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ABSTRACT

The standard neural marked temporal point process employs the Embedding-
Encoder-History vector-Decoder (EEHD) architecture, wherein the history vector
encapsulates the cumulative effects of past events. However, due to the inherent
imbalance in event categories in real-world scenarios, the history vector tends to
favor more frequent events, inadvertently overlooking less common yet potentially
significant ones, thereby compromising the model’s overall performance. To tackle
this issue, we introduce a novel decoupled learning framework for neural marked
temporal point process, where each event type is modeled independently to capture
its unique characteristics, allowing for a more nuanced and equitable treatment
of all event types. Each event type boasts its own complete EEHD architecture,
featuring scaled-down parameters due to the decoupling of temporal dynamics.
This decoupled design enables asynchronous parallel training, and the embeddings
can reflect the dependencies between event types. Our versatile framework, accom-
modating various encoder and decoder architectures, demonstrates state-of-the-art
performance across diverse datasets, outperforming benchmarks by a significant
margin and increasing training speed by up to 12 times. Additionally, it offers
interpretability, revealing which event types have similar influences on a particular
event type, fostering a deeper understanding of temporal dynamics.

1 INTRODUCTION

Event sequence is a ubiquitous data structure in real world, such as user behavior sequences, error
logs, purchase transaction records and electronic health records (Mannila et al., 1997; Liu et al., 1998;
Zhou et al., 2013; Choi et al., 2016; Liu & Huang, 2023). Regardless of the domain, event sequence
provides a unified abstraction for these data, with each event being represented by a tuple, consisting
of the event type (aka. mark) and the occurrence time. Modeling such temporal data as a stochastic
process, one seeks to predict time and type of the future events based on the history, i.e., previously
observed sequential events. For example, a history of purchases of a person may tell when the person
will buy a new item, and a short message from a famous social media influencer could affect a critical
bull or bear in a stock market. Predicting such a future event is often realized as a chance of the event,
i.e., a likelihood of a certain type of event at a specific time.

In the realm of modeling and predicting temporal events, neural marked temporal point processes
(MTPPs) have emerged as a powerful tool capable of capturing complex dynamics and dependencies
within event sequences (Du et al., 2016; Omi et al., 2019; Shchur et al., 2020; Waghmare et al., 2022;
Soen et al., 2021; Zhou & Yu, 2023; Mei & Eisner, 2017; Chen et al., 2018). At the core of these
models lies the Embedding-Encoder-History vector-Decoder (EEHD) architecture (Shchur et al.,
2021; Bosser & Taieb, 2023), which provides a structured framework for encoding event attributes,
summarizing historical contexts, and decoding future event predictions. The history vector, a pivotal
component within this architecture, serves as a condensed representation of the cumulative effects
of past events, playing a crucial role in shaping the model’s predictions. However, a fundamental
limitation arises when applying this standard EEHD framework to real-world scenarios, where event
categories are inherently unbalanced. In such settings, the history vector tends to exhibit a bias
towards more frequently occurring events, inadvertently deemphasizing less common yet potentially
significant events. This bias not only undermines the model’s ability to capture the full diversity and
richness of event dynamics but also compromises its overall predictive performance.
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Figure 1: The left figure: the standard learning framework for neural MTPPs, where the history vector
tends to overlook those rare events (light orange color) when summarize all past events. The right
figure: our proposed decoupled learning framework, where we equip each event type with a complete
EEHD architecture and each history vector is dedicated to summarize only the past events that have
influences on the corresponding event type, regardless of their frequency. For those less common yet
influencing events, they can be captured with high fidelity by our framework (orange color).

To mitigate this challenge and unlock the full potential of neural MTPPs, we introduce a novel
decoupled learning framework tailored specifically for this task. Our approach represents a paradigm
shift from the traditional monolithic modeling of event sequences to a more nuanced, event-type-
specific approach. By modeling each event type individually, independent of the others, we aim to
eliminate the bias inherent in the standard EEHD framework and ensure that all event categories,
regardless of their frequency, are treated equitably.

Within our decoupled framework, each event type maintains its own dedicated EEHD architecture
tailored to its unique characteristics and dynamics, which as a result can have smaller parameter scales
compared to that used for full dynamics. The event type embeddings learned in each EEHD can reflect
their influences on the corresponding event type, providing valuable insights into the underlying
mechanisms driving the temporal point process. Moreover, the decoupled architecture enables
asynchronous parallel training for these individual models, significantly enhancing computational
efficiency. Our framework can accommodate various encoder and decoder architectures, without
imposing rigid constraints. This feature enables researchers and practitioners to experiment with
different design choices, optimizing their models for specific tasks and domains.

To summarize, our contributions are as follows:

• We propose a novel decoupled learning framework for neural MTPPs, which revolutionizes
the traditional monolithic modeling by disentangling it into event-type-specific individual
modeling, thereby enabling an efficient learning for event-type-specific temporal dynamics.

• The decoupled framework allows for asynchronous parallel training and provides inter-
pretability of the dependencies among different event types. Meanwhile, it’s general for not
imposing restrictions on the encoder and decoder architectures.

• Through extensive experimentation on both real-world and synthetic datasets, we show
that our approach attains state-of-the-art performance on standard prediction tasks. More-
over, we showcase a significant enhancement in training speed, achieving up to a 12-fold
increase compared to the benchmark model. Also, we demonstrate the interpretability of
our framework by analyzing how different event types influence each other.

2 METHOD

To ensure that all event types, regardless of their frequency, are adequately represented and considered,
we decouple the learning of neural MTPPs from the perspective of event types, with each having
its own dedicated EEHD architecture, as shown in Fig. 2. During the decoupling process, we also
consider the training efficiency and the interpretability of the dependencies among event types.

Notation Suppose we have l sequential historical events {(ki, ti)|ki ∈ {1, · · · ,K}}li=1, and we are
aiming at predicting the (l + 1)

th event, where K is the number of event types, and ki, ti are the
event type and occurrence time of the ith event, respectively.
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2.1 EMBEDDING LAYER

Global embedding In standard neural MTPPs, the embedding layer assigns each event type a vector
representation and the learned representations can naturally group similar event types according
to the spirit of Word2vec (Mikolov et al., 2013). However, this embedding style can not reflect
the dependencies between different event types. For example, which event types have similar
influences on the given event type k? We can view the embedding in standard neural MTPPs as global
embedding, i.e., the vector representations of different event types are in the same vector space.

Local embedding To reflect the relationships among event types, our idea is to create K vector spaces
and in each, an event type will have a vector representation, which we call local embedding. In this
embedding fashion, an event type can have different vector representations in different vector spaces,
indicating that it can have different influences on different event types. In vector space of event type
k, close vector representations indicate that the corresponding event types have similar influences on
event type k, according to the spirit of Word2vec.

Event embedding consists of two parts, the type embedding and the time embedding. Let zk
m(k̂) ∈

Rdm and zk
t (t̂) ∈ Rdt denote the embedding of event type k̂ and event time t̂ in the vector space of

event type k respectively, then we obtain the embedding of the ith event (ki, ti) in the vector space
of event type k by aggregating the type and time embedding as follows,

ek(i) = zk
m(ki)⊕ zk

t (ti) (1)

where ⊕ is usually realized by summation or concatenation. As a comparison, the global embedding
runs as follows, where only one vector space exists.

e(i) = zm(ki)⊕ zt(ti) (2)

The type embedding zm(k̂) is usually realized by looking up the k̂th row of the trainable embedding
table M ∈ RK×dm , and the time embedding zt(t̂) is usually realized by sinusoidal functions in
literature Zuo et al. (2020); Zhang et al. (2020).

In practice, the dependencies among event types are typically sparse, meaning that for a given event
type, only a limited number of event types exert influences on it. Under such a setting, identifying the
influencing event types requires only a small dimension dm in our local embedding, even as low as 1,
which greatly improves the learning efficiency.

2.2 SEQUENCE ENCODER

Global encoding To evaluate the impacts of historical events {(ki, ti)}li=1, the sequence encoder in
the standard learning framework encodes all past events into one single history vector hl, which we
call global encoding and can be summarized as follows:

hl = Encoder(e(1) · · · , e(i), · · · , e(l)) (3)

where e(i) is the embedding of the ith event (ki, ti) and Encoder is usually realized by the recurrent
neural network, Transformer or their variants (Bosser & Taieb, 2023). As aforementioned, event types
often exhibit a categorical imbalance. This poses a challenge to the standard learning framework,
as the history vector, when summarizing event history, tends to give preferential treatment to more
common events, to the detriment of those that occur less frequently.

Local encoding To ensure that all event types, irrespective of their frequency, are sufficiently
represented and taken into account, we equip each event type with its own dedicated encoder to
encode its unique temporal dynamics and dependencies, which we call local encoding, i.e.,

hk
l = Encoderk(ek(1) · · · , ek(i), · · · , ek(l)) (4)

This design not only enables the model to capture the intricacies of each individual event type but also
allows for a more lightweight encoder architecture because Encoderk can now concentrate solely on
the historical events that interest event type k.

2.3 EVENT DECODER

To model sequences that have K event types (aka. marks), neural MTPP models typically char-
acterize the future dynamics by K conditional intensity functions {λk(t|Ht)|k ∈ {1, · · · ,K}},

3
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Figure 2: An overview of our proposed decoupled learning framework. Each event type boasts its own
complete EEHD architecture (we show that for event type a and b). An event type can have different
vector representations in different EEHD spaces, indicating that it can have different influences on
different event types. For example, the embedding of event type 1 is painted white in a’s EEHD space,
meaning it has no influence on event type a (brighter color marks stronger influence). Each individual
EEHD architecture is to capture the unique characteristics and dynamics of the corresponding event
type. Compared with event type b, the future dynamism of event type a appears more active (with a
greater intensity function) as there are more influencing past events. The overall loss L is decoupled,
which allows for asynchronous parallel training.

where Ht is the events that occurred before time t. λk(t|Ht) is defined as the occurrence rate
P{event of type k occurs in [t, t + dt)|Ht}/dt, where [t, t + dt) is an infinitesimal time window
and P denotes the conditional probability. In literature, there are some other functions employed
to describe the future dynamics, e.g., cumulative hazard function (Omi et al., 2019), probability
density function (Shchur et al., 2021), etc. All of them can be converted to the intensity function
given their mathematical relationships (Bosser & Taieb, 2023). Hence, we only show the case of
intensity function in the following.

Global decoding Conditioned on the history vector hl, the decoder is about to decode the (l + 1)th

event. The decoding process in the standard learning framework can be summarized as follows,

λk(t|Ht) = σ(NNk(hl, t)) (5)

where σ is an activation function to ensure the positive constraint of the intensity function and NNk

is a neural network, e.g., multi-layer perceptron. In the standard learning framework, the history
vector hl is shared across different intensity decoders {NNk}Kk=1, and each intensity decoder takes
out the information of interests from hl to generates the corresponding intensity λk(t). We call this
decoding style global decoding, whose major challenge is that information in the history vector hl is
mostly dominated by events that occur frequently.

Local decoding In our decoupled learning framework, the information required to decode for each
individual event type is ready, i.e., {hk

l }Kk=1, yielding the local decoding as follows,

λk(t|Ht) = σ(NNk(h
k
l , t)) (6)

2.4 ASYNCHRONOUS PARALLEL TRAINING

Suppose we observe a sequence of L events S = {(kl, tl)}Ll=1 in the time period [0, T ], a neural
MTPP model is typically trained via the maximum likelihood estimation (MLE), where the log
likelihood is calculated as follows,

logL(S|θ1, · · · , θK) =
L∑

l=1

log λkl
(tl|Htl)−

∫ T

0

K∑
k=1

λk(t|Ht)dt (7)

where {θk|k ∈ {1, · · · ,K}} denote the parameters required to train in each individual EEHD
architecture. This objective function signifies that the intensity should be large at the occurrence
timestamp of each event type (the first term) and small at other timestamps (the second term). Equation
7 also conveys that we should first collect the intensities together from K EEHD architectures, then
compute the gradients and distribute the gradients back to update each EEHD model. This is a
synchronous training process for multiple models, which will largely diminish the overall training
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efficiency. Luckily, this issue can be addressed by the decoupling of the standard objective function,
as shown in Equation 8.

logL(S|θ1, · · · , θK) =
K∑

k=1

logLk(S|θk),
∂ logL(S|θ1, · · · , θK)

∂θk
=

∂ logLk(S|θk)
∂θk

logLk(S|θk) =
L∑

l=1

δ(kl = k) log λkl
(tl|Htl)−

∫ T

0

λk(t|Ht)dt

(8)

where δ(kl = k) = 1 if kl = k else 0. Equation 8 tells us the synchronization is not really necessary
as the gradients for the kth EEHD model can actually be obtained by the component log likelihood
Lk, without the need for the total log likelihood L, which allows for asynchronous parallel training
and therefore significantly enhances computational efficiency.

2.5 DISCUSSION

In this section, we discuss 1) the decoupling of the standard thinning algorithm (Rasmussen, 2018;
Mei et al., 2020); 2) the connection of our proposed framework with the Hawkes process (Hawkes,
1971a;b); 3) the connection of our proposed framework with the standard learning framework.

Sampling algorithm Thinning algorithm is widely adopted to draw sequences from point processes.
The standard thinning algorithm can be summarized as follows,

λ(t) =

K∑
k=1

λk(t), t ∼ Thinning(λ(t)), k = argmax
k̂

λk̂(t)

λ(t)
(9)

where we see the sampling of time t is based on the total intensity. One question arises: can we
decouple the standard sampling algorithm such that it can be based on the component intensity λk(t)?
Algorithm described in Equation 10 answers this.

tk ∼Thinning(λk(t)), k = argmin
k̂

tk̂, t = tk̂ (10)

The intuition for the decoupled sampling algorithm in Equation 10 is that the K event types are now
in a race to see who generates the next event first. (Typically, the winning type will have relatively
high intensity.) Now we can run the thinning algorithm in each individual EEHD model, which can
be done in parallel for efficiency. We theoretically show that the sampling algorithms in Equation 9
and 10 are equivalent, see the proof in Appendix.

Theorem 1. The sampling algorithm given by Equation 9 is theoretically equivalent to the decoupled
sampling algorithm given by Equation 10.

Connection to Hawkes Process Hawkes process, a widely studied stochastic process, specifies the
conditional intensity function as follows (µk ≥ 0 is the base intensity),

λk(t|Ht) = µk +
∑
ti<t

ϕk(ki, ti) := αk,ki
exp(−βk,ki

(t− ti)) (11)

We see the impact of historical event (ki, ti) on the occurrence of event type k is explicitly charac-
terized by αk,ki

and βk,ki
, where αk,ki

≥ 0 indicates how significantly event type ki will influence
the occurrence of event type k, and βk,ki

≥ 0 shows how this influence decays over time. From
the perspective of local embedding, the two parameters [αk,ki

, βk,ki
] ∈ R2 can be considered as

the vector representation of event type ki in the vector space of event type k. And ϕk(ki, ti) can be
considered as the dedicated encoder for event type k (Encoderk in Equation 4). Hence, we can view
our framework as a generalized neural version of the Hawkes Process.

Connection to the standard learning framework Although the history vector in standard learning
framework can be practically biased against event types with different frequencies of occurrence, we
show that the standard learning framework is theoretically equivalent to the decoupled one.

Theorem 2. The standard learning framework given by Equation 2, 3 and 5 is theoretically equivalent
to the proposed decoupled learning framework characterized by Equation 1, 4 and 6.

5
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Table 1: Dataset statistics and hyperparameters. The statistics present the number of event types,
the count of event sequences, the average sequence length, and the average inter-event times. The
hyperparameters are listed for Dec-IFL and IFL (first three) and for Dec-THP and THP (last two).

Dataset Statistics Hyperparameters
#Types #Seqs #Avg. E Avg. T dm dh N1 d N2

SOflow 22 6633 72 12.84 1 16 4 32 1 1 8 128 3 4
MIMIC 75 715 4 0.29 1 32 4 32 1 1 4 128 3 4
MOOC 97 7047 56 4.32 1 32 4 64 1 2 8 256 3 5
ICEWS 201 1352 38 0.58 1 32 4 64 1 2 8 256 3 6

Proof. We first show that our framework is no weaker in expressive power than the standard learning
framework. Given an input, in order to have the same output as the standard learning framework, we
only need to let zkm, zkt in Equation 1 equal to zm, zt in Equation 2, Encoderk in Equation 4 equal to
Encoder in Equation 3, and NNk in Equation 6 equal to that in Equation 5.

Next, we show that the standard learning framework is no weaker in expressive power than our
framework. Firstly, we let NNk in Equation 5 equal to that in Equation 6. Now we only need to show
that the history vector h in the standard learning framework is not weaker in expressive power than
those K history vectors {hk|k ∈ {1, · · · ,K}} in our framework. Let zm, zt in Equation 2 equal to
z1m|| · · · ||zKm , z1t || · · · ||zKt in Equation 1, where || is the concatenation operation. Then according to
the universal approximation theory of the widely used sequence encoders such as RNN, Transformer
and state space model (Schäfer & Zimmermann, 2006; Gu et al., 2020; Furuya et al., 2024), the
Encoder in Equation 3 can produce the output h = h1|| · · · ||hK .

In fact, the grouped decoupling can unify these two frameworks. Specifically, grouped decoupling
divides all event types into several groups, e.g., according to the occurrence frequency, and build one
EEHD model for each group. If we set the number of groups to 1, then it is the standard learning
framework. And if we set the number of groups to K, then it is our proposed framework.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets We adopt four real-world datasets for evaluation. SOflow (Bosser & Taieb, 2023) is records
of the time when users received a specific badge on the question-answering website Stack Overflow
and the event type is the badge received. MIMIC medical dataset (Bosser & Taieb, 2023) collects
patients’ visit to a hospital’s ICU in a seven-year period. Each patient’s visits constitute an event
sequence, with each visit event containing a timestamp and a diagnosis. MOOC (Bosser & Taieb,
2023) is records of student’s actions on an online course system and each action is associated with a
timestamp. ICEWS (Boschee et al., 2015) consists of interactions between socio-political actors (i.e.,
cooperative or hostile actions between individuals, groups, sectors and nation states) in year 2018,
where the events are extracted from news articles by the Integrated Crisis Early Warning System.
Dataset statistics are shown in Table 1. Each dataset is split into training/validation/testing set
according the number of event sequences, with each part accounting for 60%/20%/20%, respectively.

Baselines To demonstrate the efficacy of our proposed decoupled learning framework, we decouple
two state-of-the-art models: IFL (Shchur et al., 2020) and THP (Zuo et al., 2020), yielding Dec-
IFL and Dec-THP. IFL employs GRU (Chung et al., 2014)) as the encoder and formulates the
temporal dynamics via a density function based on normalizing flows (Rezende & Mohamed, 2015),
the mixture log-normal distribution. THP uses Transformer to encode the historical impacts and
characterizes the temporal dynamics by a monotonic intensity function. Beyond IFL and THP, we
also report the performance of RMTPP (Du et al., 2016), NHP (Mei & Eisner, 2017), SAHP (Zhang
et al., 2020) and ODETPP (Song et al., 2024). RMTPP models a monotonic intensity function by
recurrent neural network. NHP designs a continuous-time LSTM to learn time-evolving history
vectors, while ODETPP uses the neural ODE. SAHP also uses Transformer as the encoder like THP,
but learns a bounded monotonic intensity function to limit the range of the intensity.
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Table 2: Comparison of the performance on event prediction, evaluated by negative log likelihood
(NLL), weighted F1 score (F1) and mean square error (MSE). For NLL and MSE, the lower the
better. For F1, the higher the better. The results are averaged by 10 runs with different random seeds.
Bold number indicates that the model is better than its counterpart.

Model SOflow MIMIC MOOC ICEWS
NLL F1 MSE NLL F1 MSE NLL F1 MSE NLL F1 MSE

RMTPP 246.0 30.1 4.10 7.3 64.4 0.44 226.0 38.5 6.94 -144.8 26.4 0.98
NHP 238.2 30.8 3.59 7.1 64.8 0.38 210.3 39.0 5.73 -180.5 27.2 0.73

SAHP 233.4 31.6 3.76 6.9 65.3 0.37 199.4 39.9 5.67 -185.4 28.9 0.89
ODETPP 231.7 31.0 3.12 6.6 64.9 0.34 193.8 38.7 5.16 -193.4 27.5 0.77

IFL 225.3 30.7 2.25 6.0 65.9 0.28 185.7 39.2 4.80 -215.7 27.9 0.67
THP 235.4 31.5 3.55 6.8 65.7 0.35 202.3 39.6 6.11 -190.0 29.4 0.84

Dec-IFL 219.3 32.2 2.05 6.0 65.6 0.27 181.1 40.5 4.12 -253.6 29.1 0.51
Dec-THP 225.7 32.4 2.97 6.9 65.7 0.37 187.4 41.3 5.23 -209.3 30.6 0.70

Table 3: Type-specific prediction accuracy comparison on dataset SOflow, which has a total of 22
event types. We list their frequency and rank them in ascending order, shown in rows 1 and 5.

7 17 59 107 189 251 333 404 503 740 879
IFL 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.30 0.07 0.00 0.00

Dec-IFL 0.00 0.19 0.00 0.00 0.00 0.06 0.00 0.21 0.05 0.00 0.00
THP 0.00 0.10 0.00 0.14 0.00 0.00 0.09 0.18 0.10 0.00 0.16

Dec-THP 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.37 0.13 0.08 0.13
1358 1771 1791 2050 2085 2529 5209 5537 6477 21024 39335

IFL 0.00 0.02 0.06 0.18 0.04 0.04 0.00 0.04 0.24 0.17 0.37
Dec-IFL 0.16 0.00 0.19 0.23 0.14 0.08 0.00 0.12 0.33 0.23 0.34

THP 0.06 0.07 0.10 0.10 0.07 0.06 0.11 0.10 0.22 0.19 0.37
Dec-THP 0.10 0.03 0.15 0.22 0.12 0.07 0.04 0.14 0.30 0.21 0.37

When applying our framework, we set the same hyperparameters for K decoupled EEHD models
and they are trained asynchronously. Specifically, when training for Dec-IFL, we mainly tune the
dimension of the type embedding dm, the dimension of the history vector dh and the number of
layers N1 stacked in the GRU architecture. For transformer-based Dec-THP, the dimensions of the
type embedding and history vector are set to the same value d. We mainly tune the dimension d
and the number of blocks N2 stacked in the Transformer architecture. These hyperparameters are
reported in Table 1, where we see that the K decoupled EEHD models have much smaller parameter
scales compared to the traditional one due to the decoupled dynamics for each event type. For other
baselines, we follow the hyperparameter settings in their paper.

3.2 PREDICTION RESULTS

The predictive capability of a sequence model can be assessed by its ability to forecast the subsequent
event based on the historical sequence of events. We use the weighted-F1 score to evaluate the
accuracy of event type prediction and use mean square error to evaluate the error of event time
prediction. Besides, we use negative log likelihood (NLL) to evaluate the event distribution prediction,
which simultaneously considers the prediction of event type and occurrence time. The results on
the four real-world datasets are summarized in Table 2. We see Dec-IFL and Dec-THP outperform
their counterparts IFL and THP significantly in most datasets. However, it appears that the decoupled
learning framework does not yield effective results on the MIMIC dataset. This is attributed to the
exceptionally short average sequence length of 4 in MIMIC, which negates the frequency bias of the
history vector within the standard learning framework. To delve deeper into the issue of frequency
bias, Table 3 presents a detailed analysis of prediction accuracy for each event type on the SOflow
dataset. Here, Dec-IFL outperforms IFL for 10 event types, whereas IFL surpasses Dec-IFL for
only 4 event types. Similar conclusions can be drawn when comparing Dec-THP with THP. To see
the overall and type-specific performance of our framework on more datasets, readers can refer to
Appendix B.
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[ 0.4,  -0.6,  0.3,  -0.9, 0.3]

Figure 3: The four matrices displayed above present the ground truth influences among event types
within datasets Haw1, Haw2, Haw3, and Haw4, where the element in the ith row and jth column
indicates how significantly event type j influences event type i. The four matrices displayed below are
the embeddings learned by Dec-IFL on dataset Haw1, Haw2, Haw3, and Haw4, where the element
in the ith row and jth is the embedding of event type j in the vector space of event type i. (The
embedding dimension is 1 and the embeddings are rounded to one decimal place.)

Table 4: Comparison of training parameter count and training speed per epoch (in seconds).

Datasets #Parameter Ratio Speed Ratio #Parameters Ratio Speed Ratio
IFL Dec-IFL IFL Dec-IFL THP Dec-THP THP Dec-THP

SOflow 145K 1K 145 8 1 8 0.8M 6K 133 24 4 6
MIMIC 0.5M 1K 500 0.3 0.15 2 0.8M 1K 800 0.5 0.2 2.5
MOOC 1.2M 1K 1200 9 1 9 4.0M 6K 666 27 4 6.8
ICEWS 2.6M 1K 2600 6 0.5 12 4.8M 6K 800 18 2 9

3.3 INTERPRETABILITY AND TRAINING EFFICIENCY

To better evaluate the interpretabiity of our proposed framework, we utilize four synthetic datasets
generated by the Hawkes Process (Eq. 11), specifically named Haw1, Haw2, Haw3, and Haw4,
where the ground truth influences among event types are known. In Fig. 3, the upper four matrices
present the configurations of the parameters αi,j for the four Hawkes datasets. The parameters βi,j

are uniformly set to 2.5 across all instances. The parameter αi,j quantifies the magnitude of influence
that event type j exerts on event type i, analogous to the embedding of event type j in the vector
space of event type i. We extract the embeddings learned by Dec-IFL on these four Hawkes datasets
and present them by the lower four matrices in Fig. 3. Our findings indicate that these learned
embeddings accurately capture the underlying dependencies among event types. For instance, in
dataset Haw4, event types 2, 3, and 4 all exert influences on event type 1, which is reflected in the
proximity of their embeddings in the vector space of event type 1. This observation aligns with the
spirits underlying Word2vec: event types that exert similar influences on a given event type i tend
to have embeddings that are close in the vector space of event type i. For more demonstrations of
interpretability, readers can refer to Appendix C.
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Figure 4: The total loss and component loss at each epoch for Dec-IFL (left figure) and IFL (right
figure) on dataset SOflow. For each figure, see y-axis on the left for component loss and y-axis on the
right for total loss. There are a total of 22 event types in dataset SOflow, we only selectively plotted
the component losses for three event types for clarity.
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The proposed decoupled learning framework allows for asynchronous parallel training, which greatly
enhances the training efficiency. Table 4 presents the number of parameters required for learning
and the training speed. Note that the reported parameter counts for Dec-IFL and Dec-THP pertain
to a single decoupled EEHD model. And the reported training speed is the lowest training speed
for K decoupled EEHD models. As evident from Table 4, a single decoupled EEHD model boasts
a substantially smaller parameter scale compared to traditional models, owing to the decoupled
dynamics for each event type, which drastically improves the training speed. Another advantage of
asynchronous parallel training is its capacity to ensure full convergence of each individual decoupled
EEHD model with respect to component loss − logLk(S), as illustrated in the left figure in Fig. 4.
Conversely, in traditional models, while the overall loss − logL(S) may indicate convergence, the
component loss for each event type may not have achieved convergence (the right figure of Fig. 4).

4 RELATED WORK

Depending on whether the EEHD architecture is applied or not, neural MTPP models can be
categorised into two groups. Most models fall into the category using the EEHD architecture, while
there are also some models that do not, such as models that use graph structures to represent event
types and their relationships (Trivedi et al., 2019; Zhang & Yan, 2021; Dash et al., 2022), and models
that use case-based reasoning (Liu, 2024a). Among the EEHD-based models, researchers have
worked on advancing the encoder and decoder to capture more complex dynamics. Popular encoders
include recurrent neural networks (Du et al., 2016; Omi et al., 2019; Shchur et al., 2020), attention
based networks (Zuo et al., 2020; Zhang et al., 2020; Gu, 2021; Shou et al., 2023), and state space
model based networks (Gao et al., 2024). These encoders generate the history vector that remains
static until the occurrence of the subsequent event. In contrast, continuous-time encoders, exemplified
by continuous-LSTM (Mei & Eisner, 2017) and neural ODEs (Chen et al., 2018; 2021; Song et al.,
2024), allow the history vector to evolve over time. Regarding decoders, most neural MTPP models
rely on the intensity function (Du et al., 2016; Mei & Eisner, 2017; Zhang et al., 2020; Soen et al.,
2021; Ding et al., 2023), which is formulated through a predefined parameterized function (e.g., a
neural network) and the history vector is used to decode the function parameters. There are also
some intensity-free decoders designed for closed-form computing of the likelihood (Omi et al., 2019;
Shchur et al., 2020; Waghmare et al., 2022; Liu et al., 2023; Liu, 2024b). For example, FullyNN
(Omi et al., 2019) models the cumulative hazard function by a monotonic neural network, where the
neural weights are all constrained to be positive; IFL (Shchur et al., 2020) models the probability
density function by a log-normal mixture distribution. Based on their mathematical relationships, the
intensity models and intensity-free models can be converted interchangeably (Lin et al., 2021).

To our knowledge, we are pioneers in addressing the imbalance of event categories, prompting us to
decouple neural MTPPs from the perspective of event types. However, decoupling can have many
aspects. For example, some models calculate the cumulative impacts of past events as the sum of the
impacts of each individual past events to identify the important past events as well as improve the
training efficiency (Liu et al., 2018; Salehi et al., 2019; Zhou & Yu, 2023; Song et al., 2024). This
is also a form of decoupling, but for a different purpose than ours. Notably, it compromises model
performance as it does not take into account the temporal dependencies between historical events.

5 CONCLUSION

In this paper, we have presented a novel decoupled learning framework for neural marked temporal
point processes that effectively mitigates the issue of frequency bias inherent in standard approaches.
By modeling each event type separately within a complete EEHD architecture, our approach ensures
that all event types, regardless of their frequency, are adequately represented and considered during
training. The decoupling of the standard monolithic modeling not only enables asynchronous parallel
training, significantly improving the training speed, but also allows the embeddings to capture
the intricate dependencies between event types, which we believe will have far-reaching practical
implications around knowledge discovery in many domains. Our extensive experiments across
diverse datasets have conclusively demonstrated that this decoupled learning framework achieves
state-of-the-art performance on standard prediction tasks, underscoring its effectiveness. Importantly,
the framework’s design does not impose rigid constraints on the encoder and decoder architectures,
allowing for future improvements and extensions tailored to specific applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James Starz, and Michael
Ward. ICEWS Coded Event Data, 2015. URL https://doi.org/10.7910/DVN/28075.

Tanguy Bosser and Souhaib Ben Taieb. On the predictive accuracy of neural temporal point process
models for continuous-time event data. Transactions on Machine Learning Research, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in Neural Information Processing Systems, 31, 2018.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes. In
International Conference on Learning Representations, 2021.

E. Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua A. Kulas, Andy Schuetz, and Walter F.
Stewart. Retain: An interpretable predictive model for healthcare using reverse time atten-
tion mechanism. In Neural Information Processing Systems, 2016. URL https://api.
semanticscholar.org/CorpusID:948039.

Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. ArXiv, abs/1412.3555, 2014.

Saurabh Dash, Xueyuan She, and Saibal Mukhopadhyay. Learning point processes using recurrent
graph network. In 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8.
IEEE, 2022.

Fangyu Ding, Junchi Yan, and Haiyang Wang. C-ntpp: Learning cluster-aware neural temporal
point process. In AAAI Conference on Artificial Intelligence, 2023. URL https://api.
semanticscholar.org/CorpusID:259739114.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1555–1564, 2016.

Takashi Furuya, Maarten V de Hoop, and Gabriel Peyré. Transformers are universal in-context
learners. arXiv preprint arXiv:2408.01367, 2024.

Anningzhe Gao, Shan Dai, and Yan Hu. Mamba hawkes process. arXiv preprint arXiv:2407.05302,
2024.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Yulong Gu. Attentive neural point processes for event forecasting. In AAAI Conference on
Artificial Intelligence, 2021. URL https://api.semanticscholar.org/CorpusID:
235306506.

Alan G Hawkes. Point spectra of some mutually exciting point processes. Journal of the Royal
Statistical Society: Series B (Methodological), 33(3):438–443, 1971a.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58
(1):83–90, 1971b.

Haitao Lin, Cheng Tan, Lirong Wu, Zhangyang Gao, and Stan Z. Li. Extensive deep temporal point
process. ArXiv, abs/2110.09823, 2021.

B. Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule mining. In
Knowledge Discovery and Data Mining, 1998. URL https://api.semanticscholar.
org/CorpusID:232928.

Bingqing Liu. A case-based reasoning and explaining model for temporal point process. In Interna-
tional Conference on Case-Based Reasoning, pp. 127–142. Springer, 2024a.

10

https://doi.org/10.7910/DVN/28075
https://api.semanticscholar.org/CorpusID:948039
https://api.semanticscholar.org/CorpusID:948039
https://api.semanticscholar.org/CorpusID:259739114
https://api.semanticscholar.org/CorpusID:259739114
https://api.semanticscholar.org/CorpusID:235306506
https://api.semanticscholar.org/CorpusID:235306506
https://api.semanticscholar.org/CorpusID:232928
https://api.semanticscholar.org/CorpusID:232928


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Bingqing Liu. Modelling event sequence data by type-wise neural point process. Data Mining and
Knowledge Discovery, pp. 1–24, 2024b.

Bingqing Liu and Xikun Huang. Link-aware link prediction over temporal graph by pattern recogni-
tion. In International Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, 2023. URL https://api.semanticscholar.org/CorpusID:
260170307.

Sishun Liu, Ke Deng, Xiuzhen Zhang, and Yongli Ren. Intensity-free integral-based learning of
marked temporal point processes. arXiv preprint arXiv:2308.02360, 2023.

Yanchi Liu, Tan Yan, and Haifeng Chen. Exploiting graph regularized multi-dimensional hawkes
processes for modeling events with spatio-temporal characteristics. In IJCAI, pp. 2475–2482,
2018.

Heikki Mannila, Hannu (TT) Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery, 1:259–289, 1997. URL https:
//api.semanticscholar.org/CorpusID:6987161.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. Advances in Neural Information Processing Systems, 30, 2017.

Hongyuan Mei, Tom Wan, and Jason Eisner. Noise-contrastive estimation for multivariate point
processes. Advances in neural information processing systems, 33:5204–5214, 2020.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in Neural Information Processing
Systems, 26, 2013.

Takahiro Omi, Kazuyuki Aihara, et al. Fully neural network based model for general temporal point
processes. Advances in Neural Information Processing Systems, 32, 2019.

Jakob Gulddahl Rasmussen. Lecture notes: Temporal point processes and the conditional intensity
function. arXiv preprint arXiv:1806.00221, 2018.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
conference on machine learning, pp. 1530–1538. PMLR, 2015.

Farnood Salehi, William Trouleau, Matthias Grossglauser, and Patrick Thiran. Learning hawkes
processes from a handful of events. Advances in neural information processing systems, 32, 2019.

Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural networks are universal
approximators. In Artificial Neural Networks–ICANN 2006: 16th International Conference, Athens,
Greece, September 10-14, 2006. Proceedings, Part I 16, pp. 632–640. Springer, 2006.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
processes. In International Conference on Learning Representations, 2020.

Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural temporal
point processes: A review. ArXiv, abs/2104.03528, 2021.

Xiao Shou, Tian Gao, Dharmashankar Subramanian, Debarun Bhattacharjya, and Kristin Bennett.
Influence-aware attention for multivariate temporal point processes. In 2nd Conference on Causal
Learning and Reasoning, 2023.

Alexander Soen, Alexander Mathews, Daniel Grixti-Cheng, and Lexing Xie. Unipoint: Universally
approximating point processes intensities. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9685–9694, 2021.

Yujee Song, LEE Donghyun, Rui Meng, and Won Hwa Kim. Decoupled marked temporal point
process using neural ordinary differential equations. In The Twelfth International Conference on
Learning Representations, 2024.

11

https://api.semanticscholar.org/CorpusID:260170307
https://api.semanticscholar.org/CorpusID:260170307
https://api.semanticscholar.org/CorpusID:6987161
https://api.semanticscholar.org/CorpusID:6987161


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019.

Govind Waghmare, Ankur Debnath, Siddhartha Asthana, and Aakarsh Malhotra. Modeling inter-
dependence between time and mark in multivariate temporal point processes. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management, pp. 1986–1995,
2022.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
International Conference on Machine Learning, pp. 11183–11193. PMLR, 2020.

Yunhao Zhang and Junchi Yan. Neural relation inference for multi-dimensional temporal point
processes via message passing graph. In International Joint Conference on Artificial Intelligence,
2021. URL https://api.semanticscholar.org/CorpusID:237100690.

Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank networks using
multi-dimensional hawkes processes. In International Conference on Artificial Intelligence and
Statistics, 2013. URL https://api.semanticscholar.org/CorpusID:8326502.

Zihao Zhou and Rose Yu. Automatic integration for fast and interpretable neural point pro-
cesses. In Conference on Learning for Dynamics & Control, 2023. URL https://api.
semanticscholar.org/CorpusID:259178556.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes process.
In International Conference on Machine Learning, pp. 11692–11702. PMLR, 2020.

12

https://api.semanticscholar.org/CorpusID:237100690
https://api.semanticscholar.org/CorpusID:8326502
https://api.semanticscholar.org/CorpusID:259178556
https://api.semanticscholar.org/CorpusID:259178556


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table A1: Dataset statistics and hyperparameters. For left to right column in statistics: number of
event types, number of event sequences, average number of events in one event sequence, and the
average inter-event time interval. For left to right column in hyperparameters: the dimension of the
type embedding dm, the dimension of the history vector dh, the number of layers N1 stacked in the
GRU architecture for Dec-IFL and IFL; the unified vector dimension d, the number of blocks N2

stacked in the Transformer architecture for Dec-THP and THP.

Dataset Statistics Hyperparameters
#Types #Seqs #Avg. E Avg. T dm dh N1 d N2

Haw1 5 1918 12 0.27 1 16 4 32 1 1 4 32 3 4
Haw2 5 1035 10 0.25 1 16 4 32 1 1 4 32 3 4
Haw3 5 1184 8 0.45 1 16 4 32 1 1 4 32 3 4
Haw4 5 1468 8 0.16 1 16 4 32 1 1 4 32 3 4

Appendix

A PROOFS

Proof. (of Theorem 1). Recall that in the standard thinning algorithm (Rasmussen, 2018), we sample
the time t using an exponential distribution with parameter λ̄, where λ̄ is an upper bound of the
total intensity λ(t). In our decoupled sampling algorithm, the thinning algorithm is running in each
individual EEHD model with the component intensity λk(t). Let Tk be a random variable that
follows the exponential distribution with parameter λ̃k, where λ̃k is an upper bound of the component
intensity λk(t). We next show that T = min(T1, · · · , TK) still follows the exponential distribution
and its parameter λ̃ is an upper bound of the total intensity λ(t), which then completes the proof.

Since {Tk}Kk=1 are independent random variables, the distribution function of T can be calculated as
follows.

F (T ≤ t) = P{min(T1, · · · , TK) ≤ t}
= 1− P{T1 > t, · · · , TK > t}
= 1− P{T1 > t} × · · · × P{TK > t}
= 1− (1− P{T1 ≤ t})× · · · × (1− P{TK ≤ t})
= 1− exp(−λ̃1t)× · · · × exp(−λ̃Kt)

= 1− exp(−
K∑

k=1

λ̃kt)

(1)

where we see T still follows the exponential distribution and its parameter λ̃ satisfies that λ̃ =∑K
k=1 λ̃k ≥

∑K
k=1 λk(t) = λ(t). That is, λ̃ is an upper bound of the total intensity λ(t).

B ADDITIONAL PREDICTION RESULTS

In the main text of this paper, we only apply our framework to IFL and THP. Here, we further apply
our framework to the remaining baselines as a complement to Table 2 in the main text. Please note that
our framework is specifically tailored for standard EEHD models, which means the baseline ODETPP
(Song et al., 2024) is not included in the list of potential applications due to its non-conformity with
the standard EEHD model. Like ours but for a different purpose, ODETPP is also a generalized
Hawkes process and therefore does not conform to the standard EEHD model. Using neural ODE
(Chen et al., 2018), ODETPP mainly studies how individual historical events influence the overall
dynamics. The prediction results of the decoupled models and their counterparts are all summarized
in Table A3.

We additionally utilize four synthetic datasets generated by the Hawkes Process (Eq. 11), specifically
named Haw1, Haw2, Haw3, and Haw4, for evaluation. The upper four matrices in Fig. 3 present the
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Table A2: Predictive performance of Dec-IFL, Dec-THP and baselines on four synthetic datasets
Haw1, Haw2, Haw3 and Haw4.

Model Haw1 Haw2 Haw3 Haw4
NLL ACC MSE NLL ACC MSE NLL ACC MSE NLL ACC MSE

RMTPP 7.9 22.5 0.37 11.6 23.9 0.32 12.7 32.7 0.40 12.0 27.1 0.33
NHP 7.0 23.0 0.25 10.6 24.7 0.27 12.1 32.6 0.35 11.5 27.5 0.20

SAHP 7.2 24.4 0.27 11.0 25.4 0.31 12.2 34.5 0.37 11.8 27.4 0.29
ODETPP 7.2 22.8 0.17 10.3 24.8 0.25 11.3 33.8 0.24 10.8 27.9 0.14

IFL 6.6 23.7 0.21 9.8 25.0 0.23 11.0 33.5 0.21 10.3 28.4 0.12
THP 7.3 24.3 0.31 10.8 25.3 0.28 11.8 34.4 0.31 11.1 29.3 0.28

Dec-IFL 6.2 24.2 0.15 9.1 26.1 0.18 10.5 34.6 0.17 10.0 29.7 0.10
Dec-THP 6.5 24.7 0.19 9.9 26.3 0.25 11.3 35.2 0.29 10.8 30.3 0.27

Table A3: Comparison of the performance on event prediction, evaluated by negative log likelihood
(NLL), weighted F1 score (F1) and mean square error (MSE). For NLL and MSE, the lower the
better. For F1, the higher the better. The results are averaged by 10 runs with different random seeds
and the standard deviations are reported in brackets.

Model SOflow MIMIC MOOC ICEWS
NLL F1 MSE NLL F1 MSE NLL F1 MSE NLL F1 MSE

RMTPP 246.0±2.3 30.1±0.2 4.10±0.3 7.3±0.1 64.4±0.3 0.44±0.03 226.0±1.8 38.5±0.3 6.94±0.2 -144.8±4.7 26.4±0.2 0.98±0.06

NHP 238.2±2.5 30.8±0.2 3.59±0.2 7.1±0.1 64.8±0.4 0.38±0.02 210.3±2.5 39.0±0.4 5.73±0.2 -180.5±3.6 27.2±0.3 0.73±0.04

SAHP 233.4±2.8 31.6±0.3 3.76±0.3 6.9±0.2 65.3±0.4 0.37±0.03 199.4±2.1 39.9±0.3 5.67±0.3 -185.4±4.3 28.9±0.2 0.89±0.06

ODETPP 231.7±2.3 31.0±0.3 3.12±0.2 6.6±0.1 64.9±0.4 0.34±0.02 193.8±2.0 38.7±0.3 5.16±0.2 -193.4±4.2 27.5±0.4 0.77±0.03

IFL 225.3±1.8 30.7±0.3 2.25±0.1 6.0±0.1 65.9±0.3 0.28±0.02 185.7±1.0 39.2±0.3 4.80±0.1 -215.7±3.3 27.9±0.4 0.67±0.03

THP 235.4±3.2 31.5±0.4 3.55±0.3 6.8±0.2 65.7±0.4 0.35±0.03 202.3±2.5 39.6±0.4 6.11±0.2 -190.0±3.2 29.4±0.4 0.84±0.05

Dec-RMTPP 237.3±2.1 30.8±0.3 3.55±0.2 7.2±0.1 64.6±0.3 0.40±0.02 211.1±2.0 39.6±0.4 6.12±0.2 -163.6±4.3 27.3±0.3 0.71±0.04

Dec-NHP 232.7±2.6 31.5±0.4 3.09±0.2 7.1±0.1 64.5±0.2 0.37±0.03 199.5±2.0 39.9±0.3 5.58±0.2 -191.4±3.5 28.5±0.4 0.62±0.04

Dec-SAHP 226.4±3.0 32.6±0.4 3.11±0.2 6.8±0.1 65.5±0.3 0.37±0.01 187.7±1.9 40.8±0.3 5.03±0.2 -202.1±4.0 30.2±0.3 0.75±0.03

Dec-IFL 219.3±1.6 32.2±0.4 2.05±0.1 6.0±0.1 65.6±0.2 0.27±0.02 181.1±0.8 40.5±0.2 4.12±0.1 -253.6±4.1 29.1±0.5 0.51±0.02

Dec-THP 225.7±2.6 32.4±0.5 2.97±0.2 6.9±0.2 65.7±0.3 0.37±0.03 187.4±2.1 41.3±0.4 5.23±0.1 -209.3±4.5 30.6±0.5 0.70±0.03

configurations of the parameters αi,j for the four Hawkes datasets. The parameters βi,j are uniformly
set to 2.5 across all instances. Table A1 summarizes their statistics and our used hyperparameters.
Table A2 reports the results on these four synthetic datasets with respect to the event distribution
prediction, event type prediction and event time prediction. For type-specific event type prediction
results on datasets MOOC and ICEWS, we show in Figure A1, A2, A3 and A4. We see our framework
outperforms its counterparts consistently and significantly.

C ADDITIONAL INTERPRETABILITY DEMONSTRATION

It is worth noting that the embeddings in different EEHD models are asynchronously trained, which
means that if there are a large number of event types, we can only learn the embedding we are
interested, reducing computational costs. We here illustrate the embeddings in some interested vector
spaces learned on the socio-political dataset ICEWS. Specifically, we are interested in two event types
"Express intent to cooperate" and "Mobilize or increase armed forces". We show the embeddings in
the vector space of event type "Express intent to cooperate" in Fig. A6, the embeddings in the vector
space of event type "Mobilize or increase armed forces" in Fig. A7, where we have marked some
event types that have close embeddings in green. The clustering results show interesting patterns
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Figure A1: The type-specific event type prediction performance on dataset MOOC. The left figure
comes from Dec-IFL and the right figure comes from IFL. The x-axis is the event type, arranged in
ascending frequency order.
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Figure A2: The type-specific event type prediction performance on dataset MOOC. The left figure
comes from Dec-THP and the right figure comes from THP. The x-axis is the event type, arranged in
ascending frequency order.
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Figure A3: The type-specific event type prediction performance on dataset ICEWS. The left figure
comes from Dec-IFL and the right figure comes from IFL. Note some event types never happen in
testing sequences. The x-axis is the event type, arranged in ascending frequency order.
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Figure A4: The type-specific event type prediction performance on dataset ICEWS. The left figure
comes from Dec-THP and the right figure comes from THP. Note some event types never happen in
testing sequences. The x-axis is the event type, arranged in ascending frequency order.
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Figure A5: The occurrence frequency of event types over datasets SOflow, MIMIC, MOOC and
ICEWS (from left to right). The entropy of these four frequency distributions is 2.686, 3.517, 5.893
and 4.938, respectively.
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Table A4: The predictive performance of IFL and Dec-IFL when the type embedding dimension d is
set to {1,2,4,8,16,32,64,128,256}, evaluated by negative log likelihood (NLL).

Datasets SOflow MIMIC MOOC ICEWS
IFL Dec-IFL IFL Dec-IFL IFL Dec-IFL IFL Dec-IFL

d=1 288.2 219.3 20.5 6.0 273.7 181.1 -77.2 -253.6
d=2 260.1 219.8 12.8 6.1 230.8 181.3 -125.9 -252.5
d=4 238.2 219.5 7.1 5.9 192.2 181.6 -172.6 -252.9
d=8 228.8 219.0 6.3 6.0 189.0 182.4 -199.6 -254.0
d=16 225.3 218.8 6.1 6.3 186.9 182.0 -208.3 -254.7
d=32 225.7 219.3 6.0 5.8 185.7 181.3 -215.7 -253.9
d=64 226.1 219.7 6.1 6.0 185.9 180.8 -214.8 -253.2
d=128 225.4 220.0 6.3 6.1 186.4 182.2 -214.6 -252.7
d=256 226.9 219.6 6.1 6.2 187.0 181.5 -215.4 -253.0

Table A5: The predictive performance of THP and Dec-THP when the type embedding dimension d
is set to {2,4,8,16,32,64,128,256,512}, evaluated by negative log likelihood (NLL).

Datasets SOflow MIMIC MOOC ICEWS
THP Dec-THP THP Dec-THP THP Dec-THP THP Dec-THP

d=2 291.9 240.9 26.2 8.9 310.2 201.5 -56.5 -181.3
d=4 264.2 231.5 14.8 6.9 254.6 190.8 -115.8 -201.5
d=8 250.3 225.7 9.7 7.2 236.9 187.4 -156.2 -209.3
d=16 241.6 226.1 7.4 7.0 223.2 189.2 -177.3 -207.3
d=32 237.7 226.3 7.0 6.9 214.7 188.3 -184.7 -207.9
d=64 236.1 225.3 6.9 7.1 208.9 187.8 -187.3 -208.2
d=128 235.4 224.8 6.8 7.1 204.0 187.2 -189.6 -208.7
d=256 236.0 225.6 7.0 7.0 202.3 188.5 -190.0 -208.4
d=512 235.7 226.7 6.9 6.9 203.9 187.9 -189.4 -209.1

of how socio-political events have affected one another. For example, event type "Express intent
to provide humanitarian aid" and event type “Express intent to provide military protection” have
close vector representations in Fig. A6, meaning they have similar influences (probably positive
influences) on the event type "Express intent to cooperate". What’s more, event type "Threaten with
administrative sanctions" have close vector representation with event type "Refuse to release persons
or property", meaning they have similar influences (probably negative influences) on the event type
"Express intent to cooperate". The results show that our learned event influences are mostly consistent
with human experiences.

D ABLATION STUDY

Due to the decoupled dynamics for each event type, each EEHD model in our framework has
significantly smaller parameter scales compared with traditional models that are designed for full
dynamics. What if traditional models use as many parameters as that used in our individual EEHD
model and vice versa? Table A4 and A5 answers this and shows that our decoupled EEHD models
requires few parameters to capture the corresponding temporal dynamics while they are not adequate
for traditional models.

The standard model uses type-specific decoder and keeps the embedding and encoding layer shared
across different event types. As a comparison, the embedding, encoding and decoding layer are all
type-specific in our proposed decoupled model, to encode the unique dynamics of each event type
and thus mitigate the frequency bias of the history vector. This naturally raises a series of questions:
what’s the performance if only the encoding layer is type-specific? And what’s the performance if only
the embedding layer is type-specific? We explore all possible variants and report their performance
in Table A6, where we see it performs best to let all three modules be type-specific to capture the
unique dynamics of the corresponding event type.
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Table A6: The predictive performance of variants of IFL and THP. IFL-Emb and THP-Emb use event
specific embedding but common encoder-decoder; IFL-E and THP-E use event specific encoder but
common embedding-decoder; IFL-EmbE and THP-EmbE use event specific embedding-encoder but
common decoder; IFL-ED and THP-ED use common embedding but event specific encoder-decoder.
IFL-EmbD and THP-EmbD use event specific embedding-decoder but common encoder. Using this
notation, IFL-D and THP-D refer to the original standard model IFL and THP; IFL-EmbED and
THP-EmbED refer to our proposed decoupled model Dec-IFL and Dec-THP.

Model SOflow MIMIC MOOC ICEWS
NLL F1 MSE NLL F1 MSE NLL F1 MSE NLL F1 MSE

IFL-D 225.3 30.7 2.25 6.0 65.9 0.28 185.7 39.2 4.80 -215.7 27.9 0.67
IFL-Emb 229.2 28.1 3.75 7.2 62.3 0.38 191.3 37.2 6.18 -180.6 25.1 0.72

IFL-E 227.3 30.5 2.64 6.4 65.5 0.30 188.3 38.9 5.42 -201.6 27.1 0.75
IFL-EmbE 226.2 30.7 2.45 6.2 65.7 0.30 186.7 39.0 4.94 -207.6 27.4 0.69

IFL-ED 220.7 31.8 2.11 6.1 65.4 0.29 182.5 39.9 4.23 -245.7 28.6 0.58
IFL-EmbD 222.2 31.4 2.26 6.1 65.5 0.29 184.0 39.6 4.58 -233.4 28.4 0.63

IFL-EmbED 219.3 32.2 2.05 6.0 65.6 0.27 181.1 40.5 4.12 -253.6 29.1 0.51
THP-D 235.4 31.5 3.55 6.8 65.7 0.35 202.3 39.6 6.11 -190.0 29.4 0.84

THP-Emb 244.8 29.3 4.33 7.9 63.7 0.47 211.0 38.3 6.83 -157.4 27.2 0.91
THP-E 238.1 30.9 3.78 7.3 65.0 0.40 204.5 39.3 6.24 -180.4 28.6 0.87

THP-EmbE 237.6 31.0 3.65 7.0 65.2 0.36 203.6 39.5 6.18 -186.6 29.0 0.87
THP-ED 229.3 32.0 3.19 6.8 65.9 0.35 192.8 41.0 5.38 -206.2 30.2 0.75

THP-EmbD 232.3 31.8 3.44 6.9 65.9 0.38 196.8 40.4 5.53 -197.2 29.7 0.77
THP-EmbED 225.7 32.4 2.97 6.9 65.7 0.37 187.4 41.3 5.23 -209.3 30.6 0.70

Express intent to cooperate
Express intent to provide humanitarian aid
Demand intelligence cooperation
Appeal for intelligence
Express intent to provide military protection
Express accord

Make statement

Engage in negotiation

Express intent to meet or negotiate

Consult

Refuse to release persons or property

Accuse

Threaten with administrative sanctions

Decline comment
Reduce or break diplomatic relations
Accuse of crime, corruption

Consider policy option

Demonstrate for leadership change

Figure A6: visualization of the embeddings learned by Dec-THP in the vector space of event type
"Express intent to cooperate" within the dataset ICEWS.

Reject material cooperation
Appeal for military aid
Appeal for intelligence
Ease administrative sanctions
Increase military alert status
Coerce

Abduct, hijack, or take hostage
Appeal to others to meet or negotiate
Ban political parties or politicians
Apologize
Threaten with sanctions, boycott, embargo
Threaten with restrictions on political freedoms

Make pessimistic comment
Decline comment
Express intent to meet or negotiate
Consider policy option
Provide military aid
Engage in judicial cooperation
Investigate

Provide aid

Figure A7: visualization of the embeddings learned by Dec-THP in the vector space of event type
"Mobilize or increase armed forces" within the dataset ICEWS.
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