
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZED GREEDY GRADIENT-BASED HYPERPA-
RAMETER OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilevel Optimization (BLO) is a widely-used approach that has numerous applica-
tions, including hyperparameter optimization, meta-learning. However, existing
gradient-based method suffer from the following issues. Reverse-mode differ-
entiation suffers from high memory requirements, while the methods based on
the implicit function theorem require the convergence of the inner optimization.
Approximations that consider a truncated inner optimization trajectory suffer from
a short horizon bias. In this paper, we propose a novel approximation for hyper-
gradient computation that sidesteps these difficulties. Specifically, we accumulate
the short-horizon approximations from each step of the inner optimization trajec-
tory. Additionally, we demonstrate that under certain conditions, the proposed
hypergradient is a sufficient descent direction. Experimental results on a few-shot
meta-learning and data hyper-cleaning tasks support our findings.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

∇wt−1Ltrain(wt−1,α)

wt−1

×
−η

+ wt

γT−t∇wtLval(wt,α)Bt

∇wtLtrain(wt,α) ×
−η

+

γT−t−1∇wt+1Lval(wt+1,α)Bt+1

Σ

dαLval(wT ,α; γ)

Figure 1: The schematic illustration of the proposed approach. In general, the approximate hypergra-
dient is calculated as a weighted sum of the locally optimal greedy gradients calculated at each inner
optimization step.

1 INTRODUCTION

Bilevel optimization has become an essential component of machine learning, which includes Neural
Architecture Search Liu et al. (2018); Pham et al. (2018); Zoph & Le (2016), Hyperparameter
Optimization Hutter et al. (2019), and Meta-Learning Hospedales et al. (2021); Nichol et al. (2018);
Finn et al. (2017). In the hierarchical optimization framework, the outer-level objective is aimed to
be minimize given the optimality in the inner level. Solving the bilevel problem is challenging due to
the intricate dependency of the optimal inner parameters given the outer parameters.

Naive approaches such as random search and grid search Bergstra & Bengio (2012) become impracti-
cal with the growing number of hyperparameters to be optimized due to the curse of dimensionality.
Another approach that has proven effective in low-dimensional setting is Bayesian Optimization

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Snoek et al. (2012). However, its extension to high-dimensional setting is challenging Wang et al.
(2023).

In the current work we develop a novel gradient-based algorithm Bengio (2000). The challenge
is that the exact hypergradient calculation is computationally demanding Franceschi et al. (2017).
Specifically, Forward-Mode differentiation (FMD) is memory demanding, since it increases linearly
with the number of hyperparameters. This limits the application of the method for large-scale
problems with millions of hyperparameters, such as meta-learning. By contrast, Revers-Mode
Differentiation (RMD) perfectly scales to problems with millions of hyperparameters, but it requires
the full inner optimization trajectory of model parameters to be saved, which is computationally
costly. Moreover, RMD suffers from gradient vanishing or explosion Antoniou et al. (2018), which
leads to training instability. Truncation of the optimization trajectory was proposed to alleviate high
memory consumption Shaban et al. (2019) while calculating an approximate hypergradient. However,
this approach suffers from short horizon bias Wu et al. (2018). Following Micaelli & Storkey (2020),
we define greediness as finding the optimal hyperparameters on a local scale, rather than on a global
scale.

Alternatively, an implicit differentiation may be used to compute the hypergradient Lorraine et al.
(2020); Luketina et al. (2016); Pedregosa (2016). This approach mitigates the need for unrolling,
but it heavily relies on Implicit Function Theorem, which requires the convergence of the inner
optimization Grazzi et al. (2020); Blondel et al. (2022). The challenge of this family of methods is
computing inverse Hessian-vector product. This computation may be approximated with Neumann
series Lorraine et al. (2020) or conjugate gradients Pedregosa (2016).

In this paper, we propose an alternative approach to hypergradient computation. We generalize the
method from Luketina et al. (2016). Namely, the proposed approach resolves the following issues
simultaneously: short horizon bias, high memory requirements, applicability to large-scale problems
with millions of hyperparameters, and independence of inner optimization convergence. Overall, our
contributions are as follows:

1. we introduce a procedure that aggregates the greedy gradients calculated at each iteration of
the inner objective, which satisfies the requirements above.

2. We provide a theoretical analysis of the proposed approach. Under some assumptions, a
sufficient descent condition holds.

3. We empirically prove the effectiveness of the proposed approach on a Meta-Learning task.

The rest of the paper is organized as follows: In Section 2, we briefly review works related to the
proposed method. We provide some background information about hypergradient computation in 3.
In Section 4, we present the formal problem statement and describe our hyperparameter optimization
approach. Section 4.2 shows how our method can be viewed as an extension of the T1− T2 method,
while Section 4.3 provides a comprehensive analysis of the proposed approach. In Section 5, we
demonstrate the effectiveness of our method through a series of experiments. Finally, we discuss
potential directions for future research in Section 6.

2 RELATED WORK

Gradient-Based Hyperaprameter Optimization. Differentiation through optimization Domke
(2012) was successfully applied to hyperparameter optimization at a large-scale Maclaurin et al.
(2015). The unrolled differentiation could be categorized into Forward-Mode and Reverse-Mode
differentiation Franceschi et al. (2017). The former one suits best for the cases when a handful of
hyperparameters is needed to be optimized Micaelli & Storkey (2020), for instance, learning rate and
weight dacay. The latter is suitable for the setup with millions of hyperparameters while sacrificing
the memory consumption when the number of inner optimization steps increases, except for the
cases when SGD with momentum is used Maclaurin et al. (2015). Additionally, truncated unrolled
differentiation Shaban et al. (2019) introduces a trade-off between computational complexity and
hypergradient accuracy. However, computations done on truncated trajectories suffer from short
horizon bias Wu et al. (2018).

Alternatively, impicit differentiation, inspired by the Implicit Function Theorem (IFT), is used to
compute the hypergradient Bengio (2000); Lorraine et al. (2020); Pedregosa (2016); Luketina et al.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: A comparison of gradient-based methods for hyperparameter optmization is presented:
Forward-Mode and Reverse-Mode differentiation Franceschi et al. (2017), Implicit Function Theorem
Lorraine et al. (2020), T1− T2 Luketina et al. (2016) and the proposed approach. In this context, P
refers to the number of model parameters and H denotes the number of hyperparameters. Furthermore,
K denotes the number of terms in the approximation using the Neumann series.

RMD FMD IFT T1−T2 Ours

Long Horizon Yes Yes Yes No Yes

Scalable to large amount of
hyperparameters

Yes No Yes Yes Yes

Space Complexity O(PT) O(PH) O(P +H) O(P +H) O(P +H)

Time complexity O(T) O(HT) O(K) O(1) O(T)

No inner optimality Yes Yes No Yes Yes

(2016). In Bengio (2000) an exact inverse Hessian is computed, which is computationally intractable
in huge-scale scenario with millions of model parameters. To sidestep this issue, an approximation is
needed. Specifically, the Neumann series approximation Lorraine et al. (2020), conjugate gradients
Pedregosa (2016), GMRES Blondel et al. (2022) for solving linear systems, Nyström method Hataya
& Yamada (2023), and Broyden’s method Hao et al. (2022). The major limitation is that the near-
optimality of the inner optimization is crucial for accurate approximation of the true hypergradient
Grazzi et al. (2020); Blondel et al. (2022). Moreover, the method is inapplicable to tackling the
optimizer hyperaprameters such as learning rate.

We summarize the comparison of described approaches in Table 1.

Meta-Learning. Another fundamental application of bilevel optimization is meta-learning Schmid-
huber (1987) (or learning to learn). It aims to train a model that generalizes well over the distribution
of tasks Ravi & Larochelle (2016). In the context of gradient-based model-agnostic meta-learning
Finn et al. (2017), the task is to learn an initialization of model parameters such that gradient-based
fine-tuning shows good generalization. MAML optimization successfully inherts the methods for
hypergradient computation. Specifically, Li et al. (2018) successfully employed Luketina et al. (2016),
Rajeswaran et al. (2019) used implicit differentiation with conjugate gradient algorithm.

3 BACKGROUND

In this section we introduce a derivation of an exact hypergradient computation.

Given a vector of model parameters w ∈ RP and a vector of hyperparameters α ∈ RH . The dynamic
of model parameters {wt}Tt=0 for some T ∈ N and some α is defined as follows wt+1 = Φ(wt,α),
where Φ(., .) is a smooth mapping. For instance, a vanilla gradient descent with stepsize η > 0 could
be written as Φ(wt,α) = wt − η∇wLtrain(wt,α), where Ltrain is a training loss function. Given
also a differentiable validation loss function Lval(w,α). Under the notations above we formulate a
hyperparameter optimization problem as follows:

α∗ − arg min
α∈RH

Lval(wT ,α), (1)

s.t. wt = Φ(wt−1,α), t ∈ 1, T . (2)

Now the goal is to derive a hypergdadient dαLval(wT ,α), viewing wT as a function of α:

dαLval(wT ,α) = ∇αLval(wT ,α) +∇wT
Lval(wT ,α)

dwT

dα
. (3)

Here ∇αLval(wT ,α) is a row-vector. The chain rule suggests that dwT /dα is computed in the
following way Franceschi et al. (2017):

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

dwT

dα
=

T∑
t=1

(
T∏

k=t+1

Ak

)
Bt, Ak =

∂Φ(wk−1,α)

∂wk−1
, Bt =

∂Φ(wt−1,α)

∂α
. (4)

Therefore, the hypergradient is calculated as follows:

dαLval(wT ,α) = ∇αLval(wT ,α) +

T∑
t=1

∇wT
Lval(wT ,α)

(
T∏

k=t+1

Ak

)
Bt. (5)

The computation of equation 4 could be implemented with a Reverse-Mode Differentiation (RMD) or
Forward-Mode Differentiation (FMD) Franceschi et al. (2017). However, the aforementioned method
is computationally expensive in terms of either latency (FMD) or memory (RMD). Note that RMD
may not need to store the trajectory w1, . . . ,wT in case of SGD with momentum. However, this
would require 2T − 1 Jacobian-vector products (JVPs), which is computationally demanding. So, we
develop the method that performs only T JVPs for the hypergradient computation.

4 THE METHOD

4.1 HYPERGRADIENT APPROXIMATION

In this section we introduce a computationally efficient approximation to equation 5. Specifically,
consider the t-th step of the inner optimization. The challenge is that the computation of

∏T
k=t+1 Ak

requires the tail of the trajectory wt, . . . ,wT . To this end, we introduce an approximation of the
product with γT−t, where γ ∈ (0, 1]. We motivate the choice of γ by the fact that (1−ηL)I ⪯ Ak ⪯ I
if Ltrain(.,α) is L-smooth and convex for any α ∈ RH . Indeed, if we assume that Φ(., .) is a vanilla
gradient descent, then Ak = I− η∇2

wk−1
Ltrain(wk−1,α). Due to the convexity and L-smoothness

of Ltrain(.,α) we conclude that 0 ⪯ ∇2
wk−1

Ltrain(wk−1,α) ⪯ LI. So, choosing the step size
η ≤ L−1, we conclude that the spectrum of Ak is bounded between 0 and 1 for any choice of
α and k. Additionally, we replace the gradient of the validation loss ∇wT

Lval(wT ,α) with the
gradient from the current iteration ∇wtLval(wt,α) due to the same reason. Write down the proposed
approximation:

d̂αLval(wT ,α; γ) = ∇αLval(wT ,α) +

T∑
t=1

γT−t∇wt
Lval(wt,α)Bt. (6)

Note that the intuition from equation 6 was previously used in Lee et al. (2021). However, it was
used as an intermediate step in the reasoning. Moreover, the approximation of the gradient of the
validation loss function w.r.t. model parameters was not considered. Figure shows a schematic
overview of the propsed approach.

4.2 GENERALIZATION OF T1− T2

Note that the proposed hypergradient computation equation 6 is a generalization of T1− T2 hyper-
gradient Luketina et al. (2016) when γ tends to zero. Below we formulate a formal statement.

Proposition 4.1. Let d̂α(wT ,α; γ) be the hypergradient defined in equation 6. Then, the following
holds:

lim
γ→0+

d̂α(wT ,α; γ) = ∇αLval(wT ,α) +∇wT
Lval(wT ,α)BT . (7)

Here the right hand side of equation 7 is the hypergradient of in T1−T2 Luketina et al. (2016). The
result given in Proposition 4.1 suggest that T1− T2 hypergradient is a special case of the proposed
one. Additionally, it could be clearly seen that the proposed hypergradient computation is conditioned
on the whole trajectory of model parameters. We argue that this approach does not suffer from a
short-horizon bias problem Wu et al. (2018).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.3 DESCENT DIRECTION ANALYSIS

Here we discuss the quality of the proposed hypergradient approximation equation 6. We show that
the sufficient descent condition holds under some assumptions. Inspired by Shaban et al. (2019);
Ghadimi & Wang (2018), we first formulate a standard set of assumptions.

Assumption 4.2. Suppose that the following assumptions on the functions Ltrain(., .), Lval(., .), and
the optimization operator Φ(., .) are satisfied:

1. Lval(.,α) is L-smooth and µ-strongly convex for any α.

2. ∂Φ(.,α)
∂α is CB-Lipschitz for any α.

3. ∥∂Φ(w,α)
∂α ∥op ≤ B for any pair (w,α) for some B ≥ 0.

4. w belongs to a bounded convex set with diameter D < ∞.

5. Φ(w,α) = w − η∇wLtrain(w,α) for some η ≥ 0.

Second, we formulate and justify specific assumptions.

Assumption 4.3. Suppose that the following holds for Ltrain(., .) and Lval(., .):

1. ∇2
wLtrain(.,α) = I for any α. Note that this assumption does not hold in practice.

However, Luketina et al. (2016) argues that batch normalization Ioffe & Szegedy (2015)
forces the Hessian to be close to the identity matrix.

2. ∇αLval(w,α) = 0 for any w. This assumption is typical for hyperparameter optimization
and data hypercleaning Franceschi et al. (2017).

3. BtB
⊤
t ⪰ κI for some κ > 0. We note that the assumption that Bt is a full-rank matrix

was used in Shaban et al. (2019). However, we impose more strict assumption to simplify
the proofs.

4. Define w∞ := argminw Ltrain(w,α), w∗
2 := argminw Lval(w,α).

Assume that ∥w∞ − w∗
2∥ ≥ 2De−µηT + δ, for some δ > 0. Also assume that

∇w∗
2
Lval(w

∗
2,α) = 0 for any α. Intuitively, this requirements asserts that an overfit-

ting takes place, and the minimum is reached in the interior of the feasible set.

Lemma 4.4. (Shaban et al. (2019)) In the assumptions above 4.2, 4.3, the sequence {wt}t≥0

satisfies:

∥wt −w∞∥2 ≤ ∥w0 −w∞∥2e−ηt. (8)

Lemma 4.5. Let the assumptions 4.2, 4.3 hold. Then the following is true:

∥∇wT
Lval(wT ,α)∥2 ≥ µδ. (9)

The following theorem guarantees that the proposed hypergradient is a sufficient descent direction.

Theorem 4.6. Suppose that γ = 1− η ∈ (0, 1). Then, under the assumptions above 4.2, 4.3, there
exists a sufficiently large T and a universal constant c > 0 such that:

dαLval(wT ,α)d̂αLval(wT ,α; γ)⊤ ≥ c∥dαLval(wT ,α)∥22.

5 EXPERIMENTS

In this section we present numerical experiments that validate the effectiveness and efficiency of the
proposed approach. Upon acceptance, we will make the source codes available.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.1 BASELINES

For comparison, we consider the following list of baselines that are efficient in terms of space and
latency:

• T1−T2 Luketina et al. (2016). The method performs an unrolled differentiation using
only the last step of inner optimization, so it performs a JVP.

• IFT Lorraine et al. (2020). The method combines the implicit function theorem (IFT) with
efficient approximations of the inverse Hessian. The number of JVPs is controlled by the
number of terms taken from the Neumann series.

• FO. The method uses only the first-order gradient from equation 5, namely ∇αLval(wT ,α).
Note that it is not applicable for tasks for which the outer objective does not depend explicitly
on the vector of hyperparameters α.

• Full. The method computes the true hypergradient defined in equation 5.

5.2 TOY PROBLEM

Following Shaban et al. (2019), we formulate a toy bilevel problem with the following objectives:

Lval(w,α) = ∥w∥22 + 10∥ sin(w)∥22, (10)

Ltrain(w,α) =
1

2
(w −α)⊤G(w −α), (11)

where w ∈ R2 and G = diag(1, 1
2). We solve both inner and outer problems using SGD with a learn-

ing rate of 0.1 and without momentum. The initial parameters are w0 = (2, 2) and hyperparameters
α0 = (1, 1).

We report a validation loss on the outer optimization steps for the proposed approach and all the
baselines described in Section 5.1, except for FO, since the outer objective does not depend on
the hyperparameters explicitly. Additionally, we report the cosine similarity between the true
hypergradient and the approximation for each outer iteration. The results for horizon lengths
T ∈ {5, 20} are presented in Figure 2.

It could be clearly seen from Figure 2 that the proposed approach with γ = 0.9 achieves the best
validation performance regardless the horizon length T , outperforming all the baselines. Moreover,
the cosine similarity plots indicate that the proposed generalization outperforms the vanilla T1− T2.
However, IFT approach performs on par with ours with γ = 0.9. Interestingly, there is a non-
monotonic behaviour observed in the proposed method with T = 10 and γ = 0.9. We leave this
phenomenon for future research.

5.3 DATA HYPER-CLEANING

Following Franceschi et al. (2017), the task is formulated as follows. Given a training dataset
Dtrain = {(xi, yi)}ntrain

i=1 , where xi is an object and yi is a class label. Similary, define a validation
dataset Dval = {(xi, yi)}nval

i=1. We assume that the labels of the training dataset are corrupted.
More precisely, the label is replaced by a random class with probability pnoise. To mitigate the
influence of noisy labels we introduce a vector of weights for each training object α ∈ Rntrain . The
task is to find a vector such that the model trained on the reweighted samples achives the optimal
validation performance on clan data. Given model parameters w. The training loss function is
Ltrain(w,α) =

∑
(xi,yi)∈Dtrain

σ(αi)ℓ(w,xi, yi), where σ(.) is a sigmoid function, ℓ(.) is a cross-
entropy loss function for the training pair (xi, yi). The validation loss function is Lval(w,α) =∑

(xi,yi)∈Dval
ℓ(w,xi, yi).

We run the experiment on MNIST LeCun et al. (1998) and Fashion-MNIST Xiao (2017) datasets. We
randomly select a subset of 1000 instances from the training split for the inner objective. As for the
clean validation data, we take the whole test split. The inner optimization is done in full-batch manner
using SGD with a learning rate of 10−1 and momentum 0.9, while the outer problem is optimized
with Adam with a learning rate of 10−1. As for a model, we used a 3-layer convolutional network
with 8 channels. We set the number of inner steps to T = 10 and the number of outer updates to 200.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Outer steps

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Va
l.

Lo
ss

full
IFT (2)
T1-T2
Ours (= 0.9)
Ours (= 0.5)
Ours (= 0.3)

0 200 400 600 800 1000
Outer steps

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Co
sin

e
sim

.

IFT (2)
T1-T2
Ours (= 0.9)
Ours (= 0.5)
Ours (= 0.3)

(a) Results for T = 5.

0 200 400 600 800 1000
Outer steps

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Va
l.

Lo
ss

full
IFT (5)
T1-T2
Ours (= 0.9)
Ours (= 0.5)
Ours (= 0.3)

0 200 400 600 800 1000
Outer steps

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Co
sin

e
sim

.
IFT (5)
T1-T2
Ours (= 0.9)
Ours (= 0.5)
Ours (= 0.3)

(b) Results for T = 10.

Figure 2: Results for a toy experiment. Validation loss and cosine similarity with the true hypergradi-
ent is presented.

Method #JVPs MNIST (0.3) MNIST (0.5) F-MNIST (0.3) F-MNIST (0.5)

w/o HPO 0 70.46 ± 5.47 51.52 ± 1.61 59.46 ± 4.12 53.99 ± 6.88
T1− T2 1 66.93 ± 1.2 51.86 ± 2.77 62.07 ± 4.41 51.40 ± 5.53
IFT (5) 11 71.97 ± 4.54 54.14 ± 6.66 60.63 ± 5.03 47.68 ± 1.51
Ours (γ = 0.9) 10 87.06 ± 0.77 77.73 ± 1.70 72.57 ± 1.09 66.21 ± 1.50

Table 2: The results for data hyper-cleaning experiment. Validation accuracy is reported. The value
of pnoise is presented in parenthesis.

We tune γ within the set {0.9, 0.99, 0.999} and select the best-performing value for each pnoise. The
experiments have demonstrated that γ = 0.9 performs uniformly well.

We report the validation accuracy and 95% confidence interval for five trials of the compared baselines
and the proposed method in Table 2 for different values of pnoise. We also report the number of
JVPs. To illustrate the effect from hyperparameter optimization, the metrics for the baseline without
hyper-cleaning are reported, i.e. α = 0. The results suggest that the proposed method outperforms
the baselines in terms of validation accuracy, having comparable computational cost.

5.4 GRADIENT-BASED META-LEARNING

We consider gradient-base Meta-Learning task for few-shot image classification task Finn et al. (2017)
in a K-shot m-way setting. As for the model, we consider a 6-layer convolutional network with
32 channels. Inspired by Flennerhag et al. (2019), we treat the 2-nd, 4-th and 6-th layer as a high-
dimensional hyperparameters that are not optimized in the inner loop. We conduct the experiment
on Omniglot Lake et al. (2011) dataset, downsampled to 28× 28. We leave 20% of the classes for
meta-validation split and the validation dataset for each task consists of 10 samples for each class.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method #JVPs 2-way, 1-shot 3-way, 1-shot 5-way, 1-shot 10-way, 1-shot
FO 0 87.31 ± 1.79 78.22 ± 1.04 69.71 ± 0.5 62.41 ± 1.95
T1− T2 1 89.4 ± 0.36 78.25 ± 1.03 66.7 ± 3.09 52.23 ± 1.63
IFT (2) 5 87.1 ± 2.52 79.36 ± 2.31 72.57 ± 2.14 53.62 ± 5.92
Ours (γ = 0.9) 5 93.5 ± 0.34 86.83 ± 0.78 80.46 ± 1.08 66.92 ± 2.04

Table 3: Few-shot accuracy on the meta-learning task.

The inner optimization is done using SGD with a learning rate of 10−1 and momentum 0.9, while the
outer problem is optimized with Adam with a learning rate of 10−3. The number of outer steps is set
to 2 · 103 and the horizon length T is set to 5. The inner optimization is done in a full-batch manner.
We tune γ for the proposed approach within the set {0.9, 0.99, 0.999} and select the best-performing
value for each task using the meta-validation split. Interestingly, γ = 0.9 performs remarkably well
irrespective of the task.

The accuracy on meta-validation split is presented in Table 3 for different few-shot scenarios, along
with the number of JVPs. We report the mean and a 95% confidence interval based on 5 trials
using different random seeds . It could be clearly seen that the proposed approach shows substantial
improvements over the baselines in terms of accuracy on the meta-validation split.

6 FUTURE WORK AND EXTENSIONS

Hyperparameter γ estimation. One of the future work directions is an exploration of the optimal
value of the hyperparameter γ. While we have not yet conducted a comprehensive analysis, current
experiments suggest that γ = 0.9 offers strong performance, comparable or superior to baseline
methods. A straightforward approach to tuning this hyperparameter is through grid or random search.
However, theoretical framework proposed in Section 4 establishes a relation between γ and matrices
of parameter gradients Ak. This fact can be used for potential analytical methods to derive its optimal
value.

Extension to Other Optimization Algorithms. The proposed method can be viewed as an ex-
tension of the T1 − T2 method, leveraging a longer optimization horizon and the inclusion of
momentum. The momentum term establishes connections with other optimization algorithms, and
future extensions could incorporate advanced optimization techniques such as adaptive moment
estimation Kingma & Ba (2015). Additionally, a promising direction for further research is to explore
neural network-based optimization methods, as demonstrated in Andrychowicz et al. (2016), which
could potentially improve the adaptability of the proposed method.

Validation Loss Surface and Horizon Length in Hyperparameter Optimization. Our experi-
ments demonstrate that, across multiple tasks, the proposed method outperforms more sophisticated
approaches such as the IFT method, despite its simplicity in both computational and implementation
aspects. This raises a question: how complex is the underlying hyperparameter optimization problem,
and do we truly require accurate hyperparameter gradient approximations over a long horizon?
While several studies theoretically explore hyperparameter optimization with long horizon Micaelli
& Storkey (2020); Wu et al. (2018), the complexity of the validation loss surface for real-world
problems remains an open question and needs to be investigated.

7 CONCLUSION

The paper presents an approximation of the true hypergradient for gradient-based bilevel optimization
that avoids the high memory cost and short horizon bias. Additionally, the method does not require
the assumption of convergence to an optimal solution for the inner optimization. The proposed
method exploits an aggregation of greedy gradients calculated at each step of the inner trajectory.
Our theoretical findings suggest that the approximation satisfies the sufficient descent condition.
Empirically, the introduced method outperforms the baselines in terms of validation accuracy, having

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

comparable computational costs. One promising direction for future research is to investigate more
accurate Hessian approximations.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In International
conference on learning representations, 2018.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):
1889–1900, 2000.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances
in neural information processing systems, 35:5230–5242, 2022.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pp. 318–326. PMLR, 2012.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. arXiv preprint arXiv:1909.00025, 2019.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp. 1165–1173. PMLR, 2017.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration com-
plexity of hypergradient computation. In International Conference on Machine Learning, pp.
3748–3758. PMLR, 2020.

Zhongkai Hao, Chengyang Ying, Hang Su, Jun Zhu, Jian Song, and Ze Cheng. Bi-level physics-
informed neural networks for pde constrained optimization using broyden’s hypergradients. In The
Eleventh International Conference on Learning Representations, 2022.

Ryuichiro Hataya and Makoto Yamada. Nyström method for accurate and scalable implicit differenti-
ation. In International Conference on Artificial Intelligence and Statistics, pp. 4643–4654. PMLR,
2023.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, systems,
challenges. Springer Nature, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of
simple visual concepts. In Proceedings of the annual meeting of the cognitive science society,
volume 33, 2011.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hae Beom Lee, Hayeon Lee, Jaewoong Shin, Eunho Yang, Timothy Hospedales, and Sung Ju
Hwang. Online hyperparameter meta-learning with hypergradient distillation. arXiv preprint
arXiv:2110.02508, 2021.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
for domain generalization. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International conference on artificial intelligence and statistics, pp.
1540–1552. PMLR, 2020.

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based tuning
of continuous regularization hyperparameters. In International conference on machine learning,
pp. 2952–2960. PMLR, 2016.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pp. 2113–2122.
PMLR, 2015.

Paul Micaelli and Amos Storkey. Non-greedy gradient-based hyperparameter optimization over long
horizons. 2020.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pp. 737–746. PMLR, 2016.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR,
2018.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2016.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1723–1732. PMLR, 2019.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
optimization. ACM Computing Surveys, 55(13s):1–36, 2023.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

H Xiao. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

A APPENDIX

A.1 PROOFS FOR THE RESULTS IN THE MAIN TEXT

Proof of Proposition 4.1. First, using the definition of d̂α(wT ,α; γ) from equation 6, we conclude
that:

d̂α(wT ,α; γ) = ∇αLval(wT ,α) +∇wT
Lval(wT ,α)BT + γ

T−1∑
t=1

γT−t−1∇wt
Lval(wt,α)Bt.

Second, note that the last term tends to zero:

lim
γ→0+

γ

T−1∑
t=1

γT−t−1∇wt
Lval(wt,α)Bt = 0.

The combination of the above two steps completes the proof.

Proof of Lemma 4.5. First, use the Polyak-Lojasiewicz condition, since Lval(., .) is µ-strongly con-
vex in the first argument due to 4.2. Second, use the strong convexity of Lval(.,α) according to 4.2.
Third, use Lemma 4.4 for wT , and finally the overfitting condition from 4.3:

∥∇wT
Lval(wT ,α)∥22

4.2(1)

≥ 2µ(Lval(wT ,α)− Lval(w
∗
2,α))

4.2(1)

≥ µ2∥wT −w∗
2∥2

≥ µ2(∥wT −w∞∥22 + ∥w∗
2 −w∞∥22 − 2∥wT −w∞∥2 · ∥w∗

2 −w∞∥2)
4.4
≥ µ2(∥w∗

2 −w∞∥2 − 2De−µηT)∥w∗
2 −w∞∥2

4.3(4)

≥ µ2δ2.

Proof of Theorem 4.6. Define gj := ∇wjLval(wj ,α) for j ∈ {1, . . . , T}. Write down the dot
product taking into account that

∏T
k=t+1 Ak = (1− η)T−t according to 4.3(1):

dαLval(wT ,α)d̂αLval(wT ,α; γ)⊤ =

T∑
j=1

T∑
t=1

(1− η)2T−t−j∇wT
Lval(wT ,α)BtB

⊤
j ∇wjLval(wj ,α)⊤

=

T∑
j=1

T∑
t=1

(1− η)2T−j−tgTBtB
⊤
j gj .

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Now estimate each term from below

gTBtB
⊤
j gj = gTBtB

⊤
t gj + gTBt(Bj −Bt)

⊤gj

4.2(2)

≥ gTBtB
⊤
t gj − CB∥wj −wt∥2 · ∥gj∥2 · ∥gT ∥2 · ∥Bt∥op

4.3(4),4.2(3)

≥ gTBtB
⊤
t gj − CBB∥wj −wt∥2 · ∥gj −∇w∗

2
Lval(w

∗
2,α)∥2 · ∥gT ∥2

4.2(1)

≥ gTBtB
⊤
t gj − CBB∥wj −wt∥2 · L∥wj −w∗

2∥2 · ∥gT ∥2
≥ gTBtB

⊤
t gj − CBBLD∥wj −w∞ +w∞ −wt∥2∥gT ∥2

equation 8

≥ gTBtB
⊤
t gj − CBBLD(∥w0 −w∞∥2e−ηt + ∥w0 −w∞∥2e−ηj)∥gT ∥2

4.2(4)

≥ gTBtB
⊤
t gj − CBBLD2(e−ηt + e−ηj)∥gT ∥2

Now bound gTBtB
⊤
t gj from below:

gTBtB
⊤
t gj = gTBtB

⊤
t gT + gTBtB

⊤
t (gj − gT)

4.2(1)(3)

≥ κ∥gT ∥22 − L∥gT ∥2B2∥wj −wT ∥2
equation 8

≥ κ∥gT ∥22 − L∥gT ∥2B2∥w0 −w∞∥2(e−ηT + e−ηj)

4.2(4)

≥ κ∥gT ∥22 − LDB2∥gT ∥2(e−ηT + e−ηj).

Combining together the above bounds, we have:

T∑
j=1

T∑
t=1

(1− η)2T−j−tgTBtB
⊤
j gj ≥

κT 2∥gT ∥22 − CBBLD2∥gT ∥2
T∑

j=1

T∑
t=1

[e−ηt + e−ηj]− LDB2∥gT ∥2(T 2e−ηT + T

T∑
j=1

e−ηj) ≥

κT 2∥gT ∥22 − 2CBBLD2∥gT ∥2T (eη − 1)−1 − LDB2∥gT ∥2(T 2e−ηT + Tη−1) ≥
κT 2∥gT ∥22 − 2CBBLD2∥gT ∥2T (eη − 1)−1 − LDB2∥gT ∥2(T 2e−ηT + T (eη − 1)−1).

Using Lemma 4.5 we make the following statement. Since the first term of the bound is Θ(T 2) and
the second and the third are Θ(T), then there exists sufficiently large T and a universal constant c
such that the expression is bounded from below with c∥gT ∥22 for ∥gT ∥2 ≥ µδ.

12

	Introduction
	Related Work
	Background
	The Method
	Hypergradient approximation
	Generalization of T1-T2
	Descent Direction Analysis

	Experiments
	Baselines
	Toy Problem
	Data hyper-cleaning
	Gradient-based Meta-Learning

	Future work and extensions
	Conclusion
	Appendix
	Proofs for the results in the main text

