing. LLM routing [9, 17, 30] aims to optimize efficiency, cost, and performance in model
deployment. By dynamically directing inputs to the most suitable model, routing enables lightweight
models to handle simpler queries while reserving larger or specialized models for more demanding
tasks, thus improving overall resource utilization without compromising output quality. Existing
routing methods fall into two main categories: similarity-based and classifier-based approaches.

Similarity-based routing methods rely on the intuition that queries exhibiting similarity to previously
observed examples should be directed to LLMs that have historically performed well on such inputs.
TO-Router [33] implements this intuition by employing k-nearest-neighbor (kNN) retrieval over
query embeddings and selects the LLM with the highest average performance across the retrieved
neighbors. Srivatsa et al. [32] adopted a clustering-based strategy, which uses k-means to partition the
query space and dispatches queries to the top-performing model within the closest cluster. Eagle [46]
extends these approaches by integrating both local (neighborhood-specific) and global Elo-based
performance scores to inform routing decisions. SMOOTHIE [17] further eliminates the need for
score labels by using response embeddings for similar queries as “voters” to estimate the quality
of each LLM through a latent variable graphical model. Despite computationally efficient, these
methods often depend on generic query embeddings not optimized for routing-specific objectives.

Classifier-based routing formulates the problem as a supervised text classification task. A pretrained
encoder such as BERT [13] is typically fine-tuned to predict which LLMs are likely to perform well,
using binary cross-entropy (BCE) [30, 32, 48] or cross-entropy (CE) [28, 39] loss. ZOOTER [26] pre-
dicts full reward distributions through a Kullback–Leibler divergence (KLD) objective. RouterDC [9]
applies contrastive learning to map queries closer to high-performing LLMs in the representation
space. While these methods have demonstrated strong performance, they rely solely on scalar
supervision signals and overlook the semantic content of the generated responses.

3 Preliminaries
In this section, we begin by formalizing the problem of LLM routing and reviewing representative
classifier-based routing approaches. Our analysis then reveals a fundamental limitation of these
methods, which motivates the design of our response-aware Lookahead framework.

3.1 Problem formulation

Let X denote the space of input queries and Y the space of output sequences. We consider a set
of language models F = {f1, . . . , fT }, where each model ft : X → Y maps an input x ∈ X to a
textual output yt = ft(x). A task-specific evaluation function s : X × Y → R assigns a scalar score
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Figure 2: Overview of the Lookahead framework. Middle (Data Collection): For each input prompt
x, responses y1:T are sampled from T candidate LLMs. A judge model evaluates these responses to
assign quality scores s1:T . Top (Query-Only Routing): Conventional routers encode x into a query
embedding ex and select a model based solely on the input. Bottom (Lookahead Routing): Given x
and model identifiers MID1:T , the Feature Predictor estimates latent response representations r̃1:T ,
which are then used by a classifier to predict final quality scores ĉ1:T and select the best model.

indicating the quality of each response. For example, s may compute exact-match accuracy for math
problems, or output a reward model score in instruction-following tasks.

The goal of LLM routing is to learn a policy π : X → {1, . . . , T} that selects a model for each input
in order to maximize the expected evaluation score:

π∗ = argmax
π

Ex∈X

[
s
(
x, fπ(x)(x)

)]
. (1)

To train the policy π, we construct a dataset Dtrain = {(x(i), {(y(i)t , s
(i)
t )}Tt=1)}ni=1, where each x(i)

is a sampled input query, y(i)t = ft(x
(i)) is the response from model ft, and s

(i)
t = s(x(i), y

(i)
t ) is

the quality score of response y
(i)
t . This dataset captures both the outputs and corresponding quality

assessments across all models, which forms the basis for training the routing policy π.

3.2 Classifier-based routing

Most existing routing approaches cast the problem as a classification task [30, 32, 48]. As illustrated
in Figure 2 (top), these methods use an encoder E : X → Rd to map each input query x ∈ X to a d-
dimensional embedding ex = E(x). A prediction head C : Rd → RT then estimates model-specific
scores for each candidate model in F = {f1, . . . , fT } and produces a vector: ĉ = C(ex) ∈ RT ,
where each component ĉt approximates the likelihood that model ft produces a high-quality response.
The router then selects the model with the highest predicted score: π(x) = argmaxt ĉt.

Given supervision targets c = [c1, . . . , cT ] ∈ [0, 1]T , typically derived from task-specific eval-
uation scores s = [s1, · · · , sT ] through transformation operations (e.g., binarization or softmax
normalization), classifier-based routers are optimized to minimize a pointwise loss:

Lcls =
1

T

T∑
t=1

ℓ
(
ĉt, ct

)
, (2)

where ℓ(·, ·) denotes a loss function such as cross-entropy [28, 39], binary cross-entropy [30, 32, 48],
or Kullback-Leibler divergence [26, 33], depending on the supervision structure.

Limitation: response agnosticism. Despite their simplicity and scalability, query-only routers
suffer from a fundamental limitation: they ignore the semantic content of the candidate responses
yt = ft(x). Yet the supervision label ct inherently depends on the pair (x, yt), as it reflects the quality
of the generated response in context. By conditioning only on the input query x, the router is forced
to approximate the marginal distribution p(ct | x) without ever observing yt. As a result, it needs to
infer how each model in F behaves based solely on input features. This can lead to overfitting and
poor generalization, especially on distributionally shifted or semantically ambiguous queries [30, 48].
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4 Methodology

We propose Lookahead, a response-aware routing framework that bridges the gap between query-only
routing and full-response inference. As illustrated in Figure 2, rather than generating complete
outputs from all candidate models, Lookahead learns to predict latent representations of each model’s
response. These predicted features are then used to inform routing decisions. This approach preserves
the efficiency of query-only methods while integrating information accessible only via decoding.

4.1 The Lookahead framework

As outlined in Section 3.1, the label vector c, derived from the quality scores s =
[s(x, y1), . . . , s(x, yT )], depends on both the input query x and the candidate responses yt = ft(x).
To capture this dependency without incurring the computational cost of full response generation, the
Lookahead framework introduces a predictive module:

F : X × {1, . . . , T} → Rk, r̃t = F (x, t),

where r̃t denotes a latent representation of the response that model ft would produce for query x.

Response Modeling. To ensure that each r̃t captures rich and semantically relevant information,
we supervise the predictor F via a response reconstruction objective. Specifically, a decoder PD is
trained to reconstruct the ground-truth response yt from its predicted latent representation:

Lresp =
1

T

T∑
t=1

Lrec(x, yt). (3)

Here, Lrec denotes the reconstruction loss that guides the recovery of yt from r̃t, instantiated as either
next-token prediction (in the sequence-level predictor; see Section 4.2) or masked token recovery
(in the token-level predictor; see Section 4.3). This auxiliary objective enables the router to learn
response-relevant information that complements the query for improved routing decisions.

Routing head. Given the query x and the predicted response representations {r̃t}Tt=1, a classifier
C estimates the likelihood that each model produces a high-quality response:

ĉ = C(x, r̃1, . . . , r̃T ) ∈ [0, 1]T .

The classifier is trained with binary cross-entropy:

Lroute = − 1

T

T∑
t=1

[ct log ĉt + (1− ct) log(1− ĉt)] . (4)

Joint training objective. The overall training objective combines routing supervision with auxiliary
response modeling:

L = Lroute + λLresp, (5)
where λ is a hyperparameter that balances the importance of response reconstruction.

4.2 Sequence-level predictor: causal language model realization

We instantiate the predictor F using a causal language model (CLM) CLMθ, which also serves as the
decoder PD (see Figure 3, left). For each candidate model index t ∈ [T ], we concatenate the query
with a dedicated model identifier token: x ∥ MIDt.

The CLM is trained under teacher forcing to generate the full response yt = (yt,1, . . . , yt,L) of length
L with the following loss:

Lrec = −
L∑

j=1

logPθ (yt,j | x, MIDt, yt,<j) . (6)

Due to the autoregressive nature of the CLM, the hidden state at the MIDt position, hMID
t , encodes

the information needed to condition the response generation on both the query and model identity. We
adopt this state as the response latent representation: r̃t = hMID

t . At inference time, this representation
is computed in a single forward pass without autoregressive decoding, which enables efficient routing.
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Figure 3: Architectures for response-aware routing in Lookahead. Left: Sequence-level modeling
with a causal language model (CLM), where the hidden state at the MID token encodes the response
information. Right: Token-level modeling with a masked language model (MLM), where fully
masked responses are reconstructed and summarized via attention over MID tokens.

4.3 Token-level predictor: masked language model realization

To capture finer-grained semantic distinctions across candidate responses, we also instantiate F as
a masked language model (MLM), denoted MLMϕ (see Figure 3, right). In contrast to the CLM-
based predictor, which models each response separately, the MLM jointly reconstructs all candidate
responses in a single forward pass. The input sequence is formed by concatenating the query x with
repeated blocks of model identifier tokens:

[CLS] ∥x ∥ MID1, . . . , MID1︸ ︷︷ ︸
m tokens

∥ · · · ∥ MIDT , . . . , MIDT︸ ︷︷ ︸
m tokens

.

Each block of MID tokens serves as a placeholder for a masked response corresponding to model
ft. Let hMID

t,j ∈ Rd denote the hidden state of the j-th token in the MIDt span. These token-level
embeddings are stacked to form a matrix representation for the predicted response:

r̃t = [hMID
t,1 , . . . ,hMID

t,m ] ∈ Rd×m.

To produce model selection scores, we prepend a special [CLS] token and extract its hidden state
hCLS, which aggregates information from the full sequence through the attention mechanism. This
state is used by a multi-layer perceptron classifier to produce the routing score vector:

ĉ = MLP
(
Attn

(
hCLS,Hx, r̃1, . . . , r̃T

))
,

where Hx denotes the token-level hidden states corresponding to the input query x.

The MLM is trained to reconstruct each fully masked response using the following loss:

Lrec = −
m∑
j=1

logPϕ (yt,j | x, MIDt) . (7)

Curriculum masking. Unlike conventional MLM pretraining, which masks tokens uniformly at
random with a fixed probability p0 (typically 15%), we employ a curriculum masking strategy to
better align with the response generation objective. Specifically, we progressively mask from the end
of each response and increase the masking ratio linearly to 100% over the first α fraction of training.
This approach facilitates a smooth transition from partial to full response masking, which allows the
router to learn more robust representations for unseen responses and improve routing performance.

Design rationale. The theoretical motivation behind Lookahead stems from the shortcomings of
traditional query-only routing, which selects a model based solely on the input query. Lookahead
addresses this by introducing a framework that anticipates each model’s output through predicted
latent representations, which allows the router to “look ahead” without executing full decoding.
Because these representations are learned to reflect the underlying semantics of likely outputs, they
allow the router to generalize beyond seen data. Both variants of Lookahead—based on causal
and masked language models—learn this mapping from input-query context to response-relevant
latents. Moreover, the MLM variant employs a progressive masking curriculum, gradually increasing
reconstruction difficulty from partial to full responses. This further strengthens the model’s ability to
form abstract, high-level representations. Together, these components enable Lookahead to achieve
more informed and semantically aware routing while maintaining computational efficiency.
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5 Experiments
5.1 Experimental setup

Candidate LLMs and training data. We employ five publicly available large language models
(LLMs), ranging from 7B to 34B parameters. This selection ensures coverage across a representative
spectrum of model capacities and capabilities. Details can be found in Appendix A. To enable the
router to effectively leverage the complementary capabilities of the candidate LLMs, we construct
a heterogeneous training corpus by aggregating prompts from three publicly available sources
spanning diverse domains: (i) UltraFeedback [12] provides general-purpose instructions compiled
from six widely adopted instruction-tuning datasets. Since these open-ended prompts lack gold-
standard references, we assign quality scores using the Skywork-Reward-Gemma-2-27B-v0.2 reward
model [24]. (ii) OpenMathInstruction-2 [36] contains mathematics problems paired with verified
solutions. (iii) Self-Oss-Instruct-SC2 [25] consists of Python programming tasks. Responses are
evaluated based on the pass rate of associated unit tests. Details can be found in Appendix C.1.

Baselines. We compare Lookahead against six representative routing methods fall into two main
categories: (i) Similarity-based: kNN [33], k-means [32], and SMOOTHIE [17]; (ii) Classifier-based:
multi-label classifier (MLC) [32], ZOOTER [26], and RouterDC [9]. We additionally include three
reference methods: (i) Random Router, which selects an LLM uniformly. (ii) Oracle Router: chooses
the LLM with the highest ground-truth score. (iii) Reward Model Selection, which selects the
highest-scoring response under the reward model Skywork-Reward-Gemma-27B [24].

Evaluation benchmarks and metrics. We evaluate routing performance on seven public bench-
marks spanning three task types: (i) Instruction-following: AlpacaEval-2 [14], Arena-Hard [23], and
MT-Bench [47]. (ii) Mathematics: GSM8K [11] and MATH [19]. (iii) Coding: HumanEval [8] and
MBPP [3]. More details of benchmarks and evaluation methods can be found in Appendix B.

We report two evaluation metrics: (i) Original score (µo), which corresponds to the benchmark’s
native metric (e.g., accuracy or win rate) computed over the responses selected by the router; (ii)
Normalized score (µn), which quantifies the proportion of the performance gap between random and
oracle routing that a method closes. Specifically, this metric is defined as:

µn =
µo − µrandom

o

µoracle
o − µrandom

o

× 100,

where µoracle
o denotes the performance of the Oracle Router. This metric enables consistent evaluation

of overall routing effectiveness across benchmarks with heterogeneous scoring scales.
Implementation. We implement the CLM-based Lookahead using SmolLM2-135M [2], and the
MLM-based variant using ModernBERT-base [41]. For a fair comparison, the classifier-based base-
lines are reimplemented using the same backbones as Lookahead. The embedding-based baselines
utilize the pretrained all-mpnet-base-v2 model [29]. See Appendix C for further details.

5.2 Main results

Table 1 presents both the original and normalized scores of Lookahead, evaluated against strong
routing baselines across seven diverse benchmarks. The results highlight two key findings.

Lookahead consistently outperforms existing routing methods. Across both architectural set-
tings, Lookahead achieves notable improvements over all baseline approaches. When instantiated
with a causal language model (CLM) backbone, it exceeds the performance of the strongest com-
petitor, SMOOTHIE, by 4.5% in average normalized score. In the masked language model (MLM)
setting, Lookahead surpasses the best-performing baseline, RouterDC, by a margin of 7.7%. In
addition to delivering superior aggregate performance, Lookahead ranks among the top two methods
on most of the benchmarks, highlighting its effectiveness and robustness across diverse tasks.

MLM-based Lookahead provides a decisive advantage in open-ended tasks. The CLM- and
MLM-instantiated versions of Lookahead perform comparably on benchmarks with deterministic
evaluation metrics (e.g., mathematics and code). However, on instruction-following tasks—where
responses are free-form, reference answers are unavailable, and multiple completions may be equally
valid—the MLM variant delivers markedly higher scores. This superiority stems from a core
architectural contrast. The CLM variant assigns a likelihood to each candidate in isolation, which
prevents reliable, head-to-head comparison across models. By embedding and scoring all completions

7



Table 1: Performance across seven evaluation benchmarks in both the raw metric (µo) and its
normalized form (µn). The highest µn in each column is shown in bold, and the second-highest is
underlined. Normalized scores reflect the percentage of performance gain over random routing.

Method AlpacaEval-2 Arena-Hard MT-Bench GSM8K MATH HumanEval MBPP Avg.

µo µn µo µn µo µn µo µn µo µn µo µn µo µn µn

Candidate LLMs

Yi-1.5-34B-Chat 37.6 28.9 44.1 26.1 7.81 9.9 88.4 13.8 51.9 -4.0 69.5 -17.7 70.8 -5.2 7.4
InternLM-2.5-20B-Chat 37.1 27.4 28.3 -9.2 7.48 -20.4 89.8 27.4 62.2 37.4 72.6 -3.0 68.9 -14.7 6.4
Phi-3-Medium-4K-Instruct 29.8 1.4 33.3 2.1 7.99 26.5 89.1 20.2 44.5 -33.8 74.4 5.9 68.8 -14.7 1.1
Llama-3.1-8B-Instruct 24.6 -17.1 21.2 -25.1 7.69 -1.1 81.6 -50.2 44.7 -33.1 62.2 -52.9 68.1 -18.4 -28.3
Qwen2.5-Coder-7B-Instruct 18.0 -40.5 35.1 6.1 7.54 -14.9 85.8 -11.3 61.2 33.5 87.2 67.7 82.9 53.0 13.4

Reference Methods

Random Router 29.4 0.0 32.4 0.0 7.70 0.0 86.9 0.0 52.9 0.0 73.2 0.0 71.9 0.0 0.0
Oracle Router 57.6 100 77.1 100 8.79 100 97.5 100 77.8 100 93.9 100 92.6 100 100
Reward Model Select 41.6 43.4 55.7 52.1 8.28 53.1 93.0 57.7 67.1 56.9 83.5 50.0 77.8 28.6 48.8

Routing Methods (Pretrained Embeddings)

kNN [33] 38.5 32.2 39.9 16.7 7.72 1.7 89.8 27.4 62.3 37.6 76.2 14.7 73.2 6.0 19.5
k-means [32] 38.9 33.8 38.9 14.6 7.81 9.9 89.8 27.4 62.2 37.3 79.9 32.4 78.2 30.4 26.6
SMOOTHIE [17] 38.5 32.1 43.6 25.0 7.83 11.3 89.8 27.4 62.2 37.4 86.0 61.8 82.9 53.0 35.4

Routing Methods (CLM-based, SmolLM2)

MLC [32] 39.4 35.4 41.9 21.3 7.78 7.3 88.5 14.5 62.2 37.2 85.4 58.8 73.5 7.9 26.1
ZOOTER [26] 37.2 27.6 42.3 22.2 7.79 8.4 88.9 18.8 61.9 36.2 86.6 64.7 77.0 64.7 29.0
RouterDC [9] 37.9 30.1 41.3 20.0 7.74 3.3 88.9 18.1 61.1 33.0 87.2 67.7 82.9 53.0 32.2
Lookahead (ours) 37.8 29.8 43.0 23.7 7.97 24.5 89.4 23.1 62.2 37.2 87.2 67.7 82.9 53.0 37.0

Routing Methods (MLM-based, ModernBERT)

MLC [32] 38.5 32.4 43.0 23.6 8.01 28.0 88.7 16.7 62.0 36.5 83.5 50.0 82.5 51.1 34.0
ZOOTER [26] 37.0 26.8 41.2 19.7 7.78 7.3 89.3 22.4 62.0 36.6 86.0 61.8 81.7 47.4 31.7
RouterDC [9] 38.4 32.0 44.9 27.9 8.07 33.7 88.9 18.8 61.0 32.4 87.2 67.7 82.9 53.0 37.9
Lookahead (ours) 40.0 37.5 44.3 26.5 8.09 35.4 90.1 29.6 61.9 36.2 87.2 67.7 82.9 53.0 40.8
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-6.8 -1.1
-2.6

-4.7

(a) (b) (c)

-5.2
-11.7

Figure 4: Results of ablation studies for the Lookahead framework. (a) Performance drops when
response modeling (RM) is removed. (b) Comparison of curriculum masking (CM) strategies in the
MLM-based predictor. (c) Effectiveness of the joint response prediction.

jointly within a shared semantic space, the MLM variant can make fine-grained, context-aware
distinctions among outputs, a capability that proves critical for routing under open-ended conditions.

5.3 Ablation studies

Impact of response modeling. Figure 4 (a) presents the results of ablation studies assessing the
contribution of the response modeling objective. Disabling this component leads to significant
performance degradation, with absolute drops of 6.2 and 6.8 points for the CLM- and MLM-based
variants, respectively. These declines highlight the critical role of response representations in
providing meaningful contextual signals for routing decisions. The consistent impact across both
architectural paradigms underscores the generality and robustness of the Lookahead framework.

Impact of curriculum masking. Figure 4 (b) investigates the effect of curriculum masking within
the MLM-based implementation. Removing this mechanism results in a 4.7 points performance
drop, indicating that predicting full response sequences is considerably more difficult for models
pre-trained on span-level objectives. To better understand the design choices, we compare three
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curriculum strategies: (i) End-masking (default): reveals tokens progressively from end to start, (ii)
Start-masking: reveals tokens from start to end, (iii) Random masking: reveals random spans of
increasing length. While both start-masking and random masking reduce the learning difficulty and
yield moderate gains over the no-curriculum baseline, they are less effective than end-masking. We
attribute this effectiveness to its alignment with the task objective, as both involve predicting response
continuations from prefixes, which leads to more coherent and task-consistent representations.

Impact of the joint response prediction. Figure 4 (c) compares joint versus separate prediction of
candidate responses within the MLM architecture. Joint prediction, which embeds all responses into a
shared latent space, markedly outperforms per-model prediction, especially on instruction-following
(IF) benchmarks. Unlike math or code tasks, open-ended tasks lack objective ground truth, so
effective routing hinges on preference-driven distinctions across responses. Shared-space encoding
enables the attention mechanism to capture these fine-grained semantic contrasts, whereas separate
prediction deprives the router of the comparative context required for reliable quality assessment.

5.4 Analysis

We analyze the behavior of Lookahead with a causal language model (CLM) backbone to better
understand how response modeling affects training efficiency and representation quality. Empirically,
both the CLM- and MLM-based variants exhibit similar trends; thus, for clarity and brevity, we focus
on the CLM-based implementation here and report MLM results in Appendix D.

6.3×

1.2×

(a)

(b)

Figure 5: (a) Training efficiency
and (b) mutual-information anal-
ysis for CLM-based Lookahead.

Response modeling improves training efficiency. Figure 5
(a) quantifies the effect of the response-modeling objective on
sample efficiency. With only ∼16% of the training data, the w/
RM model achieves the same performance that the w/o RM base-
line requires the full dataset to reach, resulting in a 6.3× gain in
data efficiency. Even at full scale, the w/ RM variant delivers a
1.2× performance advantage. These results suggest that auxiliary
response reconstruction enables Lookahead to learn more infor-
mative latent representations in low-data regimes, leading to more
accurate routing with significantly fewer supervision signals.

Response embeddings capture richer semantics than query-
only features. To verify that Lookahead indeed learns
response-aware representations, we compare three routing
models: (i) w/ RM, our full method that incorporates the
response-modeling objective; (ii) w/o RM, a baseline that relies
solely on query features; and (iii) w/ actual response, an oracle
that selects routes using the true candidate responses. We mea-
sure the mutual information (MI) between each learned model’s
hidden states and those of the oracle with MINE[4], repeating
the estimation 50 times with independent seeds to control vari-
ance. Figure 5 (b) shows the resulting MI distributions. The w/
RM variant achieves a substantially higher MI than the w/o RM
baseline, as evidenced by non-overlapping interquartile ranges
and medians. This confirms that the response-modeling objec-
tive encourages r̃t to capture richer semantic information from
the response space, which enables Lookahead to bridge the gap
between purely query-based routing and full-response inference.

6 Conclusion
We introduced Lookahead, a routing framework that enhances model selection in multi-LLM systems
by predicting latent representations of potential responses rather than relying solely on input queries.
This enables more informed and context-aware routing decisions while avoiding the computational
cost of full-text generation. By implementing both causal and masked language model variants,
Lookahead demonstrates effectiveness across seven diverse benchmarks, consistently outperforming
state-of-the-art routing baselines—with especially strong gains on open-ended tasks where nuanced
semantic differences are decisive. These results underscore the value of response-aware latent features
and highlight the potential of incorporating lightweight generative foresight into LLM routing.
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Justification: This paper does not include theoretical results.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5.1 for the experiment details.
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: See supplemental material.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The significant performance improvement is sufficient to justify our contribu-
tions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and complied with the Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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feedback over time, improving the efficiency and accessibility of ML).
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See the cited reference.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: See Section 5.1 and Appendix A.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of open-source models
Table 2 lists the Hugging Face repository identifiers for candidate LLMs, backbone models of routers,
and the reward model employed to evaluate response quality during training set construction.

Table 2: Details of open-source models in our experiments.
Model Parameters Hugging Face ID

Candidate LLMs

Yi-1.5-34B-Chat [43] 34.4B 01-ai/Yi-1.5-34B-Chat
Internlm2.5-20B-Chat [6] 19.9B internlm/internlm2_5-20b-chat
Phi-3-medium-4k-instruct [1] 14.0B microsoft/Phi-3-medium-4k-instruct
Llama-3.1-8B-Instruct [16] 8.0B meta-llama/Llama-3.1-8B-Instruct
Qwen2.5-Coder-7B-Instruct [20] 7.6B Qwen/Qwen2.5-Coder-7B-Instruct

Router Backbones

SmolLM2-135M [2] 135M HuggingFaceTB/SmolLM2-135M
ModernBERT-base [41] 149M answerdotai/ModernBERT-base

Reward Model

Skywork-Reward-Gemma-2-27B-v0.2 [24] 27.2B Skywork/Skywork-Reward-Gemma-2-27B-v0.2

B Details of evaluation benchmarks and original metrics
• AlpacaEval-2 [14] contains 805 instructions from five different datasets. In this benchmark,

GPT-4-Preview-1106 serves both as the baseline model and the judging model to calculate
length-controlled win rate [14] as the metric.

• Arena-Hard [23] is a challenging evaluation benchmark whose results closely align with human
preference rankings from Chatbot Arena [10]. The benchmark covers 250 high-quality topic
clusters, including 500 well-defined technical problem-solving queries. We report the model’s
win rate relative to GPT-4-0314, using GPT-4-Preview-1106 as the judging model.

• MT-Bench [47] consists of 80 multi-turn conversations, totaling 160 questions. Each response
is scored by GPT-4 on a scale from 1 to 10, and the average score per conversation is calculated.
Unlike the official setup, we follow recent studies [37, 40, 42], using GPT-4-0125-Preview as
both the judging model and the baseline model. Following ZOOTER [26], we only route with
the first-turn query but evaluate in the multi-turn manner.

• GSM8K [11] consists of elementary-level mathematical problems designed to evaluate a model’s
mathematical reasoning capabilities. The exact match accuracy is calculated as the metric.

• MATH [19] contains various mathematical problems ranging from middle school to high school
competition levels, comprehensively evaluating the model’s mathematical capabilities in areas
such as algebra, calculus, number theory, and probability, with accuracy serving as the metric.

• HumanEval [8] evaluates a model’s code-writing abilities by providing function signatures
and docstrings and requiring the model to generate corresponding Python function bodies. We
calculate pass@1 as the metric.

• MBPP [3] consists of a series of programming problems aimed at testing the model’s ability to
generate Python code snippets based on natural language descriptions. The metric is pass@1.

C Implementation details
C.1 Training data construction

For each query, we sample responses from candidate LLMs with a temperature of 0.8 and top-p of 0.95.
For open-ended instructions, we assign quality scores using the Skywork-Reward-Gemma-2-27B-v0.2
reward model [24]. For mathematical problems, we calculate the accuracy by rule-based matching
with verified solutions. To ensure diversity in model performance, we exclude prompts on which all
LLMs produce identical correctness outcomes. Additionally, we enrich the binary correctness signal
with a normalized reward model score to account for cases where an LLM may arrive at the correct
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answer via incorrect reasoning [45]. For code generation tasks, responses are evaluated based on the
pass rate of associated unit tests, and samples with all LLMs achieving the same score are filtered out.
All scores are min–max normalized within each dataset and converted to binary classification labels
by comparing with an empirically set threshold of 0.8.

In Table 3, we provide the datasets from which queries are sampled to construct the training set along
with the percentage of highest-scoring responses per candidate LLM.

Table 3: Details of datasets used in training and evaluation. The top block shows the number of
samples; the bottom block reports the percentage of highest-scoring responses per model. The sum
of the percentages for each dataset may exceed 100%, because for some queries, multiple candidate
responses can simultaneously achieve the highest score.

Item UltraFeedback OpenMathInstruction-2 Self-Oss-Instruct-SC2 Overall

Sample Counts

Train 43,757 12,189 3,335 59,281
Validation 4,862 1,354 1,000 7,216

Percentage of Highest-scoring Responses

Yi-1.5-34B-Chat 29.51 14.78 27.20 26.36
Internlm2.5-20B-Chat 34.61 37.21 41.22 35.57
Phi-3-medium-4k-instruct 11.95 9.98 39.31 13.33
Llama-3.1-8B-Instruct 15.45 7.52 37.19 15.25
Qwen2.5-Coder-7B-Instruct 10.58 30.74 47.84 17.11

C.2 Preliminary study implementation

The preliminary study in Section 1 compares two settings: (i) The router receives only the input
query and generates predictive scores indicating each LLM’s potential performance. This paradigm
employs a BERT-based multi-label classifier architecture described in Section 3.2. (ii) The router
processes both the query and candidate responses to identify optimal answer selections. This approach
implements a BERT-based binary classification framework that evaluates concatenated query-response
pairs, predicting whether a given response constitutes an appropriate answer to the query. Both
models are optimized using binary cross-entropy loss under identical hyperparameter configurations
to those employed in the MLM-based Lookahead.

C.3 Baseline implementation

• kNN [33] retrieves the k most similar training examples based on query embedding similarity
and routes to the LLM with the highest average score on these neighbors.

• k-means [32] clusters training queries into k groups and routes each test query to the LLM that
performs best on its nearest cluster.

• SMOOTHIE [17] estimates quality scores using a latent variable graphical model constructed
from response embeddings of similar queries.

• MLC [32] employs a multi-label classifier trained with binary cross-entropy loss to identify all
LLMs likely to perform well on a given query.

• ZOOTER [26] predicts the full response score distribution for each LLM using a KL-divergence
objective, enabling probabilistic selection.

• RouterDC [9] applies contrastive learning to align query embeddings with well-performing
LLMs and distance them from poor performers.

C.4 Hyperparameter tuning

We perform a grid search on the validation set to find the optimal hyperparameters for our proposed
Lookahead and baselines. For CLM-based Lookahead, we finally set λ to 0.5. For the MLM-based
varient, we set λ to 0.2, m to 64, and α to 0.4. For kNN [33] and k-means [32], we set k to 100. For
SMOOTHIE [17], we set n0 to 1000. For ZOOTER [26] and RouterDC [9], hyperparameters in the
original papers is find to be optimal and adopted.
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C.5 Training details

We conducted routing experiments with a batch size of 64 and a maximum length of 2048 tokens on
a single 24GB NVIDIA RTX 3090 GPU. The training was performed on 2 and 4 epochs for CLM-
and MLM-based implementations, respectively. A cosine learning rate schedule and the AdamW
optimizer are employed with a learning rate of 5e-5. We save checkpoints every 100 steps and select
the best one based on validation set performance.

C.6 Implementation of mutual information estimation

We utilize Mutual Information Neural Estimation (MINE) [4] to quantify the response information
captured in Lookahead’s hidden states. This approach is preferred over traditional non-parametric
methods, which struggle with high-dimensional latent spaces. The MINE estimator is implemented as
a multi-layer perceptron (MLP) comprising four fully connected layers, each with 1024 hidden units
and ReLU activation functions. Training is conducted using the AdamW optimizer for 100 epochs,
with a batch size of 512 and a learning rate of 1e-4. A linearly decaying learning rate scheduler is
applied, incorporating a warm-up phase comprising 10% of the total training steps.

D MLM-based results for Section 5.4

5.4×

1.2×

(a) (b)

Figure 6: (a) Sample efficiency of the MLM-based model with and without response modeling
(RM). (b) Mutual information between the hidden states of the MLM-based Lookahead and an oracle
classifier with access to full responses.

Training efficiency. As shown in Figure 6 (a), the MLM-based Lookahead shows similar advantages
to the CLM-based variant in improving sample efficiency. Specifically, with only ∼18.5% of the
training data, the w/ RM model achieves the same performance that the w/o RM baseline requires the
full dataset to reach. Even at full scale, the w/ RM variant delivers a 1.2× performance advantage.
These results demonstrate the remarkable effectiveness in improving training efficiency.

Mutual-information analysis. We use MINE [4] to measure the semantic information Lookahead
learned with the same experimental setup described in Section 5.4. As shown in Figure 6 (b), the
w/ RM variant achieves a substantially higher MI than the w/o RM baseline, as evidenced by non-
overlapping interquartile ranges and medians. This confirms that the response-modeling objective
drives the latent vectors r̃t to capture richer semantic information from the response space.

E Effect of hyperparameters
E.1 Effects of λ

We conduct an experiment to study the effect of λ in Eq. 5 w.r.t. the average normalized score.
As shown in Figure 7 (a), the overall performance of Lookahead is insensitive to a wide range of
λ ∈ [0.1, 0.6] for both implementations, making it easy to choose the value of λ in practice.

E.2 Effects of m

The results in Figure 7 (b) demonstrate the impact of varying the number of repeated model ID
tokens m on routing performance. Initially, increasing m improves the average normalized score as
the router models longer response sequences, enabling it to capture more comprehensive semantic
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(b) (c)(a)

Figure 7: Effect of hyperparameters. (a) The weight of response modeling loss λ. (b) The number of
repeated model ID tokens m. (c) The fraction of curriculum masking α.

features. However, beyond a certain threshold (m = 64), performance declines due to the increased
difficulty of predicting extended token sequences. The limited capacity of the masked language
model (MLM) leads to error accumulation during long-range prediction, which introduces noise into
the latent representations and degrades routing accuracy.

E.3 Effects of α.

Figure 7 (c) illustrates the impact of varying the fraction of curriculum masking, α. A moderate
value of α (e.g., 0.4) achieves optimal performance by facilitating a smooth transition from partial
to full response modeling. In contrast, excessively high values of α (> 0.4) lead to performance
degradation, as an extended curriculum procedure reduces the effective training time on the final
objective and results in underfitting.

F Further analysis
F.1 Specialization awareness

To investigate whether Lookahead effectively leverages the specialized capabilities of heterogeneous
LLMs, we analyze its routing behavior on domain-specific benchmarks. Specifically, we compare the
routing proportions of the MLM-based Lookahead against a multi-label classifier (MLC) baseline on
mathematical reasoning (GSM8K, MATH) and code generation (HumanEval, MBPP) tasks.

As shown in Table 4, Lookahead demonstrates strong specialization awareness. On mathematical
problems, it routes significantly more queries to the top-performing models identified in our main
evaluation (Table 1): InternLM-2.5-20B-Chat and Qwen2.5-Coder-7B-Instruct. This trend is even
more pronounced for code generation tasks. Lookahead routes nearly all code-related queries to
the coding-specialized model Qwen2.5-Coder-7B-Instruct, substantially outperforming the baseline.
These results confirm that response-aware modeling enables Lookahead to better identify model
specialties and make precise routing decisions tailored to task requirements.

Table 4: Routing proportions (%) of the MLM-based Lookahead vs. MLC baseline on domain-
specific benchmarks.

Candidate Models GSM8K MATH HumanEval MBPP

Ours Baseline Ours Baseline Ours Baseline Ours Baseline

Yi-1.5-34B-Chat 4.3 14.0 0.1 0.3 0.0 0.0 0.0 0.0
InternLM-2.5-20B-Chat 53.7 50.7 75.6 72.8 0.0 0.0 0.0 0.8
Phi-3-Medium-4k-Instruct 13.9 10.5 0.6 0.3 0.0 5.5 0.0 0.0
Llama-3.1-8B-Instruct 0.0 0.0 0.0 0.0 0.0 9.8 0.0 0.0
Qwen2.5-Coder-7B-Instruct 28.1 24.8 23.7 26.6 100.0 84.8 100.0 99.2

F.2 Performance across query difficulty levels

To analyze how Lookahead performs on queries of varying difficulty, we categorize test samples
based on the number of candidate LLMs that produce correct responses. We then compare the
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performance of the MLM-based Lookahead against the MLC baseline across these grouped samples.
For each query, we classify the outcome as a Win if Lookahead selects a correct model while the
baseline does not, a Loss if the baseline succeeds and Lookahead fails, and a Tie otherwise.

As shown in Table 5, Lookahead demonstrates a clear advantage on more complex queries. The
Win-Loss margin is most pronounced (+2.2%) for the most challenging category (where only one
model produces a correct response). This suggests that by modeling the latent semantics of potential
responses, Lookahead is better equipped to identify the single capable model among many for hard
queries, where query-only methods often fail to capture the subtle cues needed for accurate routing.

Table 5: Performance of MLM-based Lookahead vs. MLC baseline on queries grouped by the
number of correct candidate responses.

# Correct Candidate Responses Win Tie Loss Win − Loss
1 9.9% 82.5% 7.7% 2.2%
2 7.2% 86.0% 6.8% 0.4%
3 7.0% 87.6% 5.4% 1.6%
4 4.2% 91.5% 4.4% -0.2%

F.3 Performance-efficiency tradeoff

To evaluate the performance-efficiency tradeoff achieved by Lookahead, we compare its MLM-based
implementation against three baselines: (i) a multi-label classifier (MLC), (ii) the best single candidate
model, and (iii) an ensembling method where a reward model selects the best candidate response.

As shown in Table 6, both model ensembling and routing surpass the best single model by a large
margin in performance. However, model ensembling incurs a heavy computational cost by generating
with 83.8B parameters for each query, while MLC and Lookahead both reduce this cost to only about
21%, which demonstrates that Lookahead achieves an accuracy-efficiency tradeoff on par with other
routing methods and surpasses single model inference or model ensembling.

Table 6: Average normalized performance score and activated parameters to generate the final
response for each query.

Method Performance Parameters
Best Single Model (Qwen2.5-Coder-7B-Instruct) 13.4 7.6B
Model Ensembling (Reward Model Select) 48.8 83.8B
Routing Baseline (MLC) 34.0 17.51B
Lookahead 40.8 17.37B

F.4 Scalability

To assess the scalability of Lookahead as the candidate model pool expands, we analyze both
theoretical computational overhead and empirical performance trends.

The inference-time overhead of Lookahead stems from processing additional model identifier (MID)
tokens. For the CLM-based variant, since the router only needs the hidden state at the MID token to
form the response representation without performing actual text generation, all T MID tokens can be
concatenated into a single input sequence (x ∥MID1 ∥ . . . ∥MIDT ) with a modified attention mask
to prevent cross-interference. This design requires only a single forward pass, incurring an overhead
of T extra tokens. For the MLM-based variant, the input sequence includes m repeated MID tokens
for each of the T models, resulting in m× T additional tokens processed in one joint forward pass.
In both cases, the overhead grows linearly with the number of candidates T . However, given that the
router backbones are small and T is typically modest, this added cost is negligible compared to the
computational cost required for response generation by any candidate LLM.

We empirically validate scalability by expanding the candidate pool size from 3 to 8 models. The first
five models are included in order as listed in Table 1, while details on three additional candidates are
provided in Table 7. Table 8 reports normalized scores on representative benchmarks, along with
router GFLOPs and latency (measured on an NVIDIA RTX 3090). The results show that routing
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performance initially improves when expanding the candidate pool from three to five models, as the
inclusion of stronger and complementary specialists enhances coverage of diverse task requirements.
However, further expansion to eight models leads to a slight performance decline, primarily due
to the introduction of weaker or redundant models that increase routing noise without contributing
meaningful capability. This suggests that a small set of high-quality, complementary models is
sufficient to form an effective candidate pool. In terms of computational overhead, CLM-based
Lookahead incurs only approximately 4.6% additional cost over its baseline when T = 5, while
MLM-based Lookahead remains below 5% relative to generating just the first token from even the
smallest candidate model (Qwen2.5-Coder-7B-Instruct, requiring 1810 GFLOPs). As the number
of candidates increases, both implementations exhibit only modest growth in latency. Although the
MLM-based variant scales faster in FLOPs due to its m× T token expansion, its absolute overhead
remains negligible compared to the cost of autoregressive decoding in LLMs. These results confirm
that Lookahead’s design balances improved routing decisions with minimal added complexity, even
as candidate pools grow larger.

Table 7: Comparison of Additional Candidate Models
Hugging Face Model ID Parameters AlpacaEval MATH HumanEval
deepseek-ai/deepseek-coder-6.7b-base [18] 6.7B 2.7 4.8 75.6
meta-llama/Llama-3.2-3B-Instruct [16] 3.2B 21.9 39.6 54.9
Qwen/Qwen2.5-1.5B-Instruct [34] 1.5B 10.4 49.9 58.5

Table 8: Performance, router computational cost, and latency as the number of candidate models
increases.

Method #Models AlpacaEval MATH HumanEval Computational
Cost / GFLOPs

Latency
/ ms

CLM-based

MLC
3 39.0 62.2 75.6 18.62 28.4
5 39.4 62.2 85.4 18.62 28.0
8 37.9 62.2 87.2 18.62 28.0

Lookahead
3 37.6 62.2 72.6 19.04 28.4
5 37.8 62.2 87.2 19.47 28.4
8 37.9 62.3 87.2 20.11 29.6

MLM-based

MLC
3 36.2 62.2 72.6 18.52 19.5
5 38.5 62.0 83.5 18.52 19.6
8 38.4 62.1 70.1 18.52 19.1

Lookahead
3 39.1 62.2 74.4 61.79 19.9
5 40.0 61.9 87.2 90.49 20.9
8 39.0 62.4 87.2 133.54 22.0

G Case study

To further investigate areas for improvement, we conduct a study on cases where Lookahead fails to
select the best candidate model. We observed that the MLM-based Lookahead shows less advantage
on mathematical problems compared to instruction-following tasks. This appears to be because our
current implementation models differences only in the first m tokens of responses. As an example
from GSM8K shown in Table 9, in mathematical problems, models tend to restate the problem before
solving, resulting in similar beginnings across different models. This similarity in initial tokens leads
to overly similar latent representations that can mislead the router. This example highlights a key
opportunity for improvement. A promising optimization is to adaptively identify the most informative
spans among responses, rather than uniformly focusing on the prefix.
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Table 9: A case where Lookahead chooses the response from Model 3, while only Model 4 indeed
gives the correct answer.

Model ID Response

1 To determine how many years it will take before Carlos starts earning money on the ...
2 To determine how many years it will take for Carlos to start earning money on his ...
3 The cost to plant the tree is $90. \nEach year it will grow 7 lemons, which he can ...
4 To find the number of years it will take before Carlos starts earning money on the ...
5 To determine how many years it will take for Carlos to start earning money on his ...

H Limitations
There are three potential limitations to our work. First, our current approach focuses solely on
performance optimization and does not explicitly account for cost trade-offs between large and
small models. Second, while the proposed response modeling task is compatible with various
routing objectives through its dual-task formulation, we have not yet investigated its integration with
alternative loss functions such as Kullback-Leibler divergence [26] or contrastive losses [9]. Third,
if the reward model used during training fails to detect biased or factually incorrect outputs, the
router may learn to favor such responses, inadvertently amplifying harmful content. To mitigate this
risk, future work could integrate ensembles of diverse reward models or incorporate fairness-aware
evaluation metrics into the routing objective to improve robustness against biased or unsafe content.
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