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Abstract001

Agentic tasks, which require multi-step prob-002
lem solving with autonomy, tool use, and adap-003
tive reasoning, are becoming increasingly cen-004
tral to the advancement of NLP and AI. How-005
ever, existing instruction data lacks tool inter-006
action, and current agentic benchmarks rely on007
costly human annotation, limiting their scal-008
ability. We introduce TASKCRAFT, an au-009
tomated workflow for generating difficulty-010
scalable, multi-tool, and verifiable agentic tasks011
with execution trajectories. TaskCraft expands012
atomic tasks using depth-based and width-013
based extensions to create structurally and hi-014
erarchically complex challenges. Inspired by015
bootstrap few-shot learning, a self-evolving016
prompt optimization is implemented to enhance017
sampling success and reduce latency. Exper-018
imental results from SFT on multiple LLMs019
demonstrate that TaskCraft data substantially020
enhances multi-hop reasoning and agentic ca-021
pabilities. Further scaling with TaskCraft tasks022
and applying RL training yields substantial023
gains, achieving state-of-the-art performance024
on four agentic benchmarks. The resulting025
dataset includes 41k tool-intensive tasks across026
varied difficulty levels, including 12.6k tool027
executions and 5k sub-task decompositions.028

1 Introduction029

Agentic tasks—autonomous, multi-step problem-030

solving requiring tool use and adaptive reason-031

ing—are increasingly pivotal in AI and NLP. Ad-032

vances in language agents [17, 31, 6, 42, 43, 44]033

have shifted AI from passive assistance to proac-034

tive agency, enabling complex workflow execution.035

This is exemplified by systems combining reason-036

ing frameworks like ReAct [37] with dynamic or-037

chestration, where solution trajectories critically038

improve inference quality. However, the inher-039

ent complexity of such tasks challenges conven-040

tional annotation paradigms, necessitating novel041

approaches to model training and evaluation.042

To assess advanced agent capabilities, bench- 043

marks such as GAIA [11], BrowseComp [28], and 044

Humanity’s Last Exam (HLE) [12] have been in- 045

troduced. GAIA evaluates reasoning, tool use, and 046

web browsing through 466 real-world questions. 047

BrowseComp comprises 1,266 tasks that test an 048

agent’s ability to retrieve and integrate complex 049

online information. HLE includes 2,500 multi- 050

modal questions across over 100 disciplines to mea- 051

sure advanced reasoning and domain knowledge. 052

While these datasets have significantly contributed 053

to agent evaluation, they suffer from scalability 054

limitations due to the labor-intensive nature of data 055

annotation. For example, creating HLE required 056

1,000 experts to label just 2,500 data points, hinder- 057

ing its ability to scale. 058

Prior work has explored the automatic genera- 059

tion of instruction-following data using large lan- 060

guage models to alleviate the scalability issues of 061

human-annotated datasets. A representative ex- 062

ample is the Self-Instruct framework [27], which 063

demonstrated that LLMs can generate high-quality, 064

diverse instruction data for multi-turn dialogues. 065

This approach has proven effective for supervised 066

fine-tuning (SFT). However, these methods are 067

primarily designed for static instruction-following 068

scenarios and fall short in modeling agentic tasks, 069

which require interaction with external tools and 070

environments. Consequently, such data is insuffi- 071

cient for training or evaluating agents that operate 072

in dynamic, real-world settings. 073

In this work, we introduce TASKCRAFT, an 074

agentic workflow for the automated generation of 075

agentic tasks. Our approach provides the following 076

advantages: 077

• Scalability. The workflow supports adaptive 078

difficulty, seamless multi-tool integration, and 079

the generation of tasks beyond the capabilities 080

of the task-generation agent, along with their 081

corresponding trajectories. 082
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• Efficient Verification. During each task ex-083

tension, only incremental components un-084

dergo agentic validation, eliminating the need085

for full verification of the extended task.086

Our approach begins by generating atomic tasks087

solvable with single-tool invocations, expanding088

them through depth-based and width-based exten-089

sions. Depth-based extension iteratively transforms090

key textual elements into new atomic tasks for pro-091

gressive resolution. In contrast, width-based exten-092

sion formulates tasks requiring resolution of multi-093

ple sub-tasks across distinct instances. To ensure094

high-quality tasks, we employ rejection sampling to095

verify scenarios where agents using external tools096

succeed while LLMs fail, validating genuine tool097

necessity. Linguistic analysis with LLMs facilitates098

rapid validation and task creation beyond current099

agent capabilities, enhancing efficiency and task-100

solving scope. To further improve the efficiency of101

workflow generation, we implement a self-evolving102

prompt optimization strategy inspired by bootstrap103

few-shot learning [5]. This iterative refinement104

improves rejection sampling pass rates while mini-105

mizing generation time.106

The controlled generation process ensures inher-107

ent access to ground-truth execution trajectories,108

enabling precise interpretability, reproducibility,109

and verifiability. To assess the efficacy of gener-110

ated tasks, SFT was applied to several base LLMs,111

equipping them with tool-use capabilities. Re-112

sults show strong performance on multiple agentic113

benchmarks. Further scaling with TaskCraft tasks114

and applying reinforcement learning (RL) yields115

substantial gains, achieving state-of-the-art perfor-116

mance.117

Based on this method, we created a task dataset118

consisting of about 41k tasks of varying difficulty.119

Each task necessitates different tools for resolution,120

such as search engines, web browsers, PDF read-121

ers, and image analysis. The dataset also includes122

approximately 12.6k trajectory data executed with123

tools, along with about 5k instances of multi-hop124

sub-task decomposition data.125

Our key contributions are as follows:126

• We introduce an automated agentic task gener-127

ation workflow capable of producing scalable128

difficulty, efficient verification, and multi-tool129

supported tasks, along with their correspond-130

ing execution trajectories.131

• We utilize prompt learning to facilitates the132

self-evolution of our generated workflow. 133

• We validate the effectiveness of our gener- 134

ated tasks via SFT training on multiple LLMs, 135

leading to notable improvements in multi-hop 136

reasoning and agentic benchmarks. 137

• we create a task dataset comprising about 41k 138

agentic tasks of varying difficulty levels. The 139

dataset also includes approximately 12.6k tra- 140

jectory data, along with about 5k instances of 141

multi-hop sub-task decomposition data. 142

2 Notations and Preliminary 143

Tool-Assisted Task Execution

As Figure 1 shown, given a task q, the agent
extracts the input index iT (e.g., document
name, webpage title) for invoking a target
tool T . We focus solely on steps that yield
a valid tool context, omitting unrelated pro-
cesses such as file location or search for sim-
plicity. Executing tool T with iT retrieves
the associated context C. The LLM implic-
itly deduces the relationship R between C
and the expected outcome, producing the
final result a.

144

Task q Answer a
"Stock with highest
price increase
today?"

Input Index iT

Tool Execution

LLM Parsing

"Nasdaq Stock Market Data"​

"INTC (+10.44%), 
  NVDA(+4.11%), 
  TSLA(+1.65%) ..."

Tool Context C

"Highest stock price
increase"

Implicit Relation R

"INTC    
 (+10.44%)"

LLM 
Reasoning

Web Tool

Image Tool

PDF Tool

Tool List

LLM Reasoning

Figure 1: Execution flow of a single tool invocation.
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Tool List

Web Tool

Image Tool

PDF Tool

Music Tool

Extract context
using PDF tool

《Apple2025AnnualReport.pdf》

iT: "Apple2025AnnualReport"

What is the
relationship?

What is
the task?

q = f (iT,R)

...

2. Financial Highlights 

In the 2025 fiscal year, Apple's 

total revenue reached $383.3 billion, 

a 2% increase from the previous year. 

 • Net profit was $94.7 billion, 

with a gross margin of 44.3%. 

• Operating cash flow from operations 

amounted to $108.2 billion.  

Answer 

Context

Context

What's the
answers and
context content
in the PDF?

 R: "total revenue"

q: "In the financial report'
Apple2025Annual 

Report', what is total
revenue value in 2025?"

Figure 2: Atomic task generation. From an unlabeled corpus, we extract iT and derive textual content C via tool
execution. LLM identifies candidate answers a from C, infers their relationship R, and constructs question q
conditioned on iT and R.

Atomic Task

An atomic task is resolved with a single
target tool invocation. To simplify, we dis-
regard search and file system operations,
assuming a detailed input index iT enables
retrieval through finite navigation.

145

Given an answer a, the most direct approach146

to construct an atomic task involves prompting an147

LLM to generate the corresponding question. How-148

ever, questions produced in this manner often suffer149

from low tool invocation rates, unpredictable dif-150

ficulty levels, unregulated tool requirements, and151

inconsistent verification complexity (see Section152

4.5 for more details).153

To mitigate these issues, we assume an ideal154

search engine capable of retrieving precise data155

based on iT (e.g., paper titles, image paths, music156

names, etc.). Under this assumption, we can con-157

struct a task question q = f(iT , R) −→ a, where158

f represents a sampling function that enables the159

LLM to generate the corresponding natural lan-160

guage representation of the question q based on the161

provided information.162

3 Automated Task Generation Workflow163

3.1 Atomic Task Generation164

As Figure 2 shown, we begin by compiling a cor-165

pus of unlabeled data aligned with the tool’s input166

requirements. From this corpus, we extract iT and167

derive textual content C via tool execution. For168

example, browsing, PDF, and image comprehen-169

sion tools yield webpage titles, PDF names, and170

image paths, from which we extract textual content171

C for answer sampling. We prompt an LLM to 172

identify key candidate answers a from C and infer 173

their relationship R with C, ultimately constructing 174

question q conditioned on iT and R. 175

3.2 Task Extension 176

In order to increase task difficulty in a scalable way, 177

we adopted two extended task strategies: the depth- 178

based extension and the width-based extension. 179

Depth-based extension. We aim to construct 180

tasks requiring multiple sequential tool executions, 181

where each step depends on the output of the previ- 182

ous one. To achieve this, a new sub-task must be 183

derived from a known task qn. The tool input index 184

iT at each stage exhibits strong extensibility due 185

to (1) its frequent association with proper nouns, 186

which are less likely to be memorized by LLMs, 187

and (2) its natural suitability for recursive defini- 188

tion. Specifically, a single atomic task follows the 189

formulation: 190

qn = f(inT , R
n) −→ a. (1) 191

To extend a n-hot task qn into a (n+1)-hop de- 192

pendency task qn+1, we can define the recursive 193

formulation: 194

qn+1 = f(q̂n+1, Rn) −→ a, (2) 195

where we ensure that 196

q̂n+1 = f(in+1
T , Rn+1) −→ inT . (3) 197

Here, in+1
T denotes a new tool input index derived 198

from inT through reversible operations (e.g., retriev- 199

ing lyrics from a song name or vice versa). To ob- 200

tain in+1
T and its corresponding relationship Rn+1, 201
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a₂="Interstellar"

Atomic task (first hop) The second-hop task

    : What science fiction film
was released Nov 7, 2014?

i1T: Interstellar

 a1: Christopher
Nolan

i2T: science fiction film i2T: science fiction film 

a2: Interstellar

q1: Interstellar's
director?

Interstellar

 R1: The director of
Interstellar  R2: science fiction film

released Nov 7, 2014

q2: Who is the director of the
science fiction film, which

was released on Novermber 7,
2014?

The merged task

step3

step4

search agentstep1

step2

 R2: science fiction film
released Nov 7, 2014

(a) Depth-based extension

a1: $2.40

q1:What was Apple
Inc.'s Q1 2025 EPS?

q2: What's Apple Inc.'s P/E
ratio for the same period?

a2: 39.65

q1:What were Apple Inc.'s Q1
2025 EPS and P/E ratio for
the same period? 

LLM Merging 

a1:  $2.40, 39.65

Execute Tool Execute Tool

(b) Width-based extension

Figure 3: Strategy for task extension

we employ a search agent that retrieves supersets of202

inT to mitigate cyclic generation risks. Specifically,203

the agent searchs textual content Cn+1 as super-204

set candidates. An LLM then analyzes Cn+1 to205

derive the superset index in+1
T and its relationship206

Rn+1 with inT . This process ensures progressive207

context expansion and effective information asso-208

ciation. The resulting in+1
T and Rn+1 are synthe-209

sized into an intermediate sub-task candidate q̂n+1,210

which undergoes rigorous verification. Upon verifi-211

cation, the system generates the refined task qn+1212

by integrating q̂n+1 with all historical relationships213

{R1, R2, ..., Rn}.214

Width-based extension. The goal of the width-215

based extension is to generate a new task that needs216

to be decoupled into multiple sub-tasks to be com-217

pleted. For simplicity, for two sub-tasks q1 −→ a1218

and q2 −→ a2, the combined task qwidth can be219

represented as220

(qwidth = q1 + q2) −→ a1 + a2, (4)221

where the + indicates using LLM to merge and222

rephrase two question strings.223

Trajectory generation. Two strategies exist for224

generating execution trajectories in this task: (1)225

For simple tasks, such as atomic tasks, existing 226

agents can directly infer and capture the trajec- 227

tory, including tool selection, parameters, return 228

results, and plans. (2) For complex tasks, such 229

as depth-wise extension tasks, the sub-task trajec- 230

tory is recorded while iteratively expanding and 231

validating new atomic tasks. 232

3.3 Task Verification 233

Under this generation workflow, the verification 234

of generated tasks can be easily performed in two 235

distinct phases: 236

Atomic task verification: An atomic task is de- 237

fined as a simple agent task solvable via a single 238

tool call. During verification, we relax this defi- 239

nition slightly: for each candidate task, we evalu- 240

ate the task agent’s output within a limited num- 241

ber of tool-use steps (e.g., three) and compare it 242

with an infer-LLM separately. A judge-LLM ver- 243

ifies whether only the agent’s output contains the 244

golden answer, retaining only validated tasks. (see 245

Appendix E for more details) 246

Task extension verification: This process is con- 247

ducted purely through linguistic analysis without 248

agent involvement. During depth-wise extension, 249
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we first employ a judge-LLM to validate: (1)250

whether the obtained in+1
T and its relation Rn+1251

constitute a proper superset of inT with logically252

sound relationships, and (2) whether the final input253

index inT in qn is appropriately replaced by q̂n+1254

in the expanded task qn+1. Furthermore, an infer-255

LLM derives the merged task, while the judge-256

LLM filters out tasks where the correct result is257

easily inferred, preventing information leakage that258

could render the task trivially solvable after merg-259

ing.(see Appendix D for more details).260

This framework ensures efficiency by applying261

agent reasoning only in atomic task verification262

at creation, while relying on LLM-based verifica-263

tion elsewhere for faster execution. It also enables264

complex task generation beyond agent capabilities,265

with reverse reasoning providing supervisory sig-266

nals to enhance agent learning or reinforcement267

learning.268

4 Experiments269

4.1 Corpus Construction270

W
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75
%

Im
age Tool

15%

Pdf Tool10%

Government
15%

Cultural
15%

Academic
14%

Economic
14%

Other
10%

political
7%

Report
9%

Paper
6%

Paper
6%

Report
4%

Figure 4: Corpus source distribution.

We collect seed documents across modalities to271

generate tool-specific atomic tasks, extracting key272

insights for relevance. For instance, our PDF pro-273

cessor constructs atomic tasks by combining titles274

with core findings, enhancing the need for agent-275

based PDF tool invocation. To support atomic task276

generation, we constructed a dataset comprising277

webpages, PDF files, and images. Webpage data278

constitutes the largest proportion (75%), sourced279

from up-to-date news across multiple domains. Im-280

age data accounts for 15%, primarily derived from281

financial reports and research papers, with filter-282

ing to retain images containing information beyond283

text. PDF data makes up 10%, originating from284

English financial documents and academic publica-285

tions.286

4.2 Synthetic Tasks Analysis 287

Human Evaluation. To verify the validity of the 288

results, we randomly sampled 60 atomic tasks and 289

48 depth-based extension tasks using human evalu- 290

ation and scored them. 291

Table 1: Human evaluation for the generated tasks.

Atomic

Linguistic fluency 91.7%
Accuracy 95.0%
Single answer 83.3%
Information leakage 11.7%

Depth-based
extension

Extended validity 82.3%
Non-superset 8.5%

As shown in Table 1, these results highlight the 292

overall effectiveness and controllability of task gen- 293

eration. 294

Agent reasoning analysis. To practically assess 295

task difficulty, we sample 1,000 tasks and deploy 296

both Smolagents [16] and Oagents [45], for execu- 297

tion and validation. While both agents performed 298

identical tasks, Oagents incorporated advanced tool 299

capabilities for refined analysis. 300

Responses were evaluated by comparing the 301

agents’ outputs to the golden answer, following 302

a three-point scoring scheme: 2 for fully correct 303

responses, 1 for answers that included the golden 304

answer but contained additional information, and 0 305

for incorrect responses. 306

In Figure 6, task failure rates increase from web 307

pages to PDFs and then to images within PDFs, in- 308

dicating that multi-hop web search tasks are more 309

manageable for agents, while complex comprehen- 310

sion challenges, such as PDF extraction and image 311

interpretation, remain difficult. Additionally, these 312

results demonstrate that our generated tasks span 313

varying difficulty levels, including those that pose 314

significant challenges for current agent capabilities. 315

Comparison with the GAIA dataset. Table 2 316

presents the accuracy comparison of Smolagent on 317

the GAIA dataset and our generated dataset. The re- 318

sults indicate that tasks derived from different tool 319

corpora align with GAIA’s varying difficulty levels, 320

with image understanding tasks posing the greatest 321

challenge and achieving accuracy comparable to 322

Level3 data. 323

Unlike GAIA, which requires extensive human 324

annotation, our approach automates task genera- 325

tion, eliminating the need for labor-intensive data 326

labeling while maintaining scalability and adapt- 327

5



Answer : 
The live - action 
'Lilo & Stitch' was 
set to premiere on 
Disney+ in 2024. 
But by June that 
year, Disney hadn't 
announced its 
release date.  

   
   Task 2: For the classic Disney animated series featuring an alien experiment character and set in Hawaii, centered around the 
                theme of alien creatures and family bonds, when will its live-action spin-off movie be officially released?   

   Step 1 : Q : What is the classic Disney animated series about an alien experiment set in Hawaii?                 
                 A : Lilo & Stitch 

   Step 2 : Q : When will the live - action spin - off movie of "Lilo & Stitch" be officially released? 
                 A : The live - action "Lilo & Stitch" movie is scheduled to be released on May 23, 2025.  
    
   Answer : The official release date for the Disney live-action adaptation of Lilo & Stitch is May 23, 2025.

Answer : 
In April 2025 
OpenAI security 
docs, for SWE - 
Lancer Diamond 
(SWE Manager 
task) eval, o1 
model's pass@1 
rate was just 
0.14/14%, much 
lower than 
expected. 

   
   Task 1: In OpenAI's 2025 release, there's a security doc for new - gen models. It mentions SWE - Lancer Diamond benchmark. 
                What's the  highest pass@1 value? Which model & config reach it? 
   
   Step 1 : Q : In OpenAI's April 2025 release, what's the evaluation doc for new - gen models? 
                 A : OpenAI o3 and o4-mini System Card 

   Step 2 : Q : What does the SWE-Lancer Diamond benchmark in the OpenAI o3 and o4-mini System Card include? 
                 A : PDF context and some images.  

   Step 3 : Q : In Fig. 21, what's the highest top - 1 (pass@1) accuracy? Which models & configs achieve it?  
                 A : Top pass@1 accuracy: 50% (achieved by o3, deep research, and o4-mini browsing launch candidates).
 
   Answer : In OpenAI's 2025 o3 & o4-mini System Card, the SWE-Lancer Diamond benchmark shows a highest 
                   Pass@1 of 50% by o3,  deep research, and o4-mini in Browsing launch configs.

Figure 5: Generated case examples requiring multiple tool calls for completion.
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Figure 6: score distribution comparison

Table 2: Accuracy comparison of Smolagents on the
GAIA dataset and our synthetic tasks.

GAIA
Level1 Level2 Level3 Avg.
54.71 43.02 26.92 44.20

Synthetic Task
PDF html Image Avg.
54.4 50.7 22.1 42.4

ability for agent self-evolution and optimization.328

4.3 Enhancing Task Generation Efficiency via329

Prompt Learning330

We employ rejection sampling in both atomic task331

generation and task extension. To reduce the rejec-332

tion rate and enhance sampling efficiency, several333

key challenges must be addressed:334

• Efficiently extract candidate answers from the335

corpus to support atomic task formation and 336

minimize rejections (Section 3.1). 337

• Guide the agent to find an input index in+1
T , 338

ensuring coherent depth-wise extension. 339

• Prompt the LLM in depth-wise extension to 340

articulate the relationship Rn+1 between the 341

previous input index inT and observed content 342

Cn+1, refining task construction and mitigat- 343

ing incoherence-related rejections. 344

• Integrate tasks to ensure precise substitution, 345

i.e., qn+1 = f(q̂n+1, Rn), and clarity while 346

maintaining logical coherence. 347

We evaluate atomic task generation and task ex- 348

tension independently. For atomic task generation, 349

three metrics are assessed: (1) pass rate, the ratio of 350

validated atomic tasks to candidate tasks; (2) task 351

density, the average number of validated tasks per 352

document; and (3) sampling time, the processing 353

time per document. For depth-based extension, two 354

metrics are evaluated: (1) pass rate, the proportion 355

of successful extensions over nk attempts (set to 6); 356

and (2) sampling time, the time required for each 357

task extension. 358

To enhance the LLM’s capability in identifying 359

intermediate objectives, we employ bootstrap few- 360

shot learning [5] to systematically optimize four 361

prompts corresponding to key challenges. Each 362
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Method SFT RL GAIA (%) WebWalker BrowserComp HLE
Qwen-2.5-7B-Instruct
R1-Searcher [19] ✓ ✓ 20.4 - - -
WebSailor [8] ✓ ✓ 37.9 - 6.7 -
7.5k MHQA ✓ 20.4 23.4 3.6 4.2
5k MHQA + 2.5k TaskCraft ✓ 34.0 52.6 6.4 13.2
+ 6k TaskCraft (RL) ✓ ✓ 40.8 55.6 8.0 15.6
DeepSeek-R1-Distill-Llama-8B
7.5k MHQA ✓ 21.6 28.6 3.6 9.6
5k MHQA + 2.5k TaskCraft ✓ 33.0 59.4 7.6 12.8
QwQ-32B
Search-o1 [9] ✓ ✓ 39.8 34.1 - -
SimpleDeepSearcher [20] ✓ ✓ 50.5 - - -
WebSailor [8] ✓ ✓ 50.5 - - -
WebThinker [10] ✓ ✓ 48.5 46.5 - 15.8
WebDancer [29] ✓ ✓ 51.5 43.2 2.8 -
Qwen-2.5-32B-Instruct
Search-o1 [9] ✓ ✓ 28.2 - - -
SimpleDeepSearcher [20] ✓ ✓ 40.8 - - -
WebSailor [8] ✓ ✓ 53.2 - 10.5 -
7.5k MHQA ✓ 38.8 36.8 5.6 10.8
5k MHQA + 2.5k TaskCraft ✓ 50.5 63.0 10.9 16.3
+ 8k TaskCraft (RL) ✓ ✓ 53.4 - - -

Table 3: Performance on agentic task benchmarks.

prompt for atomic task generation is enhanced by363

appending 20 randomly sampled examples. Vari-364

ous prompt configurations are evaluated iteratively365

based on pass rates to select optimal examples. For366

depth-based extension, we optimize prompts using367

10 randomly sampled examples, refining them to368

maximize task complexity.369

Table 4: Effectiveness of generated task data in prompt
learning and depth-wise extension across six extension
attempts.

Method Pass rate Time
Atomic Task 54.9% 29.1s
+ Optimization 68.1% 23.5s
Depth-wise@6 41.0% 31.5s
+ Optimization 51.2% 30.2s

Table 4 examines atomic task generation and370

depth-wise task extension before and after prompt371

learning, highlighting the role of generated task372

data in enabling self-evolution within the gener-373

ation workflow. These results validate the effec-374

tiveness of generated task data in enhancing sam-375

pling efficiency and supporting workflow adapta-376

tion. The optimized prompts are presented in Ap-377

pendix E.2.378

4.4 Agent Models Fine-Tuning379

To validate the effectiveness of our synthetic380

tasks, we apply SFT to refine an LLM with tool-381

integrated reasoning in agentic scenarios. We382

conduct experiments using models from different 383

families and scales, evaluating their performance 384

on the GAIA [11] (a subset of GAIA compris- 385

ing 103 search-tool-based tasks), WebWalker [30], 386

BrowserComp [28], and HLE [12]. 387

For SFT learning, to ensure the performance 388

gains are not merely due to learning the output for- 389

mat, we use two types of training data: 7.5k tasks 390

sampled from existing multi-hop QA datasets (de- 391

noted as MHQA, including HotpotQA and NQ), 392

and 2.5k synthetic tasks via our pipeline. All tasks 393

are converted into agent-compatible trajectories 394

using Oagents. To further enhance model perfor- 395

mance, we incorporate additional generated data 396

and apply DAPO [39] for continued RL training. 397

As shown in Table 3, adding 2.5k TaskCraft 398

tasks to 5k MHQA consistently boosts performance 399

across all models and benchmarks, underscoring 400

that data quality outweighs model size or archi- 401

tecture. Even without reinforcement learning, our 402

data alone enables models to match state-of-the- 403

art methods that use both SFT and RL. Scaling 404

further with more TaskCraft tasks and RL leads 405

to substantial gains, achieving new SOTA results. 406

For instance, on WebWalker, our Qwen-2.5-7B- 407

Instruct model significantly outperforms the prior 408

best, including the larger QWQ-32B. The results 409

demonstrate that TaskCraft data is highly scalable 410

and effectively enhances agent model performance, 411

enabling them to reach state-of-the-art levels. 412
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4.5 Effectiveness of Tool Context in413

Constructing Agentic Tasks.414

In atomic task generation, we incorporate the input415

index iT and the tool-answer relation R to structure416

tasks. To evaluate its effectiveness, we conduct an417

ablation study where an LLM directly generates418

single-tool tasks q without using iT or R. We as-419

sess performance via pass rate, resolution time,420

average tool usage, and usage variance.421

Table 5: The effectiveness of tool context.

Method Pass rate Time #Tool-use σ2

LLM only 18.5% 119.7s 2.8 1.2
Ours 43.0% 86.7s 2.1 0.4

Compared to direct GPT-4.1 prompting, our422

method significantly improves atomic task genera-423

tion, achieving higher success rates and faster task424

construction. It produces more atomic and consis-425

tent tasks, with fewer and more stable tool invoca-426

tions, highlighting the limitations of vanilla LLMs427

in agentic task design and the robustness of our428

structured workflow.429

5 Related Work430

5.1 Instruction Data Generation431

Synthetic data has emerged as a promising solution432

for enhancing performance and enabling new capa-433

bilities. STaR [41] augments learning with chain-434

of-thought (CoT) rationales but often requires a435

substantial number of task queries beforehand.436

Methods such as Self-Instruct [27], Self-Chat [33],437

NuminaMath [7], and OpenMathInstruct-2 [23]438

generate data from minimal seed examples using439

LLMs, yet they struggle to extend task generation440

for multiple tool invocations. WizardLM [32] em-441

ploys Evol-Instruct to incrementally enhance in-442

struction complexity. However, it relies primar-443

ily on rule-based modifications, making its gener-444

ated instructions unsuitable for agentic task scenar-445

ios. MetaMath [38] generates mathematical data446

by rewriting questions, but adapting agent tasks447

to environmental feedback presents challenges be-448

yond simple rephrasing. WebInstruct [40] extracts449

question-answer pairs from a pre-training corpus450

across multiple domains; however, the generated451

questions often fail to incorporate tool utilization.452

AutoAct [14] uses a self-planning mechanism to453

generate planning trajectories for QA tasks.454

5.2 Language Agent 455

Existing research on agentic task execution ad- 456

vances along two main axes: role specializa- 457

tion and functional partitioning. Role-based ap- 458

proaches, such as AutoGPT [17], AutoGen [31], 459

and Camel [6], organize collaborative agents by 460

dynamically assigning tools. In contrast, frame- 461

works like Barcelona2, Omne, and AgentIM1 adopt 462

functional partitioning to optimize modular effi- 463

ciency. SmolAgents [16] integrates ReAct [37] 464

and CodeAct [26] into a hierarchical agent system 465

for iterative code-based task execution. Magnetic- 466

One [2] enhances multimodal performance by de- 467

coupling perception [34, 35], planning [18, 22], 468

and execution [15, 26] modules. Dynamic orches- 469

tration mechanisms address real-time adaptation 470

and robustness. Trase-Agent [24] adapts strategies 471

based on feedback, while TapeAgents [1] uses asyn- 472

chronous communication to improve coordination. 473

Studies show that stable sub-agent interactions out- 474

perform complex centralized orchestration. To ad- 475

vance autonomy, AutoAgent [21] supports no-code 476

agent customization via natural language coordi- 477

nation, modular workflows, and self-managing file 478

systems. Hybrid systems like h2oGPTe-Agent [3] 479

explore multi-agent optimization, achieving strong 480

results in code generation, though cross-modal bot- 481

tlenecks remain a challenge. 482

6 Conclusion 483

We present TASKCRAFT, an automated workflow 484

for scalable, multi-tool, verifiable agentic task gen- 485

eration. Through width-based and depth-based ex- 486

tension, our framework constructs hierarchically 487

complex challenges. Inspired by bootstrap few- 488

shot learning, a self-evolving prompt optimization 489

is introduced to improve sampling efficiency. Ex- 490

periments with SFT across multiple LLMs confirm 491

that TaskCraft data enhances multi-hop reasoning 492

and agentic performance, which match the state-of- 493

the-art RL models despite relying solely on SFT. 494

Further scaling with TaskCraft tasks and apply- 495

ing RL training yields substantial gains, achiev- 496

ing state-of-the-art performance on four agentic 497

benchmarks. The created dataset contains 41k tool- 498

reliant tasks across diverse difficulty levels, with 499

12.6k executed trajectories and 5k multi-hop de- 500

compositions. 501

1These are closed-source frameworks.
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7 Limitation502

This work currently focuses on constructing atomic503

tasks for common tools, including browsing, PDF504

processing, and image analysis. Future iterations505

will enable users to generate atomic tasks tailored506

to their agents’ specific tool requirements. Due507

to the dataset’s scale, inter-task correlations and508

interactions remain underexplored and present op-509

portunities for future investigation.510
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As illustrated in Figure 7, task generation ex-760

hibits a hierarchical decay pattern across all do-761

mains as hop count increases, revealing distinct762

scalability trends:763

• pdf_tool domain: Shows gradual perfor- 764

mance attenuation with hop depth, 1-hop tasks 765

accounting for 60.13% (8,115 tasks), decreas- 766

ing to 13.49% (1,820 tasks) for 2-hop and 767

11.22% (1,514 tasks) for 3-hop. The sharp 768

drop in 5-7 hop tasks (6.94% combined) in- 769

dicates limited deep-extension capability, yet 770

surpasses other domains in depth scalability. 771

• image_tool domain: Presents the most pro- 772

nounced performance decay, with 1-3 hops 773

comprising 87.10% (7,125/8,180 tasks) but 774

only 5.71% (467 tasks) for 5-7 hops, high- 775

lighting fundamental constraints in deep hier- 776

archical task generation. 777

• web_tool domain: In the web_tool domain, 778

1-hop tasks dominate, constituting 70.01% 779

(13,467 tasks) of the total. However, this do- 780

main also has the highest absolute number of 781

deep extensions, with 5-7 hop tasks account- 782

ing for 5.66% (1,089 tasks). 783

Web Tool
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Figure 8: Distribution of atomic data.

Atomic task analysis. We collect data from web- 784

pages, PDF files, and images to support the gen- 785

eration of atomic tasks, which form the basis of 786

the dataset, totaling 26,527 instances as shown in 787

Figure 8. 788

Among them, atomic conclusions from web- 789

based tools account for the largest proportion, 790

reaching 50.77%, with sources spanning multiple 791

domains: academic (27.11%), cultural (6.42%), 792

economic (5.36%) and governmental (5.05%) re- 793

sources. These derive from up-to-date news and 794

curated online materials for relevance. 795

Image-based tools contribute 18.64% of the data, 796

extracting structured insights (e.g., key trends, com- 797

parisons) from charts/tables in financial reports and 798
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research papers. Strict verification excludes con-799

clusions directly replicating source text to avoid800

redundancy.801

PDF-based extraction accounts for 30.59%, sup-802

plementing the dataset with findings from finan-803

cial reports and academic publications. This multi-804

source approach enhances diversity while maintain-805

ing consistency in atomic fact representation.806

By systematically integrating these extraction807

methods, we ensure high-quality task generation,808

providing a robust foundation for downstream809

model training and optimization.810

B Experiments on Multi-hop QA Tasks811

We first evaluate our models across three estab-812

lished multi-hop question answering benchmarks:813

HotpotQA [36], Musique [25], and Bamboogle814

[13]. These datasets present diverse challenges in815

reasoning and search, providing a robust evaluation816

platform.817

We compare the baseline workflow (Search-818

R1 [4], which leverages reinforcement learning for819

LLM model optimization) with the agent workflow820

after applying SFT using the generated tasks.821

Method HotpotQA Musique Bamboogle Avg.
Qwen2.5-3B-Base
Search-R1 0.284 0.049 0.088 0.140
+ SFT 0.344 0.111 0.280 0.245
Qwen2.5-3B-Instruct
Search-R1 0.324 0.103 0.264 0.230
+ SFT 0.340 0.104 0.264 0.236

Table 6: Performance across three datasets and two
models. Avg. denotes average.

As shown in Table 6, our synthetic data proves822

valuable in SFT training, showing average per-823

formance improvements of +14.0% (Qwen2.5-3B-824

Base) and +6.0% (Qwen2.5-3B-Instruct) compared825

to their respective base workflows, validating our826

data generation approach. Compared to the Search-827

R1 baseline, the trained model demonstrates sub-828

stantial improvements. This suggests that our syn-829

thetic data not only enhances immediate task execu-830

tion but also optimizes RL initialization effectively.831

C Scalability of TaskCraft Data832

To further examine the scalability of TaskCraft-833

generated data, we trained a Qwen2.5-7B-instruct834

models on randomly sampled subsets of 1,000,835

3,000, and 5,000 tasks and evaluated them on836

GAIA-103, using identical training and inference837

settings (pass@3, 3 epochs, learning rate = 1e-6, 838

batch size = 16). 839

Table 7: GAIA-103 Performance by Data Size

Data Size Pass@3 on GAIA-103

1,000 17.5%
3,000 31.1%
5,000 39.8%

As shown in Table 7, the results exhibit a clear 840

upward trend, suggesting that larger TaskCraft 841

training sets yield progressively better perfor- 842

mance. 843

D Verification Requirements for 844

Depth-Based Extension 845

Effective n-hop task extension requires rigorous 846

verification to ensure valid multi-hop reasoning. 847

The transformation must preserve superset validity: 848

q̂n+1 = f(in+1
T , Rn+1) → inT (5) 849

qn+1 = f(q̂n+1, Rn) −→ a (6) 850

Current depth-based extension methods often 851

introduce two critical flaws when replacing tool 852

inputs iT without proper verification: 853

• Pseudo-Superset Task: Superficial substitu- 854

tions that preserve semantic equivalence but 855

lack genuine superset relationships 856

• Information Leakage: Premature disclo- 857

sure of information that should only emerge 858

through proper multi-step reasoning 859

These issues undermine the intended multi-hop rea- 860

soning process. 861

D.1 Pseudo-Superset Task 862

A fundamental limitation arises when replacing 863

iT with a semantically equivalent but non-superset 864

index in+1
T . Consider the following task extension 865

example: 866

Original task

Query (qn): How many travel trends for
2022 does ’Travel Trends 2025 | Our An-
nual Report’ present?
Answer: 5

867
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Substituting iT ( "Travel Trends 2025 | Our An-868

nual Report") with the synonymous in+1
T ("2025869

Annual Travel Trends Report") yields a intermedi-870

ate task:871

Intermediate task

Query (q̂n+1): What is the title of 2025
Annual Travel Trends Report?
Answer : Travel Trends 2025

872

Despite valid hop annotations, the intermediate873

question does not constitute an effective extension:874

it does not represent a necessary tool-use step. The875

core issue lies in the absence of a genuine super-876

set relationship between inT and in+1
T , leading to877

superficial expansion.878

Extended task

Query (qn+1): How many travel trends
for 2022 does ’2025 Annual Travel Trends
Report’ present?
Answer: 5

879

D.2 Information Leakage880

A second failure mode occurs when expanded tasks881

inadvertently expose original answers, enabling882

large language models (LLMs) to bypass tool re-883

trieval. For instance, consider the extended task:884

Extended task

Query (qn+1): In the AP Sports daily sum-
mary, Charter and Cox’s proposed merger is
valued at approximately $34.5 billion. What
is the exact amount?
Answer : 34.5B USD

885

While this query appropriately conceals the pre-886

vious inT ("Sports In Brief"), it directly reveals the887

answer "34.5B USD", allowing the LLM to bypass888

the intended retrieval process. This compromises889

the essential tool dependency required for multi-890

hop task answering.891

D.3 Verification for Task Extension892

To address these challenges, we propose a rigorous893

verification framework to ensure the validity of894

in+1
T , q̂n+1 and qn+1 in task extension.895

D.3.1 Strict Superset Verification896

in+1
T must be the index of a strict superset of inT ,897

and the relationship can be formalized as:898

q̂n+1 = f(in+1
T , Rn+1) → inT (7) 899

where Rn+1 denotes hierarchical relations (e.g., 900

contains, part_of ). Valid extensions must intro- 901

duce genuine depth, such as "Sports In Brief" → 902

"AP News’s Sports Section" (relation: contains), 903

while rejecting synonymous substitutions. Addi- 904

tionally, invalid extensions that allow the LLM to 905

derive inT directly should be excluded. 906

D.3.2 Information Leakage Verification 907

qn+1 = f(q̂n+1, Rn) −→ a (8) 908

The extended query qn+1 must adhere to the 909

information-sealing principle to ensure proper tool- 910

use reasoning. This requires that the query does 911

not directly expose the original answer, and any 912

query from which the LLM can directly obtain the 913

answer should be filtered out. 914

D.4 Advantages of the Verification 915

Framework 916

Our approach provides three key advantages: 917

• Superset Integrity: Guarantees valid hierar- 918

chical progression (e.g., column → page → 919

website) without logical gaps. 920

• Strict Tool Dependency: Enforces authentic 921

multi-hop reasoning by eliminating solution 922

shortcuts, ensuring mandatory tool-use. 923

• Transparent Reasoning: Offers full explain- 924

ability through explicit relation paths (Rn). 925

A properly expanded task under this framework 926

would appear as follows: 927

Qualified Extended task

Query (qn+1): According to the recurring
AP News’s sports section feature that reg-
ularly provides concise summaries of top
sports events and highlights, what is the
merger value currently being pursued by
US cable giants Charter and Cox as they
face increasing competition from streaming
services?
Answer : 34.5B USD

928

E Core Prompts 929

This section presents key components of the verifi- 930

cation prompts used in our framework. 931
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E.1 Atomic task verification932

The following prompt is used in atomic task verifi-933

cation (Section 3.3):934

Atomic task verification
Task: Evaluate the consistency between the
golden answer (GA) and another answer
(AA, either agent or LLM-generated) as fol-
lows:

• 2 points (Fully Consistent): AA and
GA are semantically equivalent, even
if phrased differently.
....(Example)....

• 1 point (Partially Consistent): AA
includes all GA information but adds
valid extra details.
....(Example)....

• 0 points (Inconsistent): AA omits key
GA information or contradicts it.
....(Example)....

The criteria prioritize semantic equivalence
while accommodating informative expan-
sions or reductions.
......

935

A task is retained as an atomic task if and only if:936

(1) the AgentScore strictly exceeds the LLMScore,937

and (2) the AgentAnswer is non-zero.938

E.2 optimized prompts939

The following prompts is optimized prompt men-940

tioned in (Section 4.3):941

Atomic Conclusion Extraction
Task: Extract standalone conclusions from
document chunks meeting these criteria:

1. Atomicity: Extract only indivisible ba-
sic facts ....(Example)....

2. Verifiability: Include at least one def-
inite identifier (numeric value, time,
unique name) and reject vague expres-
sions ....(Example)....

3. Timeliness Handling: Explicitly mark
time ranges for time-sensitive informa-
tion ....(Example)....

4. Citation Integrity: Embed complete
content of cited references ....(Exam-
ple)....

....(Example)....
942

Depth-wise Extension with in+1
T and Rn+1

Task: Identify a minimal unique superset
for an input element based on its attributes,
ensuring the superset+relationship uniquely
points to the element.
....(Example)....
Relationship expression guidelines:

1. Clearly show hierarchical/ownership.
Indicate position for series sub-items;
clarify ownership for parts of a super-
set

2. Specify input content’s positioning
(e.g., time range, publication field, role
in superset)

3. Use research/industry standard word-
ing

4. Provide only necessary associations

....(Example)....
943
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Logical Substitution: qn+1 as f(q̂n+1,Rn)

Task: Substitute elements in core queries
using auxiliary queries while preserving:

1. Complexity Balance: The new query
should be slightly more complex than
the original core Query and require
more steps to solve. But do not make
too many changes to the core query.

2. Answer Uniqueness: The new query
should point to the unique answer:
golden answer, and should not point
to other answers.

3. Answer Concealment: The new query
must not reveal information about the
golden answer.

4. Natural Language Polish: After
merging, polish the question to make
it conform to human expression habits
without changing the original mean-
ing. Do not modify the proper nouns
appearing in it.

....(Example)....
944

E.3 Strict Superset Verification945

The following prompt is used in Appendix D.3.1:946

Strict Superset Verification

Task: Verify if index in+1
T uniquely deter-

mines subset inT under relation Rn in given
queries.
Criteria:

1. SupersetSubset Relationship:

• in+1
T must be the index of a super-

set that properly contains inT
• in+1

T ̸≈ inT (excluding synonym
pairs like CAR/AUTOMOBILE)

2. Relationship Validity:

• The relationship Rn must explic-
itly and uniquely link the super-
set to the subset (no many-to-one
mappings)

......
947

F Further Training Detail 948

For SFT training, we synthesize 3,202 multi-hop 949

tasks and their trajectories and apply content mask- 950

ing to search tool contexts in these trajectories. 951

For RL training, we follow the Search-R1 [4] 952

and use the 2018 Wikipedia dump as a knowledge 953

source and the E5 embedding model as a retriever. 954

For fair evaluation, we fix the retrieval depth to 3 955

passages for all methods. We merge the training 956

sets of NQ and HotpotQA to form a unified dataset. 957

Evaluation is conducted on the test or validation 958

sets of three datasets to assess both in-domain and 959

out-of-domain performance. Exact Match is used 960

as the evaluation metric. In the PPO settings, we set 961

the learning rate of the policy LLM to 1e-6 and that 962

of the value LLM to 1e-5. Training is conducted 963

for 500 steps, with warm-up ratios of 0.285 and 964

0.015 for the policy and value models, respectively. 965

We use Generalized Advantage Estimation with 966

parameters λ = 1 and γ = 1. We employ vLLM 967

for efficient LLM rollouts, configured with a tensor 968

parallelism degree of 1 and a GPU memory alloca- 969

tion ratio of 0.6. Our sampling strategy utilizes a 970

temperature parameter of 1.0 and top-p threshold 971

of 1.0. For policy optimization, we apply KL diver- 972

gence regularization with coefficient π=0.001 and 973

implement a clip ratio ϵ=0.2. The action budget is 974

constrained to 4, with a default retrieval depth of 3 975

passages per query. 976
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