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Abstract

Recent advances in structure-based protein design have accelerated de novo binder1

generation, yet interfaces on large domains or spanning multiple domains remain2

challenging due to high computational cost and declining success with increasing3

target size. We hypothesized that protein folding neural networks (PFNNs) operate4

in a “local-first” manner, prioritizing local interactions while displaying limited5

sensitivity to global foldability. Guided by this hypothesis, we propose an epitope-6

only strategy that retains only the discontinuous surface residues surrounding the7

binding site. Compared to intact-domain workflows, this approach improves in8

silico success rates by up to 80% and reduces the average time per successful9

design by up to forty-fold, enabling binder design against previously intractable10

targets such as ClpP and ALS3. Building on this foundation, we further developed a11

tailored pipeline that incorporates a Monte Carlo–based evolution step to overcome12

local minima and a position-specific biased inverse folding step to refine sequence13

patterns. Together, these advances not only establish a generalizable framework14

for efficient binder design against structurally large and otherwise inaccessible15

targets, but also support the broader “local-first” hypothesis as a guiding principle16

for PFNN-based design.17

1 Introduction18

As a fundamental challenge in molecular engineering, de novo design of protein binders not only holds19

significant therapeutic potential but also encapsulates understanding for the principles underlying20

protein folding and interaction (1). Recent advances in Protein Folding Neural Networks (PFNNs),21

most notably AlphaFold2 (AF2) (2), have enabled considerable progress in computational binder22

design by streamlining the exploration of sequence and structural space and by improving the accuracy23

of in silico validation (3; 4).24

However, as observed in large language models, output quality tends to degrade with increasing25

input size (5); a similar behavior has been reported for protein folding networks (6). In binder26

design, this challenge has previously been sidestepped by trimming the input target to the smallest27

self-stabilizing and independently folding units, i.e., protein domains (3; 7; 8; 9). Nevertheless, for28

binding surfaces located on large domains or spanning multiple domains, this strategy is inapplicable.29

In such cases, the low confidence of in silico validation forces relaxation of selection thresholds (3),30

while computational cost increases quadratically with input size, further limiting throughput and31

reducing the overall chance of success.32

To tackle these limitations, we inspect them through the lens of the energy function learned by33

PFNNs. While PFNNs are generally thought to capture an effective biophysical energy function34

of conformational space, with global constraints such as MSAs and templates serving mainly to35
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accelerate conformational search rather than define the folding landscape (10), it remains unclear to36

what extent this learned function diverges from the ground-truth global energy landscape. In fact,37

current PFNNs are trained with structures randomly cropped into equal-length fragments, irrespective38

of their global foldability, raising concerns about whether PFNNs truly capture global structural39

fitness. Consistent with this concern, multiple lines of evidence indicate a strong local bias: (i) in ab40

initio folding, AF2 rapidly captures local residue–residue contacts, whereas remote contacts emerge41

much less frequently and only after extended iterations (6); (ii) PFNN-hallucinated proteins tend to42

display limited conformational diversity, overly dense cores, elevated melting temperatures, reflecting43

over-optimization of local packing (11); and (iii) in extreme cases, AF3 produces overlapping44

backbones with severe steric clashes to accommodate alternative binders, so long as local contacts45

remain satisfied (12). Together, these findings suggest that the learned energy function is strongly46

biased toward local interactions, casting doubt on the indispensability of remote residues and global47

foldability in binder design.48

Motivated by this “local-first” hypothesis, we developed an “epitope-only” strategy, trimming the49

target domain to discontinuous surface residues surrounding the binding site and evaluating its50

performance in binder hallucination (13; 11). The resulting “epitope-only” strategy significantly51

accelerated sampling and improved design quality, while preserving correlation with refold validation52

on the intact domain. Remarkably, this strategy enabled successful design for two targets previously53

considered intractable, ClpP and ALS3.54

Building on this strategy, we developed an efficient, extensible, and automated pipeline for mini-55

protein (MP) and cyclic-peptide (CP) binder design against large and rigid targets. The pipeline56

incorporates Monte Carlo (MC)–based evolutionary refinement to overcome local minima of gradient-57

based optimization, and ProteinMPNN redesign with position-specific bias to optimize local sequence58

features such as hydrogen-bond satisfaction (14) and isoelectric point (pI) balance (15). Compared59

with the original BindCraft pipeline, our modified framework achieved markedly higher sampling60

speed and success rate.61

Together, our findings not only reinforce the “local-first” mechanism suggested by AF2 but also pro-62

vide a practical epitope-only strategy that substantially improves binder design efficiency. Moreover,63

our implementation offers an integrated platform for tackling large and challenging targets, thereby64

broadening the therapeutic scope of de novo protein binders.65

2 Related Work66

2.1 Protein Folding Neural Networks (PFNNs)67

The recent revolution in protein structure prediction was triggered by AlphaFold2 (AF2), a neural68

network that achieved unprecedented accuracy (2). By integrating multiple sequence alignment69

(MSA) and structural template features with a novel invariant point attention module, AF2 and its70

analog RoseTTAFold (16) enabled near-experimental accuracy in monomer folding for the first time.71

ESMFold further demonstrated that comparable accuracy can be achieved without querying MSAs,72

by leveraging a large-scale protein language model, while offering much faster inference (17). While73

multimer folding was initially pursued through finetuning AF2 on complex structures (18), it was74

soon demonstrated that the original AF2 parameters trained only on monomers are already sufficient75

for multimer prediction (19). More recently, all-atom PFNNs such as AF3(20), RF3(21), Chai-1(22),76

and Boltz-2(23) have extended modeling to DNA, RNA, ligands, and ions, thereby enabling design77

and evaluation across a broader chemical space.78

2.2 PFNN-derived Binder Evaluation79

Beyond structure prediction, PFNNs also output a series of confidence scores, including point-wise80

(pLDDT), pair-wise (pAE), and global (pTM) measures. These scores have demonstrated state-of-81

the-art discriminative power for assessing structural quality and have been widely applied to evaluate82

designed proteins (10). Nevertheless, their ability to distinguish true protein–protein interactions83

(PPIs) from artifacts remains limited: a retrospective study reported accuracies below 10% (4).84

Moreover, this limitation persists even in the latest all-atom PFNNs, despite their substantially longer85

inference times (24). For these reasons, we focused our evaluations on AF2-like models, where86

inference is both efficient and well-validated.87
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Figure 1: Epitope-only Hallucination for Binder Design against Large Targets. a. Workflow
overview. Targets are cropped into discontinuous epitope for binder hallucination. Monte Carlo-based
evolution is then performed to overcome local minima. Initial designs with high confidence are
co-folded with intact target as validation. Eligible designs are redesigned with per-residue biased
MPNN to improve developability and local features. b. Increased speed/success rate of epitope-only
hallucination strategy, showcased by CP binder design against WDR5.

2.3 PFNN-derived Binder Design88

Several approaches have sought to repurpose PFNNs as generative models. One prominent direction89

is fine-tuning as diffusion models, exemplified by RFDiffusion (3). Diffusion-based methods have90

proven effective for backbone generation, but co-design of sequence and structure remains challenging91

in this framework. In contrast, hallucination strategies allow simultaneous optimization of sequence92

and structure without additional training. By iteratively updating random sequences through gradient-93

based optimization of PFNN-derived confidence scores and geometric constraints, hallucination can94

directly produce tailored binder candidates (13; 11).95

BindCraft (BC) represents the most systematic application of hallucination to binder design and96

has achieved remarkable in vitro success (7). BC employs AF2-multimer for hallucination (18) and97

AF2-monomer for refolding validation (2), supplemented by several optimization and filtering steps.98

First, to alleviate the local minima that arise from gradient-based optimization, BC introduces a semi-99

greedy mutation procedure. Second, to address developability issues that often plague hallucinated100

binders (25; 11), BC applies ProteinMPNN-based redesign to refill non-interface residues. Finally,101

a suite of physics-based filters is used to eliminate designs with undesirable features, such as an102

excessive number of unsatisfied hydrogen-bond donors. While highly successful, these steps also103

reveal limitations: semi-greedy mutation can stagnate in suboptimal solutions, MPNN redesign104

is applied only in a global manner without fine-grained control of local sequence features, and105

efficiency remains limited when tackling large or multi-domain targets. These limitations motivate106

the methodological refinements explored in this work.107

3 Rationale and Method108

3.1 PFNN Energy Function Biased to Local Interaction109

Multiple sequence alignment (MSA) is widely recognized as a key determinant of folding accuracy110

(26), primarily by encoding co-evolutionary patterns that correlate with long-range contacts (27).111
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Although a deep MSA with accurate alignments and diverse sequences is generally regarded as112

beneficial for PFNNs, a growing body of work manipulating MSA has revealed counterintuitive113

behaviors. For example, end-to-end learned MSAs of relatively low quality can in fact improve114

folding accuracy (28), and sub-sampling MSAs has been shown to capture alternative conformations115

(29; 30).116

In addition to MSA, global contacts may also be introduced through structural templates. In binder117

design, for instance, using the target structure as a template can enforce high-fidelity folding without118

requiring the computationally intensive construction of an MSA. Subsequent binder-target re-folding119

with the designed conformation as an “initial guess” can further preserve the binding pose while120

maintaining the discriminative power of confidence scores (4).121

Together, these observations underscore the heavy reliance of PFNNs on external global constraints.122

Nevertheless, PFNNs are still able to accurately rank candidate structures even in the absence of123

MSAs or templates (10). It was thus deduced that PFNNs indeed learn an effective biophysical energy124

function, and that global constraints primarily serve to narrow down the search space rather than to125

define the folding landscape itself.126

However, given the residue cropping procedure in PFNN training—where sequences are randomly127

segmented into equal-length peptide fragments regardless of their overall foldability—it remains128

debatable whether the learned energy function truly captures global structural fitness. Indeed, recent129

evidence indicates that the learned function is strongly biased toward local interactions. For example,130

ab initio folding with AF2 demonstrates that local residue–residue contacts are captured early and131

with high sensitivity, whereas remote contacts emerge less frequently and only after extensive132

iterations, implying that AF2 prioritizes local fitness (6). Similarly, hallucinated proteins—which133

reflect intrinsic PFNN preferences—tend to form densely packed cores and exhibit elevated melting134

temperatures (at the expense of solubility), pointing to an over-optimization of local interactions135

(11). This local bias is further highlighted by an extreme case in AF3, where the network produced136

overlapping backbones with severe steric clashes in order to accommodate two alternative binders at137

the same site—both of which can form ideal local contacts (12).138

The concept of a “local first” mechanism was originally introduced to describe the ab initio folding139

behavior of AF2 (6). Here, we extend this principle to the learned energy functions of PFNNs more140

broadly, arguing that these networks focus primarily on optimizing local interactions while displaying141

limited understanding of global structural fitness. This assumption forms the cornerstone of our142

epitope-only strategy.143

3.2 “Epitope-only” Strategy of Binder Design144

The local bias of the PFNN energy function underscores the importance of short-range interactions in145

both AF2 inference and hallucination. Furthermore, the training data of AF2-multimer are cropped146

by spatial (rather than sequential) vicinity, and thus deliberately disrupting structural completeness147

((18), Algorithm. 2), which further motivates our strategy to hallucinate binders against discontinuous148

epitope fragments.149

Our hallucination protocol is initialized following the same procedure as BC (7). The input features150

of AF2 are repurposed for ab initio folding of target–binder complexes. For the target, MSA-related151

features are initialized as zero matrices, while the target structure is parsed into template-related152

features. The binder is initialized as a random cluster_profile of size [1, Nb, 23], where Nb153

denotes the binder length and the last dimension corresponds to the amino acid type distribution154

at each residue. Binder sequences are generated from the cluster_profile via ArgMax, and155

cluster_msa is constructed by repeating this sequence. At each step, the input features are passed156

through one randomly selected AF2-multimer model (out of five), and a composite loss function157

calculated by weighted-sum of the output confidence scores and geometric features (e.g. radius of158

gyration). Gradients are then backpropagated to the binder cluster_profile for optimization.159

The residue_index feature is leveraged to accommodate fragmented target structures. In AF2-like160

models, the residue_index fr is converted into a relative positional encoding p of size [Nres, Nres],161

where Nres denotes the total number of amino acids in the system and pij = fr
i −fr

j (clipped at ±32).162

By assigning residue indices from the fragmented target structure to fr, AF2 can correctly process163

the relative positions between residues belonging to different segments. To represent binding surfaces164
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spanning multiple chains, the fragments are treated as belonging to the same chain but separated by a165

gap of 50 in fr.166

3.3 MC-based Evolution167

Gradient-based hallucination is efficient but prone to being trapped in local minima. To escape such168

minima and explore a broader sequence space, the original BC employed semi-greedy (SM) evolution,169

in which random mutations are introduced and only accepted if they reduce the hallucination loss.170

While this strategy can improve local exploration, it remains susceptible to stagnation in suboptimal171

regions.172

To address this limitation, we replace SM with Markov chain Monte Carlo (MC)–based evolution173

(Fig. 5). Like SM, MC is performed immediately after hallucination and is driven by random residue174

mutations. At each step, 5% of residues are randomly selected, with selection probability weighted175

by pLDDT such that low-confidence residues are more likely to be mutated. Selected residues are176

then substituted either uniformly among 20 amino acids (Random) or according to a position-specific177

scoring matrix normalized from the hallucinated amino acid distribution (PSSM). PSSM introduces178

bias guided by hallucination, potentially improving efficiency compared to purely random mutations.179

The distinction between SM and MC lies in the acceptance criterion. SM accepts mutations only180

when the loss decreases, whereas MC may also accept unfavorable mutations with a probability181

determined by a simulated annealing scheme:182

Paccept(i,∆) = exp

(
− ∆

T (i)

)
= exp

(
− ∆

Tinit · 2−i/τ

)
= exp

(
−∆ · 2

i/τ

Tinit

)
, (1)

where ∆ = lossnew − losscurrent, i is the current MC step, T (i) is the exponentially decaying temper-183

ature, Tinit is the initial temperature, and τ is the half-life constant controlling the decay rate. As i184

increases, T (i) decreases, thereby lowering the probability of accepting loss-increasing mutations. A185

larger τ leads to slower cooling and thus a longer exploratory phase.186

For each trajectory, the best frame along the evolution is selected as the final design. For negative187

controls without any evolutionary refinement, the best hallucinated frame is taken as the final design.188

3.4 Biased MPNN Redesign189

Hallucinated binders often suffer from poor developability (11). To improve sequence quality, the190

original BC pipeline employs ProteinMPNN inverse folding (31) to resample binder residues outside191

the protein–protein interface (PPI). ProteinMPNN infers position-specific amino acid distributions192

from the Cα coordinates of the complex and the amino acid identities of the target, PPI residues,193

and previously sampled binder residues, and then autoregressively fills the masked binder sequence.194

BC additionally introduced simple global bias to exclude cysteine, which otherwise complicates195

experimental handling.196

However, global biases cannot address local sequence features that are critical for binding and197

developability. For example, unoccupied polar residues on the PPI—those not forming hydrogen198

bonds or salt bridges with the target—can reduce binding affinity by ∼3 kcal/mol (up to ∼160-fold)199

(14). Likewise, excessive charged residues on the non-PPI surface can skew the isoelectric point (pI),200

leading to aggregation or non-specific interactions (15). In BC, designs with such unfavorable local201

patterns were simply discarded, which is wasteful given the scarcity of qualified designs for difficult202

targets.203

Here we introduce MPNN redesign with per-residue bias for better control of local patterns (Fig. 6),204

with which we explicitly optimized these local features: 1) Hydrophilic occupancy bias: residues205

on the PPI that are polar but unpaired in hydrogen bonds or salt bridges are included in redesign,206

with polar/charged residues penalized. 2) Surface charge bias: charged residues on non-PPI solvent-207

exposed surfaces (relative SASA > 0.5) are penalized to maintain a pI value favorable for therapeutic208

developability (15). Bias is introduced by adding a logit penalty of −106 to exclude cysteine209

(baseline), and − ln 4 for specific residues disfavoring as in (32).210
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4 Experimental Study211

4.1 Set-up212

We evaluated our approach (Fig. 1a) on six biological systems with large or multi-domain binding213

surfaces (Tab. 1). To avoid arbitrariness, epitopes were defined strictly by the distance to functional214

hot spots, i.e., residues in contact with known binders in crystal structures (Fig. 1b&7). To ensure215

broad applicability, both mini-protein (MP) designs against flat surfaces and cyclic-peptide (CP)216

designs against narrow pockets (enabled by cyclic positional offsets (33)) were tested.217

300 binders are Hallucinated for each target. By default, 15 steps of MC evolution without PSSM guid-218

ance is performed. For fair comparison, design quality was first assessed after hallucination–evolution219

with AF2-multimer. Successful designs,defined as those with pLDDT > 0.8 and interface pAE220

(i-pAE) < 0.35, were then refolded with intact target domains using AF2-monomer. To facilitate221

folding of these large multimeric systems, the designed binding pose was provided as the “initial222

guess” (4) and the initial frame coordinates (Suppl. Alg. 20 in (2)). Binders that achieved both high223

refold confidence (pLDDT>0.8 and i-pAE<0.35) and consistency with the design (binder RMSD <224

3.5Å) were considered successful refolds, i.e., successful binders.225

For MPNN redesign, the top 100 initial designs (lowest i-pAE) were selected for further optimization.226

From each design, 1600 sequences were sampled, clustered into five groups by sequence similarity227

(spectral clustering, scikit-learn (34)), and the highest-scoring sequence in each group was selected228

for refold validation. Hydrophilic-occupancy bias is applied to both MP and CP. Inter-molecular229

H-bonds and salt-bridges are identified with geometric constraint by MdAnalysis (35) after relaxation230

(36) Surface-charge bias is only applied to MP. pI is calculated by PROPKA3 (37). Additional success231

criteria were applied according to the specific bias: 7.5 < pI < 9 for surface-charge bias, and fewer232

than three unsatisfied donors together with more than three satisfied donors for hydrophilic-occupancy233

bias, following previous study (7; 15).234

Finally, overall efficiency of the proposed pipeline was compared against the original BC pipeline,235

using the full set of BC filters as the evaluation criterion.236

4.2 Epitope-Only Hallucination Improves Speed and Success237

As expected, sampling speed increased markedly as the epitope range was narrowed (Fig. 8a). Design238

success rates also improved steadily (Fig. 8b), consistent with previous reports that AF2 performance239

declines with increasing system size (6).240

Importantly, reducing the epitope size did not compromise the correlation between design and refold241

confidence scores (Fig. 2a, 9–10), indicating that distal regions of the target protein are largely242

redundant and can even be confounding for binder design. As a consequence, the epitope-only243

strategy also improved refold success (Fig. 2b). For relatively easy targets (baseline full-domain244

success >30%), the gains were modest (TcdB +3%, WDR5 +19%). For more difficult cases, however,245

the improvements were dramatic: +80% for TBLR1, and a shift from essentially “undesignable” to246

substantially designable for ALS3 and ClpP. The only exception was HA, where success did not247

improve; this outcome can be attributed to extremely poor consistency between design and refold248

(Fig. 2a), suggesting that factors other than domain size underlie its difficulty.249

By combining faster sampling with higher-quality designs, overall sampling efficiency—defined as250

the average time per successful design—was enhanced across all six targets, with improvements251

ranging from 3.5-fold to 44.2-fold. These results highlight the robust and consistent benefits of the252

epitope-only strategy.253

4.3 MC Evolution Rescues Poor Hallucination254

Our results show that semi-greedy (SM) evolution is only effective when the initial hallucination255

result is already of reasonable quality (Fig. 3, targets TcdB and HA). Even in these cases, backbone256

quality quickly plateaus after 30 steps. Incorporating PSSM guidance as the mutation probability257

provides only marginal benefit, likely because it restricts exploration to the hallucinated sequence258

distribution—contrary to the intended purpose of evolution. As a result, SM, with or without PSSM,259

performs poorly for difficult targets.260
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Figure 3: Design Success Rate Improved with MC Evolution.

In contrast, for systems where SM offers little advantage, MC evolution markedly improved success261

rates: +130% for WDR5, +364% for TBLR1, +241% for ClpP, and +184% for ALS3 (relative to262

SM). For easier systems where SM suffices, MC caused only modest reductions (-7% for TcdB, -6%263

for HA). Notably, MC performance continued to improve with extended sampling and showed no264

saturation even at 120 steps, suggesting substantial untapped potential.265

4.4 Biased MPNN Enhances Local Sequence Features266

For the surface-charge bias task, the proportion of eligible designs increased from 10% to 20% with267

biased MPNN, whereas the default MPNN achieved only 13% (Fig. 4a). When combined with268

refolding quality, this translated into an overall success rate improvement from 12% to 18%.269

For the hydrophilic-occupancy task, biased MPNN markedly reduced the number of unsatisfied polar270

residues in targets where this was a severe issue (Fig. 4b, TcdB, HA, ALS3). For WDR5 and TBLR1,271

where the average changes were modest, the fraction of binders meeting the occupancy criterion still272

rose substantially from 38% to 51%, suggesting real gains that were masked by already-sufficient273

designs (Fig. 4c). admittedly, as a trade-off, introducing penalties slightly reduced refold confidence,274

and in cases where occupancy was not a bottleneck (e.g., ClpP), the overall success rate decreased275

from 46% to 41%.276

Taken together, these results show that biased MPNN provides a generally effective means of im-277

proving local sequence features across both tasks, particularly when the targeted feature represents a278
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limiting factor for binder quality. However, its benefits are less pronounced—or even counterproduc-279

tive—when the targeted feature is not a bottleneck.280

4.5 Enhanced Performance with Full Pipeline281

Due to low efficiency of original BC pipeline, only full-pipeline baseline on TcdB and TBLR1 is282

done. As shown in Tab. 2, our modified pipeline has achieved >4 times acceleration and 3 to 4 times283

higher success rate.284

5 Discussion285

Motivated by the hypothesis of a “local-first” mechanism in PFNN energy functions, our epitope-only286

hallucination strategy achieved substantial improvements in both the speed and quality of binder287

design. Building on this foundation, our optimized pipeline—which further incorporates MC-based288

evolution and biased MPNN redesign to address common pitfalls in designing against large, difficult289

targets—appears promising for unlocking the therapeutic potential of previously intractable systems.290

At the same time, our findings should be interpreted in light of several limitations. Larger-scale291

retrospective analyses are required to confirm the fidelity of folding confidence scores between292

epitope-only and full-domain settings. Additional support for the “local-first” hypothesis could also293

be obtained through gradient analyses of distal target residues relative to binder profiles. Since294

our current results are based on AF2-multimer, whose spatial-cropping training scheme may itself295

contribute to the observed performance, it will also be important to test the strategy on AF3-like296

all-atom PFNNs.297

Finally, several limitations of our experimental setup should be acknowledged. First, additional298

design tasks are required for comprehensive evaluation, with particular emphasis on mini-protein299

benchmarks, given their relatively weaker performance of MC-based evolution. Second, the modest300

reduction in refold confidence observed with biased MPNN redesign likely results from suboptimal301

penalty settings rather than an inherent limitation of the approach. Moreover, experimental validation302

will ultimately be essential to assess the extent to which the observed computational gains translate303

into functional binders. Future work will therefore focus on broadening the scope of design tasks,304

refining methodological parameters, and incorporating wet-lab validation to rigorously evaluate the305

robustness of the proposed pipeline.306
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Figure 5: Schema of Monte-Carlo Evolution. At each step, we select 5% of binder positions with
probability ∝ 1-pLDDT and propose substitutions either uniformly or from a position-specific scoring
matrix (PSSM) derived from the hallucinated amino acid distributions. After each proposal, we refold
the complex and recompute pLDDT and the amino-acid distributions to update the hallucination loss.
Unlike the semi-greedy scheme, MC also accepts loss-increasing moves, enabling early exploration
then exploitation; we retain the lowest-loss frame along the trajectory. Matrix colors encode quality
or sampling probability; red tones indicate lower quality/probability and blue tones higher.
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Figure 6: Schema of MPNN Redesign with Per-Residue Bias. (Top) For each hallucinated binder,
we mask non-interface residues and optionally polar interface sites that lack an intermolecular H-
bond or salt bridge after relaxation (grey). We apply a global exclusion for cysteine (logit = 106)
and mild penalties (ln 4) to disfavor polar/charged residues at (i) unsatisfied polar PPI positions
(hydrophilic-occupancy bias) and (ii) solvent-exposed non-PPI positions with rSASA > 0.5 (surface-
charge bias, omitted for simplicity). Matrix colors encode ProteinMPNN sampling probability; red
tones indicate lower probability and blue tones higher. (Bottom) Redesigned protein (teal), generated
with per-residue-biased ProteinMPNN, eliminates unsatisfied hydrogen bonds with the target.

Target PDB ID Binder
Modality

Domain Size Target
Chain

Binder
Chain

WDR5 2G99 CP 304 B C
TBLR1 5NAF CP 348 B F

ClpP 6BBA* CP 390 A,B L
ALS3 4LEB CP 326 A B
TcdB 6C0B MP 506 A B
HA 5VLI MP 495 A,B C

Table 1: Metadata of protein target. MP, mini-protein. CP, cyclic peptide. *full ClpP target is
defined as its dimerization form, which is modeled by Boltz-2 (23) with 6BBA as template.
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Figure 7: Overview of Tested Targets, Hot Spots and Epitopes. Hot spots are highlighted in warm
pink and side chain conformation. Epitope regions are selected by distance to hot spots and shown
in the left/right (with different distance cutoff). Full domain, as the minimum foldable unit where
epitopes exists, are shown in the right.
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Figure 8: Ext. Efficiency Improvement with Epitope-only Hallucination Strategy. a. increased
success rate in initial design / refold validation compared to full domain as input. Red dashed line
indicates the performance of full domain. b. reduced per-design time. per-refold-success missing bar
indicates no success design, thus no available data. c-d. correlation of confidence scores between
design and refold. See Fig. 9-10 for details.
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Figure 11: Refold Success Rate Improved with MC Evolution.

Target Pipeline Sampl.
Time (s)

Success Rate

TcdB BC 1440 0.07
EC 337 0.29

TBLR1 BC 1337 0.05
EC 300 0.14

Table 2: Speed and Quality Improvement of the Whole Pipeline. BC, the original BindCraft
pipeline. EC, our pipeline, tentatively termed EpitopeCraft.
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