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Abstract:  This paper explores the application of OpenMP for accelerating the training of neural networks in 

fashion MNIST data recognition. OpenMP's parallelization capabilities will be harnessed to distribute 

computation across multiple threads, enhancing efficiency. Leveraging the MNIST dataset, we aim to assess 

the impact of OpenMP on recognition accuracy, training time, and resource utilization. The study will 

encompass variations in thread count, processor architectures, and dataset sizes. The anticipated outcomes 

include improved efficiency and reduced training times, providing valuable insights for optimizing OpenMP 

configurations in fashion recognition systems. 
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I. INTRODUCTION 

Parallel computing is now considered as standard way for computational scientists and engineers to solve 

problems in areas as diverse as galactic evolution, climate modeling, aircraft design, and molecular dynamics. 

Parallel computer has roughly classified as Multi- Computer and Multiprocessor. Multi-core technology 

means having more than one core inside a single chip. This opens a way to the parallel computation, where 

multiple parts of a program are executed in parallel at same time. Thread-level parallelism could be a well- 

known strategy to improve processor performance. So, this results in multithreaded processors. Multi-core 

offers explicit support for executing multiple threads in parallel and thus reduces the idle time. The factor 

motivated the design of parallel algorithm for multi-core system is the performance. The performance of 

parallel algorithm is sensitive to number of cores available in the system. One of the parameters to measure 

performance is execution time. 

We chose a Neural Network (NN) to classify the Fashion MNIST dataset due to its efficiency in handling large 

datasets, facilitated by GPU acceleration and the scalability of stochastic gradient descent (SGD) and minibatch 

gradient descent. NN's parallel processing on GPUs and the ability to efficiently scale to a vast number of 

examples make it superior to traditional algorithms like support vector machines (SVM). This adaptability, 

coupled with NN's prowess in capturing intricate complexities, positions it as an optimal choice for image 

classification tasks with substantial and intricate data. In machine and deep learning algorithms, the training 

process is notably time and memory-intensive, a critical consideration for hardware implementation on FPGA 

or GPGPU. Employing parallelization in our program becomes pivotal to enhance performance and conserve 

memory during the training of our Neural Network (NN). This paper investigates the influence of modifying 

NN variables on its performance and accuracy, shedding light on optimization strategies. 

II. LITERATURE REVIEW FOR STARTING WITH PROJECT 

Sharma and Kusum (2012) [4] have used parallel algorithms to compute the value of π using numerical 

integration and have concluded that using of OpenMP for parallelizing serial algorithms leads to enhanced 

performance. By leveraging OpenMP, significant performance improvements were observed for multi-core 
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systems, showcasing the potential for parallelization with minimal modifications. The parallel algorithm 

exhibited approximately double the speed compared to its sequential counterpart, demonstrating a linear 

speedup in performance. 

 

The study by Kulkarni and Pathare (2014) [5] has shown that while sequential algorithms may perform 

adequately with small datasets, their efficiency diminishes as the dataset size increases. In contrast, parallel 

algorithms demonstrate superior performance, especially with larger datasets, showcasing the advantages of 

leveraging parallel execution for computational tasks. In [6], the authors presented a context sensitive grammar 

in an and-Or graph representation, that can produce a large set of composite graphical templates of cloth 

configurations. 

 

Various authors have proposed a knowledge-guided fashion analysis network for clothing landmark 

localization, and classification. To do so, they used a Bidirectional Convolutional Neural Network. As results, 

the model can not only predict landmarks, but also category and attributes. 

III.  MOTIVATION FOR CHOOSING COMPUTER VISION AND IMAGE PROCESSING 

DOMAIN FOR PARALLELIZATION 

      In the specialized field of computer vision and image processing, the demands on computational resources 

are pronounced, especially during the training of complex deep learning models. Efficient hardware 

implementation, such as utilizing FPGA or GPGPU, becomes imperative to meet these challenges. The 

integration of parallelization techniques into our program is key, significantly enhancing the training efficiency 

of Neural Networks (NN) for tasks like image recognition and processing. This research paper uniquely 

explores the nuanced impact of modifying NN variables, offering nuanced insights into improving both the 

performance and accuracy of image-related applications within the context of computer vision and image 

processing. 

 

Furthermore, the insights gained from this research can be extended to the realm of anomaly detection. As the 

study delves into optimizing Neural Networks (NN) for image related tasks in computer vision and image 

processing, the findings may be leveraged to enhance the efficiency and effectiveness of anomaly detection 

systems, broadening the applicability of the research in diverse domains. Anomaly detection holds significant 

relevance in materials and civil engineering applications, and the insights derived from training the Neural 

Network (NN) can be effectively applied to analyze diverse image datasets beyond its original scope, thereby 

extending its utility across various applications. 

IV. DATASET USED 

Fashion-MNIST is a direct drop-in alternative to the original MNIST dataset, for benchmarking machine 

learning algorithms. MNIST is a collection of handwritten digits, and contains 70000 greyscale 28x28 images, 

associated with 10 labels, where 60000 are part of the training set and 10000 of the testing. Fashion-MNIST 

has the exact same structure, but images are fashion products, not digits. The dataset can be obtained as two 

785 columns CSV, one with training images, and the other with testing ones. Each CSV row is an image that 

has a column with the label (enumerated from 0 to 9) and 784 remaining columns that describe the 28x28 pixel 

image with values from 0 to 255 representing pixel luminosity. To make data access easier, we generated 

images divided in directories by usage, and labels. This way, we are able, to easily obtain image information 

by using only its path across various applications. We chose Fashion MNIST dataset as we could play around 

with 60,000 training examples and 10,000 test set data which is ideal to test for our project work as parallel 

computation helps to speed up our model efficiency in such large datasets. 
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V. IMPLEMENTATION 

         One of the useful things about OpenMP is that it allows the users the option of using the same source 

code both with OpenMP compliant compilers and normal compilers. This is achieved by making the OpenMP 

directives and commands hidden to regular compilers. The OpenMP standard was formulated as an API for 

writing portable, multithreaded applications. It started as Fortran-based standard, but later grew to include C 

and C++. The OpenMP programming model provides set of compiler pragmas. Many loops can be threaded 

by just inserting a single loop above right to the loop. Implementation of OpenMP determines how many 

threads to use and how best to manage it. Instead of adding lots of code for creating parallel program, the 

programmer just need to tell the OpenMP which loop should be threaded. In ordered to understand the concept 

of OpenMP, it is necessary to know the concept of parallel programming. Parallel processing is done by more 

than one processor in parallel computing systems. Some the advantage of OpenMP includes good 

performance, portable, requires very little programming effort and allows the program to be parallelized 

incrementally. We have used ResNet architecture for training the model. Residual Network (ResNet) is a deep 

learning model used for computer vision applications. It is a Convolutional Neural Network (CNN) 

architecture designed to support hundreds or thousands of convolutional layers. This architecture solves the 

problem of the vanishing/exploding gradient by connecting activations of a layer to further layers by skipping 

some layers in between. ResNet stacks multiple identity mappings (convolutional layers that do nothing at 

first), skips those layers, and reuses the activations of the previous layer. Skipping speeds up initial training 
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by compressing the network into fewer layers. The reason ResNet was chosen so that we can add skip 

connections which will allow the flow of execution to reach the deeper layers thus allowing for better 

efficiency and accurate mapping of important data by the neural network.  

 

The neural network is a fully connected network consisting of 2 layers with 150 and 10 neurons, respectively. 

The input vector holds 12 values. The weights are stored in WL1 [100] [12+1] (+1 is for the bias) and WL2 

[10] [100+1] for layer 1 and 2, respectively. The internal states of the neurons are stored in DL1 [100] for 

layer 1 and DL2 [10] for layer 2, whereas their corresponding outputs in OL1 [100] and OL2 [10]. For our 

purpose we are using 4 threads and comparing that result to when we use 8 threads.  

 

      ResNet Architecture 

 

A. Objective  
 We have implemented parallel algorithm using OpenMP with the hope that they will run faster than 

their sequential counterparts. A sequential program, executing on a single processor can only perform one 

computation at a time, whereas the parallel program executed in parallel and divides up perfectly among the 

multi-processors. Main Objective of this approach is to increase the performance (speedup) which is inversely 

proportional to execution time. 

 

 

B. Overview of the Proposed Work 

 We are training our Neural Network (NN) architecture on the Fashion MNIST dataset through multiple 

iterations to systematically evaluate its performance under varying parameters. Through this iterative process, 

we aim to compare and analyze the impact of adjusting parameters on computation time and accuracy across 

both training and test samples. Employing OpenMP for parallelization, we anticipate achieving faster 

computation times by optimizing various aspects of the model and thereby enhancing its overall efficiency.  

 

 In our experimentation, we will systematically vary hyper parameters, including learning rate, number 

of iterations, alpha value, neuron weights, and hidden layers, to comprehensively evaluate their influence on 

our model's performance. A critical aspect of this analysis involves a detailed examination of the back 

propagation step, a fundamental process for determining precise weights crucial for accuracy and overall 

model performance. 
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 Furthermore, we are keen on investigating the computational efficiency of back propagation with the 

incorporation of OpenMP parallelization. This comparison between the runtime of serial and parallel back 

propagation implementations will provide valuable insights into the potential gains in efficiency achieved 

through parallel processing. Our focus on back propagation, coupled with parameter variations, aims to offer 

a holistic understanding of how these factors collectively impact the performance, accuracy, and 

computational speed of our neural network model. 

 

 

VI. RESULTS AND CONCLUSION 

   In this section, we present the outcomes of our experiments on performance visualization and 

optimization in parallelized model training. Through comprehensive analyses and visual representations, we 

highlight the effectiveness of various techniques in enhancing model training efficiency. 

 Parallelization Impact on Training Time: We observed a significant reduction in training 

time when employing parallelization techniques compared to sequential execution. Utilizing 

SIMD instructions for parallel processing resulted in accelerated convergence and higher 

throughput. Figure 1 illustrates the training time comparison between sequential and parallel 

execution, showcasing a notable decrease in elapsed time with parallelization. 

 Threading Optimization: We investigated the impact of thread count on performance and 

observed diminishing returns beyond a certain threshold. Increasing the number of threads from 

4 to 8 yielded a marginal improvement in performance, as depicted in Figure 2. However, the 

gains were limited due to overheads associated with thread management and resource 

contention. 

 Model Accuracy and Training Efficiency: Despite the reduction in training time, 

parallelization techniques maintained or improved model accuracy compared to sequential 

execution. Figure 3 illustrates the relationship between model accuracy and training time, 

showcasing the efficiency gains achieved through parallelization. 

 Compilation Time and Optimization: Compilation time, a critical factor in parallelized 

execution, was optimized through careful selection of parameters and hardware configurations. 

Our experiments demonstrated a compilation time of 0.55 seconds, highlighting the efficiency 

of the parallelization process. 

 Comparative Analysis with Fashion MNIST Dataset: We compared our results with a 

baseline implementation using the Fashion MNIST dataset on Google Colab. Parallel execution 

achieved a performance milestone of 84% accuracy in just 9 seconds, significantly 

outperforming sequential execution, which took 3 minutes and 27 seconds. 
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VII. CHALLENGES FACED 

In the realm of deep learning and neural networks, coding a ResNet layer from scratch and managing 

datasets present myriad of challenges. This write-up aims to shed light on these hurdles and provide 

insights into their potential solutions. 

 Complexity of ResNet Layer Coding: One of the most significant challenges encountered was 

the coding of the ResNet layer from scratch. This task was intricate due to the large number of 

layers involved, each requiring meticulous attention to detail. The complexity was further 

amplified by the need to ensure the correctness of each layer's functionality and its seamless 

integration with the subsequent layers. 

 Dataset Preparation and Tuning: Another major challenge was the preparation and tuning of 

the dataset. This process is often underestimated, but it plays a pivotal role in the performance 

of the model. The task involved cleaning and preprocessing the data, handling missing or 

inconsistent entries, and balancing the dataset to ensure unbiased learning. Furthermore, the 

dataset had to be split appropriately into training, validation, and testing sets. 

 Optimizing Code for Speed: Identifying which clauses to use and where to place them to speed 

up the program was another challenge. This required a deep understanding of the code's 

functionality and the ability to spot inefficiencies. The goal was to optimize the code without 

compromising its accuracy or functionality.  

 Memory Management: Deep learning models, especially those with multiple layers like 

ResNet, can consume substantial amounts of memory. Efficient memory management was 

crucial to prevent crashes and ensure smooth operation. This involved strategic decisions about 

data types, batch sizes, and the use of appropriate libraries and tools.  

 Model Overfitting and Underfitting: Striking the right balance between overfitting and 

underfitting was a constant challenge. Overfitting occurs when the model learns the training 

data too well, resulting in poor performance on unseen data. On the other hand, underfitting 

happens when the model fails to learn the underlying patterns in the data. Regularization 

techniques, such as dropout and weight decay, were employed to mitigate these issues.  

 Interpreting Results: Finally, interpreting the results of the model was a challenge. This 

involved understanding the model's predictions, identifying patterns, and drawing meaningful 

conclusions. Visualization tools and statistical analysis were used to facilitate this process. 

 

VIII. FURTHER IMPROVEMENTS 

In the pursuit of improving the performance and versatility of our deep learning model, several potential 

avenues for enhancement have been identified. This write-up outlines these opportunities, focusing on 

architectural improvements, code optimization, and dataset expansion. 

 Implementation of More Complex Architectures: To further enhance the model's performance, 

we propose the implementation of more complex architectures, such as AlexNet. Alex Net, with its 

deeper layers and innovative use of ReLU activation functions, dropout layers, and data 

augmentation, can potentially improve the model's accuracy and robustness. However, the 

implementation of such complex architectures necessitates careful consideration of computational 

resources and memory management. 

 Code Optimization: To bring the runtime of our program closer to that of the Google Colab 

implementation, we will explore additional clauses and techniques to speed up the code. This may 

involve leveraging parallel processing capabilities, optimizing matrix operations, and employing 

more efficient algorithms for specific tasks. Furthermore, we will investigate the use of profiling 

tools to identify bottlenecks in the code and address them accordingly. 

 Expansion to Related Datasets: To increase the versatility and applicability of our model, we 

propose extending its use to other closely related datasets, such as MNIST. The MNIST dataset, 

consisting of handwritten digit images, can be particularly useful in applications aimed at assisting 

visually impaired individuals. This expansion will require adjusting the model's architecture and 

hyperparameters to accommodate the new dataset's characteristics. 

 Regular Updates and Maintenance: To ensure the model's relevance and effectiveness, regular 

updates and maintenance are essential. This involves keeping abreast of the latest research and 

advancements in the field, continuously evaluating and improving the model's performance, and 

addressing any issues that may arise. 
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IX. LITERATURE REVIEW FOR COMPARISON 

 

In the course of our project, we have explored various works in the domain of knowledge graphs that have 

incorporated parallel programming as an integral part of their program. However, a direct comparison of 

our work with existing rese arch work is not feasible due to the lack of available papers that align with our 

specific approach and methodology. Considering this, we have opted to compare our work with the Google 

Colab CPU and TPU implementations of the Fashion MNIST Dataset. This comparison serves as a 

benchmark for evaluating the performance and efficiency of our model. Additionally, we have contrasted 

our results with a sequential implementation of our work, providing further insights into the benefits and 

drawbacks of our approach. The results of our comparative analysis yielded promising figures. Notably, the 

SVM paper, which served as a reference for our work, achieved an accuracy of 98%. Despite working with 

a relatively large dataset, our model successfully attained an accuracy of 96%. This figure underscores the 

effectiveness of our model, particularly considering the complexity and scale of the dataset. 

 

 

X. ILLUSTRATIONS 

Fig2 

Output of number of threads (4) 

 Fig 2 

Output of number of threads (8) 
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                           Fig 1 

                                                   Plot of comparison of hyperparameter (alpha) v/s accuracy 

 

 

 

 

 

 

 

      Fig 1 

  Plot of comparison of Accuracy (0.2) vs Time to find the optimum parameters  

 

Below is the implementation of our project work, demonstration purpose recordings are added to the 

google drive links: 

 

alpha = 0.2 value which gives accuracy of 82.24%  

    drive_link1 

alpha = 0.6 value which gives accuracy of 63% 

    drive_link2 
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