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Abstract. Recent advancements in Tabular Representation Learning
(TRL) and Large Language Models (LLMs) have achieved promising re-
sults in the Text2SQL task, which involves converting natural language
questions about relational tables into executable SQL queries. However,
when questions are ambiguously defined to the table schema, existing
models often fail to produce correct outputs. Assessing the robustness of
such data ambiguity is labor-intensive, as it requires identifying ambigu-
ous patterns across many queries with varying levels of complexity. To
address this challenge, we introduce the Data-Ambiguity Tester, a ded-
icated pipeline designed for ambiguous Text2SQL generation. This ap-
proach first generates a diverse set of unambiguous questions alongside
their corresponding SQL queries. It then methodically injects ambigu-
ous patterns from a human-annotated set of relational tables into these
questions, simulating realistic schema ambiguities. Finally, the pipeline
employs customized metrics to evaluate Text2SQL model performance
under ambiguity. Our experimental results provide valuable insights into
the strengths and limitations of current Text2SQL models.
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1 Introduction

Text2SQL, also defined as Semantic Parsing, uses a relational table to translate
natural language (NL) questions into SQL declarations. Text2SQL supports end
users who are not proficient in SQL code writing and speeds up user-database in-
teractions [2]. State-of-the-art Text2SQL approaches include Tabular Represen-
tation Learning (TRL) models fine-tuned for this task (e.g., [14, 15]) and general-
purpose Large Language Models (LLMs)[5, 3]. However, both TRL models and
LLMs are challenged by the inherent ambiguity between text (NL questions)
and relational data (table schema and instance) [9, 12, 1].

This study focuses on Column Ambiguity since it represents the majority
of ambiguous cases in practical scenario [12]. In Column Ambiguity, the NL
question ambiguously references multiple table attributes (referred to as Am-
biguous attributes) using a free-text label (referred to as Ambiguous label) that
applies to at least two attributes [11]. As a toy example, let us consider the table
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Abalone(AbaloneID, Sex, Length, Diameter). A NL question such as "Show me
the size of the Abalone fish with Id 1" is ambiguous because the Ambiguous label
size can be arbitrarily mapped to either Length, or Diameter (the Ambiguous
attributes).

We propose DAMBER (Data-AMBiguity testER) a new pipeline for am-
biguous test generation and evaluation. DAMBER relies on QATCH [7] to
initially generate a large set of questions and SQL queries given a relational
table. Then, the NL questions are injected with the Ambiguous labels extracted
from an annotated human-curated set of tables [11]. The queries associated with
the Ambiguous attributes represent the SQL queries related to the injected NL
question. In our example, the NL question is paired with the three SQL queries:

- SELECT Length FROM Abalone WHERE AbaloneID = 1
- SELECT Diameter , FROM Abalone WHERE AbaloneID = 1
- SELECT Length , Diameter , FROM Abalone WHERE AbaloneID = 1

Once generated, each ambiguous question is given as input into the Text2SQL
model and its single-query output is compared to each target query using five
metrics [7]. The final results are based on the query interpretation (across the
alternatives in the ground truth) with the highest mean across all metrics. For
example, suppose the predicted query correctly projects Length but not Diame-
ter ; it receives a mean score of one for the first query and (almost) zero for the
others. In that case, the final metric values are the ones with the highest mean.

Table 1. Results for all models with ambiguous questions; average on 13 tables.

Model Cell Cell Tuple Tuple Tuple
precision recall cardinality constraint order

GPT 3.5 (LLM) 0.76 0.78 0.80 0.63 0.83
LLama-code (LLM) 0.52 0.54 0.58 0.39 0.86

ResdSQL (TRL) 0.37 0.38 0.42 0.31 0.46
UnifiedSKG (TRL) 0.36 0.37 0.39 0.31 0.65

GAP (TRL) 0.24 0.24 0.26 0.21 0.27

We test five representative models: three TRL models (ResdSQL [4], GAP
[10], and UnifiedSKG [13]) and two LLMs (GPT 3.5 turbo-0613 [6] and
LLama-Code [8]). The findings in Table 1 demonstrate that LLMs significantly
outperform TRL models when addressing ambiguous questions. LLMs are capa-
ble of linking ambiguous labels to the appropriate database attributes. In con-
trast, TRL models face challenges, frequently generating SQL errors in similar
situations. However, GPT 3.5 struggles with consistent performance, showing an
average over all metrics from 0.98 on simple tables to 0.60 on challenging ones.

In future work, we aim to broaden the generation beyond Column Ambiguity.
Additionally, we will investigate how data ambiguity impacts other downstream
tasks, including Tabular Question Answering and Tabular Computational Fact-
Checking.
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