
Dyve: Thinking Fast and Slow for Dynamic Process Verification

Anonymous ACL submission

Abstract

We present Dyve, a dynamic process verifier001
that enhances reasoning error detection in large002
language models by integrating fast and slow003
thinking, inspired by Kahneman’s Systems The-004
ory. Dyve adaptively applies immediate token-005
level confirmation (System 1) for straightfor-006
ward steps and comprehensive analysis (Sys-007
tem 2) for complex ones. Leveraging a novel008
step-wise consensus-filtered process supervi-009
sion technique, combining Monte Carlo esti-010
mation, LLM-as-a-Judge, and specialized rea-011
soning models, we curates high-quality super-012
vision signals from noisy data for Dyve. Ex-013
perimental results on ProcessBench and the014
MATH dataset confirm that Dyve significantly015
outperforms existing process-based verifiers016
and boosts performance in Best-of-N settings.017

1 Introduction018

Large Language Models (LLMs) have significantly019

enhanced their reasoning capabilities by shifting020

from rapid, intuitive System 1 responses to more021

deliberate, extended System 2 thinking (Team et al.,022

2025; Arrieta et al., 2025; Guo et al., 2025). While023

enabling more complex problem-solving in math024

and scientific reasoning, this has also introduced025

new challenges in process verification, particularly026

in the reliable evaluation of incomplete reasoning027

traces.028

Process-based verifiers (PRMs) are essential for029

detecting process errors. However, becuase hu-030

man annotations for process supervision (Light-031

man et al., 2023b) are prohibitively expensive, re-032

searchers increasingly use Monte Carlo estimation033

methods (Wang et al., 2024; Luo et al., 2024) to034

annotate process labels, even though these labels035

are noisy and weak (Zhang et al., 2025). More-036

over, most verifiers rely on a simplistic "System 1"037

binary yes/no prediction, which is insufficient for038

capturing complex process errors.039

Recently released reasoning LLMs, such as Ope- 040

nAI O1 (Jaech et al., 2024) and DeepSeek R1 (Guo 041

et al., 2025), show promise in detecting process er- 042

rors through reinforcement learning. Their reason- 043

ing traces include metacognitive cues (e.g. ‘hmm’, 044

‘wait, let’s check’) that hint at a rudimentary verifi- 045

cation mechanism, a kind of ‘aha’ moment. How- 046

ever, since process verification was not the pri- 047

mary design goal, these abilities can be unreli- 048

able. Moreover, their reliance on a System 2–style 049

self-correction process often leads to overthink- 050

ing (Chen et al., 2025) and reduce efficiency. 051

Our work introduces Dyve (Dynamic Process 052

Verifier), a specialized reasoning language model 053

that dynamically detects process errors using fast 054

and slow thinking, inspired by Kahneman’s Sys- 055

tems Theory (Kahneman, 2012). For reasoning 056

traces from step 1 to t, Dyve adaptively applies 057

either System 1, which supplies single-token con- 058

firmation for clearly correct steps, or System 2 for 059

deeper analysis to complex ones. To support this 060

adaptive mechanism, we introduce a novel step- 061

wise consensus-filtered process supervision tech- 062

nique. Our method leverages Monte Carlo estima- 063

tion to generate multiple rollouts per query, uses 064

an LLM-as-a-Judge (Gu et al., 2024) to assess the 065

full reasoning trace, and employs a reasoning LLM 066

for step-by-step analysis to flag steps that require 067

further verification. In doing so, we curate approxi- 068

mately 117K high-quality training examples from 069

1.2M noisy Monte Carlo rollouts, demonstrating 070

that quality, not quantity, is key to effectively train 071

an process-based verifier. 072

Experimental results on ProcessBench (Zheng 073

et al., 2024) show that Dyve significantly outper- 074

forms existing PRMs and other reasoning models in 075

detecting process errors in complete or incomplete 076

reasoning traces. Furthermore, when combined 077

with a proposer language model, Dyve yields better 078

performances under Best-of-N then other PRMs. 079

1

2 Related Work080

Recent research (Setlur et al., 2024; Wang et al.,081

2024; Guan et al., 2025) shows that external reward082

models can improve LLM reasoning by selecting083

the best path from multiple candidates. Outcome084

Reward Models (ORMs) (Cobbe et al., 2021b;085

Yang et al., 2024) optimize for final outputs but086

overlook vital intermediate steps. Process Reward087

Models (PRMs) (Lightman et al., 2023a; Zhang088

et al., 2025; Wang et al., 2024) provide rapid bi-089

nary validations for each step, yet struggle with090

a deeper analysis of incomplete traces. In con-091

trast, Generative Verifiers (GenRMs) (Zhang et al.,092

2024) combine chain-of-thought reasoning with093

next-token predictions to verify and generate solu-094

tions, although at a high computational cost. To bal-095

ance these trade-offs, our DyVe framework merges096

the strengths of PRMs and GenRMs using Kahne-097

man’s dual system theory.098

High-quality step-level supervision is crucial099

for training process verifiers, yet human annota-100

tions (e.g., PRM800k (Lightman et al., 2023b))101

are prohibitively expensive. To avoid this,102

OmegaPRM (Luo et al., 2024) employs a divide-103

and-conquer Monte Carlo Tree Search (MCTS)104

to generate annotations, although our experiments105

show that these labels are often noisy and weak.106

To address this issue, we adopt consensus filtering107

with an LLM-as-a-Judge (Gu et al., 2024) to elimi-108

nate unreliable samples (Zhang et al., 2025), and109

further extend this approach with step-wise flag-110

ging, where a reasoning LLM conducts step-by-111

step analysis to identify steps that require System112

2 verification.113

3 Method114

3.1 Overview115

Dyve can assess the correctness of multi-step116

reasoning trace generated by a language model.117

Given a problem P and its reasoning steps118

{s1, s2, . . . , sT }, Dyve sequentially verifies each119

step:120

rt = Dyve(s1:t; θ)121

where the response rt, varying from 1 to 8192122

tokens based on System 1 or System 2 usage, is123

parsed by Parse(·) to yield a binary outcome. If124

Parse(rt) = 0, the process halts, returning the er-125

roneous step index and intermediate generations;126

otherwise, verification proceeds to the next step.127

Proposer LLM Step 1 Step 2 Final answer

GenRM
Binary check

GenRM-CoT
Check step-by-step

… …

Error found

DyVer System 1

DyVer System 2
Fast & Intuitive

Slow & Deep

Proposer LLM Step 1 Step 2 Step 3

LLM
w. Self-Reflection

Step 1 Step 2 Wait, maybe I should check… …

Binary Check

CoT check

Low Accuracy

Cost Time

Proposer LLM Step 1 Step 2 Step 3

Proposer LLM

Step 3… …

Step 1 Step 2 Step 3 Step N

Is this step correct?

Simple Simple Hard

Is this step correct?

… …

Step N… …

Hard

Is this step correct?

Figure 1: (1) LLM self-reflection is unreliable (2) Bi-
nary verification lacks depth, (3) Chain-of-Thought
(CoT) verification is deeper but more expensive, (4)
GenRM with CoT combines generation and verification
without step-wise assessment, (5) Dyve, our proposed
framework that dynamically combines fast System 1
and deep System 2 verification.

3.2 Step-wise Consensus-Filtered Process 128

Supervision 129

We introduce a novel step-wise consensus-filtered 130

process supervision technique to enable adaptive 131

verification within Dyve. The pipeline includes: 132

Queries Collection We gather query-response 133

pairs from datasets like GSM8k (Cobbe et al., 134

2021a) and MATH (Hendrycks et al., 2021a), total- 135

ing 15K queries. 136

Monte Carlo Rollouts Generation Using 137

OmegaPRM (Luo et al., 2024), we generate 20 roll- 138

outs per query. We also gather open-souce PRM 139

data from MathShepherd (Wang et al., 2024) and 140

RLHFlow, excluding PRM800k (Lightman et al., 141

2023b) to prevent data leakage, yielding approxi- 142

mately 1.2 million positive and negative rollouts 143

with noisy labels. 144

Consensus Filtering with LLM-as-Judges We 145

prompt DeepSeek V3 to verify the initial error 146

steps identified by OmegaPRM. This filtering re- 147

moves about 50% of noisy rollouts. We then create 148

a dataset of 117K high-quality examples by re- 149

balancing the number of positive and negative step 150

labels. 151

Step-Level Analysis with Reasoning LLMs A 152

reasoning model performs step-by-step analysis on 153

curated rollouts. Correct steps are marked with a 154

2

“+” token, while uncertain steps undergo further155

detailed evaluation, ensuring alignment with high-156

quality reasoning traces.157

3.3 Training158

We train the deepseek-ai/DeepSeek-R1-Distill-159

Qwen-14B model using supervised fine-tuning on160

our curated dataset. This enables the model to learn161

rapid System 1 verification and comprehensive Sys-162

tem 2 correction. The training objective minimizes163

the cross-entropy loss:164

L(θ) = − 1

N

N∑
i=1

T (i)∑
t=1

log pθ

(
y
(i)
t | x(i), y(i)<t

)
,

(1)165

where θ indicates the model parameters, x(i) is the166

input query, and y(i) is the target label for the i-th167

example.168

4 Experiments169

To evaluate Dyve’s capabilities, we conduct experi-170

ments in two main areas. First, we assess Dyve’s171

ability to identify process errors. Second, we inte-172

grate Dyve with Proposer LLMs using a Best-of-N173

approach to evaluate its synergy within a reasoning174

framework. All experiments are conducted on 8175

× NVIDIA A800-SXM4-80GB GPUs. Interested176

Readers may refer to Appendix A.1 for detailed177

experimental setup.178

4.1 Benchmarks179

ProcessBench (Zheng et al., 2024) comprises180

four sets of test data derived from GSM8K (Cobbe181

et al., 2021a), MATH (Hendrycks et al., 2021b),182

OlympiadBench (He et al., 2024), and Omni-183

MATH (Gao et al., 2024). It includes 3,400184

test cases, covering high-school to Olympiad-level185

math problems. Each case provides a step-by-step186

solution with error locations annotated by experts.187

Models are given s1:t, from the first to the last step,188

and must identify the earliest error or confirm that189

all steps are correct. For each ProcessBench sub-190

set, we calculate the accuracies for erroneous and191

correct samples and compute their harmonic mean192

as the F1 score.193

MATH-500 (Lightman et al., 2023b) evaluates194

Dyve’s integration with a Proposer LLM. We mea-195

sure performance using maj@k and rm@k metrics196

as defined in (Yang et al., 2024) and apply a Best-197

of-N decoding strategy. Due to inconsistent results198

Figure 2: Inference speed comparison on ProcesBench,
time per sample in seconds, for System-1, Dyve, and
DeepSeek-R1-14B.

from different evaluation tools, we manually veri- 199

fied all reported outcomes. 200

4.2 Processbench 201

Results and Analysis Dyve achieves the high- 202

est F1 scores across all benchmark subsets, outper- 203

forming all baselines. Despite being trained primar- 204

ily on high-school and college-level mathematics, 205

its dual reasoning system generalizes effectively 206

to Olympiad-level problems. In contrast, LLM-as- 207

Judge with DeepSeek-R1-Distill-Qwen-14B shows 208

weaker performance on OlympiadBench and Om- 209

niMATH, indicating less reliable process error de- 210

tection. 211

Camparison on Inference Time According to 212

Figure 2, the inference speed comparison in Pro- 213

cesBench, highlights model efficiency. System-1 214

is the fastest, maintaining minimal latency. Dyve, 215

slightly slower, balances speed and performance, 216

excelling in complex datasets like OlympiadBench 217

and OmniMATH. R1-14B has the longest inference 218

times, suggesting a bottleneck for rapid processing. 219

This analysis highlights Dyve’s ability to deliver 220

competitive performance with efficient inference 221

times, making it well-suited for applications de- 222

manding both accuracy and speed. 223

Model Choice and Step-wise Consensus Filter- 224

ing The ablation study in Figure 3 illustrates the 225

impact of model selection and step-wise consen- 226

sus filtering in ProcessBench. For Llama-3.1-8B- 227

Instruct, consensus filtering significantly improves 228

performance, boosting scores from 35.6 to 49.3 on 229

GSM8K and from 28.3 to 40.2 on MATH. Sim- 230

ilarly, DS-R1-Distill-Qwen-14B sees substantial 231

gains, with MATH scores increasing from 34.7 to 232

56.0 and OmniMATH from 11.2 to 37.7. Step-wise 233

flagging further amplifies performance, achieving 234

3

Model GSM8K MATH OlympiadBench OmniMATH
Qwen2.5-Math-7B-PRM System1 39.4∗ 52.2∗ 39.4∗ 33.1∗

Math-Shepherd-PRM-7B System1 47.9 29.5 24.8 23.8
RLHFlow-PRM-Mistral-8B System1 50.4 33.4 13.8 15.8
RLHFlow-PRM-Deepseek-8B System1 38.8 33.8 16.9 16.9
Skywork-PRM-1.5B System1 59.0 48.0 19.3 19.2
Skywork-PRM-7B System1 64.1∗ 43.2∗ 16.2∗ 17.9∗

Llama-3.1-8B-Instruct LLM-as-Judge 27.5∗ 26.7∗ 18.5∗ 19.2∗

GPT-4o LLM-as-Judge 61.9∗ 53.9∗ 48.3∗ 44.6∗

QwQ-32B-Preview LLM-as-Judge 62.3∗ 52.7∗ 46.2∗ 43.9∗

DeepSeek-R1-Distill-Qwen-14B LLM-as-Judge 67.3∗ 38.8∗ 29.9∗ 32.1∗

Dyve 14B System1 + System2 68.5 58.3 49.0 47.2

Table 1: Performance comparison on ProcessBench. F1 scores, computed from accuracies on erroneous and
correct samples, are reported for four benchmarks: GSM8K, MATH, OlympiadBench, and OmniMATH. Dyve 14B
leverages a dual reasoning approach (fast System1 and slow System2) to achieve superior performance, with scores
of 68.5, 58.3, 49.0, and 47.2, respectively, and it shows enhanced generalization on Olympiad-level mathematics.
Models marked with a ∗ are evaluated using our custom implementation to align with our experimental settings in
the absence of an official evaluation script.

Figure 3: Impact of model choice and step-wise con-
sensus filtering on performance across GSM8K, MATH,
OlympiadBench, and OmniMATH. The figure illus-
trates improvements achieved through consensus fil-
tering and step-wise flagging, highlighting the superior
performance of the 14B reasoning model over the 7B
Llama.

scores of 68.5 on GSM8K and 58.3 on MATH.235

These results underscore the effectiveness of these236

techniques and highlight the superior reasoning237

capabilities of the 14B model compared to the238

7B Llama, validating our choice of DeepSeek-R1-239

Distill-Qwen-14B.240

4.3 Integrating Dyve with Proposer LLMs241

We integrate Dyve as a process verifier to assist242

Proposer LLMs (Qwen-Math-7B and Deepseek-243

R1-Distill-Qwen-14B) on MATH-500. For fair-244

ness, we compare three setups across Best-of-N (N245

= 1, 2, 4, 8) decoding settings: Dyve verification,246

System 1 only, and Majority Vote (no verification).247

Results and Analysis As shown in Figure 4,248

Dyve’s combination of fast and slow verifica-249

tion outperforms both Majority Voting and Sys-250

tem 1 verification when integrated with Best-of-251

N decoding. When the generation budget is252

N = 8, Dyve with DeepSeek-R1-Distill-Qwen-253

Figure 4: Comparison of Dyve, Dyve System1 and
Majority Vote with different generation budget when
integrating with Proposer LLMs (DeepSeek-R1-Distill-
Qwen-14B as solid line, Qwen2.5-MATH-7B-Instruct
as dotted line).

14B achieves 95.5% accuracy, while Dyve with 254

Qwen2.5-MATH-7B-Instruct reaches 90.4%, out- 255

performing both baselines. This demonstrates how 256

our dual-system with fast and slow thinking, ap- 257

proach effectively guides Proposer LLMs to select 258

more accurate reasoning paths, showcasing the syn- 259

ergy between the Dyve and proposer models. 260

5 Conclusion 261

Our study demonstrates Dyve’s, with a dual reason- 262

ing approach, superior performance in mathemat- 263

ical reasoning verification. The consensus filter- 264

ing and step-wise flagging significantly enhanced 265

model accuracy and robustness. Ablation studies 266

confirm the 14B model’s advantages over smaller 267

variants for complex reasoning tasks, establishing 268

Dyve as an effective solution for precise and effi- 269

cient error detection. 270

4

6 Broader Ethical Impact271

Our method is centered on rigorous verification of272

AI reasoning, ensuring each step is systematically273

validated for enhanced reliability and transparency.274

By exclusively using publicly available datasets275

under their proper licenses, we adhere to responsi-276

ble research practices. We believe that improving277

verification in AI reasoning not only boosts system278

robustness but also exemplifies ethical AI develop-279

ment.280

7 Limitations281

While Dyve demonstrates strong performance, it282

shares several limitations common to verification-283

based systems. Its effectiveness naturally depends284

on the complexity of the reasoning tasks, and more285

intricate multi-step problems may require further286

adaptation or deeper analysis. In addition, although287

our consensus-filtered process supervision consid-288

erably enhances signal quality, a modest level of289

noise remains inherent in any automated estimation290

process. Finally, the overall performance is influ-291

enced by the quality and diversity of the training292

data, suggesting that further efforts in data curation293

and filtering could yield even more robust results.294

These aspects offer promising directions for future295

research.296

References297

Aitor Arrieta, Miriam Ugarte, Pablo Valle, José An-298
tonio Parejo, and Sergio Segura. 2025. Early299
external safety testing of openai’s o3-mini: In-300
sights from the pre-deployment evaluation. Preprint,301
arXiv:2501.17749.302

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,303
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi304
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang,305
Zhaopeng Tu, Haitao Mi, and Dong Yu. 2025. Do306
not think that much for 2+3=? on the overthinking of307
o1-like llms. Preprint, arXiv:2412.21187.308

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,309
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias310
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro311
Nakano, Christopher Hesse, and John Schulman.312
2021a. Training verifiers to solve math word prob-313
lems. arXiv preprint arXiv:2110.14168.314

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,315
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias316
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro317
Nakano, et al. 2021b. Training verifiers to solve math318
word problems. arXiv preprint arXiv:2110.14168.319

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo 320
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang 321
Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, 322
Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei 323
Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, 324
and Baobao Chang. 2024. Omni-math: A univer- 325
sal olympiad level mathematic benchmark for large 326
language models. ArXiv, abs/2410.07985. 327

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, 328
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, 329
Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and 330
Jian Guo. 2024. A survey on llm-as-a-judge. ArXiv, 331
abs/2411.15594. 332

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, 333
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. 334
2025. rstar-math: Small llms can master math reason- 335
ing with self-evolved deep thinking. arXiv preprint 336
arXiv:2501.04519. 337

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 338
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 339
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 340
centivizing reasoning capability in llms via reinforce- 341
ment learning. arXiv preprint arXiv:2501.12948. 342

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, 343
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu- 344
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan 345
Liu, and Maosong Sun. 2024. Olympiadbench: 346
A challenging benchmark for promoting agi with 347
olympiad-level bilingual multimodal scientific prob- 348
lems. Preprint, arXiv:2402.14008. 349

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 350
Arora, Steven Basart, Eric Tang, Dawn Xiaodong 351
Song, and Jacob Steinhardt. 2021a. Measuring 352
mathematical problem solving with the math dataset. 353
ArXiv, abs/2103.03874. 354

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 355
Arora, Steven Basart, Eric Tang, Dawn Xiaodong 356
Song, and Jacob Steinhardt. 2021b. Measuring 357
mathematical problem solving with the math dataset. 358
ArXiv, abs/2103.03874. 359

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 360
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 361
Aleksander Madry, Alex Beutel, Alex Carney, et al. 362
2024. Openai o1 system card. arXiv preprint 363
arXiv:2412.16720. 364

Daniel Kahneman. 2012. Thinking, fast and slow. Pen- 365
guin, London. 366

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 367
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 368
John Schulman, Ilya Sutskever, and Karl Cobbe. 369
2023a. Let’s verify step by step. arXiv preprint 370
arXiv:2305.20050. 371

Hunter Lightman, Vineet Kosaraju, Yura Burda, Har- 372
rison Edwards, Bowen Baker, Teddy Lee, Jan 373
Leike, John Schulman, Ilya Sutskever, and Karl 374
Cobbe. 2023b. Let’s verify step by step. ArXiv, 375
abs/2305.20050. 376

5

https://arxiv.org/abs/2501.17749
https://arxiv.org/abs/2501.17749
https://arxiv.org/abs/2501.17749
https://arxiv.org/abs/2501.17749
https://arxiv.org/abs/2501.17749
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://api.semanticscholar.org/CorpusID:273233571
https://api.semanticscholar.org/CorpusID:273233571
https://api.semanticscholar.org/CorpusID:273233571
https://api.semanticscholar.org/CorpusID:273233571
https://api.semanticscholar.org/CorpusID:273233571
https://api.semanticscholar.org/CorpusID:274234014
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:258987659

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat377
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,378
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-379
cal reasoning in language models by automated pro-380
cess supervision. arXiv preprint arXiv:2406.06592.381

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang382
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh383
Agarwal, Jonathan Berant, and Aviral Kumar. 2024.384
Rewarding progress: Scaling automated process veri-385
fiers for llm reasoning. Preprint, arXiv:2410.08146.386

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,387
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun388
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025.389
Kimi k1. 5: Scaling reinforcement learning with llms.390
arXiv preprint arXiv:2501.12599.391

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai392
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang393
Sui. 2024. Math-shepherd: Verify and reinforce394
llms step-by-step without human annotations. In395
Proceedings of the 62nd Annual Meeting of the396
Association for Computational Linguistics (Volume397
1: Long Papers), pages 9426–9439.398

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,399
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong400
Tu, Jingren Zhou, Junyang Lin, et al. 2024. Qwen2.401
5-math technical report: Toward mathematical ex-402
pert model via self-improvement. arXiv preprint403
arXiv:2409.12122.404

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran405
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024.406
Generative verifiers: Reward modeling as next-token407
prediction. Preprint, arXiv:2408.15240.408

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen409
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-410
gren Zhou, and Junyang Lin. 2025. The lessons of411
developing process reward models in mathematical412
reasoning. arXiv preprint arXiv:2501.07301.413

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji414
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-415
gren Zhou, and Junyang Lin. 2024. Processbench:416
Identifying process errors in mathematical reasoning.417
arXiv preprint arXiv:2412.06559.418

A Appendix419

A.1 Detailed Experiment Setup420

Training421

A.2 Training Details422

Our model processes inputs with a maximum token423

length of 2048, ensuring robust contextual under-424

standing. To further enhance efficiency, we employ425

Low-Rank Adaptation (LoRA) configured with a426

rank of 16, an alpha value of 16, and a dropout rate427

of 0.1. The training regimen spans three epochs,428

using a per-device batch size of 2 and leveraging429

gradient accumulation over 8 steps. The learning 430

rate is set to 2× 10−5 and a weight decay of 0.01 431

is applied. Training is executed with mixed pre- 432

cision (fp16), optimizing computational resources 433

without sacrificing performance. 434

Inference During inference, our model leverages 435

a multi-step reasoning process to evaluate each 436

problem instance. The procedure begins by formu- 437

lating a sequence of conversational prompts that 438

encapsulate both the problem statement and its pro- 439

gressive steps. At each step, the Dyve model is 440

queried via its custom chat interface, and the gen- 441

erated response is examined for specific response 442

patterns — such as the presence of a "+" sym- 443

bol signaling a correct evaluation. This iterative 444

mechanism continues until a response fails to meet 445

the designated correctness criteria, at which point 446

the process halts. To ensure efficiency, the infer- 447

ence is executed concurrently using a pool of 32 448

parallel workers, processing various configurations 449

from the ProcessBench dataset (including gsm8k, 450

math, olympiadbench, and omnimath). For every 451

evaluated problem, all intermediate responses (or 452

generations) and the final step classification are 453

recorded. These results are then systematically 454

saved in JSON Lines format, facilitating subse- 455

quent analysis and serving as a robust foundation 456

for further evaluation. 457

A.3 Efficient Estimation of MCTS 458

In this section, we detail our approach to effi- 459

ciently utilize Monte Carlo Tree Search (MCTS) 460

for sampling rollouts, which are crucial for training 461

process-based verifiers. 462

Overview 463

Our method leverages MCTS to construct a state- 464

action tree representing detailed reasoning paths 465

for a given question. This approach allows us to 466

collect Process-based Reward Model (PRM) train- 467

ing examples by exploring various reasoning paths 468

and identifying errors efficiently. 469

State-Action Tree Construction 470

Each state s in the tree corresponds to a ques- 471

tion and its preceding reasoning steps, with the 472

root state being the question without any reason- 473

ing steps. An action a is a potential next step, 474

and the state transition function is defined as s′ = 475

Concatenate(s, a). Each node s stores the visit 476

count N(s), Monte Carlo estimation MC(s), and 477

rollout value function Q(s, r). 478

6

https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240

MCTS Process479

Selection We maintain a pool of rollouts with480

0 < MC(s) < 1. During selection, a rollout is481

chosen based on tree statistics using a variant of482

the PUCT algorithm:483

U(s) = cpuct

√∑
iN(si)

1 +N(s)
484

This strategy initially favors rollouts with low visit485

counts, gradually shifting preference towards those486

with high rollout values.487

Binary Search A binary search identifies the first488

error location in the selected rollout. Rollouts with489

0 < MC(s) < 1 are added to the selection pool.490

The search process divides and examines rollouts to491

pinpoint errors, updating the tree with new states.492

Maintenance After binary search, update the493

statistics N(s), MC(s), and Q(s, r). Increment494

N(s) for the selected state-action pair and update495

MC(s) and Q(s, r) based on the binary search496

results.497

Tree Construction Repeat the above process to498

construct the state-action tree. The process ends499

when the search count reaches a predetermined500

limit or no additional rollouts are available.501

A.4 Finetuning Data Example502

7

Example Data Sample

LLM Proposer:
Step: Cowboy Mickey and cowgirl Minnie train horses. Mickey mounts six less than twice as
many horses per day as Minnie, while Minnie mounts three more horses per day than there are days in
a week. How many horses does Mickey mount per week?

Step 1: Minnie mounts 7+3=<<7+3=10>>10 horses per day.

Is this step correct? Answer with '+' for correct or '-' for incorrect.

DyVer:
<think>
</think> +

LLM Proposer:
Step 2: Mickey mounts 12-6=<<12-6=6>>6 horses per day.

Is this step correct? Answer with '+' for correct or '-' for incorrect.

DyVer:
<think>
Let's verify Step 2

Mickey mounts six less than twice Minnie's count. Minnie mounts 10 horses, so Mickey should mount
2*10 - 6 = 14. Step 2 is incorrect.
</think>
Answer: -

8

	Introduction
	Related Work
	Method
	Overview
	Step-wise Consensus-Filtered Process Supervision
	Training

	Experiments
	Benchmarks
	Processbench
	Integrating Dyve with Proposer LLMs

	Conclusion
	Broader Ethical Impact
	Limitations
	Appendix
	Detailed Experiment Setup
	Training Details
	Efficient Estimation of MCTS
	Finetuning Data Example

