
GQSA: Group Quantization and Sparsity for Accelerating Large Language
Model Inference

Anonymous ACL submission

Abstract

Model compression has emerged as a main-001
stream solution to reduce memory usage and002
computational overhead. This paper proposes003
GQSA, a novel model compression frame-004
work specifically designed for LLMs. Tradi-005
tional methods typically focus exclusively on006
either quantization or sparsification, but rely-007
ing on a single strategy often results in sig-008
nificant performance loss at high compression009
rates. In contrast, GQSA integrates quanti-010
zation and sparsification in a tightly coupled011
manner, leveraging GPU-friendly structured012
group sparsity and quantization for efficient013
acceleration. Building upon system-algorithm014
co-design principles, we propose a two-stage015
sparse optimization strategy that ensures the016
performance superiority of the compressed017
model. On the engine side, we introduce a018
"task-centric" parallel strategy, which, to the019
best of our knowledge, is the first application020
in the domain of sparse computing. Com-021
pared to the traditional 2:4 sparse method, the022
GQSA offers a more flexible and adjustable023
sparsity rate, as well as a higher weight com-024
pression rate, and is efficiently compatible with025
weight-only quantization methods. Experimen-026
tal results demonstrate that, under the GQSA027
W4S50% compression setting, the model’s ac-028
curacy surpasses that of both 2:4 pruning and029
W2 quantization. Furthermore, at the inference030
level, GQSA outperforms W2 by 1.26× and031
2:4 pruning by 2.35× in terms of speed. Codes032
are avaliable at: https://anonymous.4open.033
science/r/GQSA-087D/.034

1 Introduction035

Sparsity, combined with quantization (Lin et al.,036

2024; Shao et al., 2023), is a powerful approach037

to enhance model inference performance, reduce038

the size of LLMs, and enable their deployment on039

edge devices such as PCs (Gu et al., 2024; Liu040

et al., 2022). However, current sparsification strate-041

gies exhibit limited acceleration benefits due to the042

unstructured sparsity patterns typically generated 043

by existing unstructured pruning methods (Han 044

et al., 2015; Sun et al., 2023), which are poorly 045

suited for hardware acceleration. Strategies such 046

as SparseGPT (Frantar and Alistarh, 2023) and 047

Wanda (Sun et al., 2023) address this issue by 048

adopting a 2:4 sparsity pattern, leveraging NVIDIA 049

GPUs’ Sparse Tensor Core units for acceleration. 050

Nevertheless, these approaches are constrained by 051

hardware requirements such as a minimum oper- 052

ation shape of [m, n, k] = [16, 8, 16], which re- 053

strict their applicability to compute-intensive tasks 054

like GEMM operations. These limitations pose 055

significant challenges in accelerating the decod- 056

ing process, the primary performance bottleneck 057

in LLMs (Zeng et al., 2024). Unlike GEMM, 058

decoding involves GEMV operations, where the 059

Tensor Core’s compute resources are underuti- 060

lized, with approximately 87.5% of resources be- 061

ing wasted (Mishra et al., 2021). Consequently, 062

SparseGPT and Wanda achieve up to 50% spar- 063

sity but remain inefficient in practical scenarios. 064

Furthermore, these methods are incompatible with 065

weight-only quantization, as Sparse Tensor Cores 066

require both weights and activations to are floating- 067

point or integer formats. Combining sparsification 068

with weight-activation quantization leads to exces- 069

sive compression of activation value representation, 070

resulting in severe performance degradation. This 071

limitation significantly diminishes the practical util- 072

ity of existing sparsification strategies. 073

To address these challenges, we propose a novel 074

model compression method called GQSA, de- 075

signed specifically for the decoding process and 076

efficiently compatible with weight-only per-group 077

quantization. GQSA explores a group sparsity pat- 078

tern beyond the conventional 2:4 sparsity, achiev- 079

ing a better trade-off between accuracy and speed 080

through a combination of algorithm-level optimiza- 081

tions and a customized software engine. Specifi- 082

cally, we reinterpret weight pruning as a particular 083

1

https://anonymous.4open.science/r/GQSA-087D/
https://anonymous.4open.science/r/GQSA-087D/
https://anonymous.4open.science/r/GQSA-087D/

form of quantization and introduce a group pruning084

based on group quantization. Our method incor-085

porates the Block Sparse Row (BSR) format and086

designs a compact, low-precision weight storage087

structure to maximize the compression benefits of088

pruning and quantization. The GQSA method con-089

sists of two main stages. The first stage, Block090

Quantization-Pruning Optimization (BQPO), cali-091

brates model parameters at the block level by op-092

timizing weight distributions within block to min-093

imize performance loss caused by group pruning094

and quantization. In the second stage, End-to-End095

Optimized Quantization-Pruning (E2E-OQP), the096

backbone network’s weights are frozen, and only097

the quantization parameters are fine-tuned to op-098

timize the global network performance. Unlike099

BQPO, E2E-OQP considers the global error dis-100

tribution across blocks. Freezing the backbone101

network can not only reduce memory usage but102

also improve training efficiency. Extensive experi-103

ments demonstrate that GQSA achieves significant104

advantages in both model accuracy and inference105

speed, especially when applied to newly released106

advanced models such as LLaMA-3 and LLaMA-107

3.1 model family and Qwen2.5 models.108

In summary, our contributions are as follows.109

• We propose a sparse scheme seamlessly com-110

patible with widely used weight-only and111

weight-activation quantization, effectively ac-112

celerating GEMV operations and reducing113

memory usage.114

• We introduce a task-centric parallel implemen-115

tation, addressing the workload balancing is-116

sue in sparse acceleration.117

• We integrate group pruning with low-bit quan-118

tization techniques and achieves outstanding119

model performance through the two-stage op-120

timization process of BQPO and E2E-OQP.121

2 Related work122

Compressing Large Language Models. Prun-123

ing and quantization are the two primary tech-124

niques for compressing LLMs. Pruning meth-125

ods can be classified into structured (Chen et al.,126

2024; Ma et al., 2023; Ashkboos et al., 2024),127

semi-structuredcite (Frantar and Alistarh, 2023;128

Sun et al., 2023; Fang et al., 2024), and unstruc-129

tured (Han et al., 2016, 2015; Sun et al., 2023) prun-130

ing, depending on the granularity of pruning. Struc-131

tured pruning operates at a coarser granularity and132

Figure 1: The distribution of the top 1% significant
weights in the Hessian matrix, derived from the kproj
and qproj distributions in the LLaMA-7B model.

offers significant acceleration, but it often results in 133

a substantial loss of accuracy (Wang et al., 2024), 134

limiting its application in LLMs. Unstructured 135

pruning better preserves accuracy but provides 136

limited improvements in inference speed (Fran- 137

tar and Alistarh, 2023). Semi-structured pruning 138

strikes a balance between accuracy retention and 139

acceleration, though it is constrained by a sparsity 140

of 50%, reducing its flexibility. Quantization re- 141

duces model size by replacing floating-point num- 142

bers with low-precision integers, which accelerates 143

memory access during inference. Currently, high- 144

bit quantization techniques such as AWQ (Lin et al., 145

2024), GPTQ (Frantar et al., 2022), QuIP (Chee 146

et al., 2024), OmniQuant (Shao et al., 2023), and 147

OWQ (Lee et al., 2024) are widely adopted. How- 148

ever, extremely low-bit quantization poses signif- 149

icant challenges, with mainstream methods strug- 150

gling to maintain performance at low-bit levels. 151

While techniques like AQLM (Egiazarian et al., 152

2024) and QuIP# (Tseng et al., 2024) aim to en- 153

hance low-bit quantization, they rely on vector 154

quantization and complex codebooks, which hin- 155

der inference acceleration. Overall, existing model 156

compression techniques continue to face substan- 157

tial challenges in achieving an optimal balance be- 158

tween flexibility and compression rate. 159

Advantages of GQSA. Quantization and sparsity 160

address model redundancy in different ways. Quan- 161

tization reduces the precision of numerical repre- 162

sentations, while sparsity compresses the model by 163

eliminating certain neurons. These two techniques 164

are largely orthogonal, and GQSA leverages both 165

dimensions to achieve flexible and high compres- 166

sion rates. Although both GQSA and 2:4 pruning 167

are semi-structured pruning methods, GQSA offers 168

several advantages over 2:4 pruning. First, GQSA 169

supports an adjustable sparsity rate, whereas 2:4 170

pruning, designed for NVIDIA’s 2:4 TensorCore, 171

mandates a 50% sparsity rate by forcing two out of 172

2

Activation

GQS Layer Q

KV Cache

GQS Layer K GQS Layer V

KV Cache

Activation

GQS Layer O

Activation

GQS Layer
FC1

Activation

GQS Layer
FC2

Activation

MHA FFN

FP Model

GQS Model

quant dequant

s and z

Data

GQS Model

dequant

Data

BQPO

E2E-OQP

GQS Decoder Block

(a) One basic block of the GQSA LLM (b) Two-stage optimization for GQSA LLM

Figure 2: Overview of GQSA. (a) We propose a group quantization and sparse LLMs, where linear layers are
replaced by GQS layers. (b) We use the two-stage optimization method BQPO and E2E-OQP to recover the
performance of the extremely compressed model.

every four weights to be zero. Our group sparsity173

model, in combination with co-designed operators,174

enables efficient implementation at various sparsity175

levels. Second, GQSA achieves a higher weight176

compression rate. For instance, with a 50% sparsity177

rate, 2:4 pruning requires additional metadata to178

identify the positions of retained neurons, which179

are chosen randomly. In contrast, GQSA stores lo-180

cation information at the group/block level, signifi-181

cantly enhancing compression efficiency. Finally,182

2:4 pruning is restricted to NVIDIA’s 2:4 Tensor-183

Core and is incompatible with mainstream weight-184

only quantization methods. In contrast, GQSA is185

highly compatible with weight-only quantization,186

thanks to its customized two-stage optimization,187

leading to a substantial increase in overall compres-188

sion rate.189

3 GQSA190

In this section, we provide a detailed exposition191

of GQSA. Section 3.1 begins with an examination192

of weight quantization and salient weight selec-193

tion principles. Building upon these foundations,194

Section 3.2 introduces the innovative GQS Layer,195

designed to maximize the compression advantages196

from both quantization and pruning. The subse-197

quent sections (3.3 and 3.4) detail our two-stage198

optimization algorithm, which delivers exceptional199

model performance. Concluding the section, 3.5200

proposes a novel task-centric parallel strategy for201

efficient inference acceleration.202

3.1 Preliminary203

Weight Quantization. LLM quantization maps204

floating-point values to a lower-bit discrete value205

space, significantly reducing model size, enhanc- 206

ing computational efficiency, and accelerating in- 207

ference. The process typically involves two steps: 208

determining the quantization parameters (scale and 209

zero-point) and computing the corresponding quan- 210

tized tensor. For uniform asymmetric quantization, 211

which is used in this paper, the scale s and zero- 212

point z are determined by: 213

s = max(W)−min(W)
2n−1 , z = −

⌊
min(W)

s

⌉
, (1) 214

where W represents the model weights and n de- 215

notes the quantization bit-width. The elements of 216

the quantized tensor can be computed as follows: 217

W̃ = clamp(

⌊
W

s

⌉
+ z, 0, 2n − 1), (2) 218

where ⌊·⌉ represents the rounding operation, and 219

W̃ represents the quantized integer weights. When 220

it is necessary to update the quantized weights of 221

the model, the weights are converted back to full 222

precision during the forward propagation phase, as 223

shown below: 224

Ŵ = (W̃ − z) · s, (3) 225

where Ŵ denotes the dequantized weights utilized 226

in the forward computation. The processes of quan- 227

tization (as shown in Equation (2) and dequantiza- 228

tion (as shown in Equation (3) are integrated into 229

the computational graph, enabling quantization- 230

aware optimization through gradient descent. 231

Salient Weight. In LLMs, different weights ex- 232

hibit different importance. By pruning unimpor- 233

tant weights, memory usage can be greatly reduced 234

while maintaining nearly unchanged performance. 235

3

Early studies used the absolute value of weights to236

evaluate weight importance, but ignored the role of237

activation. The Hessian metric combines weights238

and activations and is a more effective metric that239

has been verified by multiple methods (Shang et al.,240

2023; Frantar and Alistarh, 2023). Therefore, this241

paper uses the Hessian matrix to evaluate weight242

importance.243

si =
w2
i

[H−1]2ii
, (4)244

where H represents the Hessian matrix of each245

layer, and wi denotes the weight values. In the246

subsequent sections, si refers to the criteria for247

identifying salient weights. AWQ (Lin et al., 2024)248

demonstrates that the top 1% of salient weights in249

the model are crucial to performance, so accurately250

retaining these weights is key to performance. Fig-251

ure 1 visualizes the distribution of salient weights252

in the OPT model, revealing a segmented pattern253

along the rows. Consequently, group by rows and254

selecting salient weight group emerges as a natural255

optimization strategy.256

Figure 3: GQSA computes saliency metrics based on
weights and activations, grouping the weights along
the row dimension (illustrated with groups of four el-
ements). Group pruning is then applied based on the
average saliency metrics within each group, resulting in
the formation of the GQS layer.

3.2 GQS Layer257

Weight-only per-group quantization has gained sig-258

nificant recognition in both academia (Lin et al.,259

2024; Shao et al., 2023; Frantar et al., 2022)260

and industry (Gerganov, 2024). To enable effi-261

cient sparse acceleration compatible with weight-262

only per-group quantization approach, we conduct263

a comprehensive analysis of the distribution of264

salient weights within the model. As depicted in265

Figure 1, we observe that salient weights exhibit266

distinct segmented distribution patterns. Based267

on this observation, we introduce a novel struc-268

tured group pruning method that goes beyond the 269

conventional 2:4 sparsity pattern, leveraging the 270

segmented distribution characteristics of salient 271

weights. As illustrated in Figure 3, we begin by 272

grouping weights along the row dimension, assum- 273

ing a group size of 4 for simplicity. For each group, 274

we compute a salient metric using the Hessian ma- 275

trix. Based on this metric, we prune non-salient 276

weight groups and quantize the remaining salient 277

groups to 4 bits, thereby further compressing the 278

model size. Additionally, by adopting the BSR 279

sparse format, we convert the compression gains 280

from pruning into actual storage savings. The spe- 281

cific storage structure in Figure 3 is shown below: 282
283

rowIndex = {0, 1, 3, 3, 4} 284
groups = {1, 0, 1, 1} 285
values = {5, 1, 15, 1, 15, 13, 2, 1, 286

-1, 7, 14, 0, 0, 3, 6, 15} 287288

where rowIndex[i] represent the offset of each 289

row i, where i belongs to the range [0, rows]. The 290

difference rowIndex[r+1] - rowIndex[i] indi- 291

cates the number of non-zero groups in the i-th row. 292

Additionally, rowIndex[rows] represents the total 293

number of non-zero groups. The array groups[i] 294

stores the indices of the non-zero groups; for in- 295

stance, if groups[1] = 0, it means that the sec- 296

ond group is located in the 0th column (in terms of 297

group units). Finally, values stores the values of 298

the non-zero groups for each row. 299

3.3 BQPO 300

In the first stage (Figure 2(b)), we apply the BQPO 301

method to optimize the GQS model, aiming to mit- 302

igate the accuracy degradation caused by group 303

quantization and pruning. This is achieved by ad- 304

justing the weight parameters within each block. 305

Traditional QAT methods typically optimize the 306

entire network’s weights in an end-to-end fashion, 307

as illustrated in Equations (2) and (3). Similarly, 308

most pruning approaches adopt a global end-to-end 309

strategy to update the remaining unpruned parame- 310

ters. However, such methods often demand substan- 311

tial computational resources and large-scale train- 312

ing datasets. To improve optimization efficiency, 313

BQPO adopts a block-wise optimization strategy. 314

Prior studies, such as OmniQuant and AffineQuant, 315

have shown that block-wise optimization can sig- 316

nificantly reduce both training time and memory 317

consumption. Unlike OmniQuant and AffineQuant, 318

which primarily optimize quantization parameters 319

(inter-channel smoothing factors and weight clip- 320

ping thresholds), GQSA suffers from more severe 321

4

NCTA_i CTA_j CTA_k

.....

.....

..........

.....

1
K

CTA_i

CTA_j

CTA_k

G

1
N

2

1

3

4

5

Shared Memory

Global Memory

Registers

Inputs

Quantized & Sparsed
Weight

Outputs

Figure 4: A simplified view of GQSA’s operator calcu-
lation flow. G represents sparse and quantized group
size.

performance degradation due to its combination of322

high structured sparsity and low-precision quantiza-323

tion. As a result, BQPO focuses on optimizing the324

remaining weights to recover performance under325

extreme compression settings. This block-wise ap-326

proach enables significant performance restoration327

with minimal additional training cost compared to328

global optimization techniques.329

3.4 E2E-OQP330

Compared to BQPO, E2E-OQP not only performs331

intra-block optimization but also accounts for the332

overall error across the entire network, thereby cap-333

turing cross-block dependencies. As illustrated in334

Figure 2(b), E2E-OQP differs from conventional335

quantization-aware training (QAT) methods. As-336

suming that BQPO has already yielded a well-337

optimized model in the first stage, E2E-OQP initial-338

izes training using the BQPO-optimized weights.339

During this phase, we freeze the primary network340

weights W̃ and optimize only the quantization pa-341

rameters s and z to further refine model perfor-342

mance. The design of E2E-OQP underscores the343

advantages of the GQSA framework. Specifically,344

during fine-tuning, we employ the block-sparse345

row (BSR) format: the remaining group weights346

are quantized to low bit-width and frozen, while347

pruned groups are discarded entirely. This strategy348

enables effective fine-tuning of the quantization pa-349

rameters without requiring sparse masks, thereby350

restoring the performance of the GQSA model351

under extreme compression. Overall, E2E-OQP352

achieves substantial memory savings by focusing353

solely on the quantization parameters of the remain-354

N

K

N
CTA_I

CTA_J

CTA_K

Slice-K Stream-K

Figure 5: Workload balancing through parallel task par-
titioning.

ing groups while maintaining 4-bit quantization 355

across the main network. A detailed comparison 356

of the resource consumption of BQPO and E2E- 357

OQP is provided in Appendix A, demonstrating the 358

efficiency advantages of the GQSA approach. 359

3.5 Custom Software Engine 360

GPU has many processing elements called Stream- 361

ing Multiprocessors (SMs) and uses a large num- 362

ber of threads to perform computing tasks in par- 363

allel. Threads are structured into thread blocks 364

(CTAs), which become the smallest scheduling ex- 365

ecution unit on SMs. Therefore, the computation 366

target is decomposed and mapped to each thread 367

block, called CTA, to achieve parallel computing. 368

As shown in Figure 4, for a GEMV task of shape 369

1×N×K, each thread block is responsible for com- 370

puting a 1×BN output tile, which is decomposed 371

into K
BK sub-GEMV tasks of shape 1×BN×BK. 372

In offline pre-processing, quantized weights are 373

grouped by size G and saved as gguf format along 374

with scaling factors and zero points. This means 375

that each sub-GEMV task computes BK
G * BN 376

non-sparse groups held by one or more output 377

channels. It should be noted that the logical ad- 378

dresses between non-sparse groups are not neces- 379

sarily consecutive, so the corresponding activation 380

group needs to be accessed according to the real 381

group index of each group. 1 The thread-block is- 382

sues asynchronous copy instructions to fetch small 383

chunks of input data (tiles) from global memory 384

to shared memory. 2 As soon as a tile arrives 385

in shared memory, it is further sliced into smaller 386

chunks (fragments) and copied into registers. 3 387

Once all necessary components are in the regis- 388

ters, the quantized matrix undergoes dequantiza- 389

tion. 4 The dequantized matrix and inputs are 390

then processed by TensorCores (MMA) or Cuda- 391

Cores (FMA) instructions. 5 Finally, the accumu- 392

lated results are written back from the registers to 393

the outputs in global memory. 394

5

LLaMA-7B LLaMA-13B LLaMA-2-7B LLaMA-2-13B LLaMA-3-8B LLaMA-3.1-8B
Setting Method

WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4

GPTQ 44.01 27.71 15.60 15.29 36.77 33.70 28.14 20.97 210 4.1e4 250 80.3
QUIP 29.74 33.74 12.48 21.94 39.73 31.94 13.48 16.16 84.97 1.3e2 - -

PB-LLM 24.61 49.73 17.73 26.93 25.37 29.84 49.81 19.82 44.12 79.2 - -
Omniquant 15.47 24.89 13.21 18.31 37.37 90.64 17.21 26.76 2.1e4 6.0e4 7.3e3 1.3e4
LeanQuant 15.65 17.62 9.64 10.93 16.98 17.89 10.32 11.73 41.78 36.50 - -

W2

SliM-LLM 14.58 32.91 8.87 13.85 16.01 16.00 9.41 9.41 39.66 1.1e2 - -

2:4 SparseGPT 11.20 13.59 9.14 11.34 10.95 13.56 8.32 11.30 16.56 22.99 16.62 23.22
2:4 Wanda 11.53 14.41 9.58 12.07 11.02 15.07 8.27 12.12 25.27 36.40 23.93 36.24

w4s20% 6.58 8.30 5.75 7.57 6.57 8.32 5.86 7.51 8.43 12.54 8.40 12.37
w4s30% 7.91 9.74 6.72 8.32 7.56 9.49 6.87 8.49 9.79 14.58 9.69 14.32
w4s40% 9.10 11.24 7.70 9.57 8.43 11.31 7.13 9.53 11.80 17.61 11.56 17.32
w4s50%

GQSA

11.33 12.03 9.21 10.85 10.64 12.82 7.80 10.93 13.81 20.85 13.56 20.43

Table 1: Wikitext2 and C4 perplexity (↓) for LLaMA-1, LLaMA-2, LLaMA-3 and LLaMA-3.1 models, with a
context length of 2048.

Furthermore, to enhance the efficiency of sparse395

computing, we introduced Stream-K (Osama et al.,396

2023). As show in Figure 5, the classic Slice-397

K (Guo et al., 2024) assigns output tiles indepen-398

dently to thread blocks. Each thread block pro-399

cesses one or more rows of the left operand and one400

or more columns of the right operand to compute401

the corresponding output tile by slicing along the402

internal K dimensions. However, when the weight403

matrix exhibits high sparsity, the uneven distribu-404

tion of workloads can result in the "straggler" prob-405

lem, where small workloads cause inefficiencies.406

Stream-K addresses this issue by decomposing the407

workload at a finer granularity, allowing multiple408

thread blocks to collaborate in computing a single409

output tile.410

4 Experiments411

4.1 Experimental Settings412

Models and Tasks. We selected the LLaMA (Tou-413

vron et al., 2023a), LLaMA-2 (Touvron et al.,414

2023b), LLaMA-3, LLaMA-3.1 (Dubey et al.,415

2024) and OPT (Zhang et al., 2022) models to416

benchmark our method. Following previous stud-417

ies, we evaluated the model’s language modeling418

capability on the WikiText2 (Merity et al., 2016)419

and C4 (Raffel et al., 2020) datasets. To assess per-420

formance on zero-shot tasks, we selected several421

mainstream benchmarks, including PIQA (Bisk422

et al., 2020), ARC (Clark et al., 2018), Hel-423

laSwag (Zellers et al., 2019), and Winogrande (Sak-424

aguchi et al., 2021), and conducted evaluations us-425

ing lm-eval.426

Baselines. We conducted a comprehensive com-427

parison of our method with several recently pub-428

lished techniques in both structured and semi-429

structured pruning. Given that our implementation 430

achieved INT4 along with 50% structured prun- 431

ing, we also compared our approach with pure 432

INT2 quantization. For structured pruning, we 433

compared our results with LLMPruner (Ma et al., 434

2023), SliceGPT (Ashkboos et al., 2024) and Short- 435

GPT (Men et al., 2024). For semi-structured prun- 436

ing, we utilized SparseGPT (Frantar and Alistarh, 437

2023) and Wanda (Sun et al., 2023) for comparison. 438

Additionally, we selected OmniQuant (Shao et al., 439

2023), QuIP (Chee et al., 2024), PB-LLM (Shang 440

et al., 2023), GPTQ (Frantar et al., 2022), Lean- 441

Quant (Zhang and Shrivastava, 2024), and SliM- 442

LLM (Huang et al., 2024) as benchmarks for W2 443

quantization. 444

Implementation Details. To evaluate the perfor- 445

mance of GQSA across various configurations, we 446

implemented sparsity levels of 20%, 30%, 40%, 447

and 50%, using 4-bit weight-only per-group quan- 448

tization. To strike a balance between model perfor- 449

mance and inference speed, a group size of 16 was 450

selected as the optimal configuration. The AdamW 451

optimizer (Loshchilov, 2017) with a learning rate 452

of 1e-5 was employed to optimize both BQPO and 453

E2E-OQP. The optimization data was randomly 454

sampled from the WikiText2 and C4 datasets, con- 455

sisting of 4,096 samples, each containing 2,048 456

tokens. BQPO was trained for 5 epochs, while 457

E2E-OQP was trained for 2 epochs. 458

4.2 Evaluation on Language Generation Tasks 459

To assess the performance of GQSA under extreme 460

compression conditions, we first compared its per- 461

plexity against baseline method. As shown in Ta- 462

ble 1, GQSA surpasses the performance of cur- 463

rent state-of-the-art weight-only per-group quan- 464

tization methods, including GPTQ, QuIP, Omni- 465

6

Quant, LeanQuant, under a 50% structured pruning466

combined with INT4 quantization. It also surpasses467

mixed-precision quantization models like PB-LLM468

and SliM-LLM. Furthermore, GQSA achieves com-469

parable results to 2:4 semi-structured pruning while470

delivering substantial improvements in compres-471

sion ratio and speedup. Similar results are pre-472

sented in Table 14 for Qwen2.5 and Table 15 for473

OPT models, where GQSA consistently matches or474

surpasses baseline methods, even under more strin-475

gent compression settings. Furthermore, we ob-476

serve that existing model compression methods of-477

ten experience significant performance degradation478

on the latest large language models (e.g., LLaMA-3479

and LLaMA-3.1). In contrast, GQSA demonstrates480

robust performance even in scenarios where other481

methods encounter substantial performance degra-482

dation.483

Model Setting Method PIQA ARC-C ARC-E Hellaswag Winogrande

ShortGPT 60.1 31.0 41.7 44.0 60.8
SliceGPT 67.5 34.5 55.6 55.1 62.925%

LLM-Pruner 75.7 37.2 62.0 60.1 62.2

W4S30% GQSA 74.32 34.98 66.04 64.40 65.98

ShortGPT 50.7 27.7 25.6 30.1 50.3
SliceGPT 58.5 27.3 43.5 43.6 57.940%

LLM-Pruner 70.7 31.3 50.7 53.5 56.1

LLaMA-2-7B

W4S40% GQSA 71.27 30.72 61.32 58.48 61.48

ShortGPT 73.1 41.9 60.1 60.6 70.5
SliceGPT 69.6 40.2 61.5 59.4 67.025%

LLM-Pruner 79.4 43.5 67.8 65.4 63.5

W4S30% GQSA 75.68 39.85 71.55 70.45 66.54

ShortGPT 62.4 32.2 44.8 47.8 62.8
SliceGPT 59.9 29.2 44.1 49.6 61.640%

LLM-Pruner 75.3 35.4 56.3 60.2 57.8

LLaMA-2-13B

W4S40% GQSA 75.30 35.82 66.50 65.40 65.98

Table 2: Zero-shot performance between LLaMA-2-
7B and LLaMA-2-13B models under 25% and 40%
structured pruning, GQSA with 30% and 40% structured
pruning along with INT4 quantization.

4.3 Evaluation on Zero-Shot Tasks484

To further validate our model, we conducted a de-485

tailed comparison of its zero-shot accuracy against486

baseline methods. Given the limited data avail-487

ability from these baselines methods, we selected488

LLaMA-2-7B and LLaMA-2-13B for the analysis.489

Table 2 compares GQSA with structured pruning,490

where GQSA achieved substantial performance491

gains at equivalent or higher pruning rates, with492

these benefits becoming more pronounced at higher493

pruning levels. Table 3 compares GQSA with semi-494

structured pruning and W2 weight-only per-group495

quantization. Compared to W2 per-group quanti-496

zation, GQSA consistently delivered superior per-497

formance improvements at the same compression498

ratio. Under the conditions of 50% structured prun-499

ing with INT4 quantization, GQSA outperformed500

OmniQuant W2 per-group quantization, yielding 501

average accuracy gains of 5.4% for LLaMA-2-7B 502

and 5.7% for LLaMA-2-13B. Given that GQSA 503

operates in a more challenging compression set- 504

ting than semi-structured pruning, we compare 505

GQSA W4 40% with semi-structured pruning. Ex- 506

perimental results reveal that GQSA achieves su- 507

perior performance even with a compression rate 508

3× higher than that of 2:4 pruning. Furthermore, 509

GQSA demonstrates significant advantages in both 510

speed and accuracy compared to 2:4 pruning. Con- 511

sidering its compression efficiency and flexibility, 512

GQSA emerges as the clear superior choice. 513

Model Setting Method PIQA ARC-C ARC-E Hellaswag Winogrande

OmniQuant 64.52 26.10 44.94 49.27 54.53
W2

LeanQuant 65.4 24.7 44.2 - 57.4

W4S50% GQSA 68.01 29.01 58.33 52.72 58.41

SparseGPT 70.13 29.35 61.14 56.89 63.14
2:4

Wanda 70.12 30.55 61.32 55.34 62.83
LLaMA-2-7B

W4S40% GQSA 71.27 30.72 61.32 58.48 61.48

OmniQuant 68.06 30.03 57.07 56.56 52.95
W2

LeanQuant 70.6 28.2 56.7 - 60.7

W4S50% GQSA 72.47 33.28 63.01 62.11 62.28

SparseGPT 72.74 32.59 66.04 62.78 66.54
2:4

Wanda 73.72 34.39 66.33 63.12 66.93
LLaMA-2-13B

W4S40% GQSA 75.30 35.82 66.50 65.40 65.98

Table 3: Zero-shot performance between LLaMA-2-
7B and LLaMA-2-13B under W2 quantization method,
50% semi-structured pruning, and GQSA with 40% and
50% structured pruning along with INT4 quantization.

Figure 6: Comparison of GEMV acceleration of our
GQSKernel on RTX 4080.

4.4 Inference Engine Evaluation 514

Kernel Benchmark. We compared GQSKernel 515

with the 2:4 sparse kernel on a (1, 4096) × (4096, 516

4096) dimension. Due to the flexibility of GQSKer- 517

nel, it can accommodate varying group sparsity 518

sizes. The experimental results, presented in Fig- 519

ure 6, show that as sparsity increases, the GEMV 520

computation speed improves. Moreover, GQSKer- 521

nel consistently outperforms the 2:4 sparse mode 522

across all group granularity settings. At 50% spar- 523

7

sity, GQSA achieves a 3× inference speedup com-524

pared to the 2:4 sparse mode.525

Figure 7: Inference latency (top) and memory usage
(bottom) on an NVIDIA A800-40GB GPU with a fixed
input length of 15. W8 results are provided in the Ap-
pendix Table 16.

End-to-end throughput. The acceleration of quan-526

tization primarily results from memory access sav-527

ings, whereas sparsity acceleration arises from both528

memory access and computational savings. We in-529

tegrated the GQSKernel into FastTransformer and530

compared it with the FP16 implementation. The ex-531

perimental results, as shown in Figure 7, indicate532

that GQSA achieves a 4× reduction in inference533

latency on the LLaMA-7B model under the GQSA534

W4S50% setting with a 1024 output length. Addi-535

tionally, as presented in Appendix Table 10, GQSA536

further enhances the acceleration potential of the537

compressed model compared to separate quantiza-538

tion or sparsity methods by simultaneously reduc-539

ing redundancy in both dimensions of LLMs. For540

instance, the inference speeds of LLaMA-7B for541

S50%, W2, and W4S50% are 878.90 ms, 475.55542

ms, and 377.98 ms, respectively. Overall, GQSA543

demonstrates the most significant performance im-544

provement.545

SeqLen Method Latency (ms)

W4A16 642.24
W4 2:4 Pruning 513.79128

GQSA W4 S50% 377.98

W4A16 1312.91
W4 2:4 Pruning 1112.96256

GQSA W4 S50% 699.26

W4A16 2707.26
W4 2:4 Pruning 1966.45512

GQSA W4 S50% 1433.43

W4A16 5786.8
W4 2:4 Pruning 4118.361024

GQSA W4 S50% 3110.54

Table 4: The inference latency and memory usage of
GQSA and 2:4 pruning are compared on an NVIDIA
A800-40GB GPU with a fixed input length of 15.

Additionally, we compared GQSA’s perfor- 546

mance with that of state-of-the-art sparse schemes, 547

such as SparseGPT and Wanda’s 2:4 sparse scheme. 548

The experimental results, presented in Table 4, 549

demonstrate that GQSA outperforms these meth- 550

ods in terms of inference latency and accuracy. 551

4.5 Ablation Experiments 552

We investigated the impact of group size and spar- 553

sity on the performance of the GQSA model. As 554

shown in Figure 8 (left), GQSA demonstrates ro- 555

bust performance at sparsity levels of 50% or lower. 556

When sparsity exceeds 60%, a noticeable perfor- 557

mance degradation occurs. However, even at an 558

extreme sparsity level of 80%, GQSA achieves 559

a perplexity below 30, avoiding performance col- 560

lapse. Figure 8 (right) illustrates the relationship 561

between group size and model performance. Over- 562

all, model performance exhibits a clear correlation 563

with group size. Based on performance considera- 564

tions, we selected 16 as the default group size for 565

the model. 566

Figure 8: The ablation studies on the LLaMA-7B model
to evaluate the impact of different structured pruning
group sizes (right) and sparsity levels (left) on model
performance.

5 Conclusion 567

We propose GQSA, an efficient sparse accelera- 568

tion method for the decoding process, compatible 569

with weight-only per-group quantization. Through 570

a comprehensive analysis of LLMs weights, we 571

investigated group sparse modes beyond the 2:4 572

sparsity mode. To enhance model performance, 573

we implemented a two-stage sparse optimization 574

strategy, comprising BQPO and E2E-OQP. Based 575

on the BSR format, we then developed an efficient 576

sparse inference engine to fully leverage the syner- 577

gistic benefits of quantization and sparsity. Exten- 578

sive experimental results demonstrate that GQSA 579

effectively integrates at both the algorithmic and 580

system levels, offering a superior accuracy-speed 581

trade-off compared to traditional 2:4 sparsity and 582

quantization approaches. 583

8

Limitations584

The proposed GQSA extends beyond the 2:4 spar-585

sity pattern to explore group sparsity patterns, en-586

abling efficient compatibility with weight-only per-587

group quantization. By combining algorithm-level588

optimizations with a customized inference engine,589

our approach achieves an improved balance be-590

tween accuracy and inference speed. However, the591

current method does not address activation quanti-592

zation, and due to resource limitations, it has not593

yet been applied to large language models (LLMs)594

exceeding 100 billion parameters. These limita-595

tions present promising directions for future re-596

search, and we are optimistic that they will be ad-597

dressed in subsequent work.598

Ethics Statement599

This paper introduces a method to tackle the600

challenges of compressing large language models601

(LLMs), with the goal of facilitating their wider602

application and adoption. In the context of cur-603

rent research, ethical considerations surrounding604

LLMs have received substantial attention. Our find-605

ings indicate that the proposed method does not606

exacerbate existing biases or compromise ethical607

standards.608

References609

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-610
nari do Nascimento, Torsten Hoefler, and James611
Hensman. 2024. Slicegpt: Compress large language612
models by deleting rows and columns. arXiv preprint613
arXiv:2401.15024.614

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,615
et al. 2020. Piqa: Reasoning about physical com-616
monsense in natural language. In Proceedings of the617
AAAI conference on artificial intelligence, 05, pages618
7432–7439.619

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and620
Christopher M De Sa. 2024. Quip: 2-bit quantization621
of large language models with guarantees. Advances622
in Neural Information Processing Systems, 36.623

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. 2024.624
Compressing large language models by stream-625
lining the unimportant layer. arXiv preprint626
arXiv:2403.19135.627

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,628
Ashish Sabharwal, Carissa Schoenick, and Oyvind629
Tafjord. 2018. Think you have solved question an-630
swering? try arc, the ai2 reasoning challenge. arXiv631
preprint arXiv:1803.05457.632

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 633
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 634
Akhil Mathur, Alan Schelten, Amy Yang, Angela 635
Fan, et al. 2024. The llama 3 herd of models. arXiv 636
preprint arXiv:2407.21783. 637

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, 638
Elias Frantar, Artem Babenko, and Dan Alistarh. 639
2024. Extreme compression of large language 640
models via additive quantization. arXiv preprint 641
arXiv:2401.06118. 642

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg 643
Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov, 644
and Xinchao Wang. 2024. Maskllm: Learnable semi- 645
structured sparsity for large language models. arXiv 646
preprint arXiv:2409.17481. 647

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 648
sive language models can be accurately pruned in 649
one-shot. In International Conference on Machine 650
Learning, pages 10323–10337. PMLR. 651

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 652
Dan Alistarh. 2022. Gptq: Accurate post-training 653
quantization for generative pre-trained transformers. 654
arXiv preprint arXiv:2210.17323. 655

M. Gerganov. 2024. llama.cpp: A high-performance 656
implementation of llama. Accessed: 2024-12-12. 657

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. 658
Minillm: Knowledge distillation of large language 659
models. In The Twelfth International Conference on 660
Learning Representations. 661

Han Guo, William Brandon, Radostin Cholakov, 662
Jonathan Ragan-Kelley, Eric P Xing, and Yoon Kim. 663
2024. Fast matrix multiplications for lookup table- 664
quantized llms. arXiv preprint arXiv:2407.10960. 665

Song Han, Huizi Mao, and William J Dally. 2016. Deep 666
compression: Compressing deep neural networks 667
with pruning, trained quantization and huffman cod- 668
ing. International Conference on Learning Represen- 669
tations (ICLR). 670

Song Han, Jeff Pool, John Tran, and William Dally. 671
2015. Learning both weights and connections for 672
efficient neural network. Advances in neural infor- 673
mation processing systems, 28. 674

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, 675
Xianglong Liu, Luca Benini, Michele Magno, and 676
Xiaojuan Qi. 2024. Slim-llm: Salience-driven mixed- 677
precision quantization for large language models. 678
arXiv preprint arXiv:2405.14917. 679

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, 680
and Eunhyeok Park. 2024. Owq: Outlier-aware 681
weight quantization for efficient fine-tuning and in- 682
ference of large language models. In Proceedings 683
of the AAAI Conference on Artificial Intelligence, 684
volume 38, pages 13355–13364. 685

9

https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-686
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,687
Xingyu Dang, Chuang Gan, and Song Han. 2024.688
Awq: Activation-aware weight quantization for on-689
device llm compression and acceleration. Proceed-690
ings of Machine Learning and Systems, 6:87–100.691

Chang Liu, Chongyang Tao, Jiazhan Feng, and Dongyan692
Zhao. 2022. Multi-granularity structural knowledge693
distillation for language model compression. In Pro-694
ceedings of the 60th Annual Meeting of the Associa-695
tion for Computational Linguistics (Volume 1: Long696
Papers), pages 1001–1011.697

I Loshchilov. 2017. Decoupled weight decay regulariza-698
tion. arXiv preprint arXiv:1711.05101.699

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.700
Llm-pruner: On the structural pruning of large lan-701
guage models. Advances in neural information pro-702
cessing systems, 36:21702–21720.703

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,704
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng705
Chen. 2024. Shortgpt: Layers in large language706
models are more redundant than you expect. arXiv707
preprint arXiv:2403.03853.708

Stephen Merity, Caiming Xiong, James Bradbury, and709
Richard Socher. 2016. Pointer sentinel mixture mod-710
els. arXiv preprint arXiv:1609.07843.711

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko712
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong713
Yu, and Paulius Micikevicius. 2021. Accelerat-714
ing sparse deep neural networks. arXiv preprint715
arXiv:2104.08378.716

Mohammad Mozaffari and Maryam Mehri Dehnavi.717
2024. Slim: One-shot quantized sparse plus718
low-rank approximation of llms. arXiv preprint719
arXiv:2410.09615.720

Muhammad Osama, Duane Merrill, Cris Cecka,721
Michael Garland, and John D Owens. 2023. Stream-722
k: Work-centric parallel decomposition for dense723
matrix-matrix multiplication on the gpu. In Proceed-724
ings of the 28th ACM SIGPLAN Annual Symposium725
on Principles and Practice of Parallel Programming,726
pages 429–431.727

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine728
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,729
Wei Li, and Peter J Liu. 2020. Exploring the lim-730
its of transfer learning with a unified text-to-text731
transformer. Journal of machine learning research,732
21(140):1–67.733

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-734
ula, and Yejin Choi. 2021. Winogrande: An adver-735
sarial winograd schema challenge at scale. Commu-736
nications of the ACM, 64(9):99–106.737

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen738
Dong. 2023. Pb-llm: Partially binarized large lan-739
guage models. arXiv preprint arXiv:2310.00034.740

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng 741
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng 742
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant: 743
Omnidirectionally calibrated quantization for large 744
language models. arXiv preprint arXiv:2308.13137. 745

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 746
Kolter. 2023. A simple and effective pruning ap- 747
proach for large language models. arXiv preprint 748
arXiv:2306.11695. 749

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 750
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 751
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 752
Azhar, et al. 2023a. Llama: Open and effi- 753
cient foundation language models. arXiv preprint 754
arXiv:2302.13971. 755

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 756
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 757
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 758
Bhosale, et al. 2023b. Llama 2: Open founda- 759
tion and fine-tuned chat models. arXiv preprint 760
arXiv:2307.09288. 761

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr 762
Kuleshov, and Christopher De Sa. 2024. Quip#: 763
Even better llm quantization with hadamard in- 764
coherence and lattice codebooks. arXiv preprint 765
arXiv:2402.04396. 766

Weilan Wang, Yu Mao, Dongdong Tang, Hongchao 767
Du, Nan Guan, and Chun Jason Xue. 2025. When 768
compression meets model compression: Memory- 769
efficient double compression for large language mod- 770
els. arXiv preprint arXiv:2502.15443. 771

Zixiao Wang, Jingwei Zhang, Wenqian Zhao, Farzan 772
Farnia, and Bei Yu. 2024. Moreaupruner: Robust 773
pruning of large language models against weight per- 774
turbations. arXiv preprint arXiv:2406.07017. 775

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 776
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 777
machine really finish your sentence? In Proceedings 778
of the 57th Annual Meeting of the Association for 779
Computational Linguistics. 780

Chao Zeng, Songwei Liu, Yusheng Xie, Hong Liu, Xiao- 781
jian Wang, Miao Wei, Shu Yang, Fangmin Chen, and 782
Xing Mei. 2024. Abq-llm: Arbitrary-bit quantized in- 783
ference acceleration for large language models. arXiv 784
preprint arXiv:2408.08554. 785

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 786
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 787
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 788
Opt: Open pre-trained transformer language models. 789
arXiv preprint arXiv:2205.01068. 790

Tianyi Zhang and Anshumali Shrivastava. 2024. Lean- 791
quant: Accurate large language model quantiza- 792
tion with loss-error-aware grid. arXiv preprint 793
arXiv:2407.10032. 794

10

Appendix795

A Training Efficiency of GQSA796

Table 5 lists the memory and time required to train797

the Lllama-2 model using GQSA. The results show798

that GQSA requires only minimal resource over-799

head, and the 7B model only takes less than 10800

hours to train with 9.3GB of memory, which is801

much less than the 14GB memory requirement to802

load the FP16 model, which is very efficient. It is803

also significantly better than other pruning meth-804

ods, such as LLM-Pruner, which requires 18GB805

and takes less training time.806

LLaMA-2
BQPO E2E-OQP

Memory (GB) Time (h) Memory (GB) Time (h)

7B 9.3 5.1 7.6 4.2
13B 14.3 7.3 11.7 6.4

Table 5: Detailed training time and training memory for
GQSA at different model sizes and quantization bits on
a single A100-40GB GPU.

B The effects of BQPO and E2E-OQP on807

the model’s performance808

Table 6 presents the impact of BQPO and E2E-809

OQP on model performance. BQPO optimizes810

weights in a block-wise manner, effectively pre-811

serving the performance of the GQS model. Fi-812

nally, E2E-OQP, which accounts for cross-layer813

errors, yields the best model performance.814

Method
LLaMA-13B LLaMA-2-13B

WikiText2 C4 WikiText2 C4

BQPO 12.90 13.39 10.55 13.56
BQPO+E2E-OQP 9.21 10.85 7.80 10.93

Table 6: The effectiveness of BQPO and E2E-OQP
methods for compressing LLaMA-13B and LLaMA-2-
13B models.

C GQSA performance under815

weight-activation quantization816

Unlike other algorithms that are limited to weight-817

only quantization, weight-activation quantization818

or model pruning, GQSA can not only effi-819

ciently combine pruning with weight-only quan-820

tization, but also support pruning with weight acti-821

vation quantization. Our GPU-friendly grouped822

semi-structured sparse solution can be seam-823

lessly combined with weight-only quantization or824

weight+activation quantization. On the basis of 825

quantization, we can further improve performance 826

by skipping some operations through sparsity. 827

Model Settings WikiText2 C4

LLaMA-2-7B W4A8S50% 7.84 11.04
LLaMA-2-13B W4A8S50% 14.09 21.26

Table 7: Performance comparison of GQSA with
weight-activation quantization.

As show in Table 7, GQSA effectively preserves 828

model accuracy under W4A8S50% quantization 829

for both LLaMA-2-7B and LLaMA-2-13B archi- 830

tectures, maintaining strong performance despite 831

simultaneous weight and activation quantization 832

with 50% sparsity. 833

D Comparison of Quantized & Pruned 834

Works 835

A comparison with SparseGPT’s joint sparsifi- 836

cation and quantization. In SparseGPT’s report, 837

"Joint Sparsification & Quantization" performs 838

worse than "Sparsification-only," so we initially did 839

not include it in our main content. However, for 840

completeness, the following Table 8 presents a di- 841

rect comparison between GQSA and SparseGPT’s 842

"Joint Sparsification & Quantization" on LLaMA- 843

2-13B and LLaMA-3-8B. The results demonstrate 844

that GQSA provides a more significant perfor- 845

mance advantage. 846

Method
LlaMA-2-13B LLaMA-3-8B

WikiText2 C4 WikiText2 C4

SparseGPT 2:4 8.32 11.30 16.56 22.99
SparseGPT 2:4+INT4 9.25 12.74 19.43 26.34

GQSA W4S50% 7.80 10.93 13.84 20.85

Table 8: Performance comparison of GQSA with
SparseGPT.

Comparison with contemporaneous works. To 847

further validate the superiority of GQSA, we con- 848

duct comparative evaluations with contemporane- 849

ous methods including SliM-LoRA (Mozaffari and 850

Dehnavi, 2024) and DC-W8A8 (Wang et al., 2025). 851

SliM-LoRA employs 4-bit weight quantization 852

combined with Wanda’s 2:4 pruning but fails to 853

overcome the limitations of semi-structured spar- 854

sity. Since NVIDIA’s 2:4 Tensor Cores do not sup- 855

port weight-only quantization, the inference accel- 856

eration benefits remain limited. Additionally, the 857

11

2:4 sparse format retains randomly positioned neu-858

rons and requires storing an equal amount of meta-859

data to record their locations, preventing effective860

memory compression. SliM-LoRA also introduces861

the LoRA-Adapter; however, due to the quantiza-862

tion and sparsity of the main network, the LoRA-863

Adapter cannot be directly integrated and must be864

stored separately, increasing inference complexity.865

According to the SliM paper, its sparse quantiza-866

tion matrix can even reduce inference speed on867

the A100 GPU. In contrast, GQSA’s sparse quan-868

tization achieves a 4.3 × inference speedup over869

FP16, highlighting SliM’s shortcomings in both870

inference acceleration and memory compression.871

DC-W8A8 incorporates sparsity into W8A8 quan-872

tization but relies on unstructured sparsity with a873

sparsity rate of only 20%, offering minimal mem-874

ory compression benefits. As stated in its paper,875

DC-W8A8 achieves only a 2.2× compression ratio876

compared to FP16, whereas GQSA achieves a 4.3×877

compression ratio. Moreover, GQSA significantly878

outperforms DC-W8A8 in inference acceleration.879

Method
OPT LLaMA-2

6.7B 13B 7B 13B

SliM-LoRA 47.08 47.96 54.26 57.85
DC-W8A8 48.55 - 60.89 -

GQSA W4S50% 53.26 56.39 59.36 64.96

Table 9: Performance comparison between GQSA and
contemporaneous methods.

Table 9 presents the comparative evaluation of880

average accuracy on zero-shot tasks across differ-881

ent methods. The experimental results demonstrate882

that GQSA consistently outperforms both SliM883

and DC-W8A8 in terms of overall performance.884

Furthermore, GQSA achieves superior accelera-885

tion ratios and compression rates, while maintain-886

ing competitive accuracy. These advantages make887

GQSA particularly suitable for edge-side inference888

scenarios, where both computational efficiency and889

model compactness are critical.890

E A comparison of the effects of pruning891

and quantization on inference892

performance893

As demonstrated in Table 10, we will highlight the894

comprehensive performance advantages of GQSA895

over single pruning and quantization methods from896

two perspectives.897

Setting WikiText2 C4 Inference speed (ms)

0% 5.47 6.97 1490.50
S20% 7.67 9.10 1370.35
S30% 9.34 11.27 1181.25
S40% 10.84 16.38 1035.15
S50% 14.56 21.09 878.90
S60% 25.76 37.49 671.98

W8 5.50 7.01 868.35
W4 5.72 7.25 642.24
W2 36.43 40.34 475.55

W4S50% 10.64 12.82 377.98

Table 10: Performance comparison of GQSA with naive
pruning and naive quantization in the extreme compres-
sion setting on LLaMA-2-7B.

From the Perspective of Algorithm Accuracy: 898

Both quantization and sparsity, when applied in- 899

dividually, can lead to significant accuracy degra- 900

dation under extreme compression settings. For 901

instance, the PPL test results under S60% and 902

W2 configurations demonstrate considerable per- 903

formance loss. However, combining these two 904

strategies allows for higher compression rates while 905

better preserving model performance compared to 906

using either strategy alone. As an example, us- 907

ing the LLaMA-2-7B WikiText2 benchmark, the 908

results for W2, S60%, and W4S50% are 36.44, 909

25.76, and 10.64, respectively. 910

From the Perspective of Inference Speed: The 911

acceleration benefit of quantization primarily arises 912

from reduced memory access, while the accelera- 913

tion benefit of sparsity stems from both memory 914

and computational savings. For pure quantization 915

or pure sparsity, the acceleration benefit diminishes 916

as the compression rate increases. GQSA, however, 917

enhances the upper limit of the acceleration benefit 918

by simultaneously reducing redundancy in both di- 919

mensions (quantization and sparsity). For example, 920

in the case of LLaMA-2-7B, the inference speeds 921

for S60%, W2, and W4S50% are 671.98, 475.55, 922

and 377.98, respectively. 923

F Combining the advantages of 924

structured pruning and group 925

quantization 926

As show in Table 11 the acceleration benefits of 927

quantization primarily stem from reduced mem- 928

ory access, while sparsity accelerates inference by 929

saving both memory and computation (as sparse 930

groups do not need to be stored, read, or computed). 931

When applying only the quantization strategy, the 932

12

LLM’s acceleration benefit does not increase expo-933

nentially as the bit-width of W decreases. Instead,934

it faces diminishing returns, as the performance935

bottleneck shifts from memory access to compu-936

tation as the quantization bit-width is reduced. In937

contrast, GQSA can further accelerate deep quanti-938

zation models by skipping redundant calculations,939

thereby pushing the upper limit of acceleration ben-940

efits. For example, in the case of LLaMA-2-7B,941

the measured inference speed is 20% faster with942

W4S50 than with W2.943

Model Setting Inference speed (ms)

LLaMA-2-7B
W4 642.24
W2 475.55

W4S50% 377.98

Table 11: Comparison of inference speed between
GQSA and single quantization.

G Comparison of GQSA with Vector944

Quantization945

Some of the latest low-bit quantization meth-946

ods, such as AQLM (Egiazarian et al., 2024) and947

QuIP# (Tseng et al., 2024), employ vector quanti-948

zation (VQ), which differs from uniform quantiza-949

tion techniques like GQSA. VQ constructs code-950

books by learning the underlying data distribution,951

enabling better data preservation and potentially952

higher model performance. However, VQ meth-953

ods rely on pre-trained codebooks (e.g., the E8P954

codebook used in QuIP# and the multi-codebook955

scheme in AQLM), which introduce considerable956

computational overhead during both training and957

inference. This makes them less practical for real-958

world deployment.959

Method WikiText2 C4 Tokens Per Second
QuIP# W2 6.06 8.07 71.09
AQLM W2 5.60 7.47 68.1

GQSA W4S50% 7.80 10.93 228.95

Table 12: Comparison between GQSA and Vector Quan-
tization

In contrast, GQSA combines uniform quantiza-960

tion with high sparsity to enable efficient inference961

acceleration in practical scenarios. As show in962

Table 12, while it may slightly underperform VQ-963

based methods like QuIP# and AQLM in terms of964

accuracy, it significantly outpaces them in inference965

speed—achieving up to 3.3× the speed of vector966

Setting LLaMA-7B LLaMA-13B

FP 92.69 50.68
W8 156.40 95.78

W8S50 263.64 158.99
W4 202.81 137.92

W4S50 343.43 228.95

Table 13: Inference throughput (tokens per second) of
GQSA on the NVIDIA A100 80GB.

quantization methods under a small accuracy trade- 967

off. No single method perfectly balances accuracy 968

and computational efficiency; GQSA prioritizes 969

inference speed, accepting a minor compromise 970

in model accuracy to achieve substantial gains in 971

performance. 972

H Inference throughput of GQSA 973

As show in Table 13, we evaluated the throughput 974

of the GQSA model based on FastTransformer on 975

an Nvidia A100 80 GB GPU. The results demon- 976

strate that, compared to the pure W8 and W4 config- 977

urations, GQSA’s W8S50% and W4S50% configu- 978

rations achieved a 60% improvement in throughput. 979

980

I Differences from Sparse Methods in 981

Traditional CNNs 982

Although previous work, such as PatDNN, intro- 983

duced semi-structured sparsity in CNN networks, 984

we believe our work contributes to the field in two 985

core aspects: First, we have significantly advanced 986

the engineering implementation of semi-structured 987

sparsity. Notably, we introduced the "task-centric" 988

parallel strategy, replacing the widely-used "data- 989

centric" parallel approach in the industry. This shift 990

effectively addresses the issue of unbalanced load 991

across computing units, resulting in a substantial 992

speedup of 1.3× to 1.5× for individual operators, 993

thus achieving a new state-of-the-art in engineering 994

performance. Second, while the GEMM operator 995

in traditional CNN networks typically adopts the 996

"N×1" sparse mode, we propose the "1×N" sparse 997

mode tailored to the characteristics of LLM models. 998

This innovation better preserves outliers within the 999

channel and is fundamentally different from the 1000

traditional "N×1" mode in terms of engineering 1001

implementation. 1002

13

We believe innovation is not solely about propos-1003

ing "new concepts" or "new strategies" but also1004

about selecting the most appropriate approaches to1005

address real technical challenges and pushing the1006

performance boundaries. Currently, the LLM field1007

faces significant inference cost challenges, and re-1008

lying exclusively on quantization techniques has1009

nearly reached its performance optimization limits.1010

Our work contributes to further enhancing perfor-1011

mance based on quantization models and has led to1012

a SOTA breakthrough in semi-structured sparsity1013

technology within the LLM field. The pursuit of1014

higher performance limits and greater industrial1015

applicability reflects a key aspect of innovation.1016

J The advantages of group quantization1017

compared to standard per-layer or1018

per-label quantization methods.1019

From the Perspective of Quantization Accuracy:1020

The primary challenge in quantization LLMs arises1021

from the imbalanced numerical distribution (both1022

between and within channels) and the prevalence of1023

outliers in both weights and activations. Standard1024

per-layer and per-token (or per-channel) quantiza-1025

tion methods assume that the entire tensor or the1026

neurons in each channel are identically distributed.1027

This coarser quantization granularity is insufficient1028

to address the issues of uneven distribution and out-1029

lier retention. Group quantization, however, further1030

partitions the channels and quantizes the model1031

weights at a finer granularity, effectively mitigating1032

the problem of imbalanced numerical distribution1033

and improving outlier handling, thereby reducing1034

the accuracy loss typically associated with quanti-1035

zation.1036

From the Perspective of Quantization Speed:1037

The finer quantization granularity of the per-group1038

approach necessitates additional scaling factors dur-1039

ing computation. However, since LLM tasks are1040

memory-intensive rather than computation-bound,1041

this increased granularity does not significantly im-1042

pact memory access complexity compared to 2:41043

sparsity. As a result, the inference speed is not1044

adversely affected. For instance, the widely used1045

reasoning engine, llama.cpp, employs group quan-1046

tization for model inference.1047

K Results of GQSA on the Qwen model1048

To verify the generalization ability of GQSA on1049

different model families, we conduct experiments1050

on Qwen models (base and instruct model). Ta-1051

ble 14 shows similar results to the LLaMA model 1052

family, where GQSA consistently matches or out- 1053

performs the baseline methods even under stricter 1054

compression settings. 1055

L Results of GQSA on the OPT model 1056

To verify the generalization ability of GQSA on 1057

different model families, we conduct experiments 1058

on OPT models (ranging from 1.3B to 13B parame- 1059

ters). Table 15 shows similar results to the LLaMA 1060

and Qwen model family, where GQSA consistently 1061

matches or outperforms the baseline methods even 1062

under stricter compression settings. 1063

M GQSA inference latency and memory 1064

consumption 1065

Due to space constraints, detailed inference latency 1066

and model memory consumption are provided in 1067

Appendix Table 16. Overall, GQSA demonstrates 1068

exceptional performance across various settings. 1069

14

Qwen2.5-7B Qwen2.5-14B Qwen2.5-7B-Instruct Qwen2.5-14B-Instruct
Setting Method

WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4

GPTQ 29.22 89.12 23.08 55.43 46.03 289.92 48.42 38.37
W2

OmniQuant 14.49 22.78 11.98 17.81 17.26 26.37 12.95 17.97

sparsegpt 11.25 17.17 10.13 15.39 11.92 17.85 10.95 16.24
2:4

wanda 14.78 22.84 11.74 18.24 15.80 23.83 12.06 18.73

w4s20% 8.27 12.74 6.83 10.83 7.99 12.21 6.80 10.76
w4s30% 8.95 13.66 7.75 12.03 9.01 13.78 7.69 11.91
w4s40% 9.70 14.96 8.97 13.81 10.19 15.64 8.90 13.60
w4s50%

GQSA

11.71 17.02 9.87 15.93 11.74 17.07 10.81 15.97

Table 14: Wikitext2 and C4 perplexity (↓) for Qwen2.5 models, with a context length of 2048.

OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B
Setting Method

WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4

GPTQ 130.88 60.88 61.59 33.83 20.18 18.55 21.36 16.34
QUIP 41.64 - 28.98 - 18.57 - 16.02 -

PB-LLM 45.92 - 39.71 - 20.37 - 19.11 -
OmniQuant 23.95 27.33 18.13 21.11 14.43 16.67 12.94 14.92

W2

SliM-LLM 24.57 - 17.98 - 14.22 - 12.16 -

SparseGPT 24.54 26.55 17.82 19.45 14.23 16.56 12.94 14.88
2:4

Wanda 28.27 28.54 21.17 22.84 15.90 18.99 15.55 16.18

W4S20% 14.49 16.60 12.03 14.54 10.21 12.71 9.93 12.16
W4S30% 16.06 18.44 13.23 15.95 10.94 13.64 10.37 12.85
W4S40% 18.82 21.54 15.39 18.25 12.15 15.12 11.29 13.97
W4S50%

GQSA

21.32 24.90 17.52 20.81 13.44 16.94 12.16 15.57

Table 15: Wikitext2 and C4 perplexity (↓) for OPT models, with a context length of 2048.

15

LLaMA-7B

128 256 512 1024
sequence length

Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB)

fp16 1490.5 13.47 3005.95 13.534 6090.97 13.662 12561.82 13.918
w8a16 868.35 7.394 1755.62 7.458 3594.95 7.586 7559.22 7.842

w8a16+sp0.3 688.89 6.296 1261.05 6.361 3005.02 6.489 5814.62 6.745
w8a16+sp0.4 603.23 5.669 1103.08 5.733 2593.76 5.861 5039.33 6.117
w8a16+sp0.5 512.71 5.042 996.59 5.106 2019.1 5.234 4329.32 5.492

w4a16 642.24 4.258 1312.91 4.322 2707.26 4.45 5786.8 4.706
w4a16+g16+sp0.3 518.99 4.101 1041.18 4.165 2113.56 4.293 4437.48 4.549
w4a16+g16+sp0.4 432.05 3.788 855.46 3.852 1828.48 3.977 3772.63 4.233
w4a16+g16+sp0.5 377.98 3.474 699.26 3.528 1433.43 3.653 3110.54 3.909

LLaMA-13B

128 256 512 1024
sequence length

Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB)

fp16 2726.66 25.61 5481.96 25.696 11071.81 25.92 22559.77 26.304
w8a16 1439.66 13.524 2900.46 13.62 5922.28 13.844 12257.27 14.228

w8a16+sp0.3 1164.239 11.396 2114.165 11.492 4976.471 11.716 9501.55 12.105
w8a16+sp0.4 1024.199 10.182 1843.61 10.278 4272.72 10.502 8343.77 10.886
w8a16+sp0.5 869.486 8.964 1715.976 9.061 3345.762 9.285 7044.25 9.669

w4a16 999.1 7.444 2020.99 7.54 4155.94 7.764 8750.98 8.148
w4a16+g16+sp0.3 801.203 7.141 1475.175 7.237 3563.465 7.461 6972.12 7.845
w4a16+g16+sp0.4 702.602 6.532 1303.865 6.628 3087.623 6.852 6081.292 7.236
w4a16+g16+sp0.5 603.515 5.924 1104.366 6.02 2374.286 6.244 5099.638 6.628

LLaMA-30B (TP=2)

128 256 512 1024
sequence length

Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB) Latency (ms) Memory (GB)

fp16 3759.08 65.534 7540.17 65.726 15241.36 66.11 31073.23 66.878
w8a16 3032.64 32.418 6111.43 32.642 12371.66 33.026 25477.58 33.794

w8a16+g16+sp0.3 2412.6 27.084 4861.575 27.308 10343.645 27.692 19826.459 28.46
w8a16+g16+sp0.4 2132.65 24.036 3840.98 24.261 8925.685 24.645 17343.09 25.413
w8a16+g16+sp0.5 1797.27 20.988 3472.16 21.212 6950 21.596 14591.638 22.364

w4a16 1938.2 17.178 3924.2 17.402 8011.57 17.786 16680.64 18.554
w4a16+g16+sp0.3 1541.925 16.416 2515.512 16.641 6800.993 17.025 13290.836 17.793
w4a16+g16+sp0.4 1341.315 14.892 2229.65 15.116 5890.861 15.501 11591.38 16.269
w4a16+g16+sp0.5 1122.292 13.368 2180.11 13.592 4526.311 13.816 9720.279 14.584

Table 16: Inference latency and memory usage of the FastTransformer implementation on NVIDIA A800-40GB
GPU with a fixed input sequence length of 15, output sequence lengths of 128, 256, 512 and 1024.

16

	Introduction
	Related work
	GQSA
	Preliminary
	GQS Layer
	BQPO
	E2E-OQP
	Custom Software Engine

	Experiments
	Experimental Settings
	Evaluation on Language Generation Tasks
	Evaluation on Zero-Shot Tasks
	Inference Engine Evaluation
	Ablation Experiments

	Conclusion
	Training Efficiency of GQSA
	The effects of BQPO and E2E-OQP on the model’s performance
	GQSA performance under weight-activation quantization
	Comparison of Quantized & Pruned Works
	A comparison of the effects of pruning and quantization on inference performance
	Combining the advantages of structured pruning and group quantization
	Comparison of GQSA with Vector Quantization
	Inference throughput of GQSA
	Differences from Sparse Methods in Traditional CNNs
	The advantages of group quantization compared to standard per-layer or per-label quantization methods.
	Results of GQSA on the Qwen model
	Results of GQSA on the OPT model
	GQSA inference latency and memory consumption

