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Abstract

The main aim of this paper is to conduct the con-
vergence analysis of the gradient descent for two-
layer physics-informed neural networks (PINN).
Here, the loss function involves derivatives of neu-
ral network outputs with respect to its inputs, so
the interaction between the trainable parameters
is more complicated compared with simple regres-
sion and classification tasks. We first develop the
positive definiteness of Gram matrices and prove
that the gradient flow finds the global optima of
the empirical loss under over-parameterization.
Then, we demonstrate that the standard gradi-
ent descent converges to the global optima of the
loss with proper choices of learning rates. The
framework of our analysis works for various cate-
gories of PDEs (e.g., linear second-order PDEs)
and common types of network initialization (Le-
cunUniform etc.). Our theoretical results do not
need a very strict hypothesis for training samples
and have a looser requirement on the network
width compared with some previous works.

1. Introduction

Physics-informed neural networks (PINNs) have attracted
significant attention in solving high-dimensional and nonlin-
ear partial differential equations (PDEs) due to their evasion
of the curse of dimensionality and friendly implementation
(Raissi et al., 2019; Mao et al., 2020; Cai et al., 2022). For
a given PDE

Dlu, z] = f(x),
B[u,sc] = g(w),

x el Cc RY,

1
x € 0T, M
'"Department of Mathematics, The University of Hong
Kong, Pokfulam, Hong Kong 2School of Mathematical Sci-
ences, University of Electronic Science and Technology of China,
Sichuan 611731, China. Correspondence to: Michael K. Ng
<mng@maths.hku.hk>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

where wu is the unknown solution; D and B are differential
operators in the interior and on the boundary respectively;
f and g are given smooth functions; I' is an open bounded
domain of our interest and O  is its boundary. In PINNs, we
adopt a neural network ¢(x; w) parameterized by w, as a
surrogate to the solution u(x), and then solve the following
optimization problem

1 =1
min=- Y 5 [Dloeyw). @] - )
P:11 . 1 (2)
LA ;; 5 [Blo(@r; w), 2] —g(&@),

where v is the hyperparameter to balance the interior and
boundary conditions; n; and ns are numbers of samples in
the interior and on the boundary, respective; {x,, 21:1 and
{@}},2, are the training datasets sampled from I" and OT',
respectively. We aim to find the optimal neural network
¢(a; w) as an approximate solution by solving (2). Raissi
et al. (Raissi et al., 2019) recommended using L-BFGS
(Liu & Nocedal, 1989), which is a quasi-Newton method.
However, first-order methods (i.e., gradient descent and
its variants) are more popular and perform really well in
implementations, see for instance (Gu et al., 2021; Cai et al.,
2021; Meng et al., 2021; Mao et al., 2020).

Numerical examples of PINNs can be widely found in re-
cent literature, including linear elliptic/parabolic/hyperbolic
equations (Gu et al., 2021), Schrodinger equation (Raissi
et al., 2019), Allen—Cahn equation (Raissi et al., 2019),
compressible/incompressible flows (Cai et al., 2022; Mao
et al., 2020), Hamilton—Jacobi—Bellman equation (Sirig-
nano & Spiliopoulos, 2018), Burgers’ equation (Sirignano
& Spiliopoulos, 2018), etc. Although losses as small as
O(10~*) can be achieved in these experiments, optimization
errors caused by the algorithms prevent the losses from be-
ing reduced to the machine precision. In theory, however, it
is conjectured that the training loss of PINNs can be reduced
to zero by gradient descent under the over-parameterization
setting.

Existing analysis of the gradient descent usually depends
on the smoothness (Carmon et al., 2018; Li & Orabona,
2019), the Lipschitzness of the Hessian (Carmon et al., 2018;
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Nesterov & Polyak, 2006) and even the convexity (Duchi
et al., 2011; Kingma & Ba, 2015; Reddi et al., 2019), so
these works are not applicable to deep learning whose loss
function is highly non-convex and not necessarily smooth.
Also, much literature merely considers the convergence to
local optima, but numerical experiments show that the gra-
dient descent can nearly find the global optima, where the
mean square loss decreases almost to zero (Zhang et al.,
2021). This phenomenon in deep learning cannot be ex-
plained by classical convergence analysis but by the over-
parameterization of neural networks. Soudry and Carmon
(Soudry & Carmon, 2016) showed that all local minima
are actually the global ones for over-parameterized neural
networks. Du et al. (Du et al., 2019) proved that the gradi-
ent descent finds the global optima of over-parameterized
ReLU neural networks for least squares problems. Wang et
al. (Wang et al., 2022) analyzed the gradient flow of PINNs
with positive-definiteness assumptions on Gram matrices
and accelerated the convergence by involving eigenvalues of
Gram matrices in the loss function. We refer to readers for
more related works (Soltanolkotabi, 2017; Xie et al., 2017;
Chizat & Bach, 2018; Jacot et al., 2018; Soltanolkotabi
et al., 2018; Chatterjee, 2022). However, the (nearly) global
convergence of the gradient descent for training PINNs ob-
served in numerical experiments (Raissi et al., 2019; Pang
et al., 2020; Mao et al., 2020) cannot be explained by the
aforementioned results.

1.1. The Contributions

In this paper, we develop the convergence analysis of the
gradient descent in optimizing two-layer PINNs. Here are
our contributions.

* We provide a scheme for proving the positive defi-
niteness of Gram matrices of PINNs without strict
assumptions (Proposition 3.1 and Lemma 3.2). It can
be applied to various types of PDEs with some minor
modifications.

* We first theoretically prove that the gradient flow
finds the global optima of over-parameterized physics-
informed neural networks in solving a heat equation as
a pedagogical example (Theorem 3.8):

ut(t, @) — Agu(t,x) = f(t,x), (t,x) € (0,T)xT,
u(0,2) =g1(x), xeT,
u(t,z) = ga(t, x), (t,x)€[0,T] x IT.

3
Similar analysis and results can be achieved for a class

of second-order linear PDEs with some minor modifi-
cations; see Section 3.1.

* We next prove that the gradient descent finds the global
optima of the empirical loss of PINNs (Theorem 4.5).

Here, the learning rate does not depend on the size of
neural networks but relies on the PDE itself. We then
extend our results from the pedagogical example to
more general second-order linear PDEs; see Section
4.1. Our results also apply to some popular initializa-
tion methods, e.g., HeNormal (He et al., 2015), HeUni-
form (He et al., 2015), LecunNormal (Klambauer et al.,
2017) and LecunUniform (Klambauer et al., 2017); see
Corollary 4.7.

We should mention that there exist significant differences
between our work for PINNs and the similar work for least
squares regressions given in (Du et al., 2019). Firstly, to
prove the positive definiteness of Gram matrices, they have a
hypothesis for training samples that they cannot be (nearly)
parallel, and this is difficult to be verified and satisfied in real
applications. But our work does not need such a requirement
for training samples (see Proposition 3.1 and Remark 3.4).
Next, the loss function of PINNS is the residual of PDEs
and involves partial derivatives of the network. Accordingly,
our analysis is novel and more technical. Moreover, our
results and frameworks can be simply applied to various
PDE types and initialization types. In addition, we discuss
the networks having bias terms. So our results are more
applicable in practice compared with the works which do
not study bias terms.

Another similar work is the optimization analysis of gradi-
ent descent in training PINNs for second-order linear PDEs
(Luo & Yang, 2020), where the gradient flow representation
and Rademacher complexity are utilized. In comparison,
(Luo & Yang, 2020) only studies the gradient flow of the
training, but our work considers both the continuous gradi-
ent flow and, more practically, the discrete gradient descent.
Moreover, our theory (Corollary 4.7) gives a looser require-
ment of the network width (Q(n?/3)) than that given in (Luo
& Yang, 2020) (€2(n*)), where n is the number of training
samples.

This paper is organized as follows. Some preliminaries,
including a brief introduction to PINNs and some prepara-
tion works, are presented in Section 2. We provide detailed
results for the convergence of the continuous gradient flow
and the discrete gradient descent in Sections 3 and 4, respec-
tively. In Section 5, results of numerical experiments on 1-d
heat equation are displayed. Some concluding and potential
works are discussed in Section 6.

2. Preliminaries

We write two functions with relations f; (n) = O (f2(n)),
or equivalently fo = Q(f1(n)), if there exists a constant
C such that fi(n) < C - fa(n). If we further omit some
logarithmic terms with the existence of polynomial terms,
we adopt f1(n) = O (f2(n)) and fo = Q(f1(n)). We use
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boldface capital and lowercase letters to denote matrices
and vectors respectively. Non-bold letters represent the
elements of matrices or vectors. For example, A; ; denotes
the (4, j)-th element of the matrix A. For a positive integer
m, the set {1,--- ,m} is abbreviated as [m]. Especially, we
use e; € R%*2 to denote the elementary vector whose i-th
(0 <7< d+1)elementis 1 and others are 0.

Denote the variable = = [1g x1 --- x4]" € R, where
zo € [0,T] and [x1 --- x4]" € T. Without loss of gen-
erality, we assume the domain of our interest [0, T] x T is
bounded such that ||z||s < @ forall z € [0,7] x T. Note

that the upper bound @ is artificially chosen for conve-
nience. For any PDEs with a larger but bounded domain, it
can be rescaled so that the domain is small enough below
the upper bound. Next, the PDE (3) is rewritten as

du 4 9%
Txo(x)igaix?(m):f(w)v wG(O,T)XF, )
u(z) =g(x), xe{0}xTU[0,T]x T,

Moreover, we consider ¢(x; w, a) as a shallow (with 1 hid-
den layer) but wide neural network with bias terms, defined
as

o(x;w,a)

m

1 Z <[ ]:c+1 )
= Ay O | [Wrog Wyt *** Wrd A Wr d+1
\/mrzl T T T 2 + (5)

LN o (wT
7\/51;% o(w, y),

where W, = Wy W1+ Wpg Wygt1]' € RIFZ w =
[w] - w7 € R™MH2 g = [a; -+ ay,)" € R™,
y =[x 1/2]T and o(-) is the activation function. In this
paper, we consider the case that o (-) is the ReLU? activation
function (i.e., o(z) = max(0, 3)), which is widely used in
solving second-order PDEs. Throughout the paper, we use
y € R4*2 to denote the augmented vector whose first d+1
elements are copied from « and the last element is assigned
to be 1/2. Therefore, we have |ly|l2 < 1forallz € [0,T] x
T'. Note that %wr7d+1 is the bias term of the neural network.
Here, we use %wnd“ rather than w,. 441 because we hope
llyll2 < 1 to simplify the analysis. In the setting, ¢(x; w, a)
is second-order continuously differentiable and is a good
approximation structure of the true solution of the PDE (4)
(Siegel & Xu, 2022).

Therefore, the corresponding optimization is given by

min L(w, a) :=
w,a

2
ni 1 8 d 82
Z M, (%(wp;w,a) - Z a—;;(wp;w,a) - f(wp)>
i=1 ?

p=1

Q)

where {x,} 1, U{@x};2, is the set of training samples
in the interior or on the boundary. Correspondingly, we
use {yp },2; U{Yk};2, to denote the augmented training
samples.

The gradient descent method solves (6) by the following
formulation:

OL(w(t),a(t)
ow,
0- ac(wg;); a(t))

for all » € [m], where ¢t € N and ) > 0 is the learning rate.
Note that the activation function o(z) := max{0, 23} is
third-order differentiable except at x = 0, we may define its
third-order derivative as ¢”’(z) = 6I(x > 0), where I(-) is
the indicator function. Throughout this paper, we consider
the initialization

w,(0) ~ N (0, Iy2),

w,(t+1) = w(t) =1 )

a-(t+1)=a,(t) — )

a,(0) ~ Unif({—1,1}). (9

Our scheme is valid for other types of PDEs and initializa-
tion methods, and we will discuss them later. Here, we adopt
the {—1, 1} initialization for a,.(0) to simplify the proof, as
in (Du et al., 2019). Readers can directly apply our results
for Normal/Uniform initialization (e.g., a,.(0) ~ N(0, 1))
without much modification (up to some constants).

3. Continuous Time Analysis

In this section, we formulate the training task (7)-(8) as a
gradient flow, which can be viewed as a continuous form of
gradient descent with an infinitesimal time step size. This
continuous time analysis of gradient flow is a stepping stone
toward understanding the discrete gradient descent algo-
rithms. We prove that the gradient flow converges to the
global optima of the loss under over-parameterization and
some mild conditions on training samples. Without ambigu-
ity, we regard ¢ > 0 as a real number in this section.

The time continuous form of (7)-(8) is characterized as the
following dynamics
dw(t)  0L(w(t),a(t)) da(t)

dt ow ’ dt

~9L(w(t), a(t))

Oa '
(10)
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Since the third derivative of the activation function is a
Heaviside function, the right-hand sides are discontinuous
at points of zero measure, so Equation (10) may not have
a solution in the classical sense. But it has a weak solution
(i.e., w and a have a weak derivative with respect to t)
depending on the initial condition. Let

1 0
sp(w7a): nl(c‘)jg(wp’w’a)
d
82
=Y S @w,a) f(wp)>7
i=1 1
(11)
and
hi(w, a) = n— (G(@r;w,a) — g(&r).  (12)
‘We have
1
Liw.a) = 3 (Is(w,@)l} + |h(w,a)l3), (3

$ny (w,a)] " and
hin, (w, a)] . Therefore,

where vectors s(w,a) = [s;(w,a) -
h(w,a) = [h(w,a) ---

dw,  0L(w,a)
dt ow,
= 0s,(w, a 2 Ohy(w, a
:7281)(1,0,0,) pa(w ) th(w,a) ka(w )
p=1 r k=1 T
(14)
and
da,  9L(w,a)
dt da,

L Os,(w, a 2 Ohy(w, a
:—Zsp(w,a) p(;a )—th(w,ay%.
p=1 r k=1 r

(15)

Using the chain rule and (14)-(15), we can derive the fol-
lowing gradient flow (see more details in Appendix A.2):
h(w,a)

d [
dt
(16)

where G(w, a) and G(w, a) are the Gram matrices for the
dynamics, defined as

s(w,a)
h(w,a)

s(w,a)

] — ~ (Gw,a) + Gw,a)) [

|\

[Os 0s,., Oh Ohy,., ]
_ T — (25 DO U1 Yl
G(w,e)=D'D, D= | dw ow Ow ow |
17
and
~ ~ ~ ~  [0s 05y, Oh Ohy,., |
_ DT — (g5 PO YT Yling
Glw,a)=D D, D= | da da da da |
(18)

4

Note that G (w, @) is independent of @, but we keep the vari-
able a here for the consistent symbol format with G(w, a).
For readability, we provide some preparatory computation
in Appendix A.1. In Lemma 3.2, we will first prove the
positive definiteness of the expectation of the Gram ma-
trix. And then the initialized Gram matrices are positive
definite with high probabilities (see Lemma 3.5). The fol-
lowing Proposition 3.1 provides sufficient conditions for the
positive definiteness of the expectation of the Gram matrix.

Proposition 3.1. [f two samples in {yp}, 2 U{9r}.2,
are parallel, say, y = « -y for some y,y €
{yphpls U{on}i2, and o € R, then y = y.

Proof. Note that our model (5) involves a bias term that the
last element of all training samples y are 1/2. Then two
data points y and y are parallel if and only if y = ¥.

O

We assume that all points in the training set
{yp}pts U{yr}i2, are distinct, then by Proposition 3.1,
there do not exist parallel points.

The following useful lemmas are generalizations of the re-
sults in the least squares regression model (Du et al., 2019).
One of our main contributions is that we provide a scheme
to prove the positive definiteness of the Gram matrices for

" PINNs. Besides the techniques, our results do not need strict

assumptions compared with (Du et al., 2019). In the most
related papers (Wang et al., 2022; Luo & Yang, 2020), they
skipped the theoretical proof for the positive-definiteness of
Gram matrices. For the readability and brevity of the paper,
we put all detailed proofs in Appendix B.

We would like to mention that Theorem 2.1 in (He et al.,
2020) proved the linear independence of ReLU(w " y,,), for
p=1,--- ,nq. Our results in Lemma 3.2 extend their re-
sults and show the linear independence of ReLU(w " y,,),
ReLU?(wy,) and ReLU*(wy,), for p = 1,--- ,ny
(i.e., linear independence of columns of 5). Moreover,
the linear independence of columns of D also appears in
the physics-informed extreme learning machine (PIELM)
(Dwivedi & Srinivasan, 2020). Our work tries to explain the
phenomenon that the gradient descent finds the global op-
tima of PINNs, while (Dwivedi & Srinivasan, 2020) shows
the existence of zero loss under overparameterization.

Lemma 3.2. Let éoo = EwwN(O,I),aN{—l,l}é(wa a),
then CNi‘X’ is strictly positive definite and its minimal eigen-
value \g = Amin(G*°) > 0 is independent of m (the size
of neural network in (5)).

Lemma 3.3. Let G = E, x(0.1),a~{-1,1}G(w, a),
then G is strictly positive definite and its minimal eigen-
value Ny := Amin(G) > 0 is independent of m.
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The proof for Lemma 3.3 can be similarly developed by
using the argument of Lemma 3.2 (see Appendix B.1).
Remark 3.4. Note that if samples {x,, } L, ([ J{Z},2, are
ﬁxed and the neural network is initialized, then eigenyvalues
Ao and \q are fixed. According to the definition of D and
D and as well as the proof, if two data points are very
close, then their associated columns of D and D are nearly
linear dependent and hence Xo, Ao ~ 0. But the close
singularity will not ruin the dynamics of the gradient flow
Equation (16). Suppose that 1 ~ x, by the smoothness
of the PDE and mean value theorem, there exists some
x3 = axy + (1 — a)xy for some 0 < a < 1 such that
253 = 81 + s9 and 2% = ‘9” + 3 8” . Then the gradient
flow Equation (16) is close to the new gradient flow where
the squared terms of &, and x5 are replaced with the squared
terms of @3, which does not have the close singularity. This
is not true for problems where the loss (i.e., s,(w, @) and
hi(w, @)) is not sufficiently smooth.

ni+na)? 7
(n1n2)2(-(11n+ini))\0,;{0})2 : (IOg%) )
over the initialization (9), then with probability of at
G(w(0),a(0) — G=|; <
20 and Hé(w a(O))—éoon < 2. More-
we have Amin(G(w(0),a(0))) > 3N and
Amin (é (w(o),a(O))) > 33 hold.

Lemma 3.5. [fm = Q (

over,

Lemma 3.6. Suppose that w,(0) and a,-(0), r € [m] are
initialized independently by (9), then with probability of at
least 1 — 9, we have

1G(w,a) -

and
|Gaw.a)  Gw().a)), <

for al [, — w,(0)]> < Ru [ar — a,(0)] < Ry < 1
and r € [m], where Ry, = O (%) and R, =
A min{Ao,\o}-d

((n1+n2)'(logm)2)'
Lemma 3.7. With probability of at least 1 — § over

the initialization (9) for all v € [m], we have
2

s(w(0), a(0)) ] 1
=0(5).
| atwioraion ][, =0
Theorem 3.8. For given training  samples

{xptpls U@k t2,, if all weights of PINNs are ini-
tlallzed by (9) for all v € [m)], then with probability of at
least 1 — 0,

Lw(t), a(t) < exp (= (X + o) - ) - L(w(0), a(0)),
(19)

. — 0 (n1+n2)
forallt =0, if m = Q ((/\0+X0)2.(min{Ag,XO})Q.ﬁs)'

Proof. Firstly, we prove the positive definiteness of the ini-
tialized Gram matrix G(w(0), a(0)) and G(w(0), a(0))
(Lemma 3.5). Moreover, Gram matrices G(w, a) and
G(w, a) are continuous with respect to (w,a), with a
high probability (Lemma 3.6). With sufficiently large m,
w,-(7) and a,(7) stay close to the initialization w,.(0) and
a,-(0) for all » € [m] and thus the Gram matrices keep
positive definite. Finally, Equation (16) implies the mono-
tonically decreasing of the loss function with positive def-
inite Gram matrices. The detailed proof can be found in
Appendix B.5. O

Remark 3.9. If operators D and B are polynomials of u and
its derivatives, then G(w, a), G(w,a) and L(w, a) are
polynomials of (w, @). Under initialization methods whose
tails decay faster than polynomials (e.g., Gaussian and uni-
form distributions), we can adopt concentration inequalities
to similarly prove Lemma 3.5, Lemma 3.6 and Theorem 3.8
for PINNs in solving various kinds of PDEs.

3.1. Generalization to Linear Second-Order PDEs

In this section, we extend the main results of gradient flow
from the heat equation Equation (4) to more general second-
order linear PDEs. Considering the following second-order
parabolic PDE

du : 9*u :
670(33) - 1'32:21 bij(x) O c’)xj ;Cz 89& (x)
—l(z) - u(zx) = f(x), €(0,7) x T,
u(x) =g(x), xe{0}xT'U[0,T]xdr.
(20)
Here, we assume that b;;(x) = bj;(x) and there exists

M > 0 such that |b;; ()| < M, |c;(x)] < M and [{(x)| <
M forall 1 < i,j < dandx € [0,7] x T. Without
ambiguity, We use the same notations such as ¢(x; w, a),
L(w,a), y and A, etc., as the heat equation case. Without
much effort, one can reestablish the preceding results for
the general PDE (20), where additional terms related to M
appear in concentration inequalities, so the proof is similar
and we omit the details. Specifically, one can prove that
Lemma 3.2 and Lemma 3.3 still hold for (20) without giving
any extra hypotheses. Next, it can be proved that Lemma 3.5
is true for (20) by replacing the hypothesis of m with m =
O M* (ni+na)* 1\7
(n1n2)?-(min{Ao,xo})” (log 5)
that Lemma 3.6 holds for (20) if changing the hypothesis of
R,, and R, as

R = 6 min{Ao,Xo} -0
v M? - (ny +n2) - (log m)3

. One can also prove
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and

Ra _ (;)v min{Ao,Xo} -0 . )
M? - (n1 + nz) - (logm)
And Lemma 3.7 is also true with the conclusion replaced

o [ ) Il -eep

2
Based on the aforementioned generalized lemmas, we can
easily develop the following Corollary 3.10, which is a
generalization of Theorem 3.8.

Corollary 3.10. For given training samples
{xptpls ULEk 2, from PDE (20), if all weights of
PINNs are initialized by (9) for all v € [m], then with a
probability of at least 1 — §, we have

£w(t),a(t) < exp (— (Ao + o) - t) - £(w(0), a(0)),
(21)

J\/IS-(nl-‘rnz)Z
(/\0+’)\v0)2'(min{Ao,’)\vo})Q'&s

forallt > 0, lfmz@(

One can also obtain the same results for second-order linear
elliptic PDEs ((20) without g—ﬁ) (x)) and second-order linear

hyperbolic PDEs ((20) with g—;)(w) replaced by %(m))
up to constants. ’

4. Discrete Time Analysis

As the Euler’s form of the gradient flow, the gradient de-
scent can also find the global optima of the loss function.
In this section, we turn to regard ¢ € N. The convergence
of the gradient descent consists of the following several
lemmas. We first prove that the parameters w(t) and a(t)
do not go far away from the initialization w(0) and a(0)
(Lemma 4.1). Moreover, in each step, the error between
the finite difference (i.e., the gradient descent) and the exact
continuous dynamic (i.e., the gradient flow) is small if m
is large and the learning rate is small enough (Lemma 4.2).
Finally, the loss is strictly decreasing by the gradient de-
scent, since the error is minor (Theorem 4.5). Note that the
theoretical learning rate should be O(\o + Ag), which relies
on the PDE itself but is independent of m. As is shown
in Corollary 4.7, our framework can be extended to neural
networks initialized by HeNormal, HeUniform (He et al.,
2015), LecunNormal or LecunUniform (Klambauer et al.,
2017) with some minor modifications to the following lem-
mas and theorems. For readability and brevity, we put the
detailed proofs in Appendix C.

Lemma 4.1. IfH'wT(t)HQ <

[m] and

fort=0,-- Tandn< , then we have
[[w,(t + 1) — w,(0)]|2
CR2 1 |IT s(w(0),a(0)) -
= VI Xg + Ao H{h('w(O),a(O))] > ftu
(23)
and
lar(t + 1) — ar(0)]
W B stw0.a0) 7]
=a VI Ao+ Ao H[ h(w(O),a(O))} 2 fo
(24)

for universal constants co > 0 and c; > 0. Moreover,

Jw, (¢ + 1) = w, ()2

<o LA Il -
and

\ar(t—i-l)—ar

= 4\F H{ i‘é’éi‘é’iM , =

Lemma 4.2. With probability of at least 1 — 0 over the
initialization (9) of w,(0) and a,-(0), we have

[wr(0)]]2 < R = \/2(d+ 2) - log (27n(0(l5—|—2))’

for all v € [m]. Moreover, if conditions in Lemma 4.1 hold
forallt =0,--- , T with R =R/, then

)], = .J:;;m :
s L)
+é

v I eted 1

for some universal constants

2

> 0 and ¢ >

0, where x(t) = [xa(t) -+ xn,(t)] and x(t) =
[X1(t) - Xno(8)]T with
Xp(t) == sp(w(t+1),a(t+1)) —sp(w(t), a(t))

a(t+1) — a(t)>) :

w(t+1) —w(t)>

(25)
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and

Xk (t) = hi(w(t +1),a(t + 1)) — hy(w(t), a(t))

t
T,w(t—i— 1) — w(t)>

SRS alt+ 1) a(t)>>.

Here, x,(t) and X (t) are the residuals of first-order Taylor
expansions.

(26)

Lemma 4.3. Let Cy = E|w,.(0)|]|3 + 1 and C; =
E|lw,(0)||S + 1. Assume that Lemma 4.1 holds, then with
probability of at least 1 — §, we have

2

), then

2

(i) if m = Q <<lng+(x<:>z H{
fZer
(i) if m = ((w D)’ H[ s(w(0), a(0)) ]

(Ao+Xo0)?
p Zer

Lemma 4.4. Assume that Lemma 4.1 holds, then with prob-
ability of at least 1 — §, we have

wO,aO))]
h(w(0), a(0))

||2 < 2Cy;

||g < 2C1.

@ i m = 0((gd)) ad m =
(i ) L)
Jufe-+1)—w(i s < 220 | TR0 ]
(i) if m = ﬁ((log%y) and m =
o (1t | s 1) e
e [Pt

Here the universal constants are defined in Lemma 4.1 and
Lemma 4.3.

Proof. Directly combining proofs for Lemma 4.1 and
Lemma 4.3, the above results can be achieved. O

Theorem 4.5. For given training  samples
{xphply ULER )2, if all weights of PINNs are ini-
tialized by (9) for all v € [m), then with a probability of at

least 1 — 0, the gradient descent algorithm satisfies

~ Nt
L(w(t), alt)) < (1 - A?) - L(w(0), a(0)),
27
. 0 (n14ns2)?
forallt €N, ifm = Q ((A0+Xo)2-(min{Ao,Xo})2-63 and

n=0 </\0 + XO) <i

Remark 4.6. If operators D and B are polynomials of u
and its derivatives, then G(w, a), G(w,a) and L(w, a)
are polynomials of (w, a). Under initialization methods
whose tails decay faster than polynomials (e.g., Gaussian
and uniform distributions), we can similarly prove Lemma
4.1-4.4 and Theorem 4.5 for PINNs in solving various kinds
of PDEs by some concentration inequalities.

In many applications, people adopt the following two-layer
neural networks without the multiplier \/%,

m

=2 oo

initialized by common methods such as HeNormal (He
et al., 2015), HeUniform (He et al., 2015), LecunNor-
mal(Klambauer et al., 2017) or LecunUniform(Klambauer
etal., 2017) (see Table 1). By Theorem 4.5, the following
Corollary 4.7 holds.

Corollary 4.7. If the weights of PINNs are initialized
by w, ~ p; and a. ~ po for all r € [m] For
given training samples {x,}7L, | U{®1} 2, let G~ =
%EwTNpl,awsz( ) and Xy = )\mm(GO") > 0. Here
p1 and po are HeNormal , HeUniform, LecunNormal or

LecunUniform; see Table 1. If m = Q) <W) and

o(x;w, a) (28)

Xo/3.5
n=0 (i) < mLXO then with probability of at least 1 — 0,

m
the gradient descent algorithm satisfies

Liw(t), a(t) < (1 -1 ””j) Lw©),a0)

< (1 —-0(1) -Xo)t - L(w(0), a(0)),

forallt > 0. Note that G> is independent of m if with the
aforementioned initialization.

4.1. Generalization to Linear Second-Order PDEs

We can also extend the main result Theorem 4.5 from
the heat equation Equation (4) to the second-order lin-
ear PDE (20) as in Section 3.1. Without much effort,
we rewrite Lemma 4.1-Lemma 4.4 and Theorem 4.5 for
(20). In the proof, additional terms related to M ap-
pear in concentration inequalities, so the proof is simi-
lar and we omit the details. Specifically, we have that
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Table 1. Several popular initialization methods.

Initialization Wy
HeUniform Unif ( \/> \/ di ) Unif ({ \f \/7 D
HeNormal (0, ) N (o, 7n)

LecunUniform  Unif (

=z ="
j

Q‘ ‘
—

LecunNormal

N

0,

R G (REREY)

= N (0, %)

Lemma 4.1 holds for (20) with R,,, R,, ﬁw and Ea
magnified M times; Lemma 4.2 holds for (20) with
(25) magnified M times; Lemma 4.3 holds for (20) with

o0 [ M00e)" || s(w(0),a(0)) ] 2
(No+Xo)? i h(w(O),a(O)) ]

44, if m = 0 ((log
[ s(w(0),a(0) ||

for both

(i) and (ii); for Lemma

m_§<

M2 (log(1))"

(Ao-+Xo)? | h(w(0),a(0)) |
co - vV2Cy s(w(t),a(t)) |
lw(t+1)—w(t)||2 < 77'040'M" { h((w((t)),a((t))) |
and
c1 V20, [ s(w(t),alt
Jate+1)-atol < n | R |

Based on the aforementioned generalized lemmas, we can
easily develop the following Corollary 4.8 as a generaliza-
tion of Theorem 4.5.

Corollary 4.8. For given training  samples
{xptpyls ULZk 2, from PDE (20), if all weights of
PINNs are initialized by (9) for all v € [m], then with a
probability of at least 1 — §, we have that the gradient
descent algorithm satisfies

L(w(t),alt)) < (1 - W) - L(w(0), a(0),

(30
_ MS-(’n1+n2)i
(Ao+Xo)”-(min{Ao,Xo})” 62

forallteN,ifm:ﬁ( and

_ Ao+Ao 2 _
77_0( M ) < Xo+Xo”

Similar to the continuous time analysis, Corollary 4.8 can
be easily generalized to the second-order linear elliptic equa-
tion and hyperbolic equation.

5. Numerical Experiments

We validate our theoretical results on the 1-D heat equation,
and numerical results show the effectiveness of the over-
parameterization in training PINNs.

We implement PINNSs on the 1-D heat equation, which is
given as follows:

%(t,) ggw) (t,x) € [0,1] x [~1,1],
u(t,~1) =u(t,1) =0, tel0,1], @D

u(0, z) = sin(mz), e[-1,1].
In practice, we usually use neural networks with multiple
layers (e.g., 2-hidden layers) and accelerated gradient de-
scent algorithms (e.g., Adam (Kingma & Ba, 2015)). We
uniformly sample 300 interior data points and 100 on each

2 boundary (totally 0.6 K samples). A neural network with 2
hidden layers and the ReLU? activation function is adopted
as a surrogate to the solution. We use the widely adopted

_ initialization (e.g., the LecunUniform (Klambauer et al.,
2017)) and default hyperparameters for the Adam opti-
mizer. Here, we denote m’ the numbers of parameters
for the neural network and the relative error is defined as

LG W where { (t, @i, y:) Vi
ing samples with y; = u(t;,x;) and x; = (¢;,x;). The
curves of the loss and the relative error versus iterations
for different m’ are plotted in Figure 1. Figure 1a (also for
Figure 2a) shows that we get lower loss when m’ is larger.
Although our theory is only applicable for shallow neural
networks and the classic gradient descent algorithm, the
numerical results are still consistent with our theory that
the over-parameterization helps gradient descent find the
global optima. Moreover, the generalization error (i.e., the
relative error for the prediction) also decreases with the loss,
even though the neural network is over-parameterized, as is
displayed in Figure 1b and Figure 2b.

err = | are test-

6. Conclusion

In this paper, we have shown that the gradient flow and the
gradient descent find the global optima of the loss function
when using two-layer PINNs to solve second-order linear
PDEs. It provides theoretical insights into the phenomenon
that one can achieve very low empirical loss by gradient de-
scent methods in practical applications. Besides the simple
pedagogical example, we further extend our results for a
wider class of second-order PDEs and some common ini-
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Figure 1. loss and relative error versus iterations for different parameter sizes m’ (1-D heat equation).
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Figure 2. Loss and the relative error versus the parameter size m’ (1-D heat equation).

tialization methods. There are some future works. Firstly,
the extension of our theory to multi-layer neural networks.
The main idea could be the positive definiteness of Gram
matrices, but details might be more tedious and complicated.
Secondly, the generalization of PINNs using the Lipschitz-
ness (Fournier & Guillin, 2015), Rademacher complexity
(Bartlett & Mendelson, 2002; E et al., 2020) and Holder
regularization (Shin et al., 2020), and the optimal size of
PINNSs balancing the convergence and the generalization,
which is an unsolved and still open question in the field.
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A. Some Preparatory Works

A.1. Computation

After defining the third derivative of the activation function ReLU? in Equation (7) and Equation (8), we have

m

1
= Tm § Qr -a'(w:yp) * Wi
r=1

%(%; w,a)

8.131‘

1 m
= T ZSa, A(w, yp)? - wri - T(w, y, > 0),
r=1

r=1
1 m
= ﬁ ZGGT ’ (eryp) Sw; ~H(w:yp > 0),
r=1
d

d 1 «
Z @(mp;w,a) = T ZG@T (w,yp) - (Z w?l> T(w, y, > 0).
i ¢ r=1 i=1

Moreover,

0
ow,

¢(ika w, a) -

o (0
% <a§:($10; w, a)) =

3\“

o (0% 6
8a<6m2($pﬂvﬂﬂ> = —=(w,yp) - w; L(w,y, > 0),

and

0
da,

@riw. @) = = (] 5" T G > 0,

11

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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where e; € R%12 ig the base vector whose i-th element is 1 and others are zero. According to (33)-(38), the objective is
first-order differentiable almost everywhere but is not second-order differentiable. Therefore, general convergence analysis
that relies on smoothness may not make sense in such a setting.

A.2. The Derivation of Gradient Flow

We continue from the beginning of Section 3 that

ds, (w(t), a(t)) i<asp<w<t>,a<t>> dwr<t>>+iasp<w<t>,a<t>>_dw)

ow, Lot — day dt

=3 sitwit).a(n) - Y (eal) Sulel.el))

=1 p— ow, ow,

-3 tw(o). a3 (2elhalt) Sl el)) .
=1 r=1 T r

_ Z sq(w(t),a(t)) - Z 0sp(wa(ctl)r, a(t)) . 8sq(w8(2)r, a(t))

> h(w(t),a(t) - 85p(w8(2)7 a(t)) 0hz(wa(i)7 a(t))’
=1 r=1 T T

and

dhi(w(t)) _ i <8hk(w(t)) dwr(t)> n i Ohi(w(t),a(t)) . da,(t)
Oa, dt

r=1

= Z sq(w(t), a(t)) - <8hk(w(t), a(t)) Osq(w(t), a(t))>

[

o — ow, ’ ow,
_ ; h(w(t), a(t)) - ; <3hk(71(;ii); a(t)) ’ 3}11(11(;(;); a(t)) > 40)

Ohi(w(t),a(t)) Osq(w(t), a(t))
da, oa,

Ohy(w(t),a(t)) Oh(w(t),a(t))
da, da, .

|
7
&
g
=
e
=
NE

<
Il

—
<
Il

_

|
™
=
B
:
NE

Il
-
<
Il
-

Then, we have

(41)
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where S(w, a) = [Sy,(w.a)l. S(w.a) = [5,(w,a)|. Qw,a) = [Qu(w,a)). Qw.a) = [Qu(w,a)|. H(w) =
[Hy;(w)] and ﬁ('w7 a) = {ﬁkl(w, a)} are defined as

Syq(w, @) = i <8Sp(’w7a) 3Sq(w,a)> _ <88p(w,a) 8sq(w,a)>,

)

r=1 w, ow,. ow ' Ow
Spq(w,a) = i aspa(;‘: @) 3%52 a) _ <6sp<az:,a>’ asqg;,,a>> |
-5 (fen) B (il M)
@pz(w,a) = f:l aspa(;‘i’ a) ) ahl(;zl’rv a) _ <58p((912,a)7 Bhl((;z,a) >7
Hi(w,a) = i <3hg(;ﬂ; a) 3hg(:;; a)> _ <8hkgz,a)’ ahléz, a) >
Fa(w, a) = i ahka(::, a) ama(s:r, a) _ <8hk.g;u,a)’ 6hl((;;),a)>.

Here, G(w, a) and G(w, a) are the Gram matrices for the dynamics, defined as

G(w,a)=D"-D (42)
and _ _ _
G(w,a)=D"-D (43)
respectively, where
D:[ osi(wa) s (w.a)  Ohi(wa)  Ohny(wa) }
ow ow ow ow
and
D= tufa .. Omwe ouwe . Ohmylwa) |
da da da da

Note that C:”('w7 a) is independent of a, but we keep the variable a here for the consistent symbol format with G(w, a).

13
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B. Technical Proofs for Section 3

B.1. Proof of Lemma 3.2
Let J
0 [1 [ 0¢ ¢
oz, w) == P ( (8&00 z; 12 (z;w,a) f(a:))) , (44)
and o(z; w) = [p1(@;w1) - @m(@;wy)]" . Using (5), we obtain
d
or(T;w,.) = \/Tiim T(w,y >0) - <(wjy) . <(w?y) Wy — 212_;11),21)) ) (45)

Similarly, let

P(x;w) = [ (25w1) - (@5 w,)] " = i ( 2 (p(m;w, ) —9(@)) ;

da %)
where
v
V(s wy) = d(w, y > 0) - (w,y)*. (46)
mno

To prove the positive definiteness of the matrix G°°, it suffices to show that vectors @(z1;w), ..., o(Ty, ;w),
Y(E1;w), ..., Y (&,,;w) are linearly independent. Suppose that there exist some constants 1, . .., ,, and 81, ..., B,
such that

arp(xi;w) 4+ -+ ap, (g, w) + Lro(E1;w) + - -+ By (B, w) =0,

for almost all w € R™*+2) Denote I, = {w € R™? : w'y, = 0} and J, = {w € R¥2 : @ g, = 0}, for
p=1,...,nrandk =1,...,n2. Since all samples in {y,, } ;1 [U{x} 2, are not parallel by Proposition 3.1, then

vefyr)ulys)

q#p

which implies that there exists z € I, such that z ¢ (Uq?&p ) U (U, /1) and z; # 0 forall 0 < i < d. Because sets I, and
Jj are closed, there exists a small enough radius o > 0 such that B(z, o) ()1, = 0 and B(z,~0) (i = 0 forall ¢ # p
and . Moreover, ¢, (&,; -) is continuous in B(z, yo) for all ¢ # p. For any y < 7o, we define BT = B(z,v) {w € R*? :
w'y, >0} and B, = B(z,7) {w € R¥*? : w 'y, < 0}. Note that ¢, (x,; w,) and gpr(mk, w,.) are polynomials of
w,. (thus are C°° smooth) on l’)’fyr and B . Then, using the Lebesgue differentiation theorem, we have

. 1 0 - 1 0 _
'vlgng W—J{) /13+ 54T (xq;2)dZ — B / 8~g0r(:cq, 2)dz = 0, for q # p, 47)
1
1' > z = 4
150+ u(BY) / a%(“”’ / 8”” B2z =0, @
0 o (@y; )2 (49)

lim ——— [ ==,
10 u(BT) Juy 027
1 3 0 :
. = ETy) | (ETy) 50—2 22 |d
50+ u(BY) /ﬂ Jmny 0z ((z Yp) <(z Yp) %o 2z>> z
d
3
= . —2 2 N
min, ( ;*%) yp’

0 o\ = .
| eer@neiz = sV dz=0. (50

=0t 1

and

lim —
=0t u(B5)

14
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Therefore,

ni

a ~ ~ ~
0 = Vﬁm B+ /B+Z q 8~90T xq;Z +ZBZ ailbr(wl,z)dz—

'vql

0 RN
0 55T 2 +Zﬁl aiwr<wz;z>dz (51)

’Y*)O M B’Jvrq 1

d
1 9 3
= . 1. r d~: . . —2 2 . N
O Wb BT Juy 037 @R AE = 0 < ZHZ%) Yr

which implies that o, = 0 for all p € [n4] since Zl 122 #0.
On the other hand, we can prove 3 = 0 for all k& € [ny] by similar argument, where the terms [+ %Lpr(a:; 2)dz in
Y

(47)-(50) are replaced with f Bt —g; Y. (&; 2)dZ. Note that G> is independent of m, since w, are independent for all
v 7
r € [m].

B.2. Proof of Lemma 3.5

Observe that -
§pq(w(0)) _ Z 85P(w(§(c)l)r,a(0)) ' 8sq(w(((9(()l)r,a(0)),

r=1
with w,-(0) ~ N (0, I;42), for » € [m]. We have

8sp(w(0), a(O)) — 3 -H(wT(O)Typ > 0)

oda, mn
d (52)
‘ ((wr(O)Typ) ‘ ((wT(O)Typ) ~wro(0) — QZwri(0)2>> 3
i=1
e s (1w(0).a(0)| _ 9
sp(w(0), a 3
< . .
Oa, ’ - /mny - ()1 9
Let the random variable X, be defined as
o P5,w(0),a(0)  Ds,(w(0),a(0))
" da, Oa,. ’
then
~ ~ 1 &
Spq(w(0),a(0)) — S5 = — > X, -EX,,
and 81
Xp < = [l (0)]5,
where the expectation is taken over w,.(0) ~ N (0, I d+2). Slmllarly, we have
Oy (w(0),a(0) _ [ @ - S
da, - mns H(wr(o) Yi > 0) : ('wr(o) yk) ) (54

and

O (w(0), a(0))
O < [ )1 5

Let the random variable Y,. be defined as

o 0s(w(0).a0) Dh(w().a(0)
" Oa, oa, ’
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then

~ ~ 1 &
Qpu(w(0),a(0)) = Q3 = — > Y, —EY,,
r=1

14
Y,| <9,/ —— - [Jw,(0)]|S,
[V, | < Vs [|w,(0)]]5

where the expectation is taken over w,.(0) ~ N(0, I;12). Let the random variable Z,. be defined as

Ohy(w(0),a(0)) Oh(w(0),a(0))
Oa, ’ Oa, ’

and

Zr=m

then

~ 1 &
Hya(w(0), a(0)) — Hyy = — > 7z, -EZ,
r=1

and y
1Z,| < — - [lw,(0)]I5,
N2

where the expectation is taken over w,-(0) ~ N (0, I;;2). Then there exists a universal positive constant ¢y such that

1 1
wmax{|X, | [Y;1, |Z, ]} < co - ( n ) e (O)]5.
ny Nno

Therefore,

P(max{|X,|, [V, |Z.} > B) < P ( - (1 n 1) o (O] > R’)

ni N2

R s \ V3
= (IOl > (o)
co(ny + na)
R" - niny Ve
d 2 ']PZN >
(d+2) N(0,1) <Z| = <co(d+2)3 < (n1 +n2)>

1 R’-n1n2 1/3
(d+2)-exp <_2 : (co(d+ R +n2)> ) :

IA

IN

Then, with a probability of at least 1 — %,

om(d+2)\*>
max{|X,|, Y|, Z,|} < R =:4co(d +2)° - ”;Z”Q ' (log m(+)> '
1762

Furthermore, with probability of at least 1 — %,

o2m(d +2)\°
max{|X,|,|V;|,|Z,|} < R =: dco(d+2)° - ”;2”2 - (1og m(+)> :
1762

for all r € [m]. By the Hoeffding’s inequality, we have

i ( Sa(w(0), a(0)) — 5;;] > e) =P (

m'62
> € SQeXp 72Rﬁ s
m'€2
>e | <2exp “SR? ) (56)

m- €2
>e> < 2exp (— SR2 )7

1 m
—Y X, - EX,
"

P (|Qn(w(0),a(0) - 3% | > ¢) = P(

1 m
E;YT—EYT
1 m
E;ZT—EZT

16
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and therefore, with probability of at least 1 — Q(nl_‘iw,

~ m 2R"?2 4(ny 4 ng)?
Spa(w(0)) - Z X, — log ————"—, (57)
2R2 4 2
@il (0) - @] = |- ZY EY, B2 g Al Jg”?) , (58)
and
-~ - 2R"2 4 2
‘Hkl(w(())) —H,Sf’ - 722 —EZ, log A1 ;”9 . (59)
Therefore,
nq N ny no
>~ [Spatw(0) \+2 >3 |@ulw(0),a(0) - @
p,q=1 p=11=1
+ ’sz a(0)) HIS?) (60)
k=1
2R/2 4 2
< (nl + ’I’L2)2 . . log (nl + 7’L2)
m 1)
holds, with probability of at least 1 — g. When m is large enough, such that
2Rl2 4(721 + n2)2 XO
-1 < 61
m 0g 5 = 4(n1 +n2)27 ( )
then
|G w(0), a(0)) - é°°H2 < Hé<w<0>,a<0>> - éOOHF
ni ny n2
< Z Spq(w(o)a ( ZZ Qpl )) 1017
p,q=1 p=11=1
+ 3 |Huw(0). a(0) - |
k=1
Xo Ao
< 2= -0
- (nl + 712) 4(711 + TZQ)Z 4
Here, the condition (61) implies that
9 2 pr2 4 2 4 1\”
m > 32(m —|—~n2) f -log (m +ng)” _ 0 (1 4 n2) +n2~) ' <10g ) : (63)
X2 5 (n1ny)2 N2 g

We can conduct similar steps for G(w(0), a(0)). With the probability of at least 1 — ¢ over the initialization, we have

|Gw©).a0) - &~ < |Gw(0).a0) - &% <

17
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B.3. Proof of Lemma 3.6

By the property of Gaussian variables, we have

P (w0 > B) =P (w01 = 7?) < (@ +2) Puvon (122 -2
< (d+2)exp (—1 . R ) ,

2 d+2

where the first inequality holds since ||w,.(0)||3 > R'2 implies that there exists at least one element of w,-(0) such that

wri(0)% > cﬁ? Then, with a probability of at least 1 — R’

4m(d+2)>’

lw,(0)]|l2 < R =: \/2(d +2)-log ( 3 (64)

and (64) holds for all r € [m] with probability of at least 1 — g. Without the loss of generality, we assume that R,, < R/,
therefore, ||w,||2 < ||[@, — w,(0)||2 + ||lw,(0)|l2 < 2R’. Moreover, |a,| < |a,(0)] + |, — a,(0)] <1+ R, < 2. Inthe
next part, we only consider w,. and a, that are bounded by 2R’ and 2, respectively.

We first discuss the error bound for |Sp, () — Spe(w(0))|. Case 1: I(w,(0) Ty, > 0,w,(0) "y, > 0) = [(w, y, >
0,w, y, > 0) = 1 forall ||w, — w,(0)||2 < R,. Denote

Fon(arar) = { Zl20:2) Douft0 )y

awr awr
then ) ,
< Sp(wa(’gj); a(O))7 Sq(wa(q(i,); a(O))> = F,q(w,(0),a,(0)),
and

ow, = Ow, ba(Wr, ar).

<asp(w,d) 6sq(u~1,&)> _

Note that Fj, (w,, a,.) is a polynomial of w,. with degree 4, then there exist universal constants ¢; > 0 and co > 0, such that

OF,q(w;, ay) <. a T
ow, 5 mny iz
and
OF,q(w,, a;) < @ w4
Oa, 5 mny iz

Therefore, by the mean value theorem, we have

’<8sp('u3,d) 65q(w,d)> B <85p(w(()),a(0)) 8sq(w(0),a(0))>'

ow, = Ow, ow, ’ ow,
= [Fpq(Wr, Gr) — Fpq(wy(0), r(O))I
< |Fpg(wy, ar) — pq(wr>ar(0)) Fog(wr,a,(0)) — Fpq(w;(0), ar(0))]
< |Fpg(Wr, ar) — Fpg(wy, ar(0))] + |qu(wr>ar(0)) — Fpq(w(0), a,(0))] 65)
;g{mw|m <w 2R [, = w, (0)])
gnf;l C(2R'* - R, + o -(2R’) ‘Ra.

Case 2: I(w,(0) "y, > 0,w,(0) Ty, > 0) # I(w, y, > 0,w, y, > 0) for some || W, — w,(0)||2 < R,. Without the loss
of generality, we assume that I(w,.(0) "y, > 0,w,.(0) "y, > 0) = 0 and [(w,' y, > 0,w,' y, > 0) = 1, denoted as the

18
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T

event Es, then it happens only if |w,(0) Ty,| < Ry, or |w,(0) "y,| < R,,. Here,

~

)
()

<P (|w,(0) Ty,| < Ry or |w,(0) Ty,| < Ry)
(|wr yp| < Rw) +P (‘wr(o)—ryql < Rw)
=2-P.on0) ([2] < Ru)

< 4R,

b

3

and furthermore,

P(case 2, |w,(0)]|2 < R') < [P (case 2) < S8Ry

P(Es| ||w,(0)||2 < R') = , 66
where the last inequality holds if we assume that § < % Moreover,
Isp(w,a) Osg(w,a)\  /9sy(w(0),a(0)) Isq(w(0),a(0))
ow, = Ow, ow, ’ ow,
|/ 0sp(w,a) Osq(w,a)
- ow, = Ow, (67)
= ‘qu('a’h ar)|
< 2R
- (2R,
for a universal constant ¢z > 0, if ||w,.||2 < 2R’ and a, < 2.
Combining (65), (66) with (67), we have
0s,(w,a) 0s,(w,a
]EwT(O),ar(O) ( ~ sup ’< %(w ) ) qa(w ) > _
W, — w,(0)]]2 < Ry " "
|d7‘ - aT‘(O)‘Q S Ra
851’ ('LU(O)7 a(O)) , asq (’UJ(O), (1(0)) ||wr(0) ||2 S R/ (68)
ow, ow,
C1 N3 N4 8Rw N4
< - (2 . - (2 . —_v. (2
- mny (2R) RW+mn1 (2F) Ra—i_\/ﬂ mn; (2R)
< 2 R".(R,+R,),
mny
where the last inequality holds for a universal constant ¢4 > 0 and with R’ > 1. Therefore,
IEw(0)< sup |Spq(w(0),a(0)) — Spe(w, a)l | |[w,(0)[]2 < R, re [m])
[, — wr(0)[2 < Ry
|‘~1T - ar(0)|2 <R,
s, (W, a) Osq(w,a
< Z]Ewr(m( sup ’< %(w ), qa(w )>—
r=1 [, — wr(0)[[2 < Ry ’ "
‘&r - aT(O)‘Q < R,
9sp(w(0), a(0)) 9sq(w(0), a(0)) /
<
(Zelefhol)) Sl Juw, (0)]» < B
C4 14
< —- R=. (Rw + Ra)
ny
(69)

19
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and thus
Ew(O)( sup > [Spg(w(0),a(0)) = Spe(,a)| | [w,(0)]2 <R, 7€ [m]>
||1I)T - wr(O)H2 S Rw p,q=1
|, — ar(0)]y < R
< Z IEw(O) < sup |Spq(w(0)7a(0)) - Spq(ﬁ’vaﬂ |w,(0)]]2 < R re [m})
p,q=1 H’LI}T - wr(O)HQ S Rw

|d7' - a’r'(o)|2 S Ra
< ¢4-ny-R*Y(Ry + Ry).

(70)
Similarly, we have
ni no
Ewm>< sup EZI§Z|quumoxaa»>—-meﬁaa>|| o, O)]2 < R, TE[nﬂ>
H’IIJT — 'wr(O)Hg < Rw p=11=1
|la; —ar(0)], < Ra
S Cs " y/N1MN2 - R/4 . (Rw + Ra) .
(71)
and
n2
Ew(0)< sup > [ Hiu(w(0),a(0)) — Hy(w, @)l ‘ lwr(0)[2 < R, 7€ [ﬂﬂ)
@, — w,(0)]|2 < Ry ki=t
la, —a(0)], < R,
S CG'nQ'R/4'(Rw+Ra)~
(72)
for some universal constants c¢5 > 0 and c¢g > 0. Moreover, let
e(w,w,a,a)
ni ni no
= D [Spa(w, @) = Spg(@,a)| +2) D |Qp(w,a) — Qu(tw, a)|
p,q=1 p=11=1
71
+ Y [Hu(w,a) —Hy(w,a)|,
k=1
then
Ew(0)< sup e(w(0),w,a(0),a)| lw-(0)2 <R, re [m]>
@, —w,(0)]l2 < Ry
@, —ar(0)], < Rq
< ey -R*. (Rw +Ra) + 2c5 - V1in2 “R*. (Rw +Ra)+66 ) "R (Rw +Ra)
< ¢ (n1+n2) R (Ry+ Ra),
(73)

for a universal constant ¢y > 0. By Markov’s inequality, with a probability of at least 1 — %,

4deq - P
sup e(w(0),w,a(0),a) < co - (n1 + n2) 5R (R + Ra),
i, —w, (0)]]2 < R,

|dr - ar(0)|2 <R,

20
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if |w,(0)||2 < R, for all v € [m]. Therefore, with a probability of at least 1 — 3, we have

deg - (ng +mno) - R (Ry + Ry)

sup e(w(0),w, a(0),a) < 5 ,
[, —w,(0)]|2 < Ru
la; —ar(0)], < Ra
with w,-(0) are i.i.d. sampled from N'(0, I;42) for all » € [m]. Furthermore, if
200 . (Tll +n2) . R/4 . (Rw +Ra) < &
0 ~ 47
and equivalently
_ PY)
Ry, + R, = @ 5 | (74)
(n1 +ng) - (logm)

then

|G(w, a) — G(w(0),a(0))]2 < [|G(w, a) — G(w(0),a(0))]r

We can similarly develop the error bound for |§pq(1b, a)— gpq('w(O), a(0))]. Denote

qu(wraar)

< 0sp(wy,ar) O0sq(wy,ar) >

da, 7 Oay (75)
9 d d
Ol ) <(w;y,,) -2 w> - (<w:yq> o2 zwz) ,
i=1 1=1
which is a polynomial of w, with degree 6. Then we similarly have
0sy(w,a) Js,(w,a
Ew, (0),a.(0) ( sup ’< pa(a 3 qéa ) > - (76)
[ —w,(0)[]2 < Ry " g

lar —ar(0)|y < R
<8sp('w(0),a(0)) asq(w(O),a(O))>‘ | [w,(0)]2 < R’)

Oa, ’ Oa,

C7
< . R/G . Rw;
mny

where the last inequality holds for a universal constant ¢; > 0 and with R’ > 1. Therefore, with a probability of at least

1-4, N

~ - 2o

|G(w,a) - G(w(0).a(0))| < T,

if N

R, =0 Do -0 P (77)

(n1 4+ ng) - (logm)

B.4. Proof of Lemma 3.7
Let

sp(w,a) = Zspr(wr,ar) - \/nTlf(wp)

21
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and
thT wT ! g(xk)
no ’
where 4
Spr(wr,ay) = —— - [ 3a, - (W] g,)? - wy0 — 6y - (w] ) > wh | - I(w/y, > 0)
pr\Wr, Qr ) = \/W r r Yp 70 r r Yp i r Yp
i=1
and
v N1 -
hkr(wr7ar> = Mg Ay + (w;ryk>d H(eryk > O)

Then using Ea,-(0) = 0, we have

(w(0),a(0))
(0.0 [ h(ﬁm),Z(o» } ,
= Fu0).a Zsp (00)?+ ) hi(w(0), a(0))?
k=1
= Euw(0),a( Zzsm (w, (0 r<0>>2+k§j§jhkr<wr<0>,ar<o>>2
p=1r=1 =1r=1

1 & 1 &
D fp)’ Y g(@)” <
mo= [

where the universal constant ¢ > 0 are independent of m, ny and n». Therefore, by Markov’s inequality, we have with a
probability of at least 1 — § over the initialization,
2
1
-oft)
9 é

H [ s(w(0), a(0)) }
h(w(0),a(0))
B.5. Some Useful Lemmas and Proof of Theorem 3.8
The Proof of Theorem 3.8 consists of some lemmas. we will depict them one by one.
Lemma B.1. Ifforall 0 < 7 < t, Apin(G(w(7), a(7)) + G(w(7), a(r))) > "“*’\0 , then

[t R CIRR [Ptt )
Proof.
sl e 1
— - 2[sw(r).aln) T hw(r).a(n) ] - (Glw(r).aln) + Glulr).ar)) | peT e | a0
<= (o) [ I
which completes the proof. O

Lemma B.2. If m = Q

ar(7)

s(w(0),a(0)) ] s < 2F,

m ' H[ h(w(0), a(0))
)
t,

2 (R/4 RS
w1 |
, \R? R2
> )‘7“ orall 0 < 17 < t, then ||w, (1) — w,(0)]|2 < Ry, and
here Ry, R, and R’ are defined in Lemma 3.6 and its proof in

Amin(G(w(7), a(7))) > 2 and Amin(G(w(7), a(r
lar(1) = ar(0)| < Rq, forallr € [m] and 0 < 1 <
Appendix B.3.

)
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Proof. Note that

ar| - 27w, [|3 < c

/ 1
<3,/ —- . 2< ¢ - R
5 mnao jar - llwrllz < co N

for a universal constant ¢y > 0, since |a,| < 2. Then by Equation (14), we have

Ohi(w, a)

) HZ () atr) - 2221 S5 ) 0 8hk(wa(;),a(7)) H
p=1 " =1 " 2
: 5p w<7 a(r) O (w(7), a(r))
<3 ot a:[FHEGEAR] 4D i [FLGDR]
1 1
oo B2 lsw ()a(T))Hﬁﬁ ‘R? - ||h(w(r), a(n))ll,
3 s(w(7),a(r)
=V Mh( (7). a(r) }H
2 . _)\oJr/\o.T . (w(0),a(0))
S\/; r P( 2 ) H[h(wm) a(0)) N
and
()= 0,0, < [ w0 a
0 81)
_ 21 2¢o " 1 ’H s(w(0),a(0)) }H (
= Um o+ Il R(w(0),a(0))
Mor ’831)(10,(1) < 9 H || H,w ”
Oa, - \/ﬂTnl - W r
and
R Y e o - =
f 1 constant ¢; > 0. Then by Equation (15), we hav
d
P
dr
—|Zsp<w< afr))- 200000 | $5 4 (1), afr)) - 20200 “(T”|
p=1 k=1 "
<3 lsp(wtra(r)) |22 S ).ty - |20
=1 T k=1 "
<L R |s(w(7),a(r))] + LR [h(w(T), a(r))| "
,\/ﬁ 2 m
V2er
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and
la, (1) —ar(0)] < /OT %a,«(v) 2dv
220 oy 1 H{ s(w(O),a(o))} 83)
Vvm Ao + Ao h(w(0),a(0)) |||,

If m is large enough such that

20 e ] <
and
e e =

or equivalently

m=Q W . (1; 26> . H[ s(w(0), a(0)) }

we have
|w (1) —w,(0)]l, < Ry and |a,(7) = a,(0)] < Ra,

forall0 <7 <t. O

The proof consists of four parts.

Firstly, the initialized Gram matrix G(w(0), a(0)) and G(w(0), a(0)) are positive definite. By Lemma 3.5 in the paper,

ifm = Q (n1+n2)" log% , then with probability of at least 1 — £, the initialized Gram matrices
(n1n2)2- (Inln{)\o,)\g}

G(w(0), a(0)) and G(w(0), a(0)) satisfy

and

Secondly, the initialized loss is bounded. Lemma 3.7 shows that with probability of at least 1 — g over the initialization of
w,(0) and a,(0) for all » € [m], the following holds
2
1
-o(3)
9 )

[ ehaon |

Thirdly, Gram matrices G(w, a) and G(w, a) are continuous at w(0) and a(0), as is shown in Lemma 3.6. With a

ili _8 i — O (min{rodo}d — O (—min{rodo}d
probability of at least 1 3 if the radius R,, = O ((n1+n2)-(log m)g) and R, = O ((nl+n2)_(10g ) ) then

|G(w, &) — G(w(0),a(0))]2 < %
and i
|G (@, @) — G(w(0),a(0))]|2 < %
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for all ||, — w,(0)|l2 < Ry, | — a(0)] < Ry < 1andr € [m]. It implies that Gram matrices in the neighborhood of
w(0) and a(0) are still positive definite, i.e., Apin (G (W, a)) > %0 and Apin (G(W, @) > % Moreover,

oo (0)> < R = ¢2<d+ 2)-tog () — 0 (e (). (34

holds for all » € [m)].

Finally, w,(t) and a, (¢) will not go out of the ball B(w, (0), R,,) and B(a,(0), R,) respectively, for all r € [m]. Without
the loss of generality, we assume that R’ > R,,, and thus |w,.(7)|l2 < 2R/, if w,(7) stays in the ball B(w,(0), Ry).

Lemma B.2 shows that if
2 ( R4 R'S
(B
» \R%,  RZ

(85)

= (n1 +n2)?

(Ao +30) - (minfra, o))" 67

I
2

)

then we have [[w, (t) — w, (0)||2 < Ru. [ar — 4,(0)] < Ra, Amin(G(w(b), a(1))) > 3 and Apin (G(w(2), a(1))) > 22,
forall £ > 0 and r € [m]. Furthermore, we have

L@(t),a(t) <exp (— (ho+Xo) - t) - L(w(0), a(0)),

for all t > 0, by Lemma B.1.
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C. Technical Proofs for Section 4

C.1. Proof for Lemma 4.1
Note that Osp(w(7),a(r)) o B and Hahk('w(r),a(r)) e 1 R
ow, 9 =0 /mny a ow, 9 =0 mns ’
for a universal constant ¢y > 0 and |a,| < 2. Then,
e+ 1)~ w02 < gy | 2D
7=0 r 2
<9y (Z sy (7)) | 5o sp(w(r).a(r))| +
7=0 \p=1 T 2
> letw(r),a(r))l - | - w(r).a(r) )
k=1 "
< Z@ R2. (1~ Ao+ Ao ” H{s(w( )7a(0))]
- = vm 2 h(w(0), a(0)) )
Eip— s(w(0),a(0)) 7| _
= 8o VI Xo + A H[ h(w(O%a(O))} 2 fhu:
Furthermore, note that
Osp(w(7),a(r)) 1 Oh(w(7),a(r)) 1
Pa. ’g MRS and ’ Pa, ‘g \/WLQRB,
for a universal constant ¢; > 0. Then,
LloL(w(r ,a(T
RCSRCUIENDS el
< Z(pr(wm,amn - slwlr).al)| +
7=0 \p=1
> he(ao(r), alr)] | hk<w<r>,a<r>>D
k=1 "
~ /2
201 3 Aot Ao s(w(0), a(0))
< w2 g R (1 L ) H[h(w(())ﬂ(O))] )
B 1 || s(w(0),a(0))
= sa VI xg + Ao H[ h(w(O),a(O))} 2 = e

C.2. Proof for Lemma 4.2

By the property of Gaussian variables, we have

P (lwn (0)]}2 > R) = P (w02 > B?) < (d+2) - Porrony (|z|z il )

Vd+2
1 R7?
< (d+2)exp <_2.d+2>'

Then, with probability of at least 1 — %,

0

lw,(0)]]2 < R := \/2(d+ 2) - log (2771(0“‘2))7

26
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holds for each 7 € [m]. Hence, with probability of at least 1 — 2, [|w,(0)||> < R’ holds for all 7 € [m].

Note that w, (also for a,, r € [m]) in s,(w, a) and hy(w, a) can be separated (because of the formulation Equation (5) for
¢(x; w, a)) that

sp(w,a) = ZCP(W“ ar) and hp(w,a)= ka(wr, ar), (87)
r=1 r=1
where
Cp(wT‘a ar)
3a d 1
r T T T
= e (2t () ) a0 - e

and & (wy,ar) = /55 ('wgg}k)s T (w gk >0) — — 1"2 - g(Zr). In the next part, we discuss six potential cases for

w,-(t+ 1) and w,(t).
Case 1.1: T (w,(t +1) Ty, > 0) =1 (w,(t) "y, > 0) = 1. Then

Cp(wy(t+ 1), ar(t + 1)) = Gp(wr(t), ar(t))

= (2D 1) = ) )+ Z O 04 1) — 0, 0) + 200,
ow, Oa,
where
or (0] < - (B R+ B2 Ry R ) (38)

BZCp(wmar)

82 Cp (wr ;ar)
2 Owyi Oa,

for a universal constant co > 0, since is a polynomial of w, with degree 1, is a polynomial of w,

with degree 2 and %’:’g"“) =0.

Case 120 I(w,(t+1)"y,>0) # TI(w.(t)"y,>0). Without the loss of generality, we assume that
I(w,(t+1)"y, >0) =0and I (w,(t) Ty, > 0) = 1, denoted as the event Ey. Then it happens only if |w,.(0) Ty, | <
R,,, with

2R,
IP)(El) <P (|wr(0)Typ| < Rw) = IF)zw./\/'(O,l) (‘Z| < Rw) < \/ﬂ
Furthermore,
P(Ey, [wr(0)ls < R) _ P(E) _ 8Ry
P(E;| ||lw,(0)]]s < R) = . < < ; 89
where the last inequality holds if we assume that § < 1. Let the set R}, (w(0)) be defined as
R (w(0)) = {r € [m] : I (w,(t+ DTy, >0) #I(w.(t) "y, >0)}.
Then, we have
L "L 8R S8R, - mn
E RE (w(0))] < Y om = — .
(0);| p( ())’—;m NG
Therefore, with probability of at least 1 — &, we have
L S8R, - mn;
R (w(0))] < ———.
2 Ry < =7y
Here, I (w,(t + 1) "y, > 0) # I (w,(t) "y, > 0) implies that
(1) | = [ (a0 (8) = w0, (64 1) gy 0,0+ 1) T | < ooy () = (e 1) (90)
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Let
Gp(wr(t +1),ar(t + 1)) = G(wy(t), ar(t))
= (2D 1) = ) )+ H ) (1) — 0, 0) ),
then
o) = [(F ) 1) — 0, 0)] + o1
Kol 000 O) (g 041) = 0,0 + Gy )0 0)
,/Sjnl . (R/2 R+ R Ea) ’

where the last inequality holds for a universal constant c3 > 0 due to (90).

Case 1.3: T (w,(t +1) Ty, > 0) =TI (w,(t) "y, > 0) = 0. Therefore, we easily obtain that

Gl {1+ 1), 0,0+ 1)) — Gy awn (1) (1) ©2)
= (2D (0 1) = o)) + KO (14 1) — 0,0 =

ie., xpr(t) =0.
Case 2.1: T (w,(t +1)"gy > 0) = I (w,(t)"gx > 0) = 1. Then

Ok (wr (1), ar(t))

E(wp(t + 1), an(t + 1)) — Ex(wn (1), an(t)) = < wy(t 1) - wr<t>>

ow,
&k (w,. (1), a,(t -
4 QD)) (4 1)~ a,0) + 0 1),

where c _ o

(O] < o (R + B2 Ry Ra). ©3)

mno

for a universal constant ¢4 > 0, since % is a first order polynomial of w,, % is a polynomial of w, with
degree 2 and %“W =0.
Case 2.20 I(w,(t+1)"g,>0) # ( Tg, >0). Without the loss of generality, we assume that
I(we(t+1)"ge >0) = 0and I (w,(t) gi > ) = 1, denoted as E,. Then it happens only if |w,.(0)"gx| < Ruy.

with

- 2R,
P(EQ) <P (’wr(o)—ryk‘ < Rw) = z~/\/ 0,1) (|Z| < Ry ) \/7
Furthermore,
P(Ey, [[w,(0)]2 < R') (Ez) 8RRy
P(E (0 <R)= < < , 94
Eallor Ol = 80 = g, ), < ) =10 = Vo oY

where the last inequality holds if we assume that § < 1. Let the set 75,}; (w(0)) be defined as

Ri (w( ={rem]:I(w,(t+1) gy >0)=0andI (w,(t) gs >0) =1}.
Then, we have
S S SR, -
Ew(0) ‘ < Z kL “’TZM
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Therefore, with probability of at least 1 — ¢§, we have

; Ri ()] < S22,

Here, I (w,(t + 1) "gi > 0) # I (w,(t) " g > 0) implies that

[, (6) @] = [ (w0 (8) = w, (¢ + 1) G+ w0 (¢ 4+ 1) G| < () = w, (¢ + D). 95)
Let

6wy 4+ 1), 0, (1 + 1)) — & (w, (1), a (1))

= (Pt e 1) () + P O) (o141 ) + )
then
o) < (B0 1)) %)
oo |20 o) - o) + e (0.0 0)
cs

\/W-(R’2.Ew+3’3ﬁa),

where the last inequality holds for a universal constant c5 > 0 since (95).

Case 2.3: T (w,(t + 1) Tgy, > 0) = I (w,(t) " gx > 0) = 0. Therefore, we easily obtain that

(w1 + 1), 0t + 1)) = Eelw,(0), 0, (1) ©7)
= (Pl (1) - ) )+ FEOO) 0 14 1) 0,0 =

i.e., Yer(t) = 0.
Let x(£) = [x1(t) -+ Xn, ()] and X(£) = [%1(t) -+ %n, ()] . Combining with above six cases, we have

(%)

(98)

2

< Jurome —2 -(R’~§i+R’2~§ona)+J@~m~ “ ~(R’~Ei+R’2~Ew~Ea)+
mni mnsg
;]Rg(w(o))|~\/:r‘;’im-(R’2~§w+R’3-§a)+§ ﬁ}i(w(()))‘-\/;i’im'(R’Q-§w+R’3-}~%a)
. Vvni+n / (w(t), a(t)) (w(0),a(0))
: C°'”'<6-<Aoixo>~2m)m“ ntwt o) ]|, || wioraion ],
oo BT H s(w(1), a(1)) } i
vm h(w(t),a(t)) ||,

for some universal constants ¢o > 0 and ¢; > 0 and with the assumption that R’ > 1.

C.3. Proof for Lemma 4.3
By (86) and the Hoeffding’s inequality, we have

2

1 & m-e€
(435 b1 Bl > ) <o (-5,
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Taking € = 1, with the probability of at least 1 — g, we have

m

— Z [ (0)]13 < Ellw, |3 +1,

if m =0 ((log %)5). Now we let R,, is small enough such that

—Zl\wrtﬂllz— lewr —w,(0) + w,(0)]|3 (99)

IN

ooy Z [w:(t +1) = w, (0) |2 + 4llwr (¢ + 1) = w,(0)]13 - [, (0)2 +

6w, (t +1) = w, (0)[I3 - e (0)II3 + 4llw, (£) — w, (0)]2 - [lo- (0) 3 + [ (0)]3
< Ry (R +4R.R +6R,R* +4R?) + C, < 2.

Here the last inequality requires that R,, - (R, + 4R% R’ + 6R,,R? + 4R®) < C;, and using Lemma 4.1, we need m =

s (et ||[ s(w(0).a(0)) 1| log(1) s(w(0),a(0) 1|° Ly
Q <EA0+XO§2 . { h(w(0), a(0)) ] 2) Similarly, if m = Q (Ekoﬂog H[ h(w(0), a(0)) ] 2>’thenm;||wT(t+
1§ <261

C.4. Proof for Theorem 4.5

Note that there exists a universal constant ¢; > 0 such that

O0sp(w, a) 1 Ohi(w, a) ¢

2 2
l awr ) S \/WWI : ||w7“||2’ H 811)7« ) S \/WWZ . ||wT||2’
and
Osp(w, a) a w2 Ohi(w, a) a w2
da, | = mmg Tl da, | = mmg 1%
if |a,| < 2, for all » € [m]. Assume that the result (27) holds for 7 = 0, - - - , ¢, we then further prove that it also holds for
- _ _1||[ stw(t),am) 1|
T =t + 1. Therefore, (27) holds for all ¢ € N by induction. Recall that L(w(t), a(t)) = 5 { h(w(t), a(t)) } ) then we
have
OL(w(t), a(t))
ow, 5
= 0 t),alt 2 Ohy(w(t), a(t
< Y lsptwoa)]-| 2D S o). a2 (100)
= ow, Rt ow, 5
2 2 ||| s(w(t) alt)) \/7 2 ||| s(w(0),a(0))
<\ 2o 013 H[ iy | , S Ve e Ol IH e | X
and
OL(w(t), a(t))
da,
- 0 t),a(t - oh t),alt
<Y sp(w(t), alt)) sp(wga) o ))’+th(w(t),a(t)) ‘ k(uga) ol ))‘ (101)
p=1 r k=1 T

< \/771()2 : H{ h(w(t), a(t)) }
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Then, with the probability of at least 1 — 3, we have

[ :z%z.tié% |- [ Fothai) ]

2

_m-ﬁf%wwm) e+ v 2 a4 1) - alo)l
Tz Y20 1) — w(t) e+ vz - Y2 a4 1) - a)]s

rz N
<2¢1-v/2C) - |Jw(t+ 1) —w(t)]]2 +2¢1 - V2Ci - |la(t + 1) — a(t)]2

if
B 1 2 B N7
=Q og H{ w( ,a 0)) } and m = Q) (log) .
(Ao + )\0 h(w(0),a(0)) 2 o
Here, the first inequality holds with the probability of at least 1 — & (by Lemma 4.3), because of the mean value theorem with

(100) and (101). The third inequality comes from Lemma 4.4 W1th the probability of at least 1 — é . Moreover, according to
Lemma 4.2, if

then with the probability of at least 1 — &, we have

I( %Eiﬁ ).

for a small universal constant c3 > 0. Moreover, by Lemma 3.5, with the probability of at least 1 — %, the initialized Gram
matrices are positive definite, i.e., Amin (G/(w(0), a(0))) > 2\g and Apin (C:” (w(0), a(O))) > %Xo, if

9

2

<o [ 122

m—Q (n1 + ng)? (o 1 7
(n1ng)? - (min{)\o,xo}) ( 8 5)

To guarantee the positive definiteness of Gram matrices G(w(t), a(t)) and G(w(t), a(t)), i.e.,

Amin (Gl (1), a(t) + Gluw(t), a(t))) > @ |

R, and R, in Lemma 4.1 should satisfies conditions in Lemma 3.6 (with the probability of at least 1 — %), therefore, we
require

m=0 (n1+ns)? ) H { s(w(0), a(0)) }
(/\0 + XO)Q : (min{AmXo})Q 52

2

= O(%), with the probability of at least 1 — %.
2

Note that Lemma 3.7 shows that

[ e ]

To simplify the formulation and improve the readability, we slightly change some notations here, i.e., s(w(t), a(t)) := s

t
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and G(w(t), a(t)) := G! (similarly for h* and G*). Combining with aforementioned results, we have
st 7|12 st st+1 st
i A=A (Lo ][5 ])
2 2
st 1112 st 17 st+l st st+1 st
= t 20 0| t+1 | = | pt + t+41 | — | pt
h* 111, h hi* h hi* h
st
-|l%]

2

2

2

t

o] (ere) ]

2
st+1 St
ht+1 - ht

2

2
Ao + Ao st 1° st x!
<(1-29- : % - X
( ! 2 ) Hht 2+ ! O X"l (102)
st+l st 2
|l ] -5
Iz
Ao + Ao st 17 9 st 11
<<12 5 )Hht} 2+2n-03(n+77)' |,
st 117
wdor ||
2

2

)
2

Ao+ Ao t
2 )\U"FXO.

where the last inequality holds when = O (/\0 + Xo) such that 27) - c3(n + 1) + c3n* < - 223
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