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ABSTRACT

As deep learning models become larger and more expensive, many practitioners
turn to fine-tuning APIs. These web services allow fine-tuning a model between
two parties: the client that provides the data, and the server that hosts the model.
While convenient, these APIs raise a new concern: the data of the client is at
risk of privacy breach during the training procedure. This challenge presents
an important practical case of vertical federated learning, where the two parties
perform parameter-efficient fine-tuning (PEFT) of a large model. In this study, we
systematically search for a way to fine-tune models over an API while keeping the
labels private. We analyze the privacy of LoRA, a popular approach for parameter-
efficient fine-tuning when training over an API. Using this analysis, we propose
P3EFT, a multi-party split learning algorithm that takes advantage of existing PEFT
properties to maintain privacy at a lower performance overhead. To validate our
algorithm, we fine-tune DeBERTa-v2-XXLarge, Flan-T5 Large and LLaMA-2 7B
using LoRA adapters on a range of NLP tasks. We find that P3EFT is competitive
with existing privacy-preserving methods in multi-party and two-party setups while
having higher accuracy.

1 INTRODUCTION

One of the main reasons behind deep learning success is its ability to transfer knowledge between
tasks (Tan et al., 2018). When training a model for any particular problem, it is common to reuse
previously trained models from other, related problems. In the past, this was typically done by
downloading pre-trained model weights from public hubs, then fine-tuning the said models on the
downstream task. However, as models grow larger and more compute-intensive, fine-tuning them
locally becomes an increasingly difficult task. Furthermore, many recent models are not released, but
instead made available as proprietary services.

When a model cannot be fine-tuned locally, many practitioners opt instead for the so-called fine-tuning
APIs (OpenAI, 2024; Hugging Face, 2024; Dreambooth API, 2024; OctoAI, 2024). These APIs
are web services that host one or several pre-trained models and allow clients to perform limited
fine-tuning. More specifically, APIs usually allow their clients to run parameter-efficient fine-tuning
(PEFT), such as LoRA (Hu et al., 2022) or Prefix-tuning (Li & Liang, 2021). These techniques allow
adapting a model to a dataset while training a relatively small number of additional weights, which is
particularly important for large language or image generation models that have billions of parameters.

Although the fine-tuning APIs can be convenient, they also introduce new risk in terms of data privacy.
When a client uses such API to train on sensitive data, they need to ensure that their data will stay
private Duan et al. (2023). This is particularly important when dealing with patient’s medical records,
personal user data or trade secrets McMahan et al. (2017); Li et al. (2021). The two main threats to
data privacy are that the API provider obtains the private data and that a third party intercepts data in
transit. Therefore, data privacy is not guaranteed even if the API provider is trusted. Several recent
works propose LLM fine-tuning protocols that establish a certain level of privacy for multi-party
fine-tuning Xiao et al. (2023); Duan et al. (2023); Li et al. (2023b). Unfortunately, these algorithms
work for a narrow class of fine-tuning algorithms, specifically prompt-tuning, or assume that a
client can run LLM training locally using an obfuscated version of the model, provided by a remote
server Xiao et al. (2023). As a result, these algorithms are impractical for our use case of fine-tuning
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over an API. The few algorithms that are suitable for API fine-tuning guarantee the privacy of input
tokens Li et al. (2023b), meaning that the attacker can infer private training labels.

In this work, we seek to alleviate this problem by designing a two-party fine-tuning protocol that
performs standard parameter-efficient fine-tuning with privacy guarantees. We formulate our protocol
as a special case of split learning (or vertical federated learning), where one side (server) holds the
pre-trained model and the other (client) has private training data. More specifically, we focus on the
privacy of client’s training labels. While input privacy is often crucial, there are scenarios where
input data is publicly available, such as social media user pages. In these cases, labels could include
ad clicks (known to the social network) or financial information (known to a bank that matches social
profiles to its internal records). This example further justifies the use of LLMs, as social media pages
often contain substantial amounts of text, and LLMs excel at processing long-context data.

Instead of developing a specific privacy-preserving architecture, we seek algorithms that can work
with popular existing models and PEFT algorithms. Furthermore, our approach relies on the properties
of parameter-efficient fine-tuning. Notably, since the adapters are compact, both parties can maintain
multiple sets of adapters and swap between them with relative ease. This allows us to design a
PEFT-specific algorithm that can solve its task more effectively than general split learning strategies
Li et al. (2022).

We summarize our main contributions as follows:

• We analyze Low-Rank Adaptation, a common parameter-efficient fine-tuning algorithm, from the
perspective of label privacy in the split learning setup. We observe that, despite fine-tuning less than
0.1% of model parameters, PEFT algorithms leak client’s training labels against simple attacks that
work for modern pretrained transformers.

• Based on our analysis, we formulate a framework for privacy-preserving parameter-efficient fine-
tuning (P3EFT). This framework leverages the properties of PEFT to obfuscate the gradients and
parameters communicated during fine-tuning with little impact on the fine-tuned model quality.

• To verify the practical viability of P3EFT, we conduct experiments on popular real-world PEFT
workloads1. Specifically, we fine-tune DeBERTa-v2-XXL (He et al., 2021), Flan-T5-Large (Chung
et al., 2022) and LLaMA-2 7B (Touvron et al., 2023) on a set of standard language understanding
problems. We find that, compared to prior split learning algorithms, P3EFT can maintain label
privacy throughout training with a significantly smaller accuracy drop.

2 BACKGROUND

2.1 FEDERATED LEARNING AND SPLIT LEARNING

Privacy preservation in machine learning has been a subject of active study within several frameworks.
An important branch of privacy-preserving learning methods is federated learning, or FL (McMahan
et al., 2017), which can be broadly described as an approach allowing several parties to train a model
jointly without sharing their private data. In particular, vertical federated learning (Hardy et al., 2017;
Yang et al., 2019) targets the scenario where different features (including the label) of each training
instance are kept by different parties.

One of the most popular approaches to vertical FL for neural networks is split learning (Gupta &
Raskar, 2018; Vepakomma et al., 2018), where each party stores its part of the overall model. To train
the model in such an approach, it is only necessary to transfer the intermediate activations and the
gradients between layers, while the data itself is stored at the premises of the participant hosting each
layer. In this work, we focus on the two-party formulation of split learning, where one side stores the
features for each example and another one stores the labels.

Recent works have investigated the setting of two-party split learning from the label leakage per-
spective (Vepakomma et al., 2019; Pasquini et al., 2021): because the label party needs to pass the
gradients of the loss function to the non-label party, it is possible for the latter party to deduce the
labels by inspecting the gradients or activations or by hijacking the training procedure. Li et al. (2022)
provide a set of attack methods that allow recovering private labels and propose a defense mechanism

1The code is available at github.com/p3eft-iclr-2025/p3eft-iclr-2025
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that injects noise into the gradients; however, they test the approach on pretraining smaller models,
and we study finetuning large models on private downstream data.

2.2 PARAMETER-EFFICIENT FINETUNING

The majority of large neural networks today are not trained with a specific task in mind: instead, they
are pretrained on a general objective and then adapted for the downstream problem. Importantly, the
growth in the size of foundation models has led to the increased popularity of parameter-efficient
finetuning (PEFT) methods that adapt the model to a given task by training a small number of
task-specific parameters. There are several prominent approaches to parameter-efficient finetuning,
ranging from trainable prompts (Li & Liang, 2021; Hambardzumyan et al., 2021), to residual
adapters (Houlsby et al., 2019; Pfeiffer et al., 2021). We focus on Low-Rank Adaptation (or
LoRA, Hu et al., 2022), one of the most popular PEFT methods that adds extra parameters to each
weight matrix in the form of a low-rank factorization (see Appendix D for a more detailed description).
Such formulation allows LoRA adapters to be merged into the original weights after finetuning; this
ability, combined with the simplicity of the method, has made LoRA a broadly popular approach in
multiple domains. Still, the approach we propose can be applied to any PEFT method.

Several recent lines of work explore the problem of fine-tuning LLMs with privacy guarantees Yu
et al. (2022); Shi et al. (2022). Zhao et al. (2023) analyze the viability of prompt tuning for federated
learning, and Zhang et al. (2023); Liu et al. (2023) study PEFT algorithms in the setting of horizontal
federated learning, that is, where multiple users train a shared model on their local private data.
Another, more relevant research direction considers private fine-tuning in a vertical federated learning
scenario, where participants hold different model layers Li et al. (2023b); Wang et al. (2023); Wan
et al. (2023). Most of these studies leverage the idea of differential privacy to prove an upper bound on
how much information is leaked Dwork (2006). Unfortunately, these upper bounds are typically loose
and do not match practical observations for real models (see results and discussion in Section 4.2
and Appendix B). Finally, Xiao et al. (2023) presents an alternative algorithm that protects client data
by running the entire fine-tuning on client side by emulating the server-side model layers. While
this approach is more holistic, it assumes that clients can run fine-tuning locally, which makes it
impractical for many real-world users of LLM fine-tuning APIs. The primary distinction between
our work and these studies is that we investigate parameter-efficient adaptation in the setting of split
learning: we aim to finetune a model without disclosing the labels of examples to the model provider.

3 PRIVACY-PRESERVING PARAMETER-EFFICIENT FINE-TUNING

In this section, we analyze the privacy of parameter-efficient fine-tuning and propose a protocol for
two-party parameter-efficient fine-tuning with the desired privacy guarantees. We begin by analyzing
the privacy of API fine-tuning with popular PEFT algorithms in Sections 3.1 and 3.2. Then, in
Section 3.3, we formulate a protocol for privately computing gradients over fine-tuning APIs. Finally,
we formulate the full P3EFT protocol in Section 3.4.

3.1 SETUP

To analyze the privacy of API fine-tuning, we first need to formulate a common framework for
this type of APIs and develop private learning protocols. This step is important, because existing
fine-tuning APIs greatly vary in what they offer to the client: from closed APIs that require users to
submit their full training data OpenAI (2024) to more flexible APIs where clients can run individual
training steps (Li et al., 2023a; Borzunov et al., 2022; Rao et al., 2021). Similarly to most existing
works on split learning, we focus on the latter type of APIs that allows clients to run individual
forward and backward passes over a remote model. Thus, a client can use these APIs to obtain the
training gradients for their PEFT adapters, then update adapters locally with any optimization method.
In our work, we adopt this archetype of fine-tuning API as it offers sufficient flexibility to develop
privacy-preserving algorithms.

We formulate fine-tuning over an API for two or more parties: a client, and one or several servers.
The client owns a training dataset with inputs X and labels Y . In turn, each server has the same
pre-trained model h(xi, θ) ∈ Rd. Note that the parameters θ denote not the pre-trained model
weights, but the trainable adapter weights for a certain PEFT algorithm. A model can encode an input
xi ∈ X and produce a d-dimensional vector of activations that depend on the adapter weights θ.
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Figure 1: An intuitive illustration of the proposed fine-tuning protocol.

To allow fine-tuning, a server offers two API methods:

1. forward(x, θ) → h(x, θ) that computes model activations on input x using adapter weights θ;

2. backprop(x, θ, gh) → gθ that receives gradients of an arbitrary loss function w.r.t. model
activations gh = ∂L(h(x,θ))

∂h(x,θ) and returns the gradients w.r.t. adapter weights, gθ = ∂L(h(x,θ))
∂θ .

We further assume that both forward(·) and backprop(·) APIs are stateless and deterministic, i.e.
calling the same API method multiple times (or on multiple servers) with the same inputs produces
identical results. Thus, if the model uses dropout or any other form of non-determinism, we assume
that clients provide the random seed as a part of x.

To fine-tune a model with this API, a client can initialize adapters locally, alongside with a small
task-specific head2, then train both adapters and the head. For each training batch (x, y) ∈ D, a client
calls forward(x, θ) to compute feature representations, then predicts with local “head” and computes
task-specific loss function L. After that, a client performs backward pass: first, it computes gradients
w.r.t. local head inputs gh = ∂L

∂h , then passes those gradients to a remote server via backprop(x, θ, gh)
API call to compute gradients w.r.t. ∂L

∂θ . Finally, a client updates both θ and local “head” parameters
using the optimizer of choice.

Before building more advanced algorithms, let us analyze the privacy of client’s labels under standard
fine-tuning. We consider an “honest, but curious” attacker model. This means that the server will
faithfully run the forward and backprop computations as requested by the client without changing
the results. Furthermore, we assume that servers are independent and do not communicate client’s
data between each other. However, a server can recover client’s labels by performing arbitrary
computations using any information it receives from the client. When training in this way, a client
does not directly communicate training labels to the server. However, it communicates inputs, adapter
parameters, and gradients. Furthermore, the server communicates input representations that can be
intercepted by a third party.

3.2 LABEL LEAKAGE OF STANDARD SPLIT LEARNING

In Figure 2, we train a DeBERTa-v2-XXL model on the SST-2 Socher et al. (2013) sentiment
classification dataset. The top row depicts the gradients gh communicated by the client when calling
backprop(·) at different training stages. In the bottom row, we similarly track activations h(x, θ) that
server may compute based on the specified x, θ. We defer additional figures and details to Section 4.1.

As we can see, both gradients and activations are arranged in such a way that simple k-means
clustering would reveal which objects have the same label. The training activations (bottom row) do
not reveal labels right away (at least not against this attack). However, they gradually “leak” private
label information during training. Informally, it appears that the training gradients gradually pull
apart the feature representations for each label, until eventually they turn into separate clusters. From

2A linear layer that predicts class logits or regression target.
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Figure 2: A visualization of top-2 principal components of gradients (top) and activations (bottom)
from different fine-tuning steps (left to right). Color indicates the training labels (binary).

an information-theoretic perspective, knowing just one vector of gradients or trained activations
allows the attacker to learn all but one bit3 of information about client’s private labels.

To summarize, leaving any one data source unprotected (gradients or activations) would already
compromise label privacy. However, we found that gradients and activations require different means
of protection.

3.3 PRIVACY-PRESERVING BACKPROPAGATION

In this section, we formulate an algorithm for “anonymizing” the gradients communicated over a
single training step with arbitrary PEFT type. Several prior works approach this by modifying the
training objective or model architecture. However, when dealing with a real-world PEFT workload
with optimized hyperparameters, changing the model or loss function often results in reduced model
accuracy4. Thus, we seek an algorithm that preserves both model and training objective.

We design our algorithm based on an observation that backpropagation is conditionally lin-
ear in output gradients, even when the model itself is nonlinear. Formally, if we take a model
h(·, ·), a fixed set of trainable parameters θ and input samples x, the backprop function5 computes
backprop(x, θ, ∂L

∂h(x,θ) ) =
∂L
∂θ . For convenience, we shorten it to backprop(x, θ, gh) = gθ, where

gh = ∂L
∂h(x,θ) represents the gradients of some objective function with respect to model activations

(outputs), and gθ = ∂L
∂θ are gradients of the same objective function w.r.t. trainable parameters. In

this notation, backprop is linear in terms of gh for any fixed x, θ.

This becomes self-evident if we view backprop as multiplying gh by the Jacobian of model outputs
w.r.t. trainable parameters, ∂h(x,θ)

∂θ . If x, θ are constant, the Jacobian is also constant, and backprop
is a linear operator:

backprop(x, θ,
∂L

∂h(x, θ)
) =

∂L

∂θ
=

∂L

∂h(x, θ)
× ∂h(x, θ)

∂θ
. (1)

This observation allows us to design a private backpropagation protocol. To illustrate
this protocol, let us first consider a distributed API with two identical independent servers
that offer backprop API. Then, for arbitrary vector z, we can rewrite backprop(x, θ, gh) as
1
2backprop(x, θ, gh+z)+ 1

2backprop(x, θ, gh−z).
During API fine-tuning, we obtain backprop(x, θ, gh + z) using an API call to server 1, whereas the
second term backprop(x, θ, gh − z) translates to an API call to server 2. Note that neither of two

3The missing bit corresponds to attacker not knowing which cluster corresponds to label “1”.
4We validate this empirically in 4.2.
5This is the same as the backprop API defined in Section 3.1.
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servers has access to the true gradient gh: they only receive the sum [gh + z]. If we sample a large
noise vector z (Var(z) ≫ ∥gh∥22), this sum also becomes dominated by noise. When both API calls
finish, the client sums the results to recover the true gradient of the loss with respect to parameters.

If both requests are processed by the same server, it can obviously recover gh by adding up gradients
from both calls, which leads us to the final step. Instead of generating one noise vector, a client needs
to generate (privately) a set of m > 1 random vectors ĝ1h, . . . , ĝ

m
h and scalars α1, . . . , αm such that

gh =
∑m

i=1 αi · ĝih. (2)

Then, for each ĝih, client computes backprop(x, θ, ĝih) as m parallel API calls. Then, client recovers

gθ =

m∑
i=1

αi · backprop(x, θ, ĝih). (3)

Note that the client does not reveal α1, . . . , αm to anyone.

The resulting procedure is formulated in Algorithm 1. This algorithm is conceptually similar to
the secure aggregation protocol for conventional (horizontal) federated learning (Bonawitz et al.,
2017). This protocol allows clients to average their local vector with peers while keeping each
individual vector provably private. Similarly to our scheme, clients perturb the vector in such a way
that the average of perturbed vectors remains the same. Unlike Bonawitz et al. (2017), our protocol
privately backpropagates through a server-hosted model by leveraging the conditional linearity of the
backpropagation operator.

Algorithm 1 private_backprop — Privacy-Preserving Backpropagation (from the client’s perspective)

1: Input: x inputs, θ adapter weights, gh gradients w.r.t. activations, m > 1 - number of passes
2: ĝ1h, . . . , ĝ

m
h , α1, . . . , αm = obfuscate(gh,m) ▷ 2

3: for j = 1, . . . ,m do
4: ĝjθ = backprop(x, θ, ĝjh) ▷ computed by server
5: end for
6: gθ =

∑m
j=1 αj · ĝjθ

7: Return: gθ

The private backpropagation algorithm can allow client to safely compute gradients once, but, in
practice, client usually needs to run many consecutive steps. This creates an additional vector of
attack: if the same server receives two sets of parameters θt, θt+1 , they could potentially recover gθ
by inverting the optimizer.

In the simplest case, if the server somehow knows that the client computes θt+1 = θt − η · gθ, then
they can compute gθ = (θt − θt+1)/η. While gθ does not necessarily leak private labels, a server
could, in some cases, use gθ to recover gh, either fully (e.g. if Jacobian is invertible), or partially.

The client has two ways to prevent this attack. The first one is to ensure that no single server runs
backprop on two consecutive steps. This is easy to do in decentralized systems where there are
many potential servers. However, even when there is a single server, they could be required to set up
multiple trusted execution environments (Nvidia, 2024). A more risky alternative is to ensure that the
gradients cannot be reversed from consecutive parameters: randomize initial optimizer statistics or
add noise to parameters. This solution is easier, but it can slow down training in some cases.

To summarize, we formulated a procedure that allows a client to compute gradients privately for
any given model and PEFT type. Below, we analyze this procedure in conjunction with activation
protection technique from the next section. However, private backpropagation can also be used
separately, to ensure gradient privacy for baseline methods (e.g. Sun et al. (2022)) or potential
future algorithms. This approach can fit any vertical federated learning or split learning scenario
that requires propagating gradients through an untrusted third party. Furthermore, since Equation 3
recovers true gradients, this obfuscation method does not affect the training dynamics.

3.4 FULL FINE-TUNING

The other major attack vector are training activations. As the model fits to training data, its intermedi-
ate activations h(x, θ) allow attackers to recover labels, e.g. by clustering (see Figure 2). To combat
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this issue, we take advantage of the fact that PEFT has few trainable parameters. Instead of learning
just one set of parameters, a client creates n independent adapter sets θ1, ..., θn. Note that this does
not require n unique servers: a single server can run multiple sets of adapters. Furthermore, a client
can alternate between using different servers for the same adapters. During forward pass, the outputs
of different adapters are mixed together using randomized mixing weights W ∈ Rn,d:

h′(x, θ1, . . . , θn) =
∑n

i=1Wi ⊙ h(x, θi) (4)

Overall, we design this model in such a way the combined model h′ can predict the labels, but the
adapters h(x, θi) do not allow predicting these labels without knowing the mixing weights W. The
mixing weights are generated such that initial activations h′(x, . . . ) are equal to mean h(x, ·) for all
x. To achieve this, we generate W as follows: first, we generate n · (n− 1)/2 d-dimensional random
vectors ξi,j ∈ Rd,∀i ∈ [1, n], j ∈ [i+ 1, n]. Then, we add them up in the following way:

W =


1
ne+ ξ1,2 + ξ1,3 + · · ·+ ξ1,n

−ξ1,2 + 1
ne+ ξ2,3 + · · ·+ ξ2,n

. . .
−ξ1,n − ξ2,n − ξ3,n − · · ·+ 1

ne

 (5)

Here, e stands for a vector of all ones. The purpose of these mixing weights is to ensure that the
gradients w.r.t. individual h(x, θi) are obfuscated, but the averaged model behaves the same as
regular PEFT adapter. To illustrate this, consider n=2 identical LoRA adapters θ1, θ2. During the
first training step h(x, θ1) = h(x, θ2). Therefore,

h′(x, θ1, . . . , θn) = (1/2e+ ξ1,2)⊙ h(x, θ1) + (1/2e− ξ1,2)⊙ h(x, θ2) = h(x, θ1) (6)

However, the two adapters will learn different functions as they receive different gradients. From the
first update on, h′ will be equal to an average of adapter predictions.

Algorithm 2 P3EFT - full training algorithm

1: Input: dataset D = {X,Y }, n > 1 number of adapters, α ≥ 0 - regularizing weight, m > 1
number of obfuscated gradients

2: Initialize head ψ0, mixing weights Wi and adapters θ0i , i = 1, n
3: for t = 0, 1, . . . , T − 1 do
4: Sample batch {xt, yt}
5: for i = 1, . . . , n do
6: hti = h(xt, θti) ▷ by server
7: li = reg_loss(hti, y

t) ▷ by client
8: end for
9: h′ =

∑n
i=1Wi ⊙ hti

10: l = main_loss(f(h′, ψt), yt)
11: L = l + α ·

∑n
i=1 li

12: for i = 1, . . . , n do
13: gh = ∂L/∂hti ▷ Client performs partial backprop
14: gti = private_backprop(x, θti , gh,m)
15: θt+1

i = opt_step(θti , g
t
i , t)

16: end for
17: ψt+1 = opt_step(ψt, ∂l/∂ψt, t)
18: end for
19: Return: ψT , θT1 , . . . , θ

T
M

Finally, to ensure that individual adapters h(x, θ) do not accidentally “learn to leak” labels, we
maintain this over the course of training with a privacy regularizer inspired by Ganin & Lempitsky
(2015). This ensures that it is impossible to predict labels from individual adapters h(x, θi). Intuitively,
on each training step, client fits n linear “heads” that learn to predict labels y from h(x, θi), then
performs an adversarial update of θi to prevent the “head” from predicting y. Formally, each of n

7
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Step: 0 Step: 1000 Step: 4000 Step: 16000

Step: 0 Step: 1000 Step: 4000 Step: 16000

Figure 3: Gradients of cross-entropy w.r.t. LoRA parameters for DeBERTa-v2-XXLarge. The top
row corresponds to normal backpropagation and the bottom row uses privacy-preserving backprop.

“heads” minimize the same objective function as the full model. For instance, if the full model solves
multi-class classification, each head is trained to minimize cross-entropy:

η∗i = argmin
ηi

∑
x,y∈D −y · log e⟨ηij,h(x,θi)⟩∑

k e⟨ηik,h(x,θi)⟩
, (7)

where y is one-hot encoding of the correct class.

The whole adversarial update takes place locally on client’s side, using the same h(x, θ) it uses for the
main training objective. The resulting procedure appears complicated but it typically takes negligible
time compared to running the large pre-trainied model h(x, θ). Furthermore, since adversarial “heads”
are linear, minimizing the objective above is done with standard logistic regression solver.

To summarize, our approach combines the two proposed ideas: we use the private backpropagation
algorithm from Section 3.3 to protect the gradients, then trains a mixture of adapters in such a way
that obfuscates learned activatons leaking labels. The resulting procedure is described in Algorithm 2.
Here, main_loss is the task-specific objective e.g. cross-entropy; reg_loss is the adversarial regularizer.
We denote client-side model "head" as f(h, ψt), where ψ represent trainable head parameters. Finally,
opt_step function performs a single gradient descent step with a task-specific optimizer, typically
Adam (Kingma & Ba, 2014).

In the next section, we will evaluate the efficacy of P3EFT on popular NLP benchmarks.

4 EXPERIMENTS

The main goal of our study is to find a practical method of private fine-tuning that would scale to
large models. Because our approach leverages parameter-efficient fine-tuning techniques, we evaluate
P3EFT with fine-tuning Transformer models on popular NLP benchmarks that these techniques were
designed for. To that end, we chose three pre-trained models: DeBERTa-XXLarge (He et al., 2021),
Flan-T5-Large (Chung et al., 2022) and LLaMA-2 7B (Touvron et al., 2023). We train these models
on several datasets from the GLUE benchmark (Wang et al., 2018): SST-2 (Socher et al., 2013),
MNLI (Williams et al., 2017) and QNLI.

4.1 PRIVACY OF GRADIENTS

For this experiment, we train DeBERTa-XXLarge on SST-2 dataset using LoRA adapters with
hyperparameters from Hu et al. (2022). First, we train the model locally and track model activations
h and gradients w.r.t. those activations. We apply principal component analysis to them and plot
the first 2 dimensions in Figure 2. Similarly, we visualize gradients of individual per-sample loss
functions w.r.t. LoRA parameters θ in Figure 3 (top row). The results suggest that a hypothetical
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Table 1: Accuracy and privacy metrics.
DeBERTa XXLarge.

Dataset Without Regular DC P3EFTLoRAs FT

SST2 acc 82.9 96.9 96.6±0.4 96.5±0.2

leak 53.9 99.1 93.3±6.8 62.6±2.6

QNLI acc 72.6 96.0 95.8±0.3 95.6±0.5

leak 51.5 99.1 85.0±11.6 74.6±11.1

MNLI acc 49.2 91.9 — 86.9±0.5

leak 34.2 91.5 — 37.4±0.7

Table 2: Accuracy and privacy metrics.
Flan-T5-Large.

Dataset Without Regular DC P3EFTLoRAs FT

SST2 acc 92.8 96.1 95.0±0.1 96.1±0.1

leak 55.8 98.3 68.1±5.0 74.1±3.0

QNLI acc 83.2 95.3 95.2±0.1 94.7±0.0

leak 58.7 98.9 67.0±1.2 63.0±0.8

MNLI acc 73.9 90.5 89.8±0.1 90.1±0.1

leak 34.6 85.9 45.6±0.8 40.0±1.1

attacker could easily recover private labels by performing K-Means clustering over any data source:
activations, gradients with respect to activations, or individual gradients with respect to parameters.

Next, we run the same experiment using privacy-preserving backpropagation as defined in Section 3.3.
We use n = 2 with the noise variance set to 1000. As expected, we observed the same learning curve
as with normal training. However, instead of sending gradients w.r.t. activations to the server, a client
uses specially crafted random noise vectors that are not informative. In Figure 3 (bottom) we plot the
same kind of individual gradients as in the top row, except that we visualize the gradients computed
by the first of the two servers. Finally, we train XGBoost (Chen & Guestrin, 2016) with default
hyperparameters to predict labels given the noisy gradients (pre-PCA): the resulting classifier is able
to fit the training data perfectly, but has at most 50.4% accuracy on a balanced test set.

4.2 MAIN FINE-TUNING EXPERIMENTS

Next, we evaluated the entire P3EFT algorithm. To control tasks and model type, we examined
DeBERTa and Flan-T5 across all four datasets mentioned above, in addition to evaluating LLaMA on
SST2 and QNLI datasets. For each setup, we compare against four baselines:

• Without LoRAs. In this baseline, the client gathers h activations at the beginning (with no
adapters), then proceeds to train local “head” layers using these activations. This method cannot
leak information about training labels except for what is stored in X.

• Regular fine-tuning (Regular FT) refers to training a single LoRA adapter normally. This baseline
represents an upper bound on model accuracy, but lacks privacy.

• Distance Correlation (DC). Our re-implementation of the distance correlation defense formulated
in Sun et al. (2022) for Transformer models.

• Private Split Learning Framework (PSLF) represents another reimplementation of the framework
from Wan et al. (2023). The protection mechanism in this method is based on the utilization of
Randomized Response (Warner, 1965) and satistifies the conditions of Label Differential Privacy.

For each algorithm, we evaluated an accuracy, as well as the privacy leakage value for the 3 following
measures:

• Spectral attack AUC — a measure of vulnerability to an attack proposed in Sun et al. (2022),
measured as classifier ROC AUC: lower value corresponds to better privacy.

• Norm attack AUC — vulnerability to a variant of attack proposed in Li et al. (2022), measured as
classifier ROC AUC (lower is better). Despite the initial proposal of this approach for attacking
gradients, we observed that it is also well-suited for attacking activations.

• K-means accuracy — vulnerability to clusterization attack, measured in the percentage of correctly
clustered activations, lower is better.

For all setups, we report the worst (least private) value among these metrics throughout the entire
training period as a measure of privacy leakage, because it is the worst possible scenario that matters
from the client’s perspective. In Tables 1 to 3, we label accuracy as acc and privacy leakage as leak.
For DC and P3EFT, we specify the values for the best configuration in terms of the utility-privacy
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Table 3: Accuracy and privacy metrics
for LLaMA-2 7B.

Dataset Without Regular DC P3EFTLoRAs FT

SST2 acc 94.6 97.4 97.1±0.1 95.8±0.1

leak 59.1 99.3 83.6±10.6 68.9±2.6

QNLI acc 77.0 95.0 95.2±0.1 94.7±0.2

leak 53.3 85.5 66.6±4.1 62.9±0.8

Table 4: PSLF baseline on SST2 with
DeBERTa and Flan-T5.

DeBERTa K = 9 P3EFT
ε 0.0 0.1 0.2 0.3 —
acc 75.7 85.0 92.3 93.7 96.5
leak 55.3 64.9 97.2 97.3 62.6

Flan-T5 K = 9 P3EFT
ε 0.0 0.1 0.2 0.3 —
acc 91.3 92.9 94.8 95.4 96.1
leak 64.0 70.1 95.9 97.6 74.1

trade-off. See details in Appendix A. We also report adjusted standard deviations for the P3EFT and
DC. To do so, we run the full training procedure from scratch with 3 random seeds.

Despite a thorough grid search over the privacy budget ε and the number of pseudo-classes K, we
were unable to find a stable configuration for training using PSLF (Wan et al., 2023). An example
of DeBERTa and Flan-T5 training on SST2 with K = 9 is presented in Table 4. Full results can be
found in Appendix B and Table 7.

The results for DeBERTa are presented in Table 1. To improve reproducibility, we reuse the hyperpa-
rameters (including rank r = 8) from Hu et al. (2022), with the exception of the dropout value. We
disable dropout because it interferes with the mixing weights Equation 5. In preliminary experiments,
we observed that with dropout enabled, both P3EFT and DC begin to perform significantly worse.

We use n = 2 adapter sets for P3EFT for all datasets and adhered to the same approach for the
other models as well. Overall, P3EFT achieves nearly the same accuracy as traditional (non-private)
fine-tuning, outperforming the DC-based algorithm in terms of privacy given the same accuracy level.
On the MNLI dataset, we could not find the hyperparameters for DC that ensure stable training while
maintaining privacy. Meanwhile, P3EFT maintains consistent performance on this task.

Table 2 a reports evaluation for the Flan-T5 base model Chung et al. (2022). For this model, we adapt
the exact same hyperparameters as in the previous evaluation with DeBERTa-XXLarge. Compared to
DeBERTa, these results are more closely matched. Both our algorithm and DC consistently solve all
three tasks, but P3EFT slightly outperforms DC in terms of privacy.

To evaluate how our algorithm scales to larger models, we also fine-tune Llama-2 7B Touvron et al.
(2023) on SST2 Socher et al. (2013) and QNLI Wang et al. (2018) datasets. For these evaluations, we
use LoRA hyperparameters that Hu et al. (2022) used when fine-tuning GPT-3, with several changes
inspired by Dettmers et al. (2023). Namely, we use the NF4 weight format, apply LoRA to both
attention and MLP layers with rank 16. We fine-tune both tasks with maximum context length of
512 and weight decay 0.01. Table 3 summarizes our results: for QNLI, both DC and P3EFT achieve
reasonable accuracy on the target task, while P3EFT surpasses DC in terms of privacy. On SST2,
P3EFT shows similarly favorable trade-offs while DC struggles to preserve privacy.

5 CONCLUSION AND DISCUSSION

In this work, we analyze privacy-preserving fine-tuning of large neural networks in the context of
parameter-efficient fine-tuning and the two-party split learning setting. We show that while standard
fine-tuning suffers from label leakage even in the parameter-efficient case, it is possible to leverage
the efficiency of PEFT to alter the procedure without any significant performance drawbacks. We test
the resulting method, named P3EFT, on a range of pretrained language models and multiple datasets,
showing that it is competitive with a strong baseline in terms of label privacy while having higher
task performance.

In future work, it is natural to explore how this approach can be extended to establish holistic privacy
in both labels and inputs. This problem can be approached from two directions: either adapt the
ideas of P3EFT for input privacy, or combine it with an existing work like Li et al. (2023b). Another
important direction for future research is exploring the privacy of the long-term client-provider
interaction. In a typical real-world use case of API fine-tuning, a client performs multiple training
runs on overlapping data and hyperparameters. This could open additional attacks vectors that
combine information from multiple training runs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem
Chumachenko, Pavel Samygin, and Colin Raffel. Petals: Collaborative inference and fine-tuning
of large models. arXiv preprint arXiv:2209.01188, 2022. URL https://arxiv.org/abs/
2209.01188.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi:
10.1145/2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022. URL https://arxiv.org/abs/2210.11416.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Dreambooth API. Dreambooth API – Easily finetune Stable Diffusion and generate customised AI
images — dreamboothapi.ai. https://dreamboothapi.ai/, 2024. [Accessed 28-09-2024].

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch. Flocks of stochas-
tic parrots: Differentially private prompt learning for large language models. arXiv preprint
arXiv:2305.15594, 2023.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1180–1189,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
ganin15.html.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018. ISSN 1084-8045. doi: https://doi.
org/10.1016/j.jnca.2018.05.003. URL https://www.sciencedirect.com/science/
article/pii/S1084804518301590.

Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 4921–4933, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.381. URL https://aclanthology.org/
2021.acl-long.381.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume Smith,
and Brian Thorne. Private federated learning on vertically partitioned data via entity resolution
and additively homomorphic encryption, 2017.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=XPZIaotutsD.

11

https://arxiv.org/abs/2209.01188
https://arxiv.org/abs/2209.01188
http://doi.acm.org/10.1145/2939672.2939785
https://arxiv.org/abs/2210.11416
https://dreamboothapi.ai/
https://proceedings.mlr.press/v37/ganin15.html
https://proceedings.mlr.press/v37/ganin15.html
https://www.sciencedirect.com/science/article/pii/S1084804518301590
https://www.sciencedirect.com/science/article/pii/S1084804518301590
https://aclanthology.org/2021.acl-long.381
https://aclanthology.org/2021.acl-long.381
https://openreview.net/forum?id=XPZIaotutsD


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/houlsby19a.html.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Hugging Face. AutoTrain — huggingface.co. https://huggingface.co/autotrain, 2024.
[Accessed 28-09-2024].

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith, and
Chong Wang. Label leakage and protection in two-party split learning. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
cOtBRgsf2fO.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. A
survey on federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 2021.

Shen Li, Pritam Damania, Luca Wehrstedt, and Rohan Varma. PyTorch RPC: Distributed Deep
Learning Built on Tensor-Optimized Remote Procedure Calls. In Proceedings of Machine Learning
and Systems 5 (MLSys), 2023a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353.

Yansong Li, Zhixing Tan, and Yang Liu. Privacy-preserving prompt tuning for large language model
services. ArXiv, abs/2305.06212, 2023b. URL https://api.semanticscholar.org/
CorpusID:258588141.

Xiao-Yang Liu, Rongyi Zhu, Daochen Zha, Jiechao Gao, Shan Zhong, and Meikang Qiu. Differen-
tially private low-rank adaptation of large language model using federated learning. arXiv preprint
arXiv:2312.17493, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh
and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pp. 1273–1282. PMLR,
20–22 Apr 2017. URL https://proceedings.mlr.press/v54/mcmahan17a.html.

Nvidia. Nvidia confidential computing. https://www.nvidia.com/en-us/
data-center/solutions/confidential-computing, 2024. [Accessed 28-09-
2024].

OctoAI. Fine-tuning Stable Diffusion — docs.octoai.cloud. https://octo.
ai/docs/media-gen-solution/fine-tuning-stable-diffusion/
fine-tuning-stable-diffusion, 2024. [Accessed 28-09-2024].

OpenAI. OpenAI Platform — platform.openai.com. https://platform.openai.com/
docs/guides/fine-tuning, 2024. [Accessed 28-09-2024].

12

https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://huggingface.co/autotrain
https://openreview.net/forum?id=cOtBRgsf2fO
https://openreview.net/forum?id=cOtBRgsf2fO
https://aclanthology.org/2021.acl-long.353
https://api.semanticscholar.org/CorpusID:258588141
https://api.semanticscholar.org/CorpusID:258588141
https://proceedings.mlr.press/v54/mcmahan17a.html
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing
https://octo.ai/docs/media-gen-solution/fine-tuning-stable-diffusion/fine-tuning-stable-diffusion
https://octo.ai/docs/media-gen-solution/fine-tuning-stable-diffusion/fine-tuning-stable-diffusion
https://octo.ai/docs/media-gen-solution/fine-tuning-stable-diffusion/fine-tuning-stable-diffusion
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference
attacks on split learning. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, pp. 2113–2129, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450384544. doi: 10.1145/3460120.3485259. URL
https://doi.org/10.1145/3460120.3485259.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning, 2021.

Yuma Rao, Jacob Steeves, Ala Shaabana, Daniel Attevelt, and Matthew McAteer. Bittensor: A
peer-to-peer intelligence market, 2021.

Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice:
Selective differential privacy for large language models. arXiv preprint arXiv:2204.07667, 2022.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/D13-1170.

Jiankai Sun, Xin Yang, Yuanshun Yao, and Chong Wang. Label leakage and protection from forward
embedding in vertical federated learning. arXiv preprint arXiv:2203.01451, 2022.

Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey on
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A HYPERPARAMETERS SEARCH

In P3EFT and Distance Correlation methods resulting loss L function can be viewed in the form

L = Lm + α · Lr,

where Lm - main task loss, Lr - regularizer and α is a coefficient that controls the tradeoff between
these two losses. The selection of this coefficient affects the final performance of the model. Therefore,
to find the best configurations for both methods, we iterated through this hyperparameter using a grid
search.

We started with α = 1 and then altered it with a multiplicative step of 10
1
2 . Values were discarded if

the quality did not exceed that achieved by solely training the classifier without LoRA. This criterion
was adopted because such outcomes would suggest the method’s inability to outperform training
scenarios in which the server does not engage with the labels whatsoever. Additionally, we excluded
values that led to unstable training. By this, we mean instances where, although the model initially
trained on the primary task, at some point, the regularizer began contributing significantly more,
and the utility value dropped to the starting value. We observed this issue for the DC method with
DeBERTa on the MNLI. From the remaining values, we aimed to choose the one that offered the
lowest privacy leakage. The final hyperparameter values for P3EFT can be found in the Table 5 and
for DC in the Table 6.

Table 5: Regularization parameter α for the P3EFT method. The values in the table represent powers
of the 10

1
2 .

SST2 QNLI MNLI

DeBERTa XXLarge 1 1 1

Flan-T5-Large -1 1 1

LLaMA-2 7B 0 0 —

B ADDITIONAL EXPERIMENTS

PSLF Baseline. In this section we present results of training DeBERTa and Flan-T5 on SST2 and
QNLI using PSLF (Wan et al., 2023). As it can be observed from Table 7, despite thorough grid
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Table 6: Regularization parameter α for the DC method. The values in the table represent powers of
the 10

1
2 .

SST2 QNLI MNLI

DeBERTa XXLarge 0 -1 —

Flan-T5-Large 2 -1 0

LLaMA-2 7B -1 -1 —

Table 7: PSLF baseline on SST2 and QNLI with DeBERTa and Flan-T5. The asterisk indicates those
runs that were stopped earlier because the leak value was too high (above 90).

DeBERTa SST2 K = 9 K = 4 K = 18 P3EFT (ours)
ε 0.0 0.1 0.2 0.3 0.1 0.2 0.3 0.4 —

acc 75.7 85.0 92.3 93.7 76.4 95.1 90.8 93.9 96.5
leak 55.3 64.9 97.2 97.3 55.2 97.1 71.1 95.5 62.6

Flan-T5 SST2 K = 9 K = 4 K = 18 P3EFT (ours)
ε 0.0 0.1 0.2 0.3 0.0 0.1 0.1 0.2 —

acc 91.3 92.9 94.8 95.4 92.0 94.6 92.4 94.8 96.1
leak 64.0 70.1 95.9 97.6 59.0 91.0 60.9 93.6 74.1

DeBERTa QNLI K = 2 K = 4 P3EFT (ours)
ε 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 —

acc 66.3 91.4 65.3 95.0∗ 67.2 82.4 78.4 94.4∗ 95.6
leak 56.9 96.5 88.4 98.7∗ 55.6 85.1 82.6 98.5∗ 74.6

Flan-T5 QNLI K = 2 K = 4 P3EFT (ours)
ε 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 —

acc 81.2 90.0 91.9∗ 93.2∗ 81.1 92.2 92.3∗ 92.6∗ 94.7
leak 61.6 76.0 94.8∗ 97.2∗ 63.2 86.7 95.9∗ 97.0∗ 63.0

search across privacy budget ε and the number of the pseudo-classes K we didn’t find stable training
configuration.

We note, that in Tables 4 and 7 we have entries with ε = 0. While we acknowledge that from
the formal definition of differential privacy, setting ε = 0 might not be entirely rigorous (as some
definitions require the privacy budget ε to be a positive real number), it carries meaningful practical
implications. Specifically, if we consider Randomized Response (equation (3) in Wan et al. (2023)),
which forms the foundation of the PSLF framework, setting ε = 0 means that for each training
sample, the flipped label ỹ has an equal probability of belonging to any class. Consequently, training
with ε = 0 is equivalent to training with random labels, corresponding to the setup with theoretical
lower bound for privacy. We included these entries in the table to better illustrate the trend of results
across the hyperparameter grid.

Ablation study on the number of adapters. We also present the experiments using the DeBERTa
model on SST2 and QNLI datasets with n = 1, n = 3 and n = 4 adapter sets. The results in
the Table 8 generally demonstrate, that increasing the number of adapters has minimal influence on
the resulting privacy and accuracy. We have also evaluated the efficacy of our setup when utilizing
a single set of adapters. Despite slightly reduced stability concerning the α (reguralization weight
hyperparameter), this setup proved highly competitive, which opens promising direction for further
research.

C THEORETICAL ANALYSIS FOR THE PRIVATE_BACKPROP ALGORITHM

In this section we provide theoretical analysis for privacy guarantees of the private_backprop algo-
rithm (Algorithm 1). We use notations B for batch_size and d for hidden_size; hb, gb, lb correspond
to activations, gradient and loss of the b-th batch element; gh represents a vector of concatenated
gradients (g1, . . . , gB) of all batch elements. We consider binary classification as a task with the
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Table 8: Ablation study on the number of adapter sets (n) with DeBERTa. Values in the α row
represent the power of 101/2. The asterisk indicates those runs that were stopped earlier because the
leak value was too high (above 90).

DeBERTa SST2 n = 1 n = 2 (original paper) n = 3 n=4

α,
√
10

(·) −2 −1 1 0 1
acc 96.9±0.2 95.5±0.1 96.5±0.2 95.8±1.5 96.5±0.3

leak 72.1±6.9 62.9±0.8 62.6±2.6 65.7±2.8 72.4±8.6

DeBERTa QNLI n = 1 n = 2 (original paper) n = 3 n=4

α,
√
10

(·)
0 1 1 1 1

acc 95.9∗±0.1 94.0±1.9 95.6±0.5 95.6±0.1 95.9±0.0

leak 94.9∗±0.0 71.3±9.5 74.6±11.1 76.5±4.7 71.8±3.8

minimum number of possible label combinations - 2B (however, similar reasoning extends to many
other loss functions, e.g., MSE).

We consider significantly stronger assumptions regarding the attacker’s capabilities - namely, a
white-box scenario. We assume the server knows the client-side model and, consequently, all possible
2B vectors gh for different label sets. Thus, the server’s task is to determine which of the 2B label
sets corresponds to the current batch (or at least determine which sets are more or less probable)
based on the transmitted vectors.

We examine several possible setups and investigate the minimum m required to ensure that all 2B
sets remain equally probable from the attacking server’s perspective:

1. The case with two non-interacting servers. In this scenario, it suffices to set m = 2 and
send one vector ξi to each server. From each server’s perspective, all 2B variants have equal
probability because for any ξi and a given gh, there exists a vector η such that gh belongs to
the span of ξi and η.

2. Single server case. We demonstrate that in this scenario, it is sufficient to set m = B.
To show this, we note that for the b-th element of the batch holds ∂lb/∂hb = ∂lb/∂pb ×
∂pb/∂hb, where pb ∈ R is the head’s prediction for activations hb - the probability of
class 1. ∂pb/∂hb is a constant Jacobian of rank 1 and does not depend on the label value.
Thus, both possible vectors ∂lb(y)/∂hb lie in the Jacobian’s image and belong to the same
one-dimensional subspace.
Therefore, it is sufficient for the client to send to the server a basis vector of the corresponding
one-dimensional subspace ∂pb/∂hb for each batch element b (and zero vectors for the
remaining batch elements). Knowing αb, the client can reconstruct the corresponding
contribution of b-th element to the weight gradient gθ. The server, however, cannot determine
which label generated the given gradient for each example, as both lie on the same line.

3. Single server case, m < B. In this setup, the client is not able to protect all gradients of the
batch. Indeed, for B = 3 and m = 2, the set of 23 possible gradient combinations cannot
be embedded in any 2-dimensional plane that the client can construct from 2 vectors (the
linear span of these 23 is 3-dimensional). At most, the client can fully protect m− 1 labels,
while the server will know the remaining b−m+ 1 labels up to a flip of all labels.

We want to emphasize again that the above results obtained under a white-box assumption, which is
significantly stronger than our practical setup. The general case is considerably more challenging
for the attacking side, and developing a possible attack or determining the theoretical limits of the
attacker’s capabilities is a complex task. However, we believe that the theoretical analysis presented
above may be a good first step in this direction.

D INFORMAL DESCRIPTION OF LORA FINE-TUNING

For convenience, we provide a brief summary of fine-tuning with LoRA (Hu et al., 2022). This PEFT
method was originally designed for fine-tuning large pre-trained language models on downstream
NLP tasks. These language models are typically based on the Transformer architecture (Vaswani
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et al., 2017), where most trainable parameters are allocated to linear layers in multi-head self-attention
and feedforward blocks.

In the first stage of LoRA fine-tuning, user augments the model with adapters. To do so, a user goes
over linear layers in transformer blocks and adds two trainable matrices, A and B that affect this
layer’s forward pass. Let Wi × x+ bi be the original layer with n inputs and m hidden units. Here,
Wi ∈ Rm×n is a pre-trained weight matrix, bi ∈ Rm is a pre-trained intercept vector and x ∈ Rn

represents a vector of inputs to this particular layer. During the forward pass, a layer with LoRA
adapter computes Wi × x+ bi +Bi ×Ai × x, or equivalently, (Wi +B ×A)× x+ bi. Here, Ai

and Bi are two newly added matrices that constitute a LoRA adapter.

The adapter matrices A ∈ Rr×n and B ∈ Rm×r have a very small intermediate dimension r. For
instance, when training GPT-3 with LoRA adapters, authors use 1 ≤ r ≤ 64, whereas the main
weight dimensions are m = n = 12288. The first matrix A is initialized with small random normal
values, and the second matrix B is initialized at zeros. That way, initial A and B do not affect the
model predictions.

Once all adapters are initilized, the user trains all Ai and Bi matrices of the model, while keeping
the rest of the weights frozen. This way, only a small faction (less than 1%) of model weights are
updated. Once the training is over, the learned adapters Ai and Bi can be merged into the main
weights (Wi :=Wi +Ai ×Bi) or used separately.

LoRA adapters are designed with two objectives in mind: i) to allow fine-tuning models in limited
GPU memory and ii) to allow inferencing many fine-tuned models using one inference server. When
fine-tuning, LoRA achieves small memory footprint due to the fact that user does not need to compute
gradients (or optimizer statistics) for billions of main model parameters. During inference, a server
can keep a library of several adapters for different tasks and swap between them on demand.
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