
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A HIERARCHICAL LANGUAGE MODEL DESIGN FOR
INTERPRETABLE GRAPH REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have seen an increased adoption for tasks with
implicit graphical structures, such as planning in robotics, multi-hop question
answering, and knowledge probing. However, despite their remarkable success
in text-based tasks, LLMs’ capabilities in understanding explicit graph structures
remain limited, preventing them from fully replacing Graph Neural Networks
(GNNs) in graph-centric applications. In this work, we introduce a Hierarchi-
cal Language Model (HLM-G) Design that employs a two-block architecture to
effectively capture local and global graph information, significantly enhancing
graph structure understanding. Our model achieves a new state-of-the-art in graph
understanding, outperforming both GNN and LLM baselines. It demonstrates
robustness to variations in graph-descriptive prompts, overcoming a key limitation
of existing LLMs. Furthermore, we demonstrate the interpretability of our model
using intrinsic attention weights and established explainers. Comprehensive evalua-
tions across diverse real-world datasets, covering node, link, and graph-level tasks,
highlight our model’s superior generalization capabilities, marking a significant
advancement in the application of LLMs to graph-centric tasks.

1 INTRODUCTION

Large Language Models (LLMs) (Vaswani et al., 2017; Devlin et al., 2018; Achiam et al., 2023;
Chowdhery et al., 2023) have demonstrated impressive generative capabilities, revolutionizing
multiple fields, including natural language processing (NLP), computer vision (Wang et al., 2024c;
Parashar et al., 2024; Liu et al., 2024b), speech recognition (Fathullah et al., 2024), and cross-modal
domains (Wu et al., 2023; Koh et al., 2024). Despite this widespread success, their application to
graph tasks remains an emerging area of research (Chen et al., 2024c; Ren et al., 2024; Jin et al., 2023).
Unlike linear text data, graph data presents unique challenges due to its non-Euclidean topologies
and intricate structures (Jin et al., 2023), making it difficult for LLMs to process these complex
relationships effectively. As a result, the adoption of LLMs in graph-centric tasks has been limited,
with graph models such as GNNs (Kipf & Welling, 2017; Gilmer et al., 2017) continuing to be the
state-of-the-art in this domain.

Applying LLMs to graph tasks presents two key challenges. Firstly, real-world graphs, such as
molecules, often consist of complex combinations of features and structures (Qin et al., 2023), such
as atoms properties and the bonds between atoms. Although LLMs excel at processing feature-based
information due to their strong text comprehension abilities, they often struggle with capturing
structural details (Hu et al., 2023). This limitation results in suboptimal performance even on simple
graph tasks, such as identifying shortest paths (Guo et al., 2023; Wang et al., 2024a; Fatemi et al.,
2023). Consequently, LLMs tend to be effective mainly for node-level tasks, making it challenging to
apply them to more complex link and graph-level tasks where understanding long-range structures
is crucial (Liu et al., 2023; Wu et al., 2021). Secondly, representing graphs using LLMs presents
significant scalability challenges (Zhao et al., 2023; Ye et al., 2023b). Describing a graph node with
both feature and structural information, as seen in molecular (Dwivedi et al., 2023), citation (Hu
et al., 2020b), or knowledge graphs (Dettmers et al., 2018), often results in lengthy prompts, leading
to a sharp increase in computational complexity since the attention mechanism in LLMs scales
quadratically with input size. This makes the application of LLMs to large graph-based tasks
computationally challenging, necessitating specialized designs. On the other hand, a key advantage of
employing LLMs for graph tasks is their ability to process graphs in a human-comprehensible manner,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

allowing input in the form of straightforward text descriptions. Since LLMs use a human-readable
vocabulary, they offer a natural advantage in interpretability compared to the opaque embeddings
utilized by Graph Neural Networks (GNNs) (Binder et al., 2016; Longo et al., 2024; Achtibat et al.,
2024). However, no prior work has focused on providing interpretable results that explain the structure
of graphs.

To address these challenges, we introduce Hierarchical Language Model for Graphs (HLM-G), a
novel framework designed to enhance the graph structure comprehension capabilities of LLMs.
Unlike conventional LLMs that apply self-attention across all tokens, HLM-G employs a two-block
architecture, comprising a local block and a global block, each with specialized attention masking.
This hierarchical structure enables the model to initially capture local information in the lower layers,
followed by the integration of global-level information in the upper layers. Our approach not only
enhances the model’s understanding of graph structures but significantly reduces computational costs,
making HLM-G more scalable for large-scale graph tasks. Furthermore, our hierarchical design
exhibits increased robustness to variations in graph prompts. We also demonstrate the interpretability
of our hierarchical language model with both model intrinsic weights and established explainers.
Finally, we conduct comprehensive experiments across seven real-world datasets, encompassing
citation networks, knowledge graphs, and molecular graphs. Our results validate HLM-G’s ability to
generalize effectively across node, link, and graph-level tasks, marking a significant advancement in
the application of language models to graph-based tasks.

2 BACKGROUND AND RELATED WORK

Problem Setup. We denote a graph as G = (A,X,E), where A ∈ Rn×n, X ∈ Rp×n, and
E ∈ Rq×m represent the adjacency, node feature, and edge feature matrices, respectively. Here,
n, m, p, and q denote the numbers of nodes, edges, node features, and edge features, respectively.
Building on these, we describe graph tasks in natural language. For each graph Gi, we first construct
a sequence Ui that encapsulates the natural language descriptions of Gi covering Ai, Xi, and Ei,
coupled with a query Qi describing the prediction task. Each task is also associated with a true label
yi ∈ Y . This leads to a dataset of sequences U = {(U1, Q1, y1), (U2, Q2, y2), · · · , (UN , QN , yN)},
where each sequence Ui = {u1, u2, · · · , uli} and all tokens ui belong to a vocabulary V .

LLM Inference Methods. Prompt engineering has been pivotal in adapting LLMs for a wide range
of tasks (Sahoo et al., 2024a; Zhou et al., 2022). Early attempts in prompt engineering for graph
tasks involved using structured representations like edge lists and adjacency matrices (Brandes et al.,
2013; Zhao et al., 2023), but these struggled with graph structural reasoning tasks (Guo et al., 2023).
NLGraph (Wang et al., 2024a) sought to convert graph data into natural language prompts, yet
fundamental graph operations remained challenging, even for small graphs. Studies suggest simpler
prompts can be more effective, but overall improvements are modest (Zhao et al., 2023; Fatemi et al.,
2023; Sahoo et al., 2024b). LLMs continue to underperform compared to specialized graph models,
indicating a significant gap (Hu et al., 2023). Beyond prompt engineering other approaches (Yao
et al., 2024; Wang et al., 2022) involves exploring multiple reasoning paths and selecting the most
confident one, offering marginal gains but at the cost of increased inference time. The limited success
of LLMs on graphs has been partly attributed to their inability to construct coherent world models,
often relying on pattern matching rather than genuine reasoning (Valmeekam et al., 2023; Stechly
et al., 2024).

LLM Fine-Tuning Approaches. Fine-tuning and instruction tuning have been investigated to
address LLMs’ limitations in graph reasoning tasks. Fine-tuning on graph-specific datasets has
achieved limited success, with models still struggling to capture complex graph structures (Tang et al.,
2023; Vafa et al., 2024). Instruction tuning, which aligns training objectives with graph reasoning
tasks, has shown more promise (Wang et al., 2024b; Luo et al., 2024) by introducing a variety of
related tasks during training, enabling the LLM to gain a deeper understanding of the graph domain.
However, this approach remains labor-intensive and continues to face challenges with large and dense
graphs. Methods such as GraphWiz (Chen et al., 2024a) have further incorporated RL preference
alignment (Rafailov et al., 2024), demonstrating some improvements but still struggling on dense
graph structures. Furthermore, incorporating real-world graph features, such as node and edge
attributes found in citation networks, into LLMs remains an open challenge, indicating that more
work is needed to fully adapt LLMs for graph tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Hybrid GNN-LLM Approaches. Hybrid models aim to leverage the complementary strengths
of LLMs and GNNs by combining the textual understanding capabilities of LLMs with the graph-
processing proficiency of GNNs. In this approach, LLMs are often used to enhance graph representa-
tions by providing enriched feature descriptions, as demonstrated in models like GIANT (Chien et al.,
2021) and LM-GNN (Ioannidis et al., 2022). Alternatively, other methods such as G-Retrieval (He
et al., 2024), LLaGA (Chen et al., 2024b), and GraphLLM (Chai et al., 2023) employ LLMs as
predictors to improve graph reasoning tasks. Despite their effectiveness, these hybrid models inherit
certain limitations associated with GNNs, including the issue of oversmoothing (Rusch et al., 2023)
and the need for task-specific architecture designs (You et al., 2020), which require different GNN
structures for node-, link-, and graph-level tasks. Additionally, these approaches face challenges in
interpretability, as they often rely on opaque embeddings, unlike LLM-only methods that provide
more intuitive, language token-level interpretations. Such token-level interpretability is inherently
more human-understandable and offers clearer insights into the decision-making process

3 HIERARCHICAL LANGUAGE MODEL DESIGN

In this section, we introduce our Hierarchical Language Model, designed to effectively capture both
the structural and feature-based aspects of graphs. We begin by explaining how graph data can
be transformed into natural language descriptions (Section 3.1). Following this, we describe the
model’s architecture, which is composed of a local block (Section 3.2) for learning local structural
information, a pooling layer (Section 3.3) for integrating structural and feature information, and a
global block (Section 3.4) for capturing global information. This hierarchical approach not only
guides our model to better understand graph structures but also results in computational advantages.

3.1 NATURAL LANGUAGE DESCRIPTIONS OF GRAPHS

Following prior works (Guo et al., 2023; Fatemi et al., 2023) that demonstrate the effectiveness of
using simpler graph inputs for LLMs, we define a graph-to-text representation U to describe any
graph task in natural language. For a graph G characterized by its adjacency matrix A, node features
X , and edge attributes E, we construct textual representations capturing both node feature and 1-hop
structural information for each node vi in G. These representations are divided into two components:
the node feature annotation UXi and the node structure annotation UAEi .

Node Feature Annotation. Each node can be effectively described in natural language and presented
as input to an LLM. The node feature annotation for a node vi, denoted as UXi , is a natural language
sequence that describes the attributes Xi of vi over a predefined vocabulary V . The template for UXi
is as follows:

UXi : Node <i> features: <feature 1>: <content 1>; <feature 2>: <content 2>, · · · , <fea-
ture p>: <content p>.
Example 1 (Citation Network): Node 97 features: Title: A Zero-Knowledge Revocable
Credential Verification Protocol Using Attribute-Based Encryption; Abstract: We introduce a
zero-knowledge credential verification protocol leveraging Ciphertext Policy Attribute-Based...
Example 2 (Molecule): Node 10 features: Atomic Number: 7; Degree: 2; Formal charge: 5;
Number of Hydrogens: 0; Radical electrons: 0; Hybridization: SP2; Aromatic: True; In Ring:
False.

Node Structure Annotation. The node structure annotation UAEi captures the structural connections
of node vi within the graph G, including its connections to other nodes and the corresponding edge
features. This serves as a textual representation of A and E. Let ne(i)1, ne(i)2, . . . , ne(i)k be the
indices of vi’s 1-hop neighbors in G. The template for UAEvi is:

UAEvi : Node <i> is connected to <ne(i)1> with <edge feature1>, <ne(i)2> with
<edge feature2>, · · · , and <ne(i)k> with <edge featurek>.
Example 1 (Citation Network): Node 20 is connected to nodes 10, 14, and 19.
Example 2 (Molecule): Node 11 is connected to nodes 10 and 13 by a double bond,. . . and to
node 27 by a conjugated double bond.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Task Query. We define a task-specific query Q to represent the prediction task in natural language.
This query is tailored for each prediction scenario, as demonstrated below:

QG : What is the prediction for· · ·
Example 1: What is the shortest distance between nodes 0 and 1?
Example 2: Does the molecule inhibit HIV virus replication?

Graph Task Reformulation. Any graph-level task can be reformulated using a concatenation of all
nodes’ respective UXvi and UAEvi along with the task query Q. Formally, this representation is given
by:

f(G) = concat(UG, QG) = concat(UAEv1 , UXv1 , . . . , U
AE
vn , UXvn , QG),

where vi ∈ G and concat(·) represents the sequence concatenation operation.

While the feature descriptions are generally standardized, there are multiple ways to describe the
structural information of a graph. We explore various prompting strategies in Appendix F.2.

3.2 THE LOCAL BLOCK

Since language models cannot inherently understand graphs in their natural structure, we introduce a
local-to-global guidance approach, where the model first learns strong local features before capturing
information at the global graph level. To implement this, we introduce a local block ML that
employs an intra-node attention masking mechanism. This mechanism ensures that, for each node
vi, the combined text sequence (UAEvi , UXvi) is processed independently of other nodes, allowing the
model to effectively capture node-specific structures and features. Given an input token sequence
H l ∈ Rn×dk at any transformer layer, where n is the total number of tokens across all nodes and dk
is the embedding dimension, we decompose this sequence into segments: H l = {H1, H2, . . . ,HN},
with each segment Hi ∈ Rni×dk representing the tokens associated with node vi.

The attention mechanism in the local block is then formulated as:

Attention(l)(Q,K, V) = Diag
(

Attention(l)(Q1,K1, V1), . . . ,Attention(l)(QN ,KN , VN)
)
,

where

Attention(l)(Qi,Ki, Vi) = Softmax

 (W
(l)
Q H

(l−1)
i)(W

(l)
K H

(l−1)
i)T√

d
(l)
k

 (W
(l)
V H(l−1)i).

This block diagonal attention mechanism also provides several computational advantages. Let
nXi and nAEi represent the number of tokens corresponding to the feature annotation UXi and
structure annotation UAEi for node vi, respectively. The total number of tokens n for the entire
graph is given by n =

∑
ni, where ni = nXi + nAEi . By employing this block diagonal attention

mechanism, we achieve significant computational efficiency compared to traditional full attention
approaches. In standard attention, the computational complexity is typically O

(
(
∑
ni)

2
)

, which
scales quadratically with the total number of nodes, becoming increasingly expensive for larger
graphs. In contrast, our block diagonal design reduces the complexity to O

(∑
n2i
)
, resulting in a

linear scaling relative to the number of nodes. This improvement substantially enhances efficiency,
especially for larger graph-based tasks, making our approach highly scalable.

3.3 POOLING LAYER

To integrate structural and feature-based information extracted from the graph, we introduce a pooling
mechanism. For each node vi, we first derive local embeddings from the hidden states produced by
the local block ML. Specifically, the feature-based embedding is obtained as zXvi = 1

nX
i

∑li
j=1 hj ,

where hj represents the hidden states corresponding to tokens from UXi . Similarly, the structure-
based embedding zAEvi is obtained from UAEvi using the same approach. Next, we combine these
embeddings through a parameterized pooling operation to produce the final embedding zi for each
node. Formally, given a sample U , the pooled embedding is defined as:

zi = αzAEvi + (1− α)zXvi ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

<latexit sha1_base64="s4xOUev/fuvRDwt2+6JeAUrvD4g=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuLaiEQ94DjlQUwHSkSCUbSS7/e8x3avXHGr7hxklXg5qUCORq/81e0nLIu5QiapMR3PTTGYUI2CST4tdTPDU8pGdMA7lioacxNM5sdOyZlV+iRKtC2FZK7+npjQ2JhxHNrOmOLQLHsz8T+vk2F0HUyESjPkii0WRZkkmJDZ56QvNGcox5ZQpoW9lbAh1ZShzadkQ/CWX14lzYuqV6vW7i8r9Zs8jiKcwCmcgwdXUIc7aIAPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fOdGOUg==</latexit>

UX
1

<latexit sha1_base64="tt44tMiiYRkCyV89D+TgIluuDyE=">AAAB73icbVBNSwMxEJ34WetX1aOXYBE8lV2R6rEqgscKblto15JNs21oNrsmWaEs/RNePCji1b/jzX9j2u5BWx8MPN6bYWZekAiujeN8o6XlldW19cJGcXNre2e3tLff0HGqKPNoLGLVCohmgkvmGW4EayWKkSgQrBkMryd+84kpzWN5b0YJ8yPSlzzklBgrtbyu+5Bd3oy7pbJTcabAi8TNSRly1Lulr04vpmnEpKGCaN12ncT4GVGGU8HGxU6qWULokPRZ21JJIqb9bHrvGB9bpYfDWNmSBk/V3xMZibQeRYHtjIgZ6HlvIv7ntVMTXvgZl0lqmKSzRWEqsInx5Hnc44pRI0aWEKq4vRXTAVGEGhtR0Ybgzr+8SBqnFbdaqd6dlWtXeRwFOIQjOAEXzqEGt1AHDygIeIZXeEOP6AW9o49Z6xLKZw7gD9DnD2xSj5Y=</latexit>

UAE
1

<latexit sha1_base64="xYWlcCbWFnlUwmLUrWQx6BIy+h4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0O/NbT6g0T+SDGacYxHQgecQZNVby/R5/bPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzslZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2OelzhcyIsSWUKW5vJWxIFWXG5lOyIXjLL6+S5kXVq1Vr95eV+k0eRxFO4BTOwYMrqMMdNMAHBhye4RXeHOm8OO/Ox6K14OQzx/AHzucPjyGOig==</latexit>

UX
i

<latexit sha1_base64="dRCT/K2v3Id6bw9hEmiJqsZ84U0=">AAAB73icbVBNSwMxEJ34WetX1aOXYBE8lV2R6rEqgscKblto15JNs21oNrsmWaEs/RNePCji1b/jzX9j2u5BWx8MPN6bYWZekAiujeN8o6XlldW19cJGcXNre2e3tLff0HGqKPNoLGLVCohmgkvmGW4EayWKkSgQrBkMryd+84kpzWN5b0YJ8yPSlzzklBgrtbwuf8gub8bdUtmpOFPgReLmpAw56t3SV6cX0zRi0lBBtG67TmL8jCjDqWDjYifVLCF0SPqsbakkEdN+Nr13jI+t0sNhrGxJg6fq74mMRFqPosB2RsQM9Lw3Ef/z2qkJL/yMyyQ1TNLZojAV2MR48jzuccWoESNLCFXc3orpgChCjY2oaENw519eJI3TilutVO/OyrWrPI4CHMIRnIAL51CDW6iDBxQEPMMrvKFH9ILe0cesdQnlMwfwB+jzB8JKj84=</latexit>

UAE
i

<latexit sha1_base64="WNgCxmpWVrt7LwbiyozWW+JbkOM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0O/NbT6g0T+SDGacYxHQgecQZNVby/Z58bPfKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzslZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmugwmXaWZQssWiKBPEJGT2OelzhcyIsSWUKW5vJWxIFWXG5lOyIXjLL6+S5kXVq1Vr95eV+k0eRxFO4BTOwYMrqMMdNMAHBhye4RXeHOm8OO/Ox6K14OQzx/AHzucPlr+Ojw==</latexit>

UX
n

<latexit sha1_base64="BQ2A9Qh4D/BIfXoWJY6+9papMRM=">AAAB73icbVBNSwMxEJ34WetX1aOXYBE8lV2R6rEqgscKblto15JNs21oNrsmWaEs/RNePCji1b/jzX9j2u5BWx8MPN6bYWZekAiujeN8o6XlldW19cJGcXNre2e3tLff0HGqKPNoLGLVCohmgkvmGW4EayWKkSgQrBkMryd+84kpzWN5b0YJ8yPSlzzklBgrtbyufMgub8bdUtmpOFPgReLmpAw56t3SV6cX0zRi0lBBtG67TmL8jCjDqWDjYifVLCF0SPqsbakkEdN+Nr13jI+t0sNhrGxJg6fq74mMRFqPosB2RsQM9Lw3Ef/z2qkJL/yMyyQ1TNLZojAV2MR48jzuccWoESNLCFXc3orpgChCjY2oaENw519eJI3TilutVO/OyrWrPI4CHMIRnIAL51CDW6iDBxQEPMMrvKFH9ILe0cesdQnlMwfwB+jzB8n3j9M=</latexit>

UAE
n

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

Intra-node A
ttention

<latexit sha1_base64="vU9gjnZVMlyjlXxoiwU26Q5RyGY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJHCoOt+OYWNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbhd+Z8q1EbF6xFnC/YiOlAgFo2ilh+nAG5QrbtVdgvwlXk4qkKM5KH/2hzFLI66QSWpMz3MT9DOqUTDJ56V+anhC2YSOeM9SRSNu/Gx56pxcWGVIwljbUkiW6s+JjEbGzKLAdkYUx2bdW4j/eb0Uw7qfCZWkyBVbLQpTSTAmi7/JUGjOUM4soUwLeythY6opQ5tOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnWfnzXlftRacfOYUfsH5+AYJNI2f</latexit>v1

<latexit sha1_base64="H6+KWXruZ6/SBR/bYuhxH0lGCLo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsJ+3SzSbsbgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7cLvTFFpHstHM0vQj+hI8pAzaqz0MB3wQbniVt0lyF/i5aQCOZqD8md/GLM0QmmYoFr3PDcxfkaV4UzgvNRPNSaUTegIe5ZKGqH2s+Wpc3JhlSEJY2VLGrJUf05kNNJ6FgW2M6JmrNe9hfif10tNWPczLpPUoGSrRWEqiInJ4m8y5AqZETNLKFPc3krYmCrKjE2nZEPw1l/+S9pXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ale4NURzrPz5ryvWgtOPnMKv+B8fANeFI3X</latexit>vi

<latexit sha1_base64="DR/kczXFamm6PVOhaSNI7URmvbo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsJ+3SzSbsbgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7cLvTFFpHstHM0vQj+hI8pAzaqz0MB3IQbniVt0lyF/i5aQCOZqD8md/GLM0QmmYoFr3PDcxfkaV4UzgvNRPNSaUTegIe5ZKGqH2s+Wpc3JhlSEJY2VLGrJUf05kNNJ6FgW2M6JmrNe9hfif10tNWPczLpPUoGSrRWEqiInJ4m8y5AqZETNLKFPc3krYmCrKjE2nZEPw1l/+S9pXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ale4NURzrPz5ryvWgtOPnMKv+B8fANlqI3c</latexit>vn

<latexit sha1_base64="OScxXC70Kn9/jiDRDuT61B16dL0=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9SQFLz1WMG0hjWGz3bRLN5uwuxFKyM/w4kERr/4ab/4bt20O2vpg4PHeDDPzwpQzpW3721pb39jc2q7sVHf39g8Oa0fHXZVkklCXJDyR/RArypmgrmaa034qKY5DTnvh5G7m956oVCwRD3qaUj/GI8EiRrA2ktcOcjdwHvN+UQS1ut2w50CrxClJHUp0gtrXYJiQLKZCE46V8hw71X6OpWaE06I6yBRNMZngEfUMFTimys/nJxfo3ChDFCXSlNBorv6eyHGs1DQOTWeM9VgtezPxP8/LdHTj50ykmaaCLBZFGUc6QbP/0ZBJSjSfGoKJZOZWRMZYYqJNSlUTgrP88irpXjacZqN5f1Vv3ZZxVOAUzuACHLiGFrShAy4QSOAZXuHN0taL9W59LFrXrHLmBP7A+vwBE9CRIQ==</latexit>

HUX
1

<latexit sha1_base64="PsyZfrAlvxQVFsp5avKOzJShvM0=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqiepiNBjBdMW2hg22027dLMJuxuhhPwNLx4U8eqf8ea/cdvmoNUHA4/3ZpiZFyScKW3bX1ZpZXVtfaO8Wdna3tndq+4fdFScSkJdEvNY9gKsKGeCupppTnuJpDgKOO0Gk5uZ332kUrFY3OtpQr0IjwQLGcHaSIOWn7m+85Bd3+a5X63ZdXsO9Jc4BalBgbZf/RwMY5JGVGjCsVJ9x060l2GpGeE0rwxSRRNMJnhE+4YKHFHlZfObc3RilCEKY2lKaDRXf05kOFJqGgWmM8J6rJa9mfif1091eOllTCSppoIsFoUpRzpGswDQkElKNJ8agolk5lZExlhiok1MFROCs/zyX9I5qzuNeuPuvNa8KuIowxEcwyk4cAFNaEEbXCCQwBO8wKuVWs/Wm/W+aC1Zxcwh/IL18Q2B/ZFZ</latexit>

HUAE
1

<latexit sha1_base64="IX0FoI4S2yiF1j5OKDQbfYuhNVQ=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9SQFLz1WMG0hjWGz3bRLN5uwuxFKyM/w4kERr/4ab/4bt20O2vpg4PHeDDPzwpQzpW3721pb39jc2q7sVHf39g8Oa0fHXZVkklCXJDyR/RArypmgrmaa034qKY5DTnvh5G7m956oVCwRD3qaUj/GI8EiRrA2ktcOcjdgj3m/KIJa3W7Yc6BV4pSkDiU6Qe1rMExIFlOhCcdKeY6daj/HUjPCaVEdZIqmmEzwiHqGChxT5efzkwt0bpQhihJpSmg0V39P5DhWahqHpjPGeqyWvZn4n+dlOrrxcybSTFNBFouijCOdoNn/aMgkJZpPDcFEMnMrImMsMdEmpaoJwVl+eZV0LxtOs9G8v6q3bss4KnAKZ3ABDlxDC9rQARcIJPAMr/BmaevFerc+Fq1rVjlzAn9gff4AaciRWQ==</latexit>

HUX
i

<latexit sha1_base64="nUWmceX6SPVgoVPRaUaPwW3gWY4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqiepiNBjBdMW2hg22027dLMJuxuhhPwNLx4U8eqf8ea/cdvmoNUHA4/3ZpiZFyScKW3bX1ZpZXVtfaO8Wdna3tndq+4fdFScSkJdEvNY9gKsKGeCupppTnuJpDgKOO0Gk5uZ332kUrFY3OtpQr0IjwQLGcHaSIOWn7k+e8iub/Pcr9bsuj0H+kucgtSgQNuvfg6GMUkjKjThWKm+Yyfay7DUjHCaVwapogkmEzyifUMFjqjysvnNOToxyhCFsTQlNJqrPycyHCk1jQLTGWE9VsveTPzP66c6vPQyJpJUU0EWi8KUIx2jWQBoyCQlmk8NwUQycysiYywx0SamignBWX75L+mc1Z1GvXF3XmteFXGU4QiO4RQcuIAmtKANLhBI4Ale4NVKrWfrzXpftJasYuYQfsH6+AbYLZGR</latexit>

HUAE
i

<latexit sha1_base64="T4eMQwqc7MbID3I4XO5LAynsES0=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KolI9SQFLz1WMG0hjWGz3bRLN5uwOxFKyM/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlRwDbb9ba2tb2xubVd2qrt7+weHtaPjrk4yRZlLE5Gofkg0E1wyFzgI1k8VI3EoWC+c3M383hNTmifyAaYp82MykjzilICRvHaQu4F8zPtFEdTqdsOeA68SpyR1VKIT1L4Gw4RmMZNABdHac+wU/Jwo4FSwojrINEsJnZAR8wyVJGbaz+cnF/jcKEMcJcqUBDxXf0/kJNZ6GoemMyYw1sveTPzP8zKIbvycyzQDJuliUZQJDAme/Y+HXDEKYmoIoYqbWzEdE0UomJSqJgRn+eVV0r1sOM1G8/6q3rot46igU3SGLpCDrlELtVEHuYiiBD2jV/RmgfVivVsfi9Y1q5w5QX9gff4AcXWRXg==</latexit>

HUX
n

<latexit sha1_base64="Lq+B+13in1Ke0zFXSSB3f28+qyk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqiepiNBjBdMW2hg22027dLMJuxuhhPwNLx4U8eqf8ea/cdvmoNUHA4/3ZpiZFyScKW3bX1ZpZXVtfaO8Wdna3tndq+4fdFScSkJdEvNY9gKsKGeCupppTnuJpDgKOO0Gk5uZ332kUrFY3OtpQr0IjwQLGcHaSIOWn7m+eMiub/Pcr9bsuj0H+kucgtSgQNuvfg6GMUkjKjThWKm+Yyfay7DUjHCaVwapogkmEzyifUMFjqjysvnNOToxyhCFsTQlNJqrPycyHCk1jQLTGWE9VsveTPzP66c6vPQyJpJUU0EWi8KUIx2jWQBoyCQlmk8NwUQycysiYywx0SamignBWX75L+mc1Z1GvXF3XmteFXGU4QiO4RQcuIAmtKANLhBI4Ale4NVKrWfrzXpftJasYuYQfsH6+Abf35GW</latexit>

HUAE
n

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="4zn1MzSKTKzHmEqqwBSB+morvEA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGC/YA2hM122y7dbMLupFBDf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXJlIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuh9RwKRRvoEDJ24nmNAolb4Wju5nfGnNtRKwecZJwP6IDJfqCUbRS6ynIxoE3DUplt+LOQVaJl5My5KgHpa9uL2ZpxBUySY3peG6CfkY1Cib5tNhNDU8oG9EB71iqaMSNn83PnZJzq/RIP9a2FJK5+nsio5Exkyi0nRHFoVn2ZuJ/XifF/o2fCZWkyBVbLOqnkmBMZr+TntCcoZxYQpkW9lbChlRThjahog3BW355lTQvK161Un24Ktdu8zgKcApncAEeXEMN7qEODWAwgmd4hTcncV6cd+dj0brm5DMn8AfO5w9ofI+i</latexit>zv1

<latexit sha1_base64="9Yg7YILs4Itr5xrkIzcFOSJMvo0=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGC/YA2hM122y7dbMLupFBDf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXJlIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuh9RwKRRvoEDJ24nmNAolb4Wju5nfGnNtRKwecZJwP6IDJfqCUbRS6ynIxoGYBqWyW3HnIKvEy0kZctSD0le3F7M04gqZpMZ0PDdBP6MaBZN8WuymhieUjeiAdyxVNOLGz+bnTsm5VXqkH2tbCslc/T2R0ciYSRTazoji0Cx7M/E/r5Ni/8bPhEpS5IotFvVTSTAms99JT2jOUE4soUwLeythQ6opQ5tQ0YbgLb+8SpqXFa9aqT5clWu3eRwFOIUzuAAPrqEG91CHBjAYwTO8wpuTOC/Ou/OxaF1z8pkT+APn8we9lI/a</latexit>zvi

<latexit sha1_base64="fZsdEdBo5NmCjKtFgHwFrXfxnCs=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGC/YA2hM122y7dbMLupFBDf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXJlIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuh9RwKRRvoEDJ24nmNAolb4Wju5nfGnNtRKwecZJwP6IDJfqCUbRS6ynIxoGaBqWyW3HnIKvEy0kZctSD0le3F7M04gqZpMZ0PDdBP6MaBZN8WuymhieUjeiAdyxVNOLGz+bnTsm5VXqkH2tbCslc/T2R0ciYSRTazoji0Cx7M/E/r5Ni/8bPhEpS5IotFvVTSTAms99JT2jOUE4soUwLeythQ6opQ5tQ0YbgLb+8SpqXFa9aqT5clWu3eRwFOIUzuAAPrqEG91CHBjAYwTO8wpuTOC/Ou/OxaF1z8pkT+APn8wfFLY/f</latexit>zvn

Pool
Pool

Pool

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="KhRSnewO721j0r2NU+L4FzcYPzM=">AAAB+HicbVDLSsNAFL3xWeujUZdugkWoC0sivpYFXbisYB/QxjCZTtqhk0mYmRTakC9x40IRt36KO//GaZuFth64cDjnXu69x48Zlcq2v42V1bX1jc3CVnF7Z3evZO4fNGWUCEwaOGKRaPtIEkY5aSiqGGnHgqDQZ6TlD2+nfmtEhKQRf1TjmLgh6nMaUIyUljyzNPHSkedkT2mFnTmnmWeW7ao9g7VMnJyUIUfdM7+6vQgnIeEKMyRlx7Fj5aZIKIoZyYrdRJIY4SHqk46mHIVEuuns8Mw60UrPCiKhiytrpv6eSFEo5Tj0dWeI1EAuelPxP6+TqODGTSmPE0U4ni8KEmapyJqmYPWoIFixsSYIC6pvtfAACYSVzqqoQ3AWX14mzfOqc1W9fLgo1+7yOApwBMdQAQeuoQb3UIcGYEjgGV7hzZgYL8a78TFvXTHymUP4A+PzB9t2kpU=</latexit>

z(l�1)
v1

<latexit sha1_base64="F1426JRK/WEeEIc0UPh+7x3+twY=">AAAB+HicbVDLSsNAFL3xWeujUZdugkWoC0sivpYFXbisYB/QxjCZTtqhk0mYmRTakC9x40IRt36KO//GaZuFth64cDjnXu69x48Zlcq2v42V1bX1jc3CVnF7Z3evZO4fNGWUCEwaOGKRaPtIEkY5aSiqGGnHgqDQZ6TlD2+nfmtEhKQRf1TjmLgh6nMaUIyUljyzNPHSkUezp7TCzpzTzDPLdtWewVomTk7KkKPumV/dXoSTkHCFGZKy49ixclMkFMWMZMVuIkmM8BD1SUdTjkIi3XR2eGadaKVnBZHQxZU1U39PpCiUchz6ujNEaiAXvan4n9dJVHDjppTHiSIczxcFCbNUZE1TsHpUEKzYWBOEBdW3WniABMJKZ1XUITiLLy+T5nnVuapePlyUa3d5HAU4gmOogAPXUIN7qEMDMCTwDK/wZkyMF+Pd+Ji3rhj5zCH8gfH5AzJdks0=</latexit>

z(l�1)
vi

<latexit sha1_base64="mT0tgZmYB15lFVomnKISJYGCU+g=">AAAB+HicbVDLSsNAFL3xWeujUZdugkWoC0sivpYFXbisYB/QxjCZTtqhk0mYmRTakC9x40IRt36KO//GaZuFth64cDjnXu69x48Zlcq2v42V1bX1jc3CVnF7Z3evZO4fNGWUCEwaOGKRaPtIEkY5aSiqGGnHgqDQZ6TlD2+nfmtEhKQRf1TjmLgh6nMaUIyUljyzNPHSkcezp7TCzpzTzDPLdtWewVomTk7KkKPumV/dXoSTkHCFGZKy49ixclMkFMWMZMVuIkmM8BD1SUdTjkIi3XR2eGadaKVnBZHQxZU1U39PpCiUchz6ujNEaiAXvan4n9dJVHDjppTHiSIczxcFCbNUZE1TsHpUEKzYWBOEBdW3WniABMJKZ1XUITiLLy+T5nnVuapePlyUa3d5HAU4gmOogAPXUIN7qEMDMCTwDK/wZkyMF+Pd+Ji3rhj5zCH8gfH5AzoektI=</latexit>

z(l�1)
vn

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="8Ckvc8gJXfgZ2lfZurezuB3SS/4=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBHqpiTia1lwocsK9gFtDJPppB06mcSZSaGGfIcbF4q49WPc+TdO2yy09cCFwzn3cu89fsyZ0rb9bS0tr6yurRc2iptb2zu7pb39pooSSWiDRDySbR8rypmgDc00p+1YUhz6nLb84fXEb42oVCwS93ocUzfEfcECRrA2kvvkpSPPyR7SCj/JvFLZrtpToEXi5KQMOepe6avbi0gSUqEJx0p1HDvWboqlZoTTrNhNFI0xGeI+7RgqcEiVm06PztCxUXooiKQpodFU/T2R4lCpceibzhDrgZr3JuJ/XifRwZWbMhEnmgoyWxQkHOkITRJAPSYp0XxsCCaSmVsRGWCJiTY5FU0IzvzLi6R5WnUuqud3Z+XaTR5HAQ7hCCrgwCXU4Bbq0AACj/AMr/BmjawX6936mLUuWfnMAfyB9fkDgraR9Q==</latexit>

z(l)
v1

<latexit sha1_base64="Rb7IxSlFq2CrvahFP2Dv5TEgCTs=">AAAB9HicbZBLSwMxFIXv1Fetr6pLN8Ei1E2ZEV/LgiAuK9gHtOOQSTNtaCYzJplCHQb8F25cKOLWH+POf2P6WGjrgcDHOTfk5vgxZ0rb9reVW1peWV3Lrxc2Nre2d4q7ew0VJZLQOol4JFs+VpQzQeuaaU5bsaQ49Dlt+oOrcd4cUqlYJO70KKZuiHuCBYxgbSz30UuHHsvu0zI/zrxiya7YE6FFcGZQgplqXvGr041IElKhCcdKtR071m6KpWaE06zQSRSNMRngHm0bFDikyk0nS2foyDhdFETSHKHRxP19I8WhUqPQN5Mh1n01n43N/7J2ooNLN2UiTjQVZPpQkHCkIzRuAHWZpETzkQFMJDO7ItLHEhNteiqYEpz5Ly9C46TinFfObk9L1eunaR15OIBDKIMDF1CFG6hBHQg8wDO8wps1tF6sd+tjOpqzZhXuwx9Znz/+0ZKs</latexit>

z(l)
vi

<latexit sha1_base64="aveVPqhezeX95F8TXJzTVqnpAJI=">AAAB9HicbZBLSwMxFIXv1Fetr6pLN8Ei1E2ZEV/LgiAuK9gHtOOQSTNtaCYzJplCHQb8F25cKOLWH+POf2P6WGjrgcDHOTfk5vgxZ0rb9reVW1peWV3Lrxc2Nre2d4q7ew0VJZLQOol4JFs+VpQzQeuaaU5bsaQ49Dlt+oOrcd4cUqlYJO70KKZuiHuCBYxgbSz30UuHnsju0zI/zrxiya7YE6FFcGZQgplqXvGr041IElKhCcdKtR071m6KpWaE06zQSRSNMRngHm0bFDikyk0nS2foyDhdFETSHKHRxP19I8WhUqPQN5Mh1n01n43N/7J2ooNLN2UiTjQVZPpQkHCkIzRuAHWZpETzkQFMJDO7ItLHEhNteiqYEpz5Ly9C46TinFfObk9L1eunaR15OIBDKIMDF1CFG6hBHQg8wDO8wps1tF6sd+tjOpqzZhXuwx9Znz8Gl5Kx</latexit>

z(l)
vn

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="7Nde69qKYyGi6+efXc+hzX5iKoI=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xBV4CXjxGMA9IljA7O5uMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7glQKg6777aysrq1vbBa2its7u3v7pYPDhlGZZrzOlFS6FVDDpUh4HQVK3ko1p3EgeTMY3E395pBrI1TyiKOU+zHtJSISjKKVGp1hqNB0S2W34s5AlomXkzLkqHVLX51QsSzmCTJJjWl7bor+mGoUTPJJsZMZnlI2oD3etjShMTf+eHbthJxaJSSR0rYSJDP198SYxsaM4sB2xhT7ZtGbiv957QyjG38skjRDnrD5oiiTBBWZvk5CoTlDObKEMi3srYT1qaYMbUBFG4K3+PIyaZxXvKvK5cNFuXqbx1GAYziBM/DgGqpwDzWoA4MneIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwDMlI9F</latexit>...

<latexit sha1_base64="RQ5/ysyUu5b2Io8ZXlK7fBtzVas=">AAAB9XicbVA9SwNBEN3zM8avqKXNYhAsQrgLEm2EgI2FRQTzAckZ9vb2kiV7u8funBJC/oeNhSK2/hc7/42b5ApNfDDweG+GmXlBIrgB1/12VlbX1jc2c1v57Z3dvf3CwWHTqFRT1qBKKN0OiGGCS9YADoK1E81IHAjWCobXU7/1yLThSt7DKGF+TPqSR5wSsNKDuPJKlVKXhgpM6bZXKLpldwa8TLyMFFGGeq/w1Q0VTWMmgQpiTMdzE/DHRAOngk3y3dSwhNAh6bOOpZLEzPjj2dUTfGqVEEdK25KAZ+rviTGJjRnFge2MCQzMojcV//M6KUSX/pjLJAUm6XxRlAoMCk8jwCHXjIIYWUKo5vZWTAdEEwo2qLwNwVt8eZk0K2WvWq7enRdrbhZHDh2jE3SGPHSBaugG1VEDUaTRM3pFb86T8+K8Ox/z1hUnmzlCf+B8/gC6PpFU</latexit>

l = 1, 2, · · · , L

<latexit sha1_base64="piA13sINzKnJtVnrGZeqrtG2yP4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqNPqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LitetVJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDrq+M4A==</latexit>

Q
<latexit sha1_base64="5bmjO8xEQ7zdq7zG1VmLxWJ4xlk=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4xyiOBDZkdBpgwO7vO9Jrghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxG11O/+ci1EZG6x3HM/ZAOlOgLRtFKd0/dh26x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/pp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaNs7JXKVduz0vVqyyOPBzBMZyCBxdQhRuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4Ac06N7Q==</latexit>zq

<latexit sha1_base64="IxFEp+QWViOFLSZjzlCJ5+3oLEs=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBHqwpKIr2VBFy4r2Ae0sUymk3boZJLOTAo15DvcuFDErR/jzr9x2mahrQcuHM65l3vv8SLOlLbtb2tpeWV1bT23kd/c2t7ZLezt11UYS0JrJOShbHpYUc4ErWmmOW1GkuLA47ThDW4mfmNEpWKheNDjiLoB7gnmM4K1kdynTjJMH5MSP3VO0k6haJftKdAicTJShAzVTuGr3Q1JHFChCcdKtRw70m6CpWaE0zTfjhWNMBngHm0ZKnBAlZtMj07RsVG6yA+lKaHRVP09keBAqXHgmc4A676a9ybif14r1v61mzARxZoKMlvkxxzpEE0SQF0mKdF8bAgmkplbEeljiYk2OeVNCM78y4ukflZ2LssX9+fFym0WRw4O4QhK4MAVVOAOqlADAkN4hld4s0bWi/Vufcxal6xs5gD+wPr8AS60kbs=</latexit>

z(l�1)
q

<latexit sha1_base64="wTvnzFv1txxGPkp36xu26Bqnkg4=">AAAB8nicbVDJSgNBEK1xjXGLevTSGIR4CTPidgwI4jGCWSAZQ0+nJ2nS0z129whxGPAnvHhQxKtf482/sbMcNPFBweO9KqrqBTFn2rjut7OwuLS8sppby69vbG5tF3Z261omitAakVyqZoA15UzQmmGG02asKI4CThvB4HLkNx6o0kyKWzOMqR/hnmAhI9hYqfXYSe+zu7TEj7JOoeiW3THQPPGmpAhTVDuFr3ZXkiSiwhCOtW55bmz8FCvDCKdZvp1oGmMywD3aslTgiGo/HZ+coUOrdFEolS1h0Fj9PZHiSOthFNjOCJu+nvVG4n9eKzHhhZ8yESeGCjJZFCYcGYlG/6MuU5QYPrQEE8XsrYj0scLE2JTyNgRv9uV5Uj8ue2fl05uTYuXqaRJHDvbhAErgwTlU4BqqUAMCEp7hFd4c47w4787HpHXBmUa4B3/gfP4AdI6Ryw==</latexit>

z(l)
q

<latexit sha1_base64="gVQNoDK8MFPSGU0t24Jt5aSrsAE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ae0oWy2m3bpZhN2J0II/RFePCji1d/jzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmltfWNzq7xd2dnd2z+oHh51TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbT27nffeTaiFg9YJZwP6JjJULBKFqpO5hQzLPZsFpz6+4C5C/xClKDAq1h9XMwilkacYVMUmP6npugn1ONgkk+qwxSwxPKpnTM+5YqGnHj54tzZ+TMKiMSxtqWQrJQf07kNDImiwLbGVGcmFVvLv7n9VMMr/1cqCRFrthyUZhKgjGZ/05GQnOGMrOEMi3srYRNqKYMbUIVG4K3+vJf0rmoe4164/6y1rwp4ijDCZzCOXhwBU24gxa0gcEUnuAFXp3EeXbenPdla8kpZo7hF5yPb7VTj9U=</latexit>

ŷ

M
LP

Interaction
between nodes

Query
attention

Task
Query

Network flow

Local block Global block

Inter-node A
ttention

Figure 1: Hierarchical Model Design: Local Block employs intra-node attention to learn local node
and structural features. Pooling layer combines these features and Global Block utilizes inter-node
attention to capture higher-level interactions, enabling comprehensive graph understanding. The
Hierarchical model design results in a model which is highly scalable and delivers robust performance
across both structure reasoning tasks and real world graph prediction tasks. The model also supports
dual interpretability: node-level interpretability through the Global Block and fine-grained token-level
interpretability via the Local Block, making it not only powerful but also transparent in its predictions.

where α ∈ (0, 1) is a trainable parameter that balances the contribution of structural (zAEvi) and
feature (zXvi) information. A larger α emphasizes the structural properties in the final prediction,
while a smaller α gives more weight to feature-based characteristics.

Our adaptive pooling mechanism allows our model to work for tasks requiring varying levels of
structural and feature importance, such as link and graph-level tasks that demand greater structural
emphasis and node-level tasks that rely more heavily on feature-based information. We ablate
alternative pooling strategies and configurations, which are detailed in Appendix F.

3.4 THE GLOBAL BLOCK

To capture global-level interactions across the entire graph, we introduce the global block MG, which
leverages a multi-layer transformer architecture to model comprehensive structural relationships.
The global block operates on top of the local embeddings derived from ML, learning the higher-
level interactions between nodes and enriching the representation with more nuanced graph-level
information. Each layer comprises an attention mechanism followed by a feedforward layer. For any
layer l, the embeddings are updated as:

Z(l) = Softmax

(
(W

(l)
Q Z(l−1))(W

(l)
K Z(l−1))T

√
dk

)
(W

(l)
V Z(l−1)), Z(0) = [zv1 , · · · , zvn , zq],

where dk is the dimensionality of the key vectors, and W
(l)
Q ,W

(l)
K ,W

(l)
V are the weight matrices.

The input Z(0) includes node embeddings zv1 , . . . ,zvn and the task-specific query embedding zq

from ML. After processing through L layers, the final embedding z
(L)
q is passed through a multilayer

perceptron (MLP) to generate the prediction:

ŷ = argmaxMLP(z(L)
q), where z(L)

q = Z
(L)
:,n+1,

with ŷ representing the predicted class label. The training objective is to minimize cross-entropy loss:
{θL, θG, ψ}∗ = argmin

θL,θG,ψ
E(U,y)∼U [ℓ(y;MLP(MG(ML(U))))] ,

where y is the ground truth label, and θL, θG, ψ represent the trainable parameters of ML, MG, and
the MLP, respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Graph reasoning performance comparisons. This table showcases our HLM-G model
against 11 baselines across 7 graph reasoning datasets. Our method not only achieves state-of-the-art
performance among all LLMs but also outperforms GNNs on 6 out of 7 tasks. The table details
the performance of each method in terms of accuracy across various node, link, and graph-level
tasks, underlining the superior capability of our HLM-G model in handling complex graph reasoning
challenges with remarkable efficiency and effectiveness.

Type Method Node Degree Edge Existence Shortest Distance Reachable Cycle Edge Count Components
Task level Node Link Link Link Graph Graph Graph
Classes 39 2 6 2 2 70 38

GNN GCN 7.2±1.61 66.5±1.15 40.5±2.13 87.4±0.99 69.1±0.73 3.8±0.55 8.1±1.94

GIN 97.7±0.48 94.7±0.56 96.3±0.16 99.9±0.13 99.9±0.04 65.5±2.35 68.8±0.8

GTN 4.97±0.48 50.0±0.48 18.5±1.87 53.3±0.67 50.4±2.3 4.7±0.18 25.6±0.87

LLM-inference Zero Shot 15.9±0.00 40.8±0.00 22.3±0.00 34.1±0.00 46.4±0.00 4.4±0.00 1.8±0.00

COT 37.4±0.00 67.2±0.00 22.8±0.00 34.6±0.00 23.8±0.00 4.1±0.00 –±0.00

COT-SC 37.9±0.00 69.9±0.00 24.3±0.00 41.8±0.00 24.8±0.00 7.4±0.00 –±0.00

NLGraph 20.4±0.00 49.3±0.00 13.2±0.00 32.4±0.00 47.7±0.00 0.37±0.00 0.55±0.00

Hybrid GNN-LLM GraphToken 22.4±2.30 64.7±0.90 54.7±1.34 54.6±2.89 73.4±1.85 7.8±0.31 5.2±0.09

LLM-finetuning BERT 21.7±1.39 55.9±2.41 61.6±1.34 76.0±0.56 91.4±0.31 97.2±0.26 29.2±0.59

Llama 3 41.1±0.13 92.6±1.01 48.3±0.34 84.7±0.69 89.8±0.98 29.1±3.16 9.2±1.44

Graphwiz 29.6±1.31 87.7±1.11 47.1±1.77 75.9±1.06 84.1±0.09 37.8±3.10 19.9±3.88

HLM-G (Ours) 99.9±0.04 100±0.00 84.6±0.43 99.9±0.07 99.9±0.06 98.6±0.03 94.2±0.21

4 EXPERIMENTS

In this section, we conduct experiments to investigate four specific research questions (RQs) to
assess the effectiveness of our model on graph tasks: RQ1: Can our model accurately understand the
underlying structures and maintain robust performance across different graph reasoning datasets?
RQ2: Does our approach enhance interpretability performance and produce intrinsic interpretable
results? RQ3: Can the proposed method handle complex real-world datasets with diverse node or
edge features? RQ4: Does the proposed method work well across all node, link and graph level
tasks?

4.1 STRUCTURE UNDERSTANDING CAPABILITIES OVER GRAPH REASONING DATASETS

To answer RQ1, we aim to validate whether our model can process graph structure information by
conducting the following experiments on graph reasoning datasets.

Datasets. First, following Wang et al. (2024a), we create a synthetic dataset consisting of seven
graph reasoning tasks to assess the structural reasoning capabilities of our model. These datasets
were constructed by a Random Graph Generator capable of generating graphs with up to 40 nodes
and 700+ edges. Further information on these datasets is provided in Appendix C.1.1.

Baselines. We compare our method against both GNN-based and LLM-based approaches. On the
GNN side, our comparisons include models such as GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2017), and the more expressive GIN (Xu et al., 2018), as well as the graph transformer model,
GTN (Yun et al., 2019). For LLMs, our inference-only methods include Zero-Shot (Huang et al.,
2023), Chain of Thought (CoT) (Wei et al., 2023), CoT Self Consistency (CoT-SC) (Wang et al.,
2022), and Natural Language Graph (NLGraph) (Wang et al., 2024a) prompting. Additionally,
fine-tuning baselines such as BERT (Devlin et al., 2019) and Lora-Trained (Hu et al., 2021) Llama 3
are used for direct comparisons. We include GraphWiz (Chen et al., 2024a) as a representative of
instruction tuning. The GraphToken (Perozzi et al., 2024) method, which utilizes a GNN encoder to
fine-tune a frozen LLM, is also compared. Detailed information on our experimental configurations
and hyperparameters can be found in Appendix C.2. For LLMs, we use Llama-3 8B (Dubey et al.,
2024) as the primary backbone.

4.1.1 QUANTITATIVE COMPARISONS.

Our method demonstrates state-of-the-art performance across all graph reasoning datasets, signif-
icantly outperforming all baselines, both GNN and LLM-based models. Notably, GNNs such as
GIN, despite their theoretically strong expressiveness as validated by the WL-1 test (Huang & Villar,
2021), struggle with graph-level tasks, failing to match the comprehensive understanding offered
by our model. Prompt engineering approaches, like CoT and NLGraph and exploration based ap-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Structural Robustness Assessment. This table displays the accuracy drop observed over 10
permutations for each task. Lower performance drop (↓) indicates less sensitivity to node description
positions, highlighting the model’s ability to learn graph structure effectively.

Method Node Degree(↓) Edge Existence(↓) Shortest Distance(↓) Reachable(↓) Cycle(↓) Edge Count(↓) Components(↓)
NLGraph 46.1 38.1 56.6 44.1 49.4 71.6 71.3
BERT 71.4 11.0 46.2 14.3 9.4 7.8 62.8
LLaMA 3 21.5 11.9 28.9 8.6 15.9 44.8 62.2
GraphWiz 18.6 23.5 32.1 15.2 26.9 38.3 42.0
HLM-G (our method) 0.0 0.0 6.1 0.8 0.1 3.0 10.2

proaches like CoT-SC do not yield substantial improvements in performance, particularly on tasks
like shortest distance that demand a deeper comprehension of the graph structure. GraphToken, a
hybrid GNN-LLM approach shows limited gains, indicating that using GNN-augmented LLMs is
insufficient for achieving top performance in graph tasks.

While instruction-tuned models like GraphWiz exhibit better results on smaller graphs, they face
significant challenges with larger and denser graphs. Notably, their performance is strong on graphs
with up to 100 edges, reaching accuracies of 93% and 84% for the reachable and edge count tasks,
respectively. However, this accuracy drops sharply to 76% and 38% when the graphs become denser,
with up to 700+ edges, as shown in Table 1. Our model remains highly effective in these dense
scenarios, maintaining near-perfect accuracies across all tasks, demonstrating its robustness against
graph complexity and density. Fine tuning a similar sized BERT and even 80X larger models like
Llama-3 is unable to outperform our architecture, underscoring the fact that our design is better suited
for graph based tasks than the traditional design.

4.1.2 EVALUATION OF MODEL ROBUSTNESS.

A critical question emerges from the quantitative comparisons: Do language models truly understand
graph structures, or do they rely on pattern-matching? To investigate this, we conducted a robustness
evaluation by systematically shuffling the node indices of each graph using a permutation matrix P .
Unlike GNNs, which are inherently invariant to changes in node indexing due to their symmetrical
message-passing framework, LLMs may exhibit sensitivity to even slight alterations in node token
representations, potentially leading to inconsistent predictions for the same graph described differently.
This issue highlights a significant shortcoming of LLMs in graph-based tasks.

In this experiment, we applied the permutation matrix P 10 times to each graph, generating modified
adjacency matrices At = PAt−1PT at each iteration t. This process preserves the overall graph
structure while changing the node indices, allowing us to evaluate whether the model’s predictions
remain consistent under different representations.

The results, presented in Table 2, highlight a stark difference between traditional LLM-based models
and our proposed HLM-G model. NLGraph’s performance dropped significantly, indicating that
prompt engineering is not robust. Similarly, we observed that fine-tuned LLMs, such as Llama 3 and
BERT, exhibited performance drops of up to 21% and 71%, respectively, on the Node Degree task.
This highlights their high sensitivity to changes in node tokens and suggests a reliance on pattern
recognition rather than a true comprehension of the underlying graph structure. Instruction tuning
does not seem to provide robustness as Graphwiz also shows similar sensitivity as finetuned Llama 3.
In contrast, our HLM-G model displays exceptional robustness, with minimal performance drops
(e.g., a mere 6.1% drop on the Shortest Distance task and 0.0% on the Node Degree task). These
findings underscore a crucial advantage of our HLM-G, while conventional LLMs struggle with
variations in graph representation, our model remains robust, reinforcing its suitability for real-world
graph tasks where representations might vary but the underlying structure remains unchanged.

4.2 INTERPRETABILITY COMPARISONS

Having established the performance and robustness of our model, we now delve into analyzing its
interpretability—specifically, its ability to accurately identify and prioritize the most critical structural
elements within graph reasoning tasks, thus addressing RQ2. Interpretability serves as a vital criterion
in evaluating whether a model is capable of comprehending graph structures rather than just fitting
patterns. For this purpose, we utilize four graph reasoning datasets that offer explicit ground truths

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20 30 40
k

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Shortest Distance

method
HLM-G (Ours)
BERT
GIN
LLaMA 3

0 10 20 30 40
k

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Reachability

method
HLM-G (Ours)
BERT
GIN
LLaMA 3

0 10 20 30 40
k

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Edge Existence

method
HLM-G (Ours)
BERT
GIN
LLaMA 3

0 10 20 30 40
k

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Node Degree

method
HLM-G (Ours)
BERT
GIN
LLaMA 3

Figure 2: Explainer Based Interpretation Comparisons. This figure illustrates the interpretability
performance of BERT, GIN, and our method on 4 graph reasoning datasets with reasoning ground
truths. k indicates the k most important nodes that interpreted by the model are selected.

regarding which nodes are genuinely important for a given graph task. For example, in the shortest
distance task, the ground truth consists of nodes that lie along the shortest path between two specified
nodes. More details about these ground truths are provided in Appendix E.1. We compare the true
structure understanding capabilities of four finetuned models from Table 1: Llama-3, BERT, GIN and
HLM-G.

To measure interpretability, each model is expected to generate an ordered set r = {r1, . . . , rn}
for a graph with n nodes, ranking them from the most to the least significant, based on the model’s
internal focus and reasoning. The quality of a model’s interpretation is then evaluated by how
effectively it identifies the nodes that align with the ground truths. Ideally, a model with true structural
comprehension should consistently rank ground truth nodes higher, indicating that it genuinely
understands the critical elements of the graph structure. Using established explainers, we first reveal
the extent to which our approach successfully captures and prioritizes the essential graph components.
We then introduce the intrinsic interpretability mechanism built into our model, demonstrating its
ability to provide ready made interpretations.

4.2.1 EXPLAINER-BASED INTERPRETATION

To objectively compare the interpretability performance across different models, we leverage estab-
lished explainability techniques such as Saliency (Simonyan et al., 2013), Input x Gradient (Shrikumar
et al., 2016), DeepLIFT (Shrikumar et al., 2017), and GNNExplainer (Ying et al., 2019). This ap-
proach allows us to assess how well each model can identify and rank important graph elements,
providing insight into the structural modeling capabilities of these models. More details on this
strategy, referred to as “explanations as interpretations”, are outlined in Appendix E.2.

Setup. To quantify interpretability, we use a Recall@k metric, which measures how effectively a
model identifies the nodes that correspond to ground truths. Given a set of ground truth nodes rgt
and the set of top-k nodes identified by the model rk = {r1, . . . , rk}, we calculate Recall@k as
Recall(k) = |rk∩rgt|

|rgt| , where | · | represents the cardinality of the set and ∩ denotes the intersection.
As shown in Figure 2, we evaluate each model’s performance by plotting the recall curve for
k ∈ {1, 2, . . . , n}, where n represents the total number of nodes in the graph. Ideally, a model with
a strong understanding of graph structure will have high recall values across different values of k,
indicating that it consistently identifies the most important nodes.

Results and Analysis. Figure 2 presents the interpretability results for the four models across the four
graph reasoning datasets. Our HLM-G model demonstrates superior interpretability, particularly as k
increases, indicating a higher proficiency in pinpointing the most relevant nodes for each task. While
GIN performs adequately on tasks requiring simpler one-hop reasoning, such as Edge Existence and
Node Degree, it struggles with more complex, multi-hop reasoning tasks like Shortest Distance and
Reachability. In contrast, BERT and LLaMA consistently fail to identify relevant structural features,
reflecting their limited capability to capture intricate graph patterns. Directly fine-tuning LLMs has
not led to significant improvements in these cases. Although Llama 3 outperforms BERT on three out
of four tasks, it still does not reach the performance level of GIN or our model. Our model, in fact,
excels across all tasks, even those involving multi-hop reasoning, which further confirms its strong
understanding of graph structures beyond simple pattern matching.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Layer-by-Layer Attention Interpretation. This figure compares the mean attention scores
for relevant nodes with irrelevant nodes across each layer of the model in 4 graph reasoning tasks.
The increased scores in higher layers emphasizes the model’s capability to learn larger scale structure
information and identify relevant graph nodes effectively.

4.2.2 INTRINSIC ATTENTION INTERPRETATION

A key strength of our model design is its inherent interpretability, distinguishing it from existing
methods. The local embedding matrix Z(0) in the local block captures 1-hop subgraph information,
where each zvi ∈ Z(0) represents the 1-hop ego-graph centered around node vi. As the transformer
layers progress in the global block, they progressively integrate this localized information to capture
broader global structures within the graph. This means that embeddings in the higher layers reflect
increasingly comprehensive structural details. The attention weights associated with the task query
node in the global block provide a direct interpretation of the contribution of each node’s structural
information to the final prediction, effectively acting as importance scores for each node. This allows
for a direct, interpretable insight into how the model makes its decisions.

To illustrate this, we analyze the mean attention scores across all layers, as shown in Figure 3.
As we move to higher layers, the attention scores for ground truth nodes increase, while scores
for other nodes decrease. This pattern directly confirms that our model effectively focuses on the
most important nodes, demonstrating its ability to capture larger-scale structural information. These
attention-based interpretations offer clear insights into the model’s decision-making process without
requiring additional explanation techniques.

4.3 GRAPH LEARNING ABILITY ON REAL-WORLD DATASETS.

Datasets. To answer the RQ3 and RQ4, we curated seven graph datasets widely recognized in the
graph learning community, varying in scale, domains, and task types. We adopt Arxiv (Hu et al.,
2020b), Cora (Bojchevski & Günnemann, 2018), and Pubmed (Sen et al., 2008) for node-level tasks;
Pubmed, WN18RR (Bordes et al., 2013), and FB15k-237 (Bordes et al., 2013) for link-level tasks;
and molhiv (Hu et al., 2020a) for graph-level tasks. More dataset details are discussed in Table 7.

Baselines. We compare with traditional GNNs including GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2017), GIN (Xu et al., 2018) and GraphSage (Hamilton et al., 2017). For
graph transformer-based baseline we include GTN (Yun et al., 2019) and Graphormer (Ying et al.,
2021). For LLMs, we compare Zero-shot and Few-shot performance using GPT 3.5 (Ye et al., 2023a)
for node-level tasks, and Llama-2-7B finetuned InstructGLM (Ye et al., 2023b) for both node and
link-level tasks. For the graph-level task, we compare with a GNN-LLM hybrid model Momu (Su
et al., 2022) for molecular graphs. Note that we use Mamba (Gu & Dao, 2023) as a baseline for
graph-level task as no Transformer-based LLM is computationally feasible for training on real-world
graph-level tasks. OFA (Liu et al., 2024a), a hybrid GNN-LLM model, is also selected as a baseline
due to its strong performance on link-level tasks.

Quantitative Results. As demonstrated in Tables 3, 4, and 5, our method consistently delivers
competitive performance across node, link, and graph-level tasks. Compared to traditional GNNs,
our model surpasses their performance for both node and link-level tasks with large margins. In
comparison to hybrid GNN-LLM methods, our model notably outperforms the recently developed
LLM-equipped OFA, on link-level tasks where OFA is considered especially strong. Furthermore, our
model consistently perform favorably against LLM instruction tuning approach - InstructGLM across
link level tasks. Although graph transformers perform slightly better in the graph-level task because
of their specialized encodings for graph-level tasks, our model produces much higher performance

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Node-level comparisons. This table compares our method with 7 baselines on node-level
tasks. Types of methods are grouped based on their underlying approaches. All results are reported as
averaged Accuracy with standard deviations across 3 random runs. The best and second-best results
are highlighted in bold and underline respectively.

GNN GT LLM-inference LLM-finetuning

Dataset GCN GAT GraphSage Graphormer Zero-shot Few-shot InstructGLM HLM-G (Ours)

arxiv 71.74±0.29 73.65±0.11 71.49±0.27 72.81±0.23 74.0±0.00 72.9±0.00 75.70±0.12 74.81±0.07
Pubmed 88.9±0.32 83.28±0.12 86.85±0.11 88.24±1.50 88.6±0.00 85.0±0.00 93.84±0.25 94.62±0.13

Cora 87.78±0.96 76.70±0.42 86.58±0.26 80.41±0.30 66.1±0.00 65.1±0.00 87.08±0.32 88.5±0.43

Table 4: Link-level comparisons. This table demonstrates the comparisons between our method and
4 baselines on link-level tasks. We evaluate Pubmed by ROC-AUC, others by Accuracy.

GNN GNN-LLM LLM-finetuning

Dataset GCN GIN OFA InstructGLM HLM-G (Ours)

Pubmed 91.10±0.50 67.88±5.45 98.21±0.02 95.92±1.91 98.47±0.18
FB15k-237 74.20±1.10 70.70±1.80 95.54±0.06 64.39±0.98 95.71±0.13
WN18RR 67.40±2.40 57.30±3.40 96.91±0.11 63.8±1.5 98.09±0.54

Table 5: Graph-level comparisons. This table demonstrates the comparisons between our method
and 6 baselines on graph-level task. We evaluate molhiv by ROC-AUC.

GNN GT GNN-LLM LLM-finetuning

Dataset GCN GAT GIN GTN Momu Mamba HLM-G (Ours)

molhiv 75.49±1.63 74.45±1.53 76.26±1.41 77.67±1.49 75.92±0.85 74.23±0.12 76.49±0.33

than them in node-level tasks. It is noteworthy that while LLM-only models excel in node-level tasks,
they experience a marked decline in performance on link-level tasks, validated their limitations in
processing structural information mentioned in Section 2. A crucial factor in our model’s adaptability
across all task levels is our pooling parameter α discussed in detail in Appendix F.1. This enables
our model to adjust its reliance on structural or feature-based information, thereby allowing it to
generalize well across all levels. Our model’s ability to dynamically adjust α provides a significant
advantage, making it more versatile and capable of handling a wide range of graph-centric tasks.

Overall, our experiments highlight our model’s computational efficiency (Appendix D.3), ability to
process structural information, interpretability, and effectiveness across diverse tasks. For additional
experiments and ablation studies, please refer to Appendix D and Appendix F respectively.

5 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduce a novel Language Model Design to tackle the complexities of non-
Euclidean structures commonly found in graphs. While language models excel in text-centric
applications, they often struggle with the intricate structures of graph data, leading to significant
information loss and computational challenges. Additionally, the context length, which involves the
natural language description of a graph, can become enormous for real-world datasets, rendering
them ineffective for graphs. Our method sets itself apart by designing a hierarchical architecture
to process the graph structure and enhance computational efficiency and interpretability. We show
that our model yields promising results in graph reasoning tasks as well as robust and consistent
performance on real-world datasets, outperforming most models designed for similar purposes.

This work paves the way for future research in language models for graph learning, establishing a
solid foundation for innovation and providing valuable insights into this emerging field. Our findings
significantly narrow the gap between conventional language models and graph data, expanding the
potential applications and improving the effectiveness of language models in handling structured data.
We hope this work can shed light on the future direction of LLM-based graph learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we provide full details for the experiments including all
the datasets used, training setup, architecture and hardware used in Appendix C. We also provide
an anonymous code link containing the implementation of our method: https://anonymous.
4open.science/r/HLM_G/.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Reduan Achtibat, Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer, Aakriti Jain, Thomas
Wiegand, Sebastian Lapuschkin, and Wojciech Samek. Attnlrp: attention-aware layer-wise
relevance propagation for transformers. arXiv preprint arXiv:2402.05602, 2024.

Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech
Samek. Layer-wise relevance propagation for neural networks with local renormalization layers.
In Artificial Neural Networks and Machine Learning–ICANN 2016: 25th International Conference
on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II 25, pp.
63–71. Springer, 2016.

Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing graph
transformers via positional encodings. arXiv preprint arXiv:2402.14202, 2024.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=r1ZdKJ-0W.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian Pich. Graph markup language
(graphml). In Handbook of Graph Drawing and Visualization, 2013. URL https://api.
semanticscholar.org/CorpusID:142947.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language model
for graph problems. arXiv preprint arXiv:2402.16029, 2024a.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. arXiv preprint arXiv:2402.08170, 2024b.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning
on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42–61, 2024c.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and
Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood prediction.
arXiv preprint arXiv:2111.00064, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

11

https://anonymous.4open.science/r/HLM_G/
https://anonymous.4open.science/r/HLM_G/
https://openreview.net/forum?id=r1ZdKJ-0W
https://api.semanticscholar.org/CorpusID:142947
https://api.semanticscholar.org/CorpusID:142947

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph
neural networks with learnable structural and positional representations, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560, 2023.

Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Junteng Jia, Yuan Shangguan, Ke Li, Jinxi Guo,
Wenhan Xiong, Jay Mahadeokar, Ozlem Kalinli, et al. Prompting large language models with
speech recognition abilities. In ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 13351–13355. IEEE, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang Li, and Shuiwang Ji. FlowX: Towards
explainable graph neural networks via message flows. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–12, 2023. doi: 10.1109/TPAMI.2023.3347470.

Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models understand graph
structured data? an empirical evaluation and benchmarking. arXiv preprint arXiv:2305.15066,
2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
question answering. arXiv preprint arXiv:2402.07630, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In Hugo Larochelle, Marc Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020b.

12

https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuntong Hu, Zheng Zhang, and Liang Zhao. Beyond text: A deep dive into large language models’
ability on understanding graph data. arXiv preprint arXiv:2310.04944, 2023.

Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma. Can llms effectively leverage graph structural
information: when and why. arXiv preprint arXiv:2309.16595, 2023.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8533–8537. IEEE, 2021.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. Advances in Neural Information
Processing Systems, 36, 2024.

Vassilis N Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi Xu, Belinda Zeng, Trishul
Chilimbi, and George Karypis. Efficient and effective training of language and graph neural
network models. arXiv preprint arXiv:2206.10781, 2022.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2017.

Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. Generating images with multimodal language
models. Advances in Neural Information Processing Systems, 36, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. arXiv preprint
arXiv:2310.00149, 2023.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=4IT2pgc9v6.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024b.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery amp; Data Mining,
KDD ’20. ACM, August 2020. doi: 10.1145/3394486.3403076. URL http://dx.doi.org/
10.1145/3394486.3403076.

Luca Longo, Mario Brcic, Federico Cabitza, Jaesik Choi, Roberto Confalonieri, Javier Del Ser,
Riccardo Guidotti, Yoichi Hayashi, Francisco Herrera, Andreas Holzinger, et al. Explainable
artificial intelligence (xai) 2.0: A manifesto of open challenges and interdisciplinary research
directions. Information Fusion, 106:102301, 2024.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, and Hai
Jin. Graphinstruct: Empowering large language models with graph understanding and reasoning
capability. arXiv preprint arXiv:2403.04483, 2024.

Shubham Parashar, Zhiqiu Lin, Tian Liu, Xiangjue Dong, Yanan Li, Deva Ramanan, James Caverlee,
and Shu Kong. The neglected tails in vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12988–12997, June 2024.

13

https://openreview.net/forum?id=4IT2pgc9v6
https://openreview.net/forum?id=4IT2pgc9v6
http://dx.doi.org/10.1145/3394486.3403076
http://dx.doi.org/10.1145/3394486.3403076

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv preprint
arXiv:2402.05862, 2024.

Yijian Qin, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Disentangled representation learning with
large language models for text-attributed graphs. arXiv preprint arXiv:2310.18152, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Xubin Ren, Jiabin Tang, Dawei Yin, Nitesh Chawla, and Chao Huang. A survey of large language
models for graphs. arXiv preprint arXiv:2405.08011, 2024.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
A systematic survey of prompt engineering in large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927, 2024a.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
A systematic survey of prompt engineering in large language models: Techniques and applications,
2024b. URL https://arxiv.org/abs/2402.07927.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. arXiv preprint arXiv:2405.18512, 2024.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a black
box: Learning important features through propagating activation differences. arXiv preprint
arXiv:1605.01713, 2016.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp. 3145–
3153. PMLR, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness: An
analysis of cot in planning. arXiv preprint arXiv:2405.04776, 2024.

Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiangmeng Li, Anyi Rao, Hao Sun, Zhiwu Lu, and
Ji-Rong Wen. A molecular multimodal foundation model associating molecule graphs with natural
language, 2022.

14

https://arxiv.org/abs/2402.07927

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. arXiv preprint arXiv:2310.13023,
2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Keyon Vafa, Justin Y Chen, Jon Kleinberg, Sendhil Mullainathan, and Ashesh Rambachan. Evaluating
the world model implicit in a generative model. arXiv preprint arXiv:2406.03689, 2024.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On
the planning abilities of large language models - a critical investigation. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 75993–76005. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36, 2024a.

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming Gao, and Julian McAuley. Instructgraph:
Boosting large language models via graph-centric instruction tuning and preference alignment.
arXiv preprint arXiv:2402.08785, 2024b.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information Processing Systems, 36, 2024c.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal
llm. arXiv preprint arXiv:2309.05519, 2023.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine
learning, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

15

https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://openreview.net/forum?id=rJXMpikCZ

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou,
Chao Gong, Yang Shen, et al. A comprehensive capability analysis of gpt-3 and gpt-3.5 series
models. arXiv preprint arXiv:2303.10420, 2023a.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language is all
a graph needs. arXiv preprint arXiv:2308.07134, 2023b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances in
Neural Information Processing Systems, 33:17009–17021, 2020.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):
5782–5799, 2023.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Appendix of HLM-G

CONTENTS

A Broader Impacts 18

B Related Works 18

C Experiment Details 19

C.1 Details about the Datasets . 19

C.1.1 Graph Reasoning . 19

C.1.2 Real world datasets . 20

C.2 Training and Optimization Settings . 22

C.3 Software and Hardware . 23

D Additional Experiment Results 23

D.1 Downstream Task Performance . 23

D.2 Generation tasks . 23

D.3 Computational Efficiency . 24

E Interpretation 26

E.1 Interpretation Ground Truth . 26

E.2 Explanation as Interpretation . 26

E.3 Interpretation Visualization . 30

E.4 Local Block Analysis . 30

F Ablation Studies 31

F.1 Pooling Mechanisms . 31

F.2 Input Prompt Design . 32

F.3 Local Block Design . 33

G Limitations, Challenges, and Perspectives 33

G.1 Limitations . 33

G.2 Challenges . 34

G.3 Perspectives . 34

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A BROADER IMPACTS

Our research aims to enhance the understanding of graph structures through language models (LMs),
marking a modest but significant step toward improved graph reasoning capabilities. This foundational
effort seeks to refine how LMs interpret complex graph data, aspiring to inspire further research
in this domain. Given the exploratory nature of our work, we have not identified specific negative
societal impacts or potential for malicious use directly attributable to our research. Nevertheless, we
recognize that all technological advancements carry inherent risks.

In alignment with responsible research practices, we suggest continuous monitoring of developments
in the application of LMs to graph data analysis. As these models evolve to handle more complex
tasks, maintaining vigilance becomes crucial to preemptively address any emerging risks before they
manifest. Our commitment to ethical conduct underpins our research methodology, which is designed
to avoid harm and does not involve human subjects, thus mitigating potential ethical concerns related
to privacy and fairness. By promoting ongoing assessment and adopting a proactive approach to
research governance, we aim to ensure that our contributions positively impact the field and adhere to
the highest standards of ethical research.

B RELATED WORKS

Graph Neural Networks (GNNs). Graph Neural Networks (GNNs) have emerged as a powerful
framework for learning over graph-structured data (Kipf & Welling, 2017; Gilmer et al., 2017;
Veličković et al., 2018; Wu et al., 2020; Liu et al., 2020). GNNs operate by iteratively aggregating
information from a node’s neighbors, thereby learning node representations that capture the local
structure and features of the graph. This message-passing mechanism enables GNNs to be highly
effective in tasks such as node classification, link prediction, and graph classification. However,
despite their success, GNNs are often challenged by issues such as over-smoothing in deeper
networks (Rusch et al., 2023) and difficulties in handling long-range dependencies (Sanford et al.,
2024), which can limit their effectiveness on larger and more complex graphs.

Graph Transformer (GT). Graph Transformers (GTs) (Yun et al., 2019; Rampášek et al., 2022)
represent a more recent approach that aims to capture global dependencies within graph data using
self-attention mechanisms. Inspired by the success of transformers in NLP tasks, GTs adapt the
self-attention mechanism to graph-structured data, allowing them to capture both local and global
interactions simultaneously. This approach helps address some of the limitations of GNNs in learning
long-range dependencies. However, Graph Transformers often require additional architectural
complexities (Black et al., 2024), such as centrality encoding, edge features, and spatial encodings, to
effectively represent graph structures. These added complexities can lead to increased computational
demands and make them less interpretable compared to conventional GNNs.

Transformer Block in Language Models. In a transformer model, each block processes an input
sequence Hi = {h1, h2, . . . , hni} to output an updated sequence Hi+1. A transformer block is
structured around an attention mechanism and a feedforward network, both supplemented by residual
connections and layer normalization. The multi-head attention mechanism processes the sequenceHi,
formulated as Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V whereQ,K, V are queries, keys, and values

derived from Hi, and dk is the dimension of keys. This output is then combined with the original
input Hi and normalized: Outputattention = LayerNorm(Hi + Attention(Hi)). Following this, a
position-wise feedforward network processes each position in Outputattention, described by FFN(x) =
max(0, xW1+b1)W2+b2 with W1,W2, b1, b2 as the network parameters. The final output Hi+1 for
the block is computed by applying another layer normalization on the summation of the feedforward
network output and the attention output: Hi+1 = LayerNorm(Outputattention + FFN(Outputattention)).
This architecture allows the transformer to capture and process dependencies across the input
sequence, enabling deep contextual understanding that propagates through successive layers of the
model.

Comparisons to Prior Work. LLM-only methods commonly fail to effectively learn from graph
data due to computational feasibility and the loss of graph structural information. In contrast, our
model addresses these challenges with a local-to-global hierarchical design that efficiently leverages
graph structure. Hybrid GNN-LM approaches typically encounter problems with task-specific designs

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and limited interpretability. In comparison, our method is inherently task-agnostic and demonstrates
high interpretability. When compared to closely related conventional Graph Transformers, which
necessitate complex designs for centrality, edge, and spatial encoding, our method streamlines
the process by exclusively using natural language input, eliminating the need for these elaborate
encodings.

C EXPERIMENT DETAILS

C.1 DETAILS ABOUT THE DATASETS

In this section, we describe in detail the datasets used for our experiments. We first describe the
Graph Reasoning dataset followed by the real world datasets.

C.1.1 GRAPH REASONING

Several works have proposed benchmarks for graph reasoning, such as the NLGraph (Wang et al.,
2024a) and GraphQA (Fatemi et al., 2023). However, upon closer examination, we observed that
these benchmarks suffer from significant class imbalance, with some classes having far more data
points than others. For example, in the cycle dataset of GraphQA, 82% of the data samples contain at
least one cycle. Some works like Graphtoken (Perozzi et al., 2024) have leveraged this dataset, with
their proposed architecture achieving 83% accuracy on the cycle dataset. This raises concerns about
whether the models are truly reasoning on the datasets or simply making majority label predictions.
Additionally, the majority of graphs in these benchmarks have a small number of nodes, typically
ranging from 5 to 20. In reality, we expect real-world graph datasets to be much larger than this.

To address these issues, we propose a new benchmark constructed using a random graph generator.
Importantly, all datasets in our benchmark are balanced, enabling us to evaluate the true graph
reasoning ability of language models accurately. Training and validation graphs contain up to 40
nodes with test set containing exactly 40 nodes. .

In this section we describe our random graph generator used for creating graph reasoning datasets.

Pre-defined graphs To ensure that our generator is well covered, we first include common graphs
including Cyclic graphs, Star graphs, Complete graphs, Path graphs, Tree graphs, Wheel graphs and
Barbell graphs. All of these graphs can be created using NetworkX documentation1.

Random graphs A graphon is a function W : [0, 1]2 → [0, 1] that takes 2 values v1,
v2 ∈ [0, 1] for each pair of nodes and returns the probability p ∈ [0, 1] for an edge between these 2
nodes. The function W can be any function that takes 2 values v1, v2 ∈ [0, 1] and returns p ∈ [0, 1] .
Given two values v1 and v2, we implement following functions:

1. Constant graphon: Returns a random number p ∈ [0.3, 0.7]

2. Sparse graphon: Returns a small random number p ∈ [0.05, 0.15]

3. Dense graphon: Returns a big random number p ∈ [0.8, 1.0]

4. Linear graphon: Returns p = v1 ∗ v2
5. Quadratic graphon: Returns p = v21 ∗ v22
6. Sigmoidal graphon: Returns p = 1

1+exp(−10(u−v))

7. Step graphon: Returns p = 1 if v1 ≥ t and v2 ≥ t for some random threshold t ∈ [0, 1]

8. Sin graphon: Returns p = sin(πv1) · sin(πv2)
9. Avg graphon: Returns p = (v1 + v2)/2

10. Exp. decay graphon: Returns p = exp(−(v21 + v22))

11. Softmax graphon: Returns p = exp(v1)
exp(v1)+exp(v2)

1https://networkx.org/documentation/stable/index.html

19

https://networkx.org/documentation/stable/index.html

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The value vi for the ith node is randomly initialized for each node. Using these formulations, we
prepare our benchmark for structural reasoning tasks. For every task, we extract a graph from our
Random Graph Generator and assign it a label depending on the task. We collect equal number of
graphs for every label to prevent bias towards majority class.

Table 6: Summary of Graph Analysis Tasks and Their Dataset Specifications

Distance Cycle Detection Edge Count Reachability Edge Existence Connected Components Node Degree
#Classes 6 2 70 2 2 38 39
Dataset Size Used 20000 4000 14000 4000 4000 19000 8000

Armed with the general-purpose graph dataset generator, we adapt synthetically generated graphs
to various graph reasoning tasks with varying complexities and describe the problem setups in a
structured manner. Specifically, we first generate subsets of base graphs for each task by controlling
node quantity and graph density. We then tailor these base graphs for specific tasks and design queries
to assess the models’ capabilities accordingly. These 7 datasets summarized in Table 6 are detailed
below. A random split of 80/10/10 is used for training , validation and test sets.

• Task 1: Shortest Distance
Given a graph G = {V,E}, predict the shortest distance between two nodes vi and vj ,
categorized into six classes from 0 to 5. Class 0 indicates no path exists, while classes 1 to 5
represent distances from 1 to 5 edges. The query posed is: “What is the shortest distance
between nodes vi and vj?”

• Task 2: Cycle Detection
In a graph G = {V,E}, determine if a cycle exists. The task classifies graphs into two
categories: presence or absence of a cycle. The question asked is: “Is the graph cyclic?”

• Task 3: Edge Count
Our random graph generator can produce graphs with over 700 edges. To minimize the
required training size, we categorize sets of 10 edges into a single class. Specifically, graphs
with 1 to 10 edges are classified as class 0, 11 to 20 as class 1, continuing in this manner up
to 691 to 700, which are classified as class 80. In Section 6, we explore a similar generation
task that features 700 distinct classes (with no grouping of graphs), and it demonstrates
comparable performance.

• Task 4: Reachable
In a graph G = {V,E}, predict whether there is a reachable path between two nodes vi and
vj . The query for this task is: “Are nodes vi and vj reachable from each other?”

• Task 5: Edge Existence
Determine if an edge exists between two nodes in a graph, represented as G = {V,E}. The
posed query is: “Does an edge exist between nodes vi and vj?”

• Task 6: Connected Components
Predict the number of connected components in a graph G = {V,E}. A component is a set
of nodes that are reachable from one another. Specifically if vi ∈ C1 and vj ∈ C2 where
C1 and C2 are different components then there exists no path from v1 to v2. The query is:
“How many connected components does the graph have?”

• Task 7: Node Degree
Estimate the degree of a node in the graph, representing the number of direct connections or
neighbors the node has. The question is: “What is the degree of node vi?”

C.1.2 REAL WORLD DATASETS

We conduct experiments on 7 different Text Attributed Graph (TAG) datasets. All of these graphs
have node features available in natural language. The datasets are concisely summarized in the table
below, followed by detailed descriptions of each dataset.

Cora dataset, sourced from the GitHub repository as described in Chen et al. (2024c) , is a citation
network in the computer science domain. Each node in this dataset represents a research paper,
with raw text features consisting of the paper’s title and abstract. The edges between nodes indicate
citation relationships. Nodes are labeled according to the category of the paper, encompassing

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Datasets summary for real world graphs with text attributes

Dataset Domain Task # Graphs Avg. #Nodes Avg. #Edges # Classes

Cora Citation Node 1 2,708 10,556 7
ogbn-arxiv Citation Node 1 169,343 1,166,243 40
PubMed Citation Node 1 19,717 44,338 3
PubMed Citation Link 1 19,717 44,338 2
FB15k-237 Knowledge Link 1 14,541 310,116 237
WN18RR Knowledge Link 1 40,943 93,003 11
HIV Molecule Graph 41,127 25.5 27.5 2

seven possible classes. For our study, we focus on node-level prediction, specifically predicting the
category of each paper based on its features and structure. We use the 60-20-20 random split for
training, validation and testing.

PubMed dataset comprises 19,717 scientific publications from the PubMed database, specifically
related to diabetes, categorized into one of three classes. The citation network includes 44,338 links.
Each node represents a research paper, with raw text features including the paper’s title and abstract.
Our study involves both node classification and link classification tasks on the PubMed dataset.
The raw text data of PubMed dataset was collected from GitHub repository provided in Chen et al.
(2024c).

For node classification, we use a 60-20-20 random split for training, validation, and testing. For
link classification, the goal is to predict whether two nodes are directly connected. Following the
methodology of OFA (Liu et al., 2024a), we use an 85-5-10 random split. In the link classification
task, The training, validation and testing set is created using existence edges as positive samples and
an equal number of negative samples by checking for the absence of an edge between nodes. The
evaluation metric for the link-level task is the AUC.

ogbn-arXiv2 is a directed graph representing the citation network among Computer Science (CS)
arXiv papers. The task involves predicting the 40 subject areas of these papers, such as cs.AI, cs.LG,
and cs.OS, which are manually labeled by the authors and arXiv moderators. We follow the standard
split for this dataset: training on papers published until 2017, validating on those from 2018, and
testing on papers published since 2019. The raw text data of the ogbn-arxiv was collected using the
same protocol as the GitHub repository provided in Prodigy (Huang et al., 2024).

Molhiv3 dataset is a molecular property prediction dataset adopted from the MoleculeNet (Wu et al.,
2018). The dataset contains 41127 molecules each represented as a graph with atom as nodes and
bonds as edges. Each atom has 9 discrete features. 1 of the features (Chirality) is common for all
atoms and is therefore not considered. The rest of the features are: Atomic Number, Degree of atom,
Formal charge, Number of connected Hydrogen, Radical electrons, Hybridization, Aromaticity and
Ring. These features can be converted to natural language using only a few lines of code. Similarly
the bonds between any 2 atoms can be of 4 types: single, double, triple or aromatic. Each of these
bonds also has a boolean property: conjugated. Therefore any edge can be represented using the
bond type and whether or not it is conjugated.

Here we perform graph level classification where objective is to classify a molecule as HIV inhibitor
or not. The metric used here is AUC.

WN18RR is a link prediction dataset created from WN18, which is a subset of WordNet. WN18RR
dataset contains 93,003 triples with 40,943 entities and 11 relation types. Here we perform link
classification where we classify any edge in 11 possible edge types. This dataset is extracted from

2ogbn-arXiv is released under license ODC-BY.
3ogbg-molhiv is released under license MIT.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

GitHub repository4.

FB15k-237 is a knowledge graph that contains knowledge base relation triples and textual mentions
of Freebase entity pairs. It contains 310,116 triples with 14,541 entities and 237 relation types. Here
we perform link classification where we classify any edge in 237 possible edge types. The raw text
data of nodes in FB15K237 was collected from the same Github repository as WN18RR.

C.2 TRAINING AND OPTIMIZATION SETTINGS

For the graph reasoning datasets, we train our model from scratch, with the input being the natural
language description of the graph structure. In the local block, we employ a BERT-like architecture
utilizing a special intra-node masking scheme that masks out language tokens belonging to different
nodes. Across all reasoning datasets, we use 4 local block layers. For the global block, we utilize 2
layers for most datasets, except for the Shortest Distance, Edge Count and Number of Connected
Components datasets, where 3 global block layers are used. Our observations indicate that more
complex tasks benefit from an increased number of global block layers, which enhances overall
performance.

We adopt the Adam optimizer (Kingma & Ba, 2014) throughout the training phase, with a learning
rate of 5e−6, weight decay of 0.1, β1 = 0.9, and β2 = 0.95. Across all datasets, the training consists
of 5 epochs, with a batch size of 16 for graph reasoning datasets and 8 for real-world datasets. The
shared parameters for all tasks and datasets used in our language model ML(G) are summarized in
Table 8.

Table 8: Parameters used for the language model.

Parameter Value
Activation gelu
Attention Dropout 0.1
Dimension 768
Dropout 0.1
Hidden Dimension 3072
Max Position Embeddings 4096
Number of Heads 12
Number of Local Block Layers 6

We attempted to leverage pretrained models such as BERT (Devlin et al., 2018), SBERT (Reimers
& Gurevych, 2019), DistilBERT (Sanh, 2019), and Llama 2 7B (Touvron et al., 2023) as the lower
block, but found no performance gains on graph reasoning tasks; in fact, performance declined when
these models were not fine-tuned. This suggests that these pretrained models do not acquire graph
structure-related information during pretraining. Our experiments indicate that fine-tuning just 4
layers of the lower block is sufficient to achieve state-of-the-art performance on graph reasoning
tasks.

For real-world datasets (Tables 3, 4, and 5), we employ DistilBERT in the local block and fine-tune
it. Given that these datasets contain textual node and edge features, pretrained models are better
equipped to understand these features. The number of higher block layers for each dataset is set as
follows: 4 for Cora, Pubmed, WN18RR, and FB15k-237, 2 for molhiv, and 6 for Arxiv.

We observed that using larger models yields improved performance on node-level tasks, as depicted in
Table 9. This is expected since node features play a more critical role in making accurate node-level
predictions within real-world datasets and these larger models are better equiped to understand these
text based features.

4https://github.com/villmow/datasets_knowledge_embedding/tree/master

22

https://github.com/villmow/datasets_knowledge_embedding/tree/master

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: Performance comparison with different text encoders for Cora and Pubmed.

DistilBERT SBERT Llama-2
Cora 87.9% 88.9% 89.2%
Pubmed 94.1% 93.9% 94.9%

C.3 SOFTWARE AND HARDWARE

Our implementation is under the architecture of PyTorch (Paszke et al., 2019) and PyG (Fey &
Lenssen, 2019). The deployment environments are Ubuntu 18.04 with 48 Intel(R) Xeon(R) Silver
4214R CPU @ 2.40GHz, 755GB Memory, and graphics cards NVIDIA RTX A6000.

D ADDITIONAL EXPERIMENT RESULTS

D.1 DOWNSTREAM TASK PERFORMANCE

To assess the adaptability and transferability of our proposed model across different graph domains
and task levels, we evaluated its performance on downstream tasks. Specifically, we examined how
well the model, when trained on one task level (e.g., node, link, or graph), could adapt to perform
effectively on another.

Experimental Setup: We pretrained our model on three distinct datasets representing different task
levels: Arxiv (Node-level), Molhiv (Graph-level), and Pubmed (Link-level). Each pretrained model
was then fine-tuned on a variety of downstream tasks by updating only the final classification layer
for 5 epochs with a learning rate of 4e−5. This setup allowed us to evaluate the model’s ability to
leverage learned knowledge and adapt to completely different downstream tasks.

Results and Analysis: The results in Table 10 demonstrate the impressive transferability of our
model. For example, the model pretrained on the Arxiv (Node-level) dataset achieved an 87.8%
accuracy on the PubMed Link task, outperforming the performance of fully trained GIN despite being
trained exclusively on node-level information initially. Similarly, the model pretrained on the Molhiv
(Graph-level) dataset delivered competitive results on both node-level (Cora) and link-level (PubMed)
tasks, showcasing its ability to adapt to diverse task requirements.

These insights highlight the versatility of our approach, indicating that our model can effectively
generalize knowledge from one graph domain to another. Our language model design not only
captures graph structures efficiently but can also be fine-tuned for a wide range of downstream
applications with limited training, making it a valuable asset for practical real-world applications.

Table 10: Downstream task performance with different pretraining datasets. The model’s performance
was evaluated after fine-tuning only the classification layer for 5 epochs.

Pretrained \Downstream Cora (Node) Pubmed (Node) Pubmed (Link) Molhiv (Graph)
Arxiv (Node) 80.6 83.8 87.8 72.2
molhiv (Graph) 73.9 75.4 86.6 -
Pubmed (Link) 71.6 77.5 - 72.5

D.2 GENERATION TASKS

The current architecture employs local and global transformer blocks and a classification layer for
final prediction. For generation on graphs, we need a Decoder model that can generate the output.
For this, we take inspiration from GraphLLM (Chai et al., 2023) and leverage Prefix-Tuning (Li &
Liang, 2021) for fine-tuning a Frozen Decoder LLM with HLM-G encoder.

Prefix Tuning Given a pre-trained LLM with an L-layer transformer, prefix tuning prepends K
trainable continuous tokens (prefixes) to the keys and values of the attention at every transformer layer.
Taking the l-th attention layer as an example (l < L), prefix vectors Pl ∈ RK×dM is concatenated

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

with the original keys Kl ∈ R∗×dM and values Vl ∈ R∗×dM , where dM is the dimension of LLM,
formulated as:

K ′
l = [Pl;Kl] ; V

′
l = [Pl;Vl] ∈ R(K+∗)×dM

The new prefixed keys K ′
l and values V ′

l are then subjected to the l-th attention layer of LLM. For
simplicity, we denote the vanilla attention computation as Ol = Attn(Ql,Kl,Vl). The computation
of attention becomes:

Ol = Attn(Ql, [Pl;Kl] , [Pl;Vl])

We introduce three distinct datasets tailored for graph generation tasks, each with unique complexities
and requirements. These tasks are designed to evaluate the model’s ability to generate graph structures
and properties accurately.

• Task 1: Shortest Path
The objective of this task is to generate the shortest path between two specified nodes in a graph.
Given a graph G, the query QG is formulated as: ”What is the shortest path from node i to j?”,
where i and j are valid nodes within G. The output is considered correct only if the path generated
is both valid and the shortest possible.

• Task 2: Bipartite Detection
This task aims to determine whether a given graph is bipartite. A graph is defined as bipartite if it
contains no odd cycles. The challenge for the model is to predict if the graph is bipartite or, if not,
to generate an odd cycle. The query QG is: ”Is the graph bipartite?”. An output is deemed correct
if it accurately predicts whether the graph is bipartite or identifies an odd cycle when the graph is
not bipartite.

• Task 3: Edge Count
This dataset involves predicting the exact number of edges in a graph, enhancing the edge count
task detailed in Section 4. Unlike the previous version, this task does not classify edges into pooled
groups but requires an exact count. Additionally, the training set does not include all edge counts
present in the test set, introducing unseen scenarios. The query QG is: ”What are the number of
edges in the graph?”. Correctness is strictly judged on the model’s ability to match the exact number
of edges in G.

Table 11: Performance comparison for zero shot and HLM-G encoder on different generation tasks.
Llama-2 7B is used as a decoder in both settings. (across 1 random run).

Shortest Path Bipartite Detection Edge Count
Zero shot 5.2% 11.7% 2.1%
HLM-G encoder 93.4% 95.1% 92.5%

This data indicates that HLM-G has substantial potential as a powerful graph encoder. The high
accuracy across different tasks in our tests demonstrates its effectiveness. Further experiments are
necessary to fully explore the zero-shot and few-shot capabilities of HLM-G. These future studies will
help validate the model’s performance across a broader range of graph-based applications, potentially
establishing HLM-G as a useful tool in for leveraging LLMs on graphs.

D.3 COMPUTATIONAL EFFICIENCY

We systematically compare the training efficiency across various LLM-based methods on graph
reasoning datasets and real world dataset.

Graph Reasoning Datasets. Our study evaluates multiple fine-tuning approaches, which we catego-
rize into two primary groups: Hybrid GNN-LLM fine-tuning and LLM-only fine-tuning. We present
training times for GraphToken (a hybrid method), BERT, Llama 3 (LLM-only), and our proposed
HLM-G model (LLM-only fine-tuning). GraphToken utilizes a 4-layer GCN as its GNN encoder
with approximately 5.2 million training parameters, resulting in a total parameter count of around 8

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

billion, comparable to the Lora-trained Llama 3. For BERT, we adopt a 4-layer architecture with four
attention heads, yielding 56 million parameters. The parameter count for our HLM-G model varies
depending on the dataset, comprising 82 million parameters for tasks such as distance, edge count,
and the number of components, and 77 million for reachability, cycle, and edge existence datasets.

Table 12: Training time and total training time comparison across graph reasoning datasets.
The total training time refers to the duration required to reach the optimal validation checkpoint.

Dataset GraphToken Llama 3 BERT HLM-G (ours)
Time/Epoch Total Time Time/Epoch Total Time Time/Epoch Total Time Time/Epoch Total Time

Distance 30 mins 20 hours 17 hours 34 hours 2 hours 30 mins 7.5 hours 2 hours 6 hours
Reachability 9 mins 8 hours 6 hours 30 hours 2 hours 10 hours 45 mins 1 hour 30 mins
Cycle 9 mins 12 hours 7 hours 21 hours 45 mins 1 hour 30 mins 40 mins 40 mins
Edge Count 33 mins 36 hours 12 hours 48 hours 3 hours 30 mins 24.5 hours 3 hours 6 hours
Edge Existence 9 mins 8.5 hours 6 hours 24 hours 45 mins 1 hour 30 mins 40 mins 40 mins
Connected Components 15 mins 18 hours 12 hours 36 hours 2 hours 14 hours 1 hour 12 hours
Node Degree 17 mins 12 hours 11 hours 33 hours 1 hour 30 mins 6 hours 1 hour 1 hour

Table 12 offers a comprehensive comparison of training times among various fine-tuning methods.
Despite the HLM-G model having 20 to 30 million more parameters than BERT, its hierarchical
dual-block architecture significantly reduces both the training time per epoch and the total time to
convergence. In contrast, GraphToken, while achieving shorter training times per epoch, requires
a substantially higher number of epochs to reach convergence due to its use of a GCN encoder.
Additionally, the training times for Llama 3 are notably high, as expected, due to the model’s
extensive number of parameters and the maximum input prompt length of 4096, which necessitates
longer training durations. In comparison, our HLM-G model exhibits considerable improvements
in training efficiency, highlighting the computational advantages of our approach, especially in
managing large-scale graph reasoning tasks.

Real-world Datasets. We evaluated the training times of our model, HLM-G, against InstructGLM
for node and link prediction tasks, as InstructGLM does not support graph-level tasks. For graph-level
tasks, we compared HLM-G with Mamba. InstructGLM uses Llama-2 7B as its backbone and
incorporates Lora with a rank of 16, resulting in 8.2 million trainable parameters. The trainable
parameter count for Mamba is approximately 91.8 million. For HLM-G, the number of trainable
parameters varies depending on the number of layers in the higher block (as detailed in Appendix C.2),
ranging from 76 million for Molhiv to 86 million for datasets such as Pubmed, Cora, and knowledge
graphs, and up to 96 million for Arxiv.

Table 13: Training time and total training time comparison across real-world datasets. Total
training time refers to the duration required to reach the optimal validation checkpoint.

Dataset Mamba InstructGLM HLM-G (ours)
Time/Epoch Total Time Time/Epoch Total Time Time/Epoch Total Time

Pubmed Node - - 23 hours 10 mins 69 hours 30 mins 2 hours 5 mins 2 hours 5 mins
Pubmed Link - - 23 hours 10 mins 46 hours 20 mins 10 hours 30 mins 21 hours
Arxiv - - 105 hours 210 hours 7 hours 28 hours
WN18RR - - 34 hours 68 hours 2 hours 10 mins 4 hours 20 mins
FB15k-237 - - 56 hours 56 hours 5 hours 25 hours
Molhiv 6 hours 150 hours - - 3 hours 18 hours

Table 13 presents a comparison of training times across real-world datasets, demonstrating the com-
putational efficiency of our HLM-G model relative to other fine-tuned language models. The results
clearly highlight HLM-G’s capability to perform graph-based tasks efficiently while maintaining
high performance. Particularly notable is the significant reduction in training time compared to
InstructGLM, especially in larger datasets. This efficiency underscores where our model is most
useful.

The real-world datasets used in these comparisons are characterized by their immense size and
complex descriptions, factors that typically challenge traditional LLMs. Our HLM-G model is
specifically designed to excel in these environments. Unlike conventional LLMs, which may struggle
with the scale and specificity of graph-based data, HLM-G leverages its hierarchical architecture to
process such data more effectively. This design enables HLM-G to handle the intricate details and

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

vast data volumes more adeptly, making it particularly suited for tasks involving extensive real-world
graphs. This advantage makes HLM-G a preferred tool for applications requiring robust and efficient
graph reasoning capabilities.

E INTERPRETATION

E.1 INTERPRETATION GROUND TRUTH

In the context of graph reasoning datasets, any graph can be partitioned into two distinct sets of nodes:
citical ground truth nodes, which are directly responsible for the final prediction, and non-critical
nodes, which do not influence the prediction either directly or indirectly. Due to the importance of
focusing on structurally relevant nodes, we exclude datasets such as components and edge count where
each node is integral to the final prediction. This exclusion is crucial as it allows us to experimentally
investigate our model’s attention mechanisms towards nodes that are truly significant in the reasoning
process. Detailed ground truth sets for 3 link-level and 1 node-level task are described below.

Edge Existence In the edge existence task between two nodes u and v, the nodes u and v themselves
are sufficient for determining the presence of an edge, thus forming the ground truth:

GT = {u, v}

Shortest Distance For the shortest distance between nodes u and v, ground truth nodes include all
nodes lying on any shortest path. Let l be the shortest path length, then ground truth is simply union
over all these nodes:

GT =

ml⋃
i=1

{u, ai1, ai2, . . . , ail−1, v}

where ml is the number of shortest paths.

Reachability Dataset Unlike the shortest path dataset, reachability requires consideration of all
nodes in all possible paths from u to v, including those beyond the shortest path. If n is the total
number of nodes in the graph, the ground truth set includes:

GT =

n−1⋃
j=l

mj⋃
i=1

{u, ai1, ai2, . . . , aij−1, v}

where ml is the number of paths of length j, j ∈ {l, l + 1...n− 1}. This represents a more holistic
understanding of the graph’s connectivity by including paths of length l through n− 1.

Node Degree For node degree tasks focused on a single node u, the determination of degree relies
solely on its direct connections to other nodes in the graph.. The ground truth is straightforward in
this case:

GT = {u}

Together, these definitions facilitate a comprehensive evaluation of our model’s capability to handle
various structural reasoning tasks, each necessitating a specific set of nodes as ground truth based on
task requirements.

E.2 EXPLANATION AS INTERPRETATION

It is challenging to compare interpretability performance with methods that are not interpretable or
have different interpretation formats. To achieve such comparisons, we propose to use explanations
of models as interpretations. 5 However, explanations provided by explainers face their possible
performance issue that the produced explanations might not be faithful to the deep model behaviors.

This faithfulness issue requires us to first discover the most faithful explanations for the models
before using them as model interpretations. Therefore, instead of using one explainer, we adopt four
explainers to select the best explanation for each model on each dataset including Saliency (Simonyan

5Note that explainers provide post explanations that can be applied to any models, while interpretations are
generally produced by the model’s specific design, a.k.a., self-interpretable model.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Shortest Distance - HLM-G (Ours)

Saliency
Input x Gradient
DeepLIFT

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Shortest Distance - BERT

Saliency
Input x Gradient
DeepLIFT

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Shortest Distance - GIN

Saliency
Input x Gradient
DeepLIFT
GNNExplainer

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Reachability - HLM-G (Ours)
Saliency
Input x Gradient
DeepLIFT

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Reachability - BERT
Saliency
Input x Gradient
DeepLIFT

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Reachability - GIN

Saliency
Input x Gradient
DeepLIFT
GNNExplainer

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Edge Existence - HLM-G (Ours)

Saliency
Input x Gradient
DeepLIFT

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Edge Existence - BERT

Saliency
Input x Gradient
DeepLIFT

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Edge Existence - GIN

Saliency
Input x Gradient
DeepLIFT
GNNExplainer

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Node Degree - HLM-G (Ours)
Saliency
Input x Gradient
DeepLIFT

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Node Degree - BERT
Saliency
Input x Gradient
DeepLIFT

0.5 0.6 0.7 0.8 0.9
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity

Node Degree - GIN
Saliency
Input x Gradient
DeepLIFT
GNNExplainer

Figure 4: Fidelity results. This figure measures the faithfulness of 4 explainers to 3 models using
Fidelity scores across different Sparsities. Results should be compared across different explainers
within the same dataset and method.

et al., 2013), Input × Gradient (Shrikumar et al., 2016), DeepLIFT (Shrikumar et al., 2017), and
GNNExplainer (Ying et al., 2019), where GNNExplainer can be only applied to GNNs. Specifically,
we adopt Fidelity- (Yuan et al., 2023), a.k.a., sufficiency Fidelity (Gui et al., 2023), to measure
whether an explanation provided by an explainer is faithful to the model behavior. Formally, given N
samples, Fidelity can be written as

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 5: Interpretation visualization of HLM-G (ours) on the node degree dataset.

Fidelity =
1

N

N∑
i=1

(
1(ŷi = yi)− 1(ŷ

rk
i
i = yi)

)
, (1)

where the sample index i is used as subscription; 1(·) = 1 when the given condition is satisfied,

otherwise, 0; ŷr
k
i
i indicates the sample i’s prediction result using only the top-k important nodes.

Since high Fidelity indicates that the explanation directly reflects the model behavior, the explanation
can be used as the model behavior representative. In the experiment, for each dataset and each method,
we select the explanation with the highest average Fidelity from all explainers. The Fidelity results
are plotted in Figure. 4, where Sparsity denotes the ratio 1− k/n; thus, higher Sparsity indicates less
important nodes are used.

It is crucial to note that Fidelity results do not reflect the interpretability performance of models,
they only show the relation between the explainer and the model and are used as a principle to
choose the right explainer for each model on each dataset. With the best explanation, we use it as the
interpretation of the model to conduct interpretability comparisons mentioned in Section 4.2.2.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 6: Interpretation visualization of BERT on the node degree dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E.3 INTERPRETATION VISUALIZATION

We present the interpretation results in Figures 5 and 6. As depicted, important tokens are highlighted
with a green background. The methods under comparison are required to count the nodes connected
to node 0 for making predictions. While our method accurately processes this task, BERT fails to
correctly identify the relevant node for degree counting. This discrepancy arises because node 0,
consistently presented at the beginning during training, is permuted during testing, causing BERT to
misidentify its position. In contrast, our method employs a permutation-invariant approach to graph
processing, thereby preserving its high performance during testing.

E.4 LOCAL BLOCK ANALYSIS

The assessment of the node structure annotation embeddings in HLM-G reveals intriguing insights into
the model’s encoding capabilities. These embeddings, derived from 1-hop neighborhood information,
prompt an inquiry into the model’s approach to capturing such local graph structures. Specifically,
we investigate the positional and structural awareness exhibited by these embeddings, akin to the
strategies employed in GNNs and GTs, where Positional Encoding (PE) (Dwivedi et al., 2022) is a
common technique for enhancing model performance. PE assigns similar positional values to nodes
in close proximity, reflecting their relative positions within the graph.

To evaluate the positional and structural encoding prowess of HLM-G, we create over 10000 pairs of
nodes and analyze the node structure annotation embeddings generated by the lower layers of the
model. By comparing these embeddings using cosine similarity, we categorize the pairs into three
groups based on their hop distance: 1-hop neighbors, 2-hop neighbors, and neighbors at 3 or more
hops.

Table 14: Cosine similarity of 1-hop and 2-hop neighbors with different numbers of common
neighbors. We see that cosine similarity between 1-hop and 2-hop neighbours is quite high and
keeps on increasing with increasing number of common neighbors.

Common Neighbors 1-hop Neighbors 2-hop Neighbors

1 0.956 0.931
3 0.957 0.939
5 0.966 0.954
7 0.972 0.951
9 0.975 0.968

Table 15: Similarity for 3-hop neighbors (no common neighbors) based on the difference of
structure. The table suggests that lower block assigns similar embedding to nodes that share a
common 1-hop structure.

Difference of Node Degree Cosine Similarity

0 0.955
1 0.839
2 0.557
3 0.024
4 -0.113
5 -0.129
6 -0.135

Table 14 and Table 15 reveals a consistent trend in similarity: embeddings of 1-hop neighbors
exhibit higher similarity compared to those of 2-hop neighbors, and likewise for 3+ hop neighbors.
Furthermore, we observe that the number of common neighbors between two nodes significantly
influences the similarity of their embeddings. A higher number of common neighbors indicates
greater positional similarity between the nodes.

In the case of 3+ hop neighbors where no common neighbors exist, we evaluate the role of structural
similarity. Here, nodes are considered similar in structure if they share a similar 1-hop neighborhood,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

specifically in terms of the number of neighbors. The analysis demonstrates that the greater the
difference in 1-hop structure between nodes, the lower the similarity in their embeddings. This
suggests that HLM-G effectively encodes 1-hop neighborhood information, assigning higher similarity
to nodes that are either positionally or structurally similar.

F ABLATION STUDIES

F.1 POOLING MECHANISMS

In the process of constructing node embeddings from the outputs (HUAE , HUX) of the lower layer,
we examine two distinct pooling mechanisms: mean pooling and concatenate pooling.

Mean pooling employs a parameter α, which signifies the relative importance attributed to structural
information. Specifically,

zv = Pool(HUAE , HUX) = α ∗HUAE + (1− α) ∗HUX

Essentially, each neuron within zv encapsulates both structural and feature information. An α > 0.5
indicates a predominance of structural information in the final prediction process, whereas α < 0.5
suggests that nodal features hold greater significance.

Concatenate pooling, in contrast, yields node embeddings of doubled dimensionality by concatenating
structural and feature embeddings,

zv = Pool(HUAE , HUX) = concat(HUAE , HUX)

This approach integrates structural and feature vectors, thereby expanding the representational
capacity of the resultant node embeddings. The impact of various pooling ratios (α) is systematically
evaluated across one node-level, link-level and graph-level real-world datasets.

Table 16: Performance comparison between mean pooling and concatenate pooling across node-
link- and graph- level datasets. ↑ α implies more structural information is used for making final
predictions. Metric is Accuracy for cora and ROC-AUC for molhiv and PubMed. α = 0 implies only
node features are used for making final prediction whereas α = 1 means that predictions rely entirely
on the graph’s structure.

Pooling Cora molhiv PubMed
α Node Graph Link

0.0 86.32 73.8 95.7
0.1 87.06 74.2 94.8
0.2 88.45 75.5 96.2

Mean 0.3 86.9 76.39 97.2
0.4 86.3 74.2 97.4
0.5 85.9 74.5 98.24
0.6 85.58 75.6 98.2
1.0 66.35 75.1 91.1

Concatenate - 85.35 75.1 96.6

Table 16 shows that mean pooling generally outperforms concatenate pooling, with α values between
0.1 and 0.5 delivering consistently strong results across all datasets. It’s crucial to recognize that α
measures the structural relevance in the final model. Our findings suggest that features specific to
individual nodes are more significant than broader structural characteristics, especially in citation
networks such as Cora, where α = 0.1 is optimal. Conversely, for the PubMed link dataset, an
α value of 0.5 yields the best performance, reflecting the importance of structural connections in
conveying critical information about the relationships between nodes.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

F.2 INPUT PROMPT DESIGN

Various prompt designs can be employed to describe graph structures for language models. While
the main paper predominantly used a natural language description focusing on 1-hop neighbors (our
Current Graph Description Language, CGDL), it’s important to assess whether different prompt
styles impact the model’s performance. In this ablation study, we explore two additional prompt
styles: the Adjacency List Format (Adj-List) and Edge List Format (Edges).

Moreover, we investigate the model’s out-of-domain (OOD) capabilities under two scenarios:

• Cross-Prompt Evaluation: In this setting, models trained on one prompt design (e.g.,
CGDL) are evaluated on different prompt designs (e.g., Adj-List or Edges) to test adaptabil-
ity.

• Node Token Variability: We introduce OOD test sets where node identifiers are replaced
with random strings of up to four characters, simulating a situation where node tokens during
inference differ from those encountered during training.

Experimental Setup: We conducted our experiments on the Cycle graph reasoning dataset, where we
trained separate models using each of the three prompt designs—CGDL, Adj-List, and Edges. Each
model was trained independently using the respective prompt format to ensure it could learn the graph
structures as described by that particular design. Following training, these models were evaluated
on all three prompt formats, as well as their OOD versions with altered node tokens, resulting in a
comprehensive assessment of both in-domain and out-of-domain performance. This setup allowed us
to rigorously test the adaptability and robustness of our model under varying prompt styles and node
token representations.

Table 17: In-domain and Out-of-domain performance analysis across different prompt styles
and node token variations on cycle dataset. Performance is measured as accuracy (%).

Training \Testing CGDL Adj-List Edges CGDL-OOD Adj-List-OOD Edges-OOD
CGDL 99.5% 52.5% 54.1% 96.0% 51.9% 53.6%
Adj-List 93.2% 98.5% 74.2% 73.2% 94.2% 66.5%
Edges 94.5% 86.0% 99.0% 89.5% 78.1% 98.7%

Key Observations:

1. Strong In-Domain Performance: The diagonal entries in Table 17 (99.5%, 98.5%, and
99.0%) indicate that each model performs exceptionally well when evaluated using the same
prompt style as the one it was trained on, demonstrating strong in-domain performance.
This suggests that our model is capable of effectively learning graph structures regardless of
the chosen prompt style.

2. Resilience to Node Token Variability: When examining the OOD results where node
tokens were changed (CGDL-OOD, Adj-List-OOD, Edges-OOD), each model retained
considerable accuracy compared to its in-domain results. For example, the model trained
on the Edges format maintained a high performance of 98.7% in the Edges-OOD setting.
This suggests that the model is robust against variations in node tokens and can maintain its
graph structure understanding even when faced with different node representations.

3. Superior Generalization with Edge Descriptions: The model trained with the Edges
format demonstrated remarkable generalization ability across both cross-prompt settings
and OOD scenarios. It achieved high accuracy when tested on different prompt designs (e.g.,
94.5% on CGDL and 86.0% on Adj-List), and similarly performed well even when node
tokens were altered. This indicates that training on the Edges format enables the model to
adapt more effectively to variations in graph description languages and node representations,
making it a versatile choice for different graph tasks.

Overall, this ablation study on input prompt design reveals that our model can handle different
input prompt designs and adapt to node token variations, showcasing its strong generalizability and
robustness in capturing graph structures across diverse graph description languages.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

F.3 LOCAL BLOCK DESIGN

In this section, we examine different architectural approaches for the local block of our model,
focusing on how structure and node features are processed. Traditionally, these features are han-
dled hierarchically, meaning they are processed independently from each other. The input to the
hierarchical design lower block is structured as follows:

UG = (concat(UX1 , U
AE
1), concat(UX2 , U

AE
2), . . . , concat(UXn , U

AE
n), UQ)

This approach employs a single lower block, ML, which processes the concatenated features hierar-
chically.

Following the hierarchical model, we introduce a double hierarchical design, which further divides
the handling of node and structural features. In this enhanced setup, we implement two distinct lower
blocks: ML1

for node features and ML2
for structural features. The input for this double hierarchical

design is given by:

UG = concat(UAEv1, UXv1, · · · , UAEvn, UXvn, QG)
This arrangement allows each lower block to specialize, thereby enhancing their processing capabili-
ties on their respective feature types.

Table 18: Comparison of Model Performance by Design Configuration. Accuracy is used as the
metric. This table presents performance metrics across different datasets, distinguishing between
Hierarchical and Double Hierarchical design models.

Double Hierarchical Design Hierarchical Design
Dataset Type 1 Lower Block 2 Lower Blocks 1 Lower Block

Pubmed Node 94.25 93.9 92.9
Cora Node 87.8 88.3 86.1

WN18RR Link 97.6 97.5 97.3

From Table 18, we note a slight performance advantage with the double hierarchical design. This
design enables the model to more effectively differentiate between node features and structural
elements, as these are processed independently in the input, leading to improved performance. The
double hierarchical design exhibits comparable results whether using one or two lower blocks.
Given the similar performance outcomes, we opt for a single lower block due to its lower parameter
count—using two blocks would nearly double the parameters from 86M to 150M. Therefore, in
scenarios where parameter efficiency is critical, the double hierarchical design with a single lower
block is preferable.

G LIMITATIONS, CHALLENGES, AND PERSPECTIVES

G.1 LIMITATIONS

The most significant limitation of our current methodology lies in its lack of zero- and few-shot
learning capabilities. Recent advancements in Large Language Models (LLMs) have shown excep-
tional proficiency in zero- and few-shot scenarios, suggesting an urgent need for research aimed
at integrating these capabilities into our approach. An initial attempt to address this, described in
Appendix D.2, involves using our model as an encoder coupled with a powerful LLM decoder through
prefix tuning. While this approach enhances fine-tuning efficacy, it falls short in generalizing few-shot
abilities.

Powerful decoder based LLMs can be used in the future leveraging a similar local to global architec-
ture (using similar attention masks). Earlier layers can be set to focus on tokens of the same node
(mimicking intra-node attention). Due to the Causal attention used in decoder LLMs, the last token
in every node’s description can be either directly be used as the node token in upper block or after
pooling with other tokens of same node, mimicking inter-node attention. However, more research is
needed and we leave this to future work.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

G.2 CHALLENGES

A notable challenge in enhancing our model involves rethinking the attention mechanisms employed
in LLMs. Our model benefits from a unique local and global attention scheme, which could inform
modifications to the attention masks in LLMs. For example, adapting Transformer block architectures
within LLMs to split the layers into two distinct blocks—one focusing exclusively on prior tokens of
the current node (lower block) and the other emphasizing a single embedding for every node (upper
block)—could be a strategy. However, this structural modification is complex to code and train on
LLMs, and it demands substantial computational resources and algorithmic innovation.

G.3 PERSPECTIVES

Hybrid models that combine the structure analysis of Graph Neural Networks (GNNs) with the
language skills of Large Language Models (LLMs) show great promise for creating stronger systems.
These models use the broad abilities of LLMs to work well across different areas, helping to overcome
the specific limitations of traditional GNN architectures. Such models are suited for a wide range of
graph-related tasks in real-world settings, compensating for the limitations of GNNs, which usually
have only a few million parameters and don’t always perform consistently across different fields. This
issue highlights the need for better encoding mechanisms that can represent graph data effectively,
whether it’s for knowledge graphs, molecular structures, or social networks.

Despite increasing interest and some early successes, there are still major challenges, especially in
making these models work well across very different areas. Most current research focuses on node
classification tasks, which don’t fully show what these hybrid models can do in broader applications.
Additionally, tests of these models on various graph reasoning tasks are rare, and the results haven’t
yet shown major breakthroughs. This points to a clear need for more focused research to truly
understand these models’ abilities to interpret complex structures, identifying it as a key area for
future developments.

In conclusion, while our model introduces innovative solutions to graph data analysis, the path
forward involves addressing its scalability to zero-shot learning, enhancing its integration with
LLM architectures, and expanding its adaptability to diverse and complex graph structures. These
developments will not only advance the theoretical foundations of graph neural networks but also
expand their applicability and effectiveness in practical scenarios.

34

	Introduction
	Background and Related Work
	Hierarchical Language Model Design
	Natural Language Descriptions of Graphs
	The Local Block
	Pooling Layer
	The Global Block

	Experiments
	Structure Understanding Capabilities over Graph Reasoning Datasets
	Quantitative Comparisons.
	Evaluation of Model Robustness.

	Interpretability Comparisons
	Explainer-based Interpretation
	Intrinsic Attention Interpretation

	Graph Learning Ability on Real-World Datasets.

	Conclusions and Discussions
	Broader Impacts
	Related Works
	Experiment Details
	Details about the Datasets
	Graph Reasoning
	Real world datasets

	Training and Optimization Settings
	Software and Hardware

	Additional Experiment Results
	Downstream Task Performance
	Generation tasks
	Computational Efficiency

	Interpretation
	Interpretation Ground Truth
	Explanation as Interpretation
	Interpretation Visualization
	Local Block Analysis

	Ablation Studies
	Pooling Mechanisms
	Input Prompt Design
	Local Block Design

	Limitations, Challenges, and Perspectives
	Limitations
	Challenges
	Perspectives

