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ABSTRACT

Few-shot learning problems require models to recognize novel classes with only a
few supported samples. However, it remains challenging for the model to gener-
alize novel classes with such limited samples. Driven by human behavior, re-
searchers introduced semantic information (e.g. novel categories descriptions,
class names, etc.) onto existing methods as prior knowledge to induct more pre-
cise class representations. Despite the promising performance, these methods are
under one assumption that users are able to provide precise semantic informa-
tion for all target categories and this is hard to be satisfied in the real scenario.
To address this problem, we proposed a novel Cross-modality Knowledge En-
hancement Mechanism(CKEM) to discover task-relevant information in external
semantic knowledge automatically. CKEM first utilizes Cross-modality Graph
Builder(CGB) to align two unitary modality information (support labeled images
and external semantic knowledge) into a cross-modality knowledge graph. After
that, with the message-passing mechanism, CKEM selects and transfers relevant
knowledge from external semantic knowledge bank to original visual-based class
representations in Knowledge Fusion Model(KFM). Through a series of experi-
ments, we show that our method improves the existing metric-based meta-learning
methods with 1% - 5% for 1-shot and 5-shot settings on both mini-ImageNet and
tiered-ImageNet datasets.

1 INTRODUCTION

Generalizing new concepts from a few samples quickly is one of key signatures for human intelli-
gence. Albeit deep learning methods have made significant progress in wide applications, such as
image recognitions, object detection, etc. It remains challenging to adapt to such strict situations,
where annotated samples are limited or target classes are flexible at inference stage. Unfortunately,
this scenario is common in real world and has drawn many researchers’ attention recently. Typi-
cally, this problem is regarded as Few-shot Learning problem Bart & Ullman (2005); Fink (2004);
Fei-FeiLi et al. (2006); Lake et al. (2011).

To address this problem, one of core research interests is how to generalize novel classes with only
a few labeled samples per class. Most of existing methods are under the umbrella of meta-learning
mechanism Hochreiter et al. (2001), which leverages previous learning experience over tasks as
prior knowledge during meta-training to improve later generation procedure at meta-testing. More
precisely, the transferable prior knowledge obtained during meta-training stage can act as an induc-
tive bias to minimize generalization error Luo et al. (2020). However, most proposed meta-learning
methods merely utilize unitary modality (visual) information. Due to the limited samples for each
class, generalization procedure suffers unstable problems, such as ”meta-shift” problemChen et al.
(2020). Naturally, recent researchers proposed many methods to introduce auxiliary information
from unlabeled samples or other modality prior knowledge and achieved significant performance.

More precisely, for cross-modality methods, Xing et al. (2019) proposed Adaptive Modality Mixture
Mechanism (AM3) to fuse information in two modalities by adaptively combining visual prototypes
and corresponding class semantic features. Based on AM3, Schwartz et al. (2019) constructs mul-
tiple branches to make further improvements by using richer information from multiple semantic
sources. To step further, Peng et al. (2019) proposed Knowledge Transfer Network (KTN) archi-
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tecture, which learns the classifier of novel classes not only from visual information but also from
corresponding semantic information and its class-relationship in a well-trained knowledge graph.

While promising, existing cross-modality meta-learning FSL methods mentioned above are under
one strict assumption that precise semantic information for novel classes are available during infer-
ence stage. However, such semantic information is hard to acquire in practice. More concretely, for
model designers, it is unmanageable to forecast novel classes chosen by users. For model users, it
is also difficult and inconvenient to provide an accurate semantic information for each target classes
while using the model. Furthermore, an inaccurate semantic information can even prohibit models
from generating proper novel class representations and harm the performance. In this paper, we
proposed Cross-modality Knowledge Enhancement Model(CKEM) to loose this restriction by em-
powering models the ability to index relevant information contained in auxiliary semantic knowledge
bank.

To achieve this goal, CKEM first utilize Cross-modality Graph Builder(CGB) to transfer two unitary
modality class information into the same metric space where similar classes are close while far in the
contrary. After that, we build cross-modality knowledge graph in this space and propagate relevant
information from semantic knowledge bank to target class representations in Knowledge Fusion
Model(KFM) with message passing mechanism. To verify our methods, we built our methods upon
metric-based meta-learning methods, which perform image classification by measuring distances
between label and unlabeled samples with a non-parameterized or parameterized functions. As
results shown in Table 1, our methods improve the existing metric-based methods, such as Prototype
Network Snell et al. (2017), for 1% - 2% for 1-shot and 5-shot settings on both mini-ImageNet and
tiered-ImageNet.

2 PRELIMINARIES

Few-shot classification and metric-based methods. Few-shot classification problem is typically
characterized as several N way (number of novel categories) and K shot (number of available sam-
ples for each class) classification tasks. Concretely, for each task/episode, models are required to
generalize target samples into N novel classes with only K supported labeled samples per class.
In this paper, we focused on metric-based meta-learning approach, which is one of most effective
branches in this research area. Generally, a metric-based algorithm contains a feature extractor fe,
a class descriptor fd and a metric classifier fc. For each task/episode, the parameterized feature
extractor extracts features Zs and Zq for support set S (labeled support images) and query set Q
(target images). After that, class descriptor generalize novel classes C by referring to support set ex-
tracted features Zs. Finally, metric classifier predicts target labels Y for target images by comparing
similarities between Zs, C and Zq .

Restrict cross-modal metric-based methods. The limitation for quantity of S restricts generaliza-
tion ability in class descriptor. Motivated by human behavior, recent researchers extended classic
metric-based methods to cross-modal metric-based methods by introducing class relevant seman-
tic knowledge into class descriptor. Despite promising results, existing cross-modal metric-based
methods assume that users should provide such precise information for each novel classes and this
condition is hard to be satisfied in actual scenario. Thus, in this paper, we loose this restriction
and formulated a restrict cross-modal few-shot setting, Task-Independent Cross-modal Few-Shot
Learning setting (TIC-FSL). In TIC-FSL, we argued that model should obtain the ability to index
novel-relevant information in an external knowledge bank Wex and improve model performance by
utilizing these supported informations:

ŷ = f(x;Wex, θ), (1)

where, θ notes trainable parameters in model, x notes unlabeled target sample and ŷ notes the
prediction for x. To be clarified, Wex represents the external semantic knowledge bank, which
correlation with target classes are unknown.
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Figure 1: Overview of Cross-modality Knowledge Enhancement Mechanism

3 METHODOLOGY

3.1 OVERVIEW OF CROSS-MODALITY KNOWLEDGE ENHANCEMENT MECHANISM

In this section, we dive into details of proposed Cross-modality Knowledge Enhancement Mecha-
nism, which is designed to enhance generalization ability for existing metric-based methods. Con-
cretely, this mechanism explicitly enhances class representations (prototypes) by exploring class
relevant semantic information in the external knowledge bank. As described in figure 1, CKEM
is divided into two parts, Cross-modality Graph Builder and Knowledge Fusion Model. Cross-
modality Graph Builder(CGB) construct cross-modality graph Gc by encoding both auxiliary and
tasks-specific class representation into the same feature space. In this feature space, two modal pro-
totypes formulate two knowledge graphs, Gt for semantic-based prototypes and Gv for visual-based
prototypes, and these two graphs align to each other during training stage. After that, Knowledge
Fusion Model is constructed upon this cross-modal knowledge graph to transfer auxiliary knowledge
from semantic knowledge bank to visual target prototypes.

3.1.1 CROSS-MODALITY GRAPH BUILDER

Cross-modality Graph Builder aims at distilling knowledge from both two different modalities and
align them in same feature space. Knowledge Graph(KG) is well-known for the ability to obtain
reserve and explore its node information and relationship. Hence, we choose KG as containers to
construct our cross-modality graph Gc. Due to the heterogeneous structure of visual and semantic
feature spaces Xing et al. (2019), we build parametrized adjuster for both two modality prototypes
to align them during training procedure. Then, CGB constructs two unitary modality KG, Gv and
Gt, by regarding the adjusted prototype as vertexes separately. After that, these two unitary KGs are
used to construct a cross-modal Knowledge Gc, which plays a key role in Knowledge Fusion Model.
The details of constructions are elaborated as follows:

Assuming representation of an vertex i is given by hi ∈ RD, we define visual-based knowledge
graph Gv = (Hv, Av), where Hv = {hiv | ∀i ∈ [1, N ]} ∈ RN×D and Av = {Av(hiv, hjv) | ∀i, j ∈
[1, N ]} ∈ RN×N denote the vertex feature matrix and vertex adjacency matrix respectively. For
better explanation, we first discuss about the vertex feature matrix Hv . For each episode, models
are required to classify several samples into N categories, which contain only K annotated samples
per class. Instead of constructing graph over instances as previous methods Liu et al. (2019); Kim
et al. (2019); Zhang et al. (2019), we argued that building knowledge graphs in class-level is more
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stable. Therefore, vertexes hiv in Hv are constructed with adjusted visual-based prototypes P =
{pi | ∀i ∈ [1, N ]}, as equation 2. For vertex adjacency matrix Av , edge weight Av(hiv, h

j
v) denotes

the similarity between hiv and hjv . Formally, similarities are gauged by the parametrized function as
equation 3:

hiv = gv(pi;φv), (2)

Av(h
i
v, h

j
v) = σ(Wv|hiv − hjv|/γv + bv), (3)

where gv is the visual-side adjuster with trainable parameters φv and pi is the original prototype
(mean over all K labeled samples’ embeddings for each class) for class i. Wv , bv and γv represent
learnable parameters. σ is the sigmoid function, which normalizes the output between 0 and 1.

Similar to visual-based knowledge graph Gv , we define semantic knowledge graph Gt = {Ht, At},
where Ht = {hit | ∀i ∈ [1, C]} ∈ RN×D and At = {At(hit, hj) | ∀i, j ∈ [1, C]} ∈ RN×N .
Differently, Gt is constructed by predefined semantic embeddings provided in external semantic
knowledge bank Wex. Note that C represent the number of assistant classes in Wex. Analogous
to the definitions for vertexes feature matrix and edge weight in Gv , vertexes feature matrix Ht and
edge weight At(hit, h

j
t ) for Gv are formulated as equations below:

hit = gv(wi;φt), (4)

At(h
i
t, h

j
t ) = σ(Wt|hit − h

j
t |/γt + bt), (5)

where Wt, bt and γt represent learnable parameters. wi denotes semantic class embedding in exter-
nal semantic knowledge bank Wex.

Finally, after constructing two unitary KGs, CGB connects them to construct a cross-modal knowl-
edge graph Gc, which plays a key role in Knowledge Fusion Model. Moreover, CGB utilizes non-
parameterized function to create intra-adjacent matrix to connect two sub-graph instead of using
parameterized ones. By doing this, models are able to learn the ability to align class embeddings
from different modalities during training stage.

More precisely, cross-modal knowledge graph Gc is formulated as Gc = {Hc, Ac}, where
Hc = (Hv;Ht) ∈ R(N+C×D) and Ac = (Av, As;A

t
s, At) ∈ R(N+C)×(N+C). We denote

As = {As(hiv, h
j
t ) | ∀i ∈ [1, N ],∀j ∈ [1, C]} ∈ RN×C as its intra-adjacent matrix and the

link weight As(hiv, h
j
t ) is calculated by applying softmax over Euclidean distances between hiv and

{hjt |∀j ∈ [1, C]} as following:

As(h
i
v, h

j
t ) =

exp(−||hiv − h
j
t ||22)∑N

k′=1 exp(−||hiv − hkt ||22)
(6)

3.1.2 KNOWLEDGE FUSION MODEL

In section 3.1.1, we discuss the construction for the cross-modality knowledge graph Gc. In this
section, we are about to focus on the knowledge fusion progress. Among the knowledge fusion
progress, Knowledge Fusion model is required to explore target relevant semantic information in
auxiliary modality and fuse them with visual-based adjusted prototypes accoutered in each episode.
With help of the cross-modality knowledge graph Gc, we are able to propagate relevant semantic
knowledge from semantic knowledge graph Gt to the prototype-based visual knowledge graph Gv
by building a Graph Neural Networks (GNN) upon it. In this work, following the message-passing
framework Gilmer et al. (2017), GNN is formulated as:

H
(l+1)
i = MP (Ac, H

(l)
i ;W (l)), (7)

where MP (·) is the message passing function and has several possible implementations Hamilton
et al. (2017); Kipf & Welling (2017); Velickovic et al. (2018), H(l)

i is vertexes feature matrix which
is regarded as input of the l th layer of GNN and W (l) denotes a learnable weight matrix in lth layer.
The input of whole GNN is formulated as H(0) = Hc. After stacking a GNN layers, we obtain
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the knowledge mix-up prototypes for N enhanced class embeddings as the output of the ath layer,
which is denoted as Hf = {hjf | j ∈ [1, N ]}.

After that, we regard these enhanced prototypes Hf as complement materials to original proto-
types set P. Moreover, knowledge transfer process are applied in the cross-modality feature space,
which is different with the one for original prototypes. Hence, we apply a parametrized transformer
gtrans(·;φtrains) to align enhanced prototypes inHf with the original ones and perform an adaptive
combination between them as equation 9.

λi =
1

1 + exp(−fλ (gtrans(hif ;φtrans)))
(8)

pi
′ = (1− λi) pi + λi gtrans(h

i
f ;φtrans), (9)

where fλ is the adaptive mixing network with learnable parameters φλ. λi denotes the mixing
coefficient for class i to balance between original prototype and the complement one.

3.2 OBJECT FUNCTION AND TRAINING PROCEDURE

Cross-modality Knowledge Enhance Mechanism performs as a plug-and-play mechanism to im-
prove existing metric-based meta-learning methods by exploring and transferring task-relevant se-
mantic information onto corresponding prototypes. In this section, we introduce the details of its
object function and training procedure.

We train CKEM with base method with episode training mechanism and update all trainable param-
eters Θ for the entire framework including the backbone for each episode independently. Motivated
by Yao et al. (2020), to stabilize the training procedure, we additionally construct two auto encoder
branches for adjusted visual prototypes set Hv and the mix-up prototypes set Hf to regularize the
model. More precisely, we choice L1 loss between the input feature x and output of the auto encoder
as our reconstruction loss Lr(x), as equation 10.

Lr(x) = ||x−AEdec(AEenc(x;φenc);φdec)|| (10)

where x denotes the input of the auto encoders, AEenc and AEdec. φenc and φdec denote the
learnable parameters of encoder and decoder in auto-encoder. These reconstruction losses over Hv

and Hf are added to the original object function Lbase of base metric-based method to formulate
the whole object function. As shown in equation 11, after obtaining the whole object function, we
update learnable parameters Φ of both CKEM and base method using Stochastic Gradient Descent
mechanism to minimize the total loss. Formally:

min
Θ
Lall = min

Θ
Lbase + µ1

∑
hv∈Hv

Lr(hv) + µ2

∑
hf∈Hf

Lr(hf ), (11)

where Φ denotes the learnable parameters for both CKEM framework and the base metric-based
FSL method. µ1 and µ2 are introduced to balance the importance of these three terms.

4 RELATED WORK

With rapid development of few-shot learning methods Wang et al. (2019); Zhang et al. (2019);
Inoue & Shinoda (2018); Dong et al. (2018), researchers delve into several few-shot tasks, image
recognition task, image segmentation task, text classification, etc. In this paper, we focus on one
fundamental problem in computer vision area, image recognition problem. We roughly break related
few-shot image recognition methods into two branches, visual unitary modality and classic cross
modality few-shot meta-learning methods.

4.1 VISUAL-BASED FEW-SHOT LEARNING

Recently, researchers have made significant progress in few-shot learning area. Among these meth-
ods, meta-learning played an dominant role during this progress. Our proposed approaches are also
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located in this branch. Meta-learning methods can roughly divide into two parts, Initialization-based
methods and Metric-based methods.

Initialization-based meta-learning methods aim at obtaining task-specific classifier parameters for
novel classes with only a few annotated samples supplied. One way to achieve this goal is to regard
meta-learner as an optimizer which gathers gradient flows from different tasks to refine parameter
of the model. By doing this, models can generalize well to novel tasks with only a few fine-tuning
updates. One of the base methods under this branch is Model-Agnostic Meta-Learning(MAML)
framework Finn et al. (2017); Nichol et al. (2018); Zintgraf et al. (2018); Mishra et al. (2018). Build
upon this base method, many follow-up approaches were proposed to improve its performance.
Kim et al. (2018) and Finn et al. (2018) propose a probabilistic extension to MAML by training with
variational approximation. Conditional Class-Aware Meta-Learning (CAML) Zintgraf et al. (2018)
conditionally transforms embeddings based on a metric space trained with prototypical networks
to capture inter-class dependencies. On the other hand, many methods conduct meta-generator to
hallucinate parameters of classifier to classify samples to novel categories Rusu et al. (2019); Zhou
et al. (2019). Latent embedding optimization (LEO) Rusu et al. (2019); Qiao et al. (2018) use a
few updates on a low data regime to train models in a high dimensional parameter space, from
which to decode classifier parameters. Similar to LEO, during training stage, Visual Analogy Graph
Embedded Regression (VAGER) Zhou et al. (2019) learns a linear mapping function to generate
classification parameters, which are applied to new class embeddings through their visual analogy
with base classes. And Qiao et al. (2018) adapt a pretrained neural network to novel categories by
directly predicting the parameters from the activations.

Metric-based approaches address the few-shot image recognition problem by learning to compare.
To achieve this goal, these methods are applied to episode training mechanism to generalize distin-
guish representations which have close intra-class distances and far inter-class distances. Among
these metric-based methods Koch et al. (2015); Sung et al. (2018); Vinyals et al. (2016); Snell et al.
(2017); Allen et al. (2019); Oreshkin et al. (2018), Prototypical Network (PN) is famous for its sim-
plicity and effectiveness, which affect many followers to extend this approach. Allen et al. (2019)
allow each class to be represented by multiple prototypes to improve the representation power of PN.
TADAMOreshkin et al. (2018) use a context-conditioned embedding network to produce prototypes
that are aware of the other classes. In this paper, similarly our proposed method is also designed to
enhance these prototypes. To utilize the relationship to assist the model, some researchers Liu et al.
(2019); Kim et al. (2019); Zhang et al. (2019); Luo et al. (2020) also introduce Graph Neural Net-
works to propagate label information in the graph and transductively classify samples in the query
set.

4.2 CROSS-MODAL FEW-SHOT LEARNING METHODS

Above mentioned approaches are rely solely on visual features for few-shot classification. However,
due to the random sample strategy and limited quantity of annotated samples, merely using visual
samples to produce class representation leads instable generalization procedure, such as meta-shift
problems. Chen et al. (2019a) And semantic information contained in descriptions over categories
can alleviate this problems. In order to utilize the abundant text information during the training
and inference stage, researchers set about combining text information with existing visual infor-
mation. Driven by zero-shot learning methods Schönfeld et al. (2018); Tsai et al. (2017); Frome
et al. (2013), Xing et al. (2019) proposed Adaptive Modality Mixture Mechanism (AM3) to fuse
information from two modalities by adaptively combining visual-based prototypes and correspond-
ing semantic features. Based on AM3, Schwartz et al. (2019) construct multiple branches to make
further improvements by using richer semantics and multiple semantic sources. To utilize inter-class
relationship, Peng et al. (2019) proposed Knowledge Transfer Network (KTN) architecture, which
learns the classifier of novel classes not only from visual information but also from corresponding
text class information and its class-relationship in a well-trained knowledge graph.

Albeit the promising results, these methods are under one strict assumptions that users are acquired
to manually provide class relationship between auxiliary semantic knowledge and target categories.
In this paper, we loose this constrain and build our proposed approaches in a more challenge but
practical cross-modality settings, TIC-FSL problem.
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Table 1: Overall performance over unitary modality few-shot learning methods
mini-ImageNet tiered-ImageNet

Methods 1-shot 5-shot 1-shot 5-shot

Prototypical Network Snell et al. (2017) 49.42% +- 0.78% 68.20% +- 0.66% 53.31% +- 0.89% 72.69% +- 0.74%
Relation Network Sung et al. (2018) 50.40% +- 0.80% 65.30% +- 0.70% 55.00% +- 1.00% 69.30% +- 0.80%

MAML Finn et al. (2017) 48.70% +- 1.84% 63.10% +- 0.92% 58.90% +- 1.90% 71.50% +- 1.00%
REPTILE Nichol et al. (2018) 49.97% +- 0.32% 65.99% +- 0.58% 62.95% +- 0.03% 71.03% +- 0.22%
TADAM Oreshkin et al. (2018) 58.50% +- 0.30% 76.70% +- 0.30% 62.13% +- 0.31% 81.92% +- 0.30%
MetaOptNet Lee et al. (2019) 62.64% +- 0.61% 78.63% +- 0.46% 65.99% +- 0.72% 81.56% +- 0.53%
SNAIL Mishra et al. (2018) 55.71% +- 0.99% 68.88% +- 0.92% - -

LEO Rusu et al. (2019) 61.76% +- 0.08% 77.59% +- 0.12% 66.33% +- 0.05% 81.44% +- 0.09%

ProtoNet (normalize) 61.93% +- 0.74% 77.90% +- 0.35% 64.06% +- 0.27% 78.03% +- 0.19%
ProtoNet (normalize) + CKEM 63.29% +- 0.71% 80.12% +- 0.22% 66.69% +- 0.75% 83.04% +- 0.61%

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

To verify the efficiency of cross-modality knowledge enhancement mechanism, we conduct main
experiments with the most popular few-shot image recognition datasets: mini-ImageNet Cai et al.
(2018) and tiered-ImageNet Ren et al. (2018). Mini-ImageNet dataset consists of a subset of 100
classes from the ImageNet dataset Russakovsky et al. (2015) and contains 600 images for each class.
The dataset was first proposed by Cai et al. (2018), but most recent researchers use the follow-up
settings provided by Ravi & Larochelle (2017) which is composed of randomly selected 64 base, 16
validation and 20 novel classes. Tiered-ImageNet dataset is also consists of a subset of ImageNet,
but in a larger scale. It contains 608 classes from 34 super-categories, which are then split to 20, 6,
8 super-categories, to select 351, 97, 160 classes as training, validation and test set respectively.

For Task-Independent Cross-modal Few-Shot Learning setting, we provided word embeddings of
categories label as external knowledge bank. Note that, as described in Section 2, the relation-
ship between target novel classes and auxiliary semantic information is unknown. Specifically, we
use GloVe Pennington et al. (2014) algorithm to generate label semantic representations as pre-
vious works Xing et al. (2019). To evaluate our methods, we applied CKEM upon most famous
metric-based method, Prototypical Network and compared the results with latest existing methods
in Table 1. As results shown, combined with CKEM, our methods exceeded current uni-modal
supervised few-shot learning methods. Detail results and analysis are discussed in section 5.3.

5.2 IMPLEMENTATION DETAIL

In this section, we discuss about details of implementations for CKEM and baseline. For both
datasets, following recent worksGidaris & Komodakis (2017); Oreshkin et al. (2018); Xing et al.
(2019), we conduct ResNet-12 as backbone for our method and pretrained backbone on base classes
before meta-training. The configuration of pretraining the backbone are similar but slice different for
tiered-ImageNet and mini-ImageNet. For both of them, we use the SGD optimizer with initial learn-
ing rate of 0.1 and momentum of 0.9 and set decay factor, weight decay to 0.1, 0.0005 respectively.
For tiered-ImageNet, we set batch size to 512, max epoch to 120 and learning rate are decayed at
40th and 80th epoch. For mini-ImageNet, we set batch size to 128, max epoch to 100 and learning
rate are decayed at 90th. During the meta-training stage, we also use SGD optimizer with same hy-
per parameters (set fixed learning rate to 0.001, momentum to 0.9 and weight decay to 0.0005) for
both ProtoNet+CKEM and ProtoNet. Note that, we do not apply special sample technique during
meta-training process to enhance the methods.

For CKEM. We adapt one layer GCN Gidaris & Komodakis (2017) with tanh activation as the
implementation of GNN in equation 7. For auto-encoders, we choose two layers of MLPs with
ReLU activations for both encoder and decoder. Then for Lall, we set 1 to both µ1 and µ2. For
baselines, we also enhanced the original Prototypical Networks with a deeper pretrained ResNet-
12, which is also used with CKEM. Note that to adapt PN with pretrained backbone, we perform
normalization over all extracted sample features. We note ProtoNet (normalize) to represent this
enhanced baseline. Following evaluation settings in Chen et al. (2019b), we evaluate our methods
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with the mean of 200 classification accuracies on randomly generated test episodes as well as the
95% confidence intervals.

5.3 EXPERIMENT RESULTS AND ANALYSIS

To verify the effectiveness of our method, we applied CKEM onto classic unimodal metric-based
meta-learning method, Prototypical Network, and compared the results with existing most latest
methods. As shown in Table 1, reproduced ProtoNet(normalize) achieve 61.93% and 77.59% accu-
racies for 1-shot and 5shot settings for mini-ImageNet. It also achieve 64.06% and 78.03% accura-
cies for tiered-ImageNet. After combining with CKEM, our method enhance this baseline for both
two datasets. Precisely, CKEM improve ProtoNet (normalize) on both mini-ImageNet and tiered
ImageNet.(1.36% and 2.63% for 1-shot, 2.22% and 5.01% for 5-shot). CKEM performance better
in 5-shot rather than 1-shot settings. We argued that the reason for this phenomena is that quality
of query mechanism is based on original prototypes and the prototypes formulated by 5 samples are
more accurate than those with only 1 sample.

After that, we also compared our methods with with report results of many existing methods for
both unitary modality methods including Prototypical Network Snell et al. (2017), Relation Net-
work Sung et al. (2018), MAML Finn et al. (2017), REPTILE Nichol et al. (2018), TADAM Ore-
shkin et al. (2018), MetaOptNet Lee et al. (2019), SNAIL Mishra et al. (2018) and LEO Rusu et al.
(2019). As results shown, combining with CKEM, our method improve the classic method to exceed
report results of most latest methods.

6 CONCLUSIONS

In this paper, we introduce a more challenge but practical cross-modality few-shot learning problem,
TIC-FSL, where relationship of classes among auxiliary knowledge and target classes is unknown.
To address this problem, we proposed Cross-modality Knowledge Enhancement Mechanism as
plug-and-play module upon existing metric-based meta-learning methods. More concretely, CKEM
utilizes Cross-modality Graph Builder to align and represent two modalities information in a cross-
modality knowledge graph. After that, Knowledge Fusion Model transfers information from exter-
nal semantic knowledge bank to original prototypes via GNN with message passing mechanism. To
evaluate the performance of CKEM, the proposed method is applied to existing metric-based meta-
learning methods and achieves comparable results on both mini-ImageNet and tiered-ImageNet for
both 1-shot and 5-shot supervised few-shot image recognition settings.
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