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Abstract

The majority of methods for crafting adversarial attacks have focused on scenes
with a single dominant object (e.g., images from ImageNet). On the other hand,
natural scenes include multiple dominant objects that are semantically related.
Thus, it is crucial to explore designing attack strategies that look beyond learning
on single-object scenes or attack single-object victim classifiers. Due to their
inherent property of strong transferability of perturbations to unknown models,
this paper presents the first approach of using generative models for adversarial
attacks on multi-object scenes. In order to represent the relationships between
different objects in the input scene, we leverage upon the open-sourced pre-trained
vision-language model CLIP (Contrastive Language-Image Pre-training), with the
motivation to exploit the encoded semantics in the language space along with the
visual space. We call this attack approach Generative Adversarial Multi-object
Attacks (GAMA). GAMA demonstrates the utility of the CLIP model as an
attacker’s tool to train formidable perturbation generators for multi-object scenes.
Using the joint image-text features to train the generator, we show that GAMA can
craft potent transferable perturbations in order to fool victim classifiers in various
attack settings. For example, GAMA triggers ∼16% more misclassification than
state-of-the-art generative approaches in black-box settings where both the classifier
architecture and data distribution of the attacker are different from the victim. Our
code is available here: https://abhishekaich27.github.io/gama.html

1 Introduction

Despite attaining significant results, decision-making of deep neural network models is brittle and can
be surprisingly manipulated with adversarial attacks that add highly imperceptible perturbations to
the system inputs [1, 2]. This has led to dedicated research in designing diverse types of adversarial
attacks that lead to highly incorrect decisions on diverse state-of-the-art classifiers [2–13]. The
majority of such adversarial attacks [2, 8–18] has focused on scenes with a single dominant object
(e.g., images from ImageNet [19]). However, natural scenes consist of multiple dominant objects
that are semantically associated [20–25]. This calls for attack methods that are effective in such
multi-object scenes.

A recent body of work in adversarial attacks [26–30] has shown the importance of exploring attack
methodologies for real-world scenes (although designed for attacking object detectors). However,
such methods are image-specific approaches that are known to have poor time complexity when
perturbing large batches of images, as well as poor transferability to unknown models (more details
in Section 2) due to their inherent property of perturbing images independently from one another.
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Different from such approaches, our interest lies in the generative model-based approaches [10–13]
which are distribution-driven and craft perturbations by learning to fool a surrogate classifier for
a large number of images. These generative adversarial attacks show stronger transferability of
perturbations to unknown victim models and can perturb large batches of images in one forward pass
through the generator demonstrating better time complexity [11, 31]. However, these generative
attack methods have focused on learning from single-object scenes (e.g., ImageNet in [11–13],
CUB-200-2011 [32] in [13]) or against single-object surrogate classifiers (e.g., ImageNet classifiers
[33] in [10–13]). When trained against multi-object (also known as multi-label) classifiers to
learn perturbations on multi-object scenes, such methods perform poorly as they do not explicitly
incorporate object semantics in the generator training (see Table 2 and Table 3). As real-world scenes
usually consist of multi-object images, designing such attacks is of importance to victim model users
that analyze complex scenes for making reliable decisions e.g. self-driving cars [34]. To this end,
we propose the first generative attack approach, called Generative Adversarial Multi-object scene
Attacks or GAMA, that focuses on adversarial attacks on multi-object scenes.

Figure 1: Using CLIP’s image-text aligning prop-
erty, we compute the features of the least similar
text description w.r.t. to clean image.

Progress in recent vision-and-language (VL) models
[35–39] that allow joint modelling of image and text
have garnered interest in recent times due to their
versatile applicability in various image downstream
tasks like inpainting, editing, etc. [40–51]. For the
first time in literature, we introduce the utility of a
pre-trained open-source framework of the popular VL
model named CLIP (Contrastive Language-Image
Pre-training) [36] in generating adversarial attacks.
Trained on 400 million image-text pairs collected
from the internet, CLIP has been shown to provide
robust joint representations of VL semantics [40, 46]
and strong zero-shot image classification on diverse
datasets [36, 44]. This allows us to access diverse
VL features cheaply without any training as end-user. Our proposed GAMA attack employs the
CLIP model to exploit the natural language semantics encoded in text features along with the vision
features (due to its joint image-text alignment property). Different from prior works, GAMA utilizes
CLIP model’s extracted knowledge from ∼400 million images to maximize the feature differences
of perturbed image xp against two different types of features computed from clean image xc: (1)
features of xc computed from surrogate models, and (2) features of xc computed from CLIP’s image
encoder. Additionally, GAMA also guides xp to contain different features compared to xc by using
features from CLIP’s text encoder via a contrastive loss function. For example in Figure 1, consider
a clean image xc with objects “sofa and bottle". Using CLIP’s image-text aligning property, we
estimate that xc (with text features ρc) is least similar to the text prompt “car and bicycle” (text
features ρp) among some randomly chosen candidates (indicated by dotted circles). GAMA uses
ρp, created from a contextually consistent classes, to contrast and move the perturbed xp away from
xc in feature space. Hence, the perturbed image features are comparably robust to data distribution
changes in victim models as Gθ(·) is optimized to create perturbations that differ in features from
two different image features. This allows GAMA to launch highly transferable attacks on unseen
victim models (see Section 4). To summarize, we make the following contributions in this paper.

1. Multi-object scene based generative attack aided by VL models. We propose the first multi-
object scene based generative attack, GAMA, that is designed to consider object semantics through
vision-and-language models.

2. Pre-trained CLIP model as an attacker’s tool. We propose the first generative attack on
classifiers that utilizes the open-source pre-trained CLIP model as an attacker’s tool to train
perturbation generators.

3. Extensive Attack Evaluations. Our extensive experiments on various black-box settings (where
victims are multi-label/single-label classifiers and object detectors) show GAMA’s state-of-the-art
transferability of perturbations (Table 2, 3, 5, 4, 6, and 7). Additionally, we also show that GAMA
outperforms its baselines in terms of attack robustness when the victim deploys state-of-the-art
defenses (Table 8).
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Table 1: Characteristic comparison. Here, f(·) denotes the surrogate classifier. x and xδ denote a clean and
perturbed image. k denotes output from a specific pre-defined layer of f(·) (different for each method). Better
than prior generative attacks [10–13], GAMA leverages multi-modal (text and image) features ρtxt and ρimg

extracted from a pre-trained CLIP [36] model for train the perturbation generator. Its learning objective aims to
pull fk(xδ) closer to a dissimilar text embedding ρtxt (w.r.t. x) while pushing it away from fk(x) and ρimg.
Further, GAMA analyzes attack scenarios where the surrogate model is a multi-label classifier with input scenes
that usually contain multiple objects.

Attack Venue Generator training strategy Analyzed input scene?
GAP [10] CVPR2018 maximize difference of f(xδ) and f(x) single object
CDA [11] NeurIPS2019 maximize difference of f (xδ) - f(x) and f(x) single object
TAP [12] NeurIPS2021 maximize difference of fk(xδ) and fk(x) single object
BIA [13] ICLR2022 maximize difference of fk(xδ) and fk(x) single object
GAMA Ours contrast fk(xδ) w.r.t. ρtxt,ρimg and fk(x) single/ multiple objects

2 Related works

Adversarial attacks on classifiers. Several state-of-the-art adversarial attacks [2, 6, 8–17, 52–
60] have been designed to disturb the predictions of classifiers. Broadly these approaches can be
categorized into two strategies: instance (or image) specific attacks and generative model-based
attacks. Instance specific attacks [2, 6, 8, 9, 14–17, 52–60] create perturbations for every image
exclusively. Specifically, these perturbations are computed by querying the victim model for multiple
iterations in order to eventually alter the image imperceptibly (e.g. texture level changes to image [60])
to cause its misclassification. Due to this “specific to image” strategy, their time-complexity to alter
the decision of a large set of images has been shown to be extremely poor [11, 13, 31]. Furthermore,
learning perturbations based on single-image generally restrict their success of misclassification only
on the known models [11, 13].

To alleviate these drawbacks, a new category of attack strategies has been explored in [10–13,
61] where a generative model is adversarially trained against a surrogate victim model (in other
words, treated as a discriminator) to craft perturbations on whole data distribution. This attack
strategy particularly allows one to perturb multiple images simultaneously once the generative
model is optimized, as well as enhances the transferability of perturbations to unseen black-box
models [10, 11]. For example, Generative Adversarial Perturbations or GAP [10] and Cross-Domain
Attack or CDA [11] presented a distribution-driven attack that trains a generative model for creating
adversarial examples by utilizing the cross-entropy loss and relativistic cross-entropy loss [62]
objective, respectively. Different from these, Transferable Adversarial Perturbations or TAP [12]
and Beyond ImageNet Attack or BIA [13] presented an attack methodology to further enhance
transferability of perturbations using feature separation loss functions (e.g. mean square error loss)
at mid-level layers of the surrogate model. Most of these methods focused on creating transferable
perturbations assuming that the surrogate model is trained in the same domain as the target victim
model [13]. Further, a mid-level layer is manually selected for each architecture and is also sensitive
to the dataset (shown later in Section 4). Similarly, [61] proposes to change image attributes to create
semantic manipulations using their disentangled representations via generative models. Most of
these generative attacks employed classifiers that operate under the regime that input images include
single dominant objects. Some recent attacks [26–30] have focused on analyzing complex images
which contain multiple objects, however, they are instance-driven attacks that introduce aforesaid
drawbacks of transferability and time complexity. In contrast to these aforementioned works, GAMA
is a generative model-based attack designed to craft imperceptible adversarial perturbations that
can strongly disrupt both multi-label and single-label classifiers. Moreover, GAMA uses a novel
perturbation generation strategy that employs a pre-trained CLIP model [36] based framework to
craft highly effectual and transferable perturbations by leveraging multi-modal (image and text)
embeddings. We summarize the differences between prior generative attacks and GAMA in Table 1.

Applications of Vision-and-Language (VL) representations. Due to their robust zero-shot per-
formance, joint vision-and-language pre-trained models [35–39] have allowed new language-driven
solutions for various downstream tasks [40–51, 63]. The differentiating attribute of using VL models
[36], when compared to existing conventional image-based pre-trained models [33], is that they
provide high-quality aligned visual and textual representations learnt from large-scale image-text
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Figure 2: Overview of GAMA. The perturbation generator Gθ(·) crafts a perturbed image (ℓ∞-budget con-
strained by projection operator P(·)) from the clean image as input. Next, embeddings z from clean image and
ẑ from perturbed image are extracted from the surrogate model. A pre-trained CLIP model extracts the image
embedding ρimg from the clean image and the text embedding ρtxt that is least similar to ρimg (see details in
Section 3.1). Finally, the loss functions Limg and Ltxt utilize these embeddings to optimize the generator weights
θ. Loss solely based on a surrogate model not shown here for simplicity. We use a prefix=‘a photo depicts’ in all
the text prompts following [67].

pairs. In this work, we leverage one such powerful VL framework named CLIP [36] to an adversary’s
advantage and show its utility in preparing a perturbation generator for formidable attacks across
multiple distributions. Employing freely available pre-trained models for tasks other than what they
were trained for has been common practice (e.g. VGG [64] models in [65, 66], CLIP for domain
adaptation of generators in [46]). To the best of our knowledge, the proposed attack is the first to
introduce such VL model usage to subvert classifier decisions.

3 Proposed Attack Methodology: GAMA

Problem Statement. Our goal is to train a generative model Gθ(·) (weights θ) from a training
distribution of images with multiple-objects. Once θ is optimized, Gθ(·) can create perturbations
on diverse types (multi-object or otherwise) of input images that can lead to misclassification on an
unknown victim classifier. Suppose we have access to a source dataset D consisting of N training
samples from C number of classes, with each sample/image possibly consisting of multiple object
labels, i.e., multi-label images. Each ith sample in D is represented as x(i) ∈ RH×W×T (with
height H , width W , and channels T ) containing labels y(i) = [y

(i)
1 , · · · , y(i)C ] ∈ Y ⊆ {0, 1}C . More

specifically, if sample x(i) is associated with class c, y(i)c = 1 indicates the existence of an object
from class c in x(i). Further, we have access to a surrogate multi-label classifier trained on D denoted
as f(·) which is employed to optimize the perturbation generator Gθ(·)’s weight θ. For ease of
exposition, we drop the superscript i in further discussion.

3.1 Adversary Equipped with Pre-Trained CLIP

We aim to train a generator Gθ(·) that learns to create perturbations from its observations by fooling a
surrogate classifier f(·) during its training phase. Now, as Gθ(·) learns to create perturbations δ in
accordance to f(·), it is bounded by the features extracted from f(·) in order to contrast x and xδ (e.g.
final-layer logits in [10, 11] or mid-level features [12, 13]). In this work, we explore a case where
we have access to a pre-trained vision-and-language model like CLIP that can be utilized as a loss
network to train Gθ(·). Our motivation for using CLIP is to exploit its joint text and image matching
property and compute two embeddings: clean image embedding extracted from the image encoder
and a dissimilar text embedding extracted from the text encoder. Specifically, we aim to encode
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the contextual relationships between multiple objects in the natural scene via language derivatives.
We next describe GAMA’s method and present a novel strategy to use CLIP’s model to train Gθ(·).
Note that we assume each image contains two co-occurring classes for creating text prompts, mainly
restricted due to computation of co-occurrence matrices of dimension C ×C available for multi-label
datasets. As we will see later, co-occurrence matrices allow us to discard pairs of classes that would
not occur in real-world scenarios.

GAMA Overview. Before training Gθ(·), we first compute a text embedding matrix Atxt =
[ρ1,ρ2, · · · ,ρN ] ∈ RN×K with ρn ∈ RK (explained in detail later) using the CLIP text encoder
T (·). Here, K is the embedding size of output from T (·). During training Gθ(·), we start by
feeding the clean image x to the CLIP image encoder I(·) and computing an image embedding
ρimg = I(x) ∈ RK . Next, a particular vector ρtxt ∈ RK from Atxt is retrieved that is least similar
to ρimg. Then, we feed x to Gθ(·) and create xδ while ensuring it to be under given perturbation
ℓ∞ budget ϵ using the perturbation projection operator P(·). These clean and perturbed images
are then fed to the surrogate classifier f(·) to extract K-dimensional embeddings at specific kth
layer, denoted by fk(x) and fk(xδ) respectively. Finally, the aforementioned quadruplet embeddings
(ρtxt,ρimg,fk(x),fk(xδ)) are used to compute a contrastive learning based CLIP text embedding-
guided loss Ltxt(ρtxt,fk(x),fk(xδ)) and a regression learning based CLIP image embedding-guided
loss Limg(ρimg,fk(xδ)) to compute the final objective L. We also include a loss function that further
maximizes the difference between fk(x) and fk(xδ) solely from the surrogate classifier’s perspective.
This loss L is minimized to update the weights of the generator θ. The whole GAMA paradigm is
illustrated in Figure 2 and summarized in Algorithm 1. The details of loss objectives Limg and Ltxt

(with text embedding matrix Atxt) are discussed next.

CLIP text embedding-guided loss (Ltxt). Let z = fk(x) and ẑ = fk(xδ). The CLIP framework
inherently learns the text and vision embedding association via a contrastive learning regime [36, 68],
constraining the feature embeddings of the input image and its counterpart language description to
be as similar as possible. Different from CLIP’s image embedding ρimg, CLIP’s text embedding ρtxt

allows us to look beyond the pixel-based features. More specifically, CLIP’s vision-and-language
aligning ability allows us to utilize text features to craft transferable image perturbations. Hence,
we can optimize Gθ(·) to create perturbed images xδ that do not follow the same text embedding
alignment as their clean image counterpart x. In order to cause this text misalignment, we create
a triplet of embeddings where the anchor ẑ is pushed away from z while pulling it closer to a text
embedding ρtxt that is least associated or similar to a clean image x. To compute this triplet, the
following two steps are performed.

• Before training, compute Atxt. The goal is create a dictionary or matrix of text embeddings
which can be utilized to retrieve ρtxt during optimization of Gθ(·). Firstly, we generate language
derivatives or text prompts using classes of source distribution. This means we only need to know
all the available C classes in D but not their specific association with x. Secondly, with assumption
that each clean image x is associated with two classes, we can generate C2 text prompts and create
a matrix Atxt of size C2 ×K. For example, if classes ‘cat’, ‘dog’, ‘person’ and ‘boat’ exist in
D, then one can create text prompts such as “a photo depicts cat and dog” or “a photo depicts
person and boat” (see Figure 1 for 10 random examples extracted from CLIP’s ‘ViT-B/16’ model
using Pascal-VOC’s classes). Here, the part of the text prompt underlined is a recommended ‘prefix’
common to all text prompts as suggested in [67]. However, such Atxt can contain embeddings
from prompts that are generated from classes that do not exist in real life. To circumvent this, we
utilize an object co-occurrence matrix O ∈ RC×C (a binary matrix) to estimate the co-occurrence
relationships between classes. Computed from the training data set containing C classes, O is first
initialized with a matrix containing only zeros. Then, an element Oij (ith row and jth column of O)
is set to 1 if objects from classes yi and yj appear together at least in one image. Computing such
co-occurrence information is a common practice in multi-object downstream problems [26, 27, 69–
72]. We use O provided by [69]. Using such a co-occurrence matrix, we only create text prompts
from a pair of classes that occur together according to O. This leads to a text embedding matrix of
size Atxt of size ∥O∥0 ×K where ∥O∥0 denotes total non-zero elements.

• During training, compute ρtxt. CLIP’s training objective allows it to push the embeddings of
associated image-text pairs closer compared to non-matched pairs. We leverage this property to
compute the least similar text embedding ρtxt w.r.t. image embedding ρimg. During each training
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epoch, we randomly sample B candidates [ρ1,ρ2, · · · ,ρB ] from Atxt and estimate ρtxt as follows:

ρtxt = min[cs(ρimg,ρ1), cs(ρimg,ρ2), · · · , cs(ρimg,ρB)] (1)

Here, cs(·) denotes cosine similarity. Next, we force ẑ to align with ρtxt while misaligning with z.
This is implemented as contrastive learning [73, 74] objective as follows.

Ltxt = min
θ

1/K
(
∥ẑ − ρtxt∥22 +

[
α− ∥ẑ − z∥2

]
+

)
(2)

where α > 0 is the desired margin between clean and perturbed image embedding, and [v]+ =
max(0, v). Ltxt pulls away embeddings of x and xδ by making them keep a margin α while pushing
dissimilar embeddings ẑ and ρtxt closer than the given margin.

CLIP image embedding-guided loss (Limg). Due to CLIP’s learning on ∼400 million internet
retrieved images from diverse categories and its consequential strong zero-shot image recognition
performance over different distributions [36, 41], we argue that its image encoder I(·) outputs
an embedding that has captured attributes of input image with distinct generalized visual features.
GAMA leverages this to our advantage, and maximizes the difference between ẑ and CLIP’s
image encoder’s embedding for clean image ρimg. The aim of such an objective is to increase the
transferability strength of Gθ(·) perturbations using the generalized features computed from I(·).
This is envisioned using a regression learning based loss described as follows:

Limg = min
θ

−
(
1/K∥ρimg − ẑ∥22

)
(3)

Final Learning Objective (L). Loss functions Limg and Ltxt are finally added to a surrogate model
loss Lsurr that minimizes the cosine similarity of z and ẑ [13]. Choice of layer k is dependent on
feature outputs of the CLIP model employed. All embeddings are normalized before computing the
loss functions.

L = min
θ

(
Lsurr + Limg + Ltxt

)
(4)

Overall, Lsurr maximizes the difference between x and xδ from surrogate f(·)’s perspective, while
Limg and Ltxt enhance its transferability using CLIP’s perspective.

Attack evaluation. We assume that the attacker has no knowledge of victim classifier g(·) and its
data distribution Dt. Further, there is a perturbation budget of ϵ defined by an ℓ∞ norm. To launch an
attack, we input a clean image xt from target dataset Dt to optimized Gθ(·) and craft imperceptible
perturbations δt in order to alter the decision space of the target victim classifier g(·) (pre-trained on
Dt). Mathematically, this can be represented as yt ̸= ŷt where, yt = g

(
xt

)
and ŷt = g

(
xt + δt

)
with ∥δt∥∞ ≤ ϵ. We can cause following attack scenarios after training Gθ(·) against f(·) on D:

• Scenario 1: an attack termed white-box if f(·) = g(·) and D = Dt

• Scenario 2: an attack termed black-box if either f(·) ̸= g(·) or D ≠ Dt

A real-world attack is generally modeled by Scenario 2 as an adversary would not have the knowledge
of victim model g(·)’s architecture, its training data distribution Dt and the task it performs e.g.
single-label classification, multi-label classification, or object detection, etc. The perturbations that
make an attack successful in Scenario 2 should be highly transferable.

4 Experiments

In this section, we analyze the strength of GAMA under diverse practical attack settings. We also
perform an ablation analysis of GAMA, test the attack robustness against various defenses ([76, 77],
median blurring, context-consistency check), as well performance of attacks on different architecture
designs. Note that we provide more black-box attack results in the supplementary material.

Baselines. As there are no prior works for generative attacks that learn on multi-object scenes using
multi-label classifiers, we define our baselines by adapting existing state-of-the-art generative attacks
summarized in Table 1. Specifically, the cross-entropy loss in GAP [10] and CDA [11] is replaced
with binary cross-entropy loss to handle the prediction of multiple labels during training.

Training Details. We use the multi-label datasets PASCAL-VOC [78] and MS-COCO [79] to train
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Algorithm 1: GAMA pseudo-code
Input : distribution D, batch size B, perturbation ℓ∞ bound ϵ
Input : surrogate classifier f(·), CLIP-encoders for text T (·) and image I(·)
Output : optimized perturbation generator Gθ(·)’s weights θ

1 Randomly initialize θ. Load (as well as freeze) f(·), T (·) and I(·) with respective pre-trained weights
2 Create text embeddings matrix Atxt from T (·) as described in Section 3.1
3 repeat
4 Input x to I(·) and get ρimg

5 Randomly sample B vectors from Atxt and get least similar text embedding ρtxt w.r.t. ρimg

6 Input clean image x (from D) to f(·) and compute mid-level embedding fk(x)
7 Input x to Gθ(·) and project it within bound ϵ using P(·) to obtain xδ

8 Input xδ to f(·) and compute mid-level embedding fk(xδ)
9 Compute loss L by Equation (4) and minimize it to update θ using Adam [75]

10 until convergence

generators for the baselines and our method. Unless otherwise stated, perturbation budget is set to
ℓ∞ ≤ 10 for all experiments. We chose the following surrogate models f(·) (Pascal-VOC or MS-
COCO pre-trained multi-label classifiers): ResNet152 (Res152) [80], DenseNet169 (Den169) [81],
and VGG19 [64]. For the CLIP model, we use the ‘ViT-B/16’ framework [36]. See supplementary
material for more training details.

Inference Metrics. We measure attack performances on multi-label classifiers using hamming score
(%) defined in [82, 83]. For evaluations on single-label classifiers and object detectors, we use top-1
accuracy (%) and bbox_mAP_50 ∈ [0, 1] metric, respectively. A lower score indicates better attack.
Best results are in bold. For reference, accuracy on clean images is provided as ‘No Attack’.

4.1 Results and Analysis

All trained perturbation generators (trained only on multi-label datasets) are extensively evaluated
under following victim model settings.

• White-box and black-box (multi-label classification, different model than f(·)): We evaluate the
attacks in white-box and black-box settings on six victim multi-label classifiers (VGG16, VGG19,
ResNet50 (Res50), Res152, Den169, and DenseNet121 (Den121)) in Table 2 and Table 3 (white-box
attacks are marked with cell color). We outperform all baselines in the majority of cases, with an
average absolute difference (w.r.t. closest method) of ∼13 percentage points (pp) for Pascal-VOC
and ∼4.46pp for MS-COCO.

• Black-box (single-label classification): We evaluate the attacks in a black-box setting with various
single-label classifiers for CIFAR10/100 [84] (coarse-grained tasks [13]), CUB-200-2011 (CUB)
[32], Stanford Cars (Car) [85], and FGVC Aircrafts (Air) [86] (fine-grained tasks [13]) in Table 6,
and ImageNet [87] (50K validation set) in Table 4 and Table 5. Following [13], the victim models
of coarse-grained tasks are taken from [88], fine-grained task models (Res50, SENet154 (SeNet),
and SE-ResNet101 (se-Res101) [89]) from [90], and six ImageNet models from [33]. Here, we beat
our closest baseline in all cases by ∼13.33pp for Pascal-VOC and ∼5.83pp for MS-COCO on six
ImageNet models. Note that the ImageNet results also demonstrate the drop in performance of TAP
[12] and BIA [13] attacks that show close to 0% top-1 accuracy when Gθ(·) is trained on ImageNet
on the attacker side [12, 13]. We hypothesize that such a drop in performance is due to sensitivity
to the dataset of the manually selected mid-level layer of f(·) used by the attacker. We observe a
similar trend when attacking non-ImageNet distributions as suggested by BIA [13] in coarse and
fine-grained tasks in Table 6. In this case, GAMA beats the prior attacks by average ∼13.33pp when
Gθ(·) is trained with Pascal-VOC.

• Black-box (Object detection): We also evaluate a difficult black-box attack with state-of-the-art
MS-COCO object detectors (Faster RCNN with Res50 backbone (FRCN) [91], RetinaNet with Res50
backbone (RNet) [92], DEtection TRansformer (DETR) [93], and Deformable DETR (D2ETR) [94])
in Table 7, available from [95]. It can be observed that GAMA outperforms its competitors when
Gθ(·) is trained with Pascal-VOC.
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Table 2: Pascal-VOC → Pascal-VOC
Method VGG16 VGG19 Res50 Res152 Den169 Den121 Average

f(·)
No Attack 82.51 83.18 80.52 83.12 83.74 83.07 82.69
GAP [10] 19.64 16.60 72.95 76.24 68.79 66.50 53.45
CDA [11] 26.16 20.52 61.40 65.67 70.33 62.67 51.12
TAP [12] 24.77 19.26 66.95 66.95 68.65 64.51 51.84
BIA [13] 12.53 14.00 64.24 69.07 69.44 64.71 48.99V

G
G

19

GAMA 6.11 5.89 41.17 45.57 53.11 44.58 32.73
GAP [10] 56.93 56.20 65.58 72.26 75.22 69.54 65.95
CDA [11] 41.07 47.60 53.84 47.22 67.50 59.65 52.81
TAP [12] 52.92 58.24 56.52 53.61 71.55 64.56 59.56
BIA [13] 45.34 49.74 51.98 50.27 67.75 61.05 54.35R

es
15

2

GAMA 33.42 39.42 32.39 20.46 49.76 49.54 37.49
GAP [10] 62.09 59.55 68.60 72.81 76.09 72.70 68.64
CDA [11] 52.28 53.75 59.65 67.23 69.60 67.37 61.64
TAP [12] 58.48 58.55 58.14 63.42 52.66 62.57 58.97
BIA [13] 48.52 53.77 56.15 63.33 54.01 58.85 55.77D

en
16

9

GAMA 44.25 52.89 48.83 53.25 45.00 50.96 49.19

Table 3: MS-COCO → MS-COCO
Method VGG16 VGG19 Res50 Res152 Den169 Den121 Average

f(·)
No Attack 65.80 66.48 65.64 67.95 67.59 66.39 66.64
GAP [10] 8.31 10.61 39.49 48.00 41.00 38.12 30.92
CDA [11] 6.57 8.57 37.38 43.56 38.41 35.59 28.34
TAP [12] 3.45 6.14 25.77 29.56 20.05 21.15 17.68
BIA [13] 2.47 4.01 30.76 37.34 26.40 27.95 21.48V

G
G

19

GAMA 3.59 3.75 27.13 30.43 24.60 21.77 18.54
GAP [10] 42.59 45.41 51.22 53.75 54.18 52.54 49.94
CDA [11] 30.16 37.79 42.83 45.13 49.24 44.93 41.68
TAP [12] 24.34 25.94 29.40 24.13 35.58 33.06 28.74
BIA [13] 22.73 22.76 28.64 22.16 36.06 32.41 27.46R

es
15

2

GAMA 24.52 27.73 30.62 23.04 31.30 27.31 27.42
GAP [10] 29.85 32.77 38.15 40.84 24.98 33.99 33.43
CDA [11] 39.39 41.19 46.34 50.82 43.42 44.63 44.29
TAP [12] 23.01 27.73 32.75 40.22 15.73 20.90 26.72
BIA [13] 27.01 29.59 34.65 43.42 13.57 24.69 28.82D

en
16

9

GAMA 10.40 13.47 19.30 23.46 8.65 10.29 14.26

Table 4: Pascal-VOC → ImageNet
Method VGG16 VGG19 Res50 Res152 Den121 Den169 Average

f(·)
No Attack 70.15 70.94 74.60 77.34 74.22 75.74 73.83
GAP [10] 24.44 21.64 63.65 67.84 63.09 65.47 51.02
CDA [11] 13.83 11.99 47.32 53.92 46.81 52.24 37.68
TAP [12] 06.70 07.28 50.94 57.36 47.68 53.43 37.23
BIA [13] 04.20 04.73 48.63 57.65 45.94 53.37 35.75V

G
G

19

GAMA 03.07 03.41 22.32 34.04 24.51 30.35 19.61
GAP [10] 34.04 34.67 52.85 61.61 58.09 59.24 50.08
CDA [11] 29.33 34.88 44.28 46.05 46.91 51.62 42.17
TAP [12] 33.25 37.53 41.18 42.14 50.96 56.45 43.58
BIA [13] 22.82 27.44 34.66 36.74 45.48 51.26 36.40R

es
15

2

GAMA 16.43 17.02 21.93 17.07 31.63 30.57 22.44
GAP [10] 42.79 45.01 57.79 65.42 63.02 65.31 56.55
CDA [11] 36.67 37.51 52.30 61.78 54.68 57.85 50.13
TAP [12] 28.92 30.19 38.36 50.92 45.88 40.78 39.17
BIA [13] 26.12 27.42 37.06 51.30 40.63 37.56 36.68D

en
16

9

GAMA 18.16 20.93 28.04 41.85 26.11 21.67 26.12

Table 5: MS-COCO → ImageNet
Method VGG16 VGG19 Res50 Res152 Den121 Den169 Average

f(·)
No Attack 70.15 70.94 74.60 77.34 74.22 75.74 73.83
GAP [10] 15.55 15.06 49.50 56.07 47.65 53.49 39.55
CDA [11] 13.05 12.59 46.77 52.58 43.55 50.03 36.42
TAP [12] 02.33 02.93 19.28 35.20 19.45 23.42 17.10
BIA [13] 02.51 03.09 29.72 43.98 30.37 36.53 24.36V

G
G

19

GAMA 02.01 02.57 19.99 35.21 26.26 32.98 19.83
GAP [10] 22.98 24.41 32.74 32.35 39.56 44.11 32.69
CDA [11] 35.69 39.40 51.75 54.84 53.55 58.92 49.02
TAP [12] 13.29 12.46 23.44 21.11 35.14 41.29 24.45
BIA [13] 14.98 14.98 25.40 21.98 34.11 37.62 24.84R

es
15

2
GAMA 17.94 19.16 24.57 17.24 29.67 30.57 23.19

GAP [10] 30.50 30.79 40.82 51.12 41.03 37.46 38.62
CDA [11] 35.75 36.69 50.45 57.43 51.23 52.44 47.33
TAP [12] 21.45 26.45 27.30 45.76 30.83 25.34 29.52
BIA [13] 20.91 25.01 37.16 50.65 34.71 23.38 31.97D

en
16

9

GAMA 06.94 10.63 10.97 21.60 13.92 08.22 12.04

Table 6: Pascal-VOC → Coarse (CIFAR10/100) and Fine-grained (CUB, Car, Air) tasks
CIFAR10 CIFAR100 CUB CUB CUB Car Car Car Air Air Air

Method
[88] [88] Res50 SeNet se-Res101 Res50 SeNet se-Res101 Res50 SeNet se-Res101

Average
f(·)

No Attack 93.79 74.28 87.35 86.81 86.54 94.35 93.36 92.97 92.23 92.05 91.90 89.60
GAP [10] 73.58 39.10 78.94 79.79 80.41 82.33 85.71 87.19 81.19 81.82 79.99 77.27
CDA [11] 70.40 44.68 54.76 64.74 68.99 70.87 75.64 81.78 42.87 74.38 77.20 66.02
TAP [12] 73.18 35.41 72.42 74.39 73.94 78.40 77.08 84.59 78.91 78.94 75.52 72.98
BIA [13] 59.82 27.84 68.31 65.64 73.70 75.61 67.90 81.83 75.88 66.13 76.75 67.22V

G
G

19

GAMA 53.85 24.94 53.52 62.19 66.93 60.08 69.11 78.95 45.51 43.71 63.37 56.56
GAP [10] 69.80 41.06 64.96 80.01 81.77 72.62 86.02 87.53 84.28 84.64 85.48 76.19
CDA [11] 77.60 49.43 65.38 71.52 71.63 73.04 76.52 79.54 66.61 72.73 60.10 69.46
TAP [12] 70.92 38.39 48.60 73.20 76.10 69.02 86.62 81.94 74.65 80.68 83.20 71.21
BIA [13] 67.54 36.43 51.17 70.64 71.63 70.85 82.85 80.21 72.94 80.20 81.01 69.58R

es
15

2

GAMA 69.53 38.57 27.67 64.77 64.79 59.18 74.27 80.50 59.71 69.10 65.77 61.26
GAP [10] 83.25 56.08 64.70 78.15 76.77 80.65 85.95 86.74 81.79 84.40 85.03 78.50
CDA [11] 84.34 58.03 61.75 73.40 71.75 84.21 85.57 84.58 78.97 82.24 78.22 76.64
TAP [12] 86.77 58.67 54.04 64.45 62.31 76.13 81.35 82.91 34.02 76.66 76.75 68.55
BIA [13] 85.20 55.21 47.95 58.18 56.02 55.88 73.65 72.30 62.47 72.97 70.39 64.56D

en
16

9

GAMA 78.27 46.80 33.57 57.44 63.24 49.31 70.65 75.14 48.48 62.95 70.15 59.63
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Figure 3: Transferability on types of victim model designs. GAMA shows potent transferring attacks to
victim networks that were custom designed (Figure 3(a)) and that contain standard blocks like Residual blocks
[80] (Figure 3(b)).
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Figure 4: Ablation analysis of loss objec-
tive. We analyze the contribution due to the
introduction of each loss function Limg and
Ltxt towards the final objective L, both in
same distribution (left) and different distribu-
tion (right). The surrogate model is Res152.

Table 7: Pascal-VOC → MS-COCO Object Detection task

Method FRCN RNet DETR D2ETR Average
f(·)

No Attack 0.582 0.554 0.607 0.633 0.594
GAP [10] 0.424 0.404 0.360 0.410 0.399
CDA [11] 0.276 0.250 0.208 0.244 0.244
TAP [12] 0.384 0.340 0.275 0.320 0.329
BIA [13] 0.347 0.318 0.253 0.281 0.299V

G
G

19

GAMA 0.234 0.207 0.117 0.122 0.170
GAP [10] 0.389 0.362 0.363 0.408 0.380
CDA [11] 0.305 0.274 0.256 0.281 0.279
TAP [12] 0.400 0.348 0.288 0.350 0.346
BIA [13] 0.321 0.275 0.205 0.256 0.264R

es
15

2

GAMA 0.172 0.138 0.080 0.095 0.121

Performance on Type of Architectures. In Figure 3, we further study the transferability of attacks
depending on the type of victim architecture: standard which follow the standard modules like
Residual blocks [80] to build the classifier, and custom where the victim classifier doesn’t adhere to a
specific pattern of network modules. In both cases, GAMA consistently maintains better attack rates
than other attacks. This shows convincing transferability of perturbations crafted from GAMA’s
Gθ(·) under diverse black-box settings. We provide additional results in the supplementary material.

Robustness of Attacks against Defenses. To analyze the robustness of all the methods, we launch
misclassification attacks (Gθ(·) trained on MS-COCO with the surrogate model as Den169) when the
victim deploys input processing based defense such as median blur with window size as 3× 3, and
Neural Representation purifier (NRP) [76] on three ImageNet models (VGG16, Res152, Den169).
From Table 8(a) and Table 8(b), we can observe that the attack success of GAMA is better than
prior methods even when the victim pre-processes the perturbed image before making decisions. In
Figure 8(c), we observe that Projected Gradient Descent (PGD) [77] assisted Res50 is difficult to
break with GAMA performing slightly better than other methods. Finally, motivated by [96], we
analyze an output processing defense scenario where the victim can check the context consistency of
predicted labels on perturbed images using the co-occurrence matrix O. In particular, if a perturbed
image is misclassified showing co-occurrence of labels not present in O, we term this as a detected
attack. Otherwise, we call it an undetected attack. To measure this performance, we first compute
the co-occurrence matrix Oδ by perturbing all the test set images and estimate its precision w.r.t.
ground-truth O. To check for attacks that have high precision value p and high misclassification rate,
we calculate a ‘context score’ (higher is better) that is a harmonic mean of p and misclassification rate
(1-accuracy). We show the attack performance against this context consistency check in Figure 8(d)
for both Pascal-VOC and MS-COCO averaged over all surrogate models under white-box attacks.
Clearly, GAMA presents itself as the best undetected attack compared to prior works.

Ablation Analysis. We dissect the contribution of each loss function in our proposed loss objective
of Equation (4) in Figure 4 where Gθ(·) is trained with Pascal-VOC with Res152 surrogate model.
We analyze the attack transferability to different victim models (VGG16, Res50). We observe that the
introduction of each loss objective (left to right) increases the strength of the attack both in the same
distribution (Pascal-VOC) as the attacker and in the unknown distribution (ImageNet) on both victim
classifiers. Finally, we visualize some perturbed image examples crafted by GAMA in Figure 5.

Method VGG16 Res152 Den121 Average
No Attack 64.57 74.04 71.68 69.92
GAP [10] 33.33 56.90 46.34 45.52
CDA [11] 37.89 58.98 56.19 51.02
TAP [12] 22.37 50.67 40.81 37.95
BIA [13] 25.09 54.45 46.34 41.96
GAMA 20.34 49.66 37.55 35.85

(a) Median Blur

Method VGG16 Res152 Den121 Average
No Attack 56.26 62.37 68.62 62.41
GAP [10] 31.08 45.11 37.85 38.01
CDA [11] 34.61 47.64 51.32 44.52
TAP [12] 20.06 36.54 19.70 25.43
BIA [13] 19.94 41.03 20.07 23.68
GAMA 7.38 19.00 7.87 11.41

(b) NRP
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Table 8: Robustness Analysis against various defenses. Our proposed attack GAMA consistently shows better
performances compared to baselines in scenarios where the victim deploys attack defenses.
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Figure 5: Qualitative Examples. We show some clean (top) and perturbed (bottom) images from GAMA. Best
viewed in color/zoomed.

5 Conclusion

In this paper, we propose a new generative attack GAMA that can learn to create perturbations against
multi-object scenes. For the first time in generative attack literature, we show the utility of a pre-
trained vision-and-language model CLIP to optimize effectual perturbation generators. Specifically,
CLIP’s joint text and image aligning property allow us to use natural language semantics in order
to handle the multi-object semantics in the input scene to be perturbed. To demonstrate GAMA’s
efficiency, we perform extensive experiments that show state-of-the-art attacks across a wide range of
black-box victim models (multi-label/single-label classifiers, and object detectors). We also evaluate
the robustness of our attacks against various defense mechanisms. As part of our future works, we
will explore more complex methodologies to employ vision-language models both for adversarial
attacks and defense systems.

6 Limitations and Societal Impacts

Limitations. The pre-trained CLIP model ‘ViT-B16’ outputs a 512-dimensional embedding that
restricts us to compare the features extracted from the surrogate model in our losses of the same
size. Another limitation of our method is the use of co-occurrence matrices to extract the right pair
of classes that exist together in real-world scenes. In this paper, we make an assumption that text
prompts are created using two classes that exist together according to the co-occurrence matrix of
size C × C (for C classes in the data distribution). However, we can also use a triplet of classes
that exist together in an input scene which would need a co-occurrence tensor of size C × C × C.
Computing such a huge tensor would be tedious to cover all the images provided in the train set
(usually in the order of thousands).

Societal Impacts. Adversarial attacks are designed with the sole goal to subvert machine decisions
by any means available. Our attack approach shows one such method where a benign open-sourced
vision-language model can be utilized by an attacker to create potent perturbations. This demonstrates
the need for the victim to prepare for constantly evolving attacks that may cause major harm in
real-world systems (e.g. person re-identification [97]). We believe that our work can help further
propagate research into designing efficient and robust models that do not break down to attacks built
upon multi-modal (in our case, text-image) features. Future researchers should also be aware of
video generative models [98, 99] that can be used to create adversarial attacks for ubiquitous video
classifiers built on the success of vision-language models.

Acknowledgement. This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Agreement No. HR00112090096. Approved for public release;
distribution is unlimited.
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