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Abstract

Agentic tasks, which require multi-step prob-
lem solving with autonomy, tool use, and adap-
tive reasoning, are becoming increasingly cen-
tral to the advancement of NLP and AI. How-
ever, existing instruction data lacks tool inter-
action, and current agentic benchmarks rely on
costly human annotation, limiting their scal-
ability. We introduce TASKCRAFT, an au-
tomated workflow for generating difficulty-
scalable, multi-tool, and verifiable agentic tasks
with execution trajectories. TaskCraft expands
atomic tasks using depth-based and width-
based extensions to create structurally and hi-
erarchically complex challenges. Inspired by
bootstrap few-shot learning, a self-evolving
prompt optimization is implemented to enhance
sampling success and reduce latency. Exper-
imental results from SFT on multiple LLMs
demonstrate that TaskCraft data substantially
enhances multi-hop reasoning and agentic ca-
pabilities. Further scaling with TaskCraft tasks
and applying RL training yields substantial
gains, achieving state-of-the-art performance
on four agentic benchmarks. The resulting
dataset includes 41k tool-intensive tasks across
varied difficulty levels, including 12.6k tool
executions and 5k sub-task decompositions.

1 Introduction

Agentic tasks—autonomous, multi-step problem-
solving requiring tool use and adaptive reason-
ing—are increasingly pivotal in Al and NLP. Ad-
vances in language agents [17, 31, 6, 42, 43, 44]
have shifted Al from passive assistance to proac-
tive agency, enabling complex workflow execution.
This is exemplified by systems combining reason-
ing frameworks like ReAct [37] with dynamic or-
chestration, where solution trajectories critically
improve inference quality. However, the inher-
ent complexity of such tasks challenges conven-
tional annotation paradigms, necessitating novel
approaches to model training and evaluation.

To assess advanced agent capabilities, bench-
marks such as GAIA [11], BrowseComp [28], and
Humanity’s Last Exam (HLE) [12] have been in-
troduced. GAIA evaluates reasoning, tool use, and
web browsing through 466 real-world questions.
BrowseComp comprises 1,266 tasks that test an
agent’s ability to retrieve and integrate complex
online information. HLE includes 2,500 multi-
modal questions across over 100 disciplines to mea-
sure advanced reasoning and domain knowledge.
While these datasets have significantly contributed
to agent evaluation, they suffer from scalability
limitations due to the labor-intensive nature of data
annotation. For example, creating HLE required
1,000 experts to label just 2,500 data points, hinder-
ing its ability to scale.

Prior work has explored the automatic genera-
tion of instruction-following data using large lan-
guage models to alleviate the scalability issues of
human-annotated datasets. A representative ex-
ample is the Self-Instruct framework [27], which
demonstrated that LLMs can generate high-quality,
diverse instruction data for multi-turn dialogues.
This approach has proven effective for supervised
fine-tuning (SFT). However, these methods are
primarily designed for static instruction-following
scenarios and fall short in modeling agentic tasks,
which require interaction with external tools and
environments. Consequently, such data is insuffi-
cient for training or evaluating agents that operate
in dynamic, real-world settings.

In this work, we introduce TASKCRAFT, an
agentic workflow for the automated generation of
agentic tasks. Our approach provides the following
advantages:

* Scalability. The workflow supports adaptive
difficulty, seamless multi-tool integration, and
the generation of tasks beyond the capabilities
of the task-generation agent, along with their
corresponding trajectories.



« Efficient Verification. During each task ex-
tension, only incremental components un-
dergo agentic validation, eliminating the need
for full verification of the extended task.

Our approach begins by generating atomic tasks
solvable with single-tool invocations, expanding
them through depth-based and width-based exten-
sions. Depth-based extension iteratively transforms
key textual elements into new atomic tasks for pro-
gressive resolution. In contrast, width-based exten-
sion formulates tasks requiring resolution of multi-
ple sub-tasks across distinct instances. To ensure
high-quality tasks, we employ rejection sampling to
verify scenarios where agents using external tools
succeed while LL.Ms fail, validating genuine tool
necessity. Linguistic analysis with LLMs facilitates
rapid validation and task creation beyond current
agent capabilities, enhancing efficiency and task-
solving scope. To further improve the efficiency of
workflow generation, we implement a self-evolving
prompt optimization strategy inspired by bootstrap
few-shot learning [5]. This iterative refinement
improves rejection sampling pass rates while mini-
mizing generation time.

The controlled generation process ensures inher-
ent access to ground-truth execution trajectories,
enabling precise interpretability, reproducibility,
and verifiability. To assess the efficacy of gener-
ated tasks, SFT was applied to several base LLMs,
equipping them with tool-use capabilities. Re-
sults show strong performance on multiple agentic
benchmarks. Further scaling with TaskCraft tasks
and applying reinforcement learning (RL) yields
substantial gains, achieving state-of-the-art perfor-
mance.

Based on this method, we created a task dataset
consisting of about 41k tasks of varying difficulty.
Each task necessitates different tools for resolution,
such as search engines, web browsers, PDF read-
ers, and image analysis. The dataset also includes
approximately 12.6k trajectory data executed with
tools, along with about 5k instances of multi-hop
sub-task decomposition data.

Our key contributions are as follows:

* We introduce an automated agentic task gener-
ation workflow capable of producing scalable
difficulty, efficient verification, and multi-tool
supported tasks, along with their correspond-
ing execution trajectories.

* We utilize prompt learning to facilitates the

self-evolution of our generated workflow.

* We validate the effectiveness of our gener-
ated tasks via SFT training on multiple LLMs,
leading to notable improvements in multi-hop
reasoning and agentic benchmarks.

we create a task dataset comprising about 41k
agentic tasks of varying difficulty levels. The
dataset also includes approximately 12.6k tra-
jectory data, along with about 5k instances of
multi-hop sub-task decomposition data.

2 Notations and Preliminary

Tool-Assisted Task Execution

As Figure 1 shown, given a task ¢, the agent
extracts the input index i7 (e.g., document
name, webpage title) for invoking a target
tool T'. We focus solely on steps that yield
a valid tool context, omitting unrelated pro-
cesses such as file location or search for sim-
plicity. Executing tool T with i retrieves
the associated context C'. The LLM implic-
itly deduces the relationship R between C'
and the expected outcome, producing the
final result a.
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Figure 1: Execution flow of a single tool invocation.
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execution. LLM identifies candidate answers a from C, infers their relationship R, and constructs question ¢

conditioned on ¢7 and R.

Atomic Task

An atomic task is resolved with a single
target tool invocation. To simplify, we dis-
regard search and file system operations,
assuming a detailed input index ¢7 enables
retrieval through finite navigation.

Given an answer a, the most direct approach
to construct an atomic task involves prompting an
LLM to generate the corresponding question. How-
ever, questions produced in this manner often suffer
from low tool invocation rates, unpredictable dif-
ficulty levels, unregulated tool requirements, and
inconsistent verification complexity (see Section
4.5 for more details).

To mitigate these issues, we assume an ideal
search engine capable of retrieving precise data
based on i7 (e.g., paper titles, image paths, music
names, etc.). Under this assumption, we can con-
struct a task question ¢ = f(ir, R) — a, where
f represents a sampling function that enables the
LLM to generate the corresponding natural lan-
guage representation of the question ¢ based on the
provided information.

3 Automated Task Generation Workflow

3.1 Atomic Task Generation

As Figure 2 shown, we begin by compiling a cor-
pus of unlabeled data aligned with the tool’s input
requirements. From this corpus, we extract ¢7 and
derive textual content C' via tool execution. For
example, browsing, PDF, and image comprehen-
sion tools yield webpage titles, PDF names, and
image paths, from which we extract textual content

C for answer sampling. We prompt an LLM to
identify key candidate answers a from C' and infer
their relationship R with C', ultimately constructing
question ¢ conditioned on 77 and R.

3.2 Task Extension

In order to increase task difficulty in a scalable way,
we adopted two extended task strategies: the depth-
based extension and the width-based extension.
Depth-based extension. We aim to construct
tasks requiring multiple sequential tool executions,
where each step depends on the output of the previ-
ous one. To achieve this, a new sub-task must be
derived from a known task ¢". The tool input index
17 at each stage exhibits strong extensibility due
to (1) its frequent association with proper nouns,
which are less likely to be memorized by LLMs,
and (2) its natural suitability for recursive defini-
tion. Specifically, a single atomic task follows the
formulation:

q" = f(ip, R") — a. (1)

To extend a n-hot task ¢" into a (n+1)-hop de-
pendency task ¢"*!, we can define the recursive
formulation:

¢ = f(¢"T RY) = a, )
where we ensure that
¢t =1t R =i )

Here, i:’;i“ denotes a new tool input index derived
from 47, through reversible operations (e.g., retriev-
ing lyrics from a song name or vice versa). To ob-

tain i;’fﬂ and its corresponding relationship R"*!,
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we employ a search agent that retrieves supersets of
i1 to mitigate cyclic generation risks. Specifically,
the agent searchs textual content C"*! as super-
set candidates. An LLM then analyzes C"*! to
derive the superset index i%‘H and its relationship
R with 7. This process ensures progressive
context expansion and effective information asso-
ciation. The resulting i%ﬂ and R"*! are synthe-
sized into an intermediate sub-task candidate §" 1!,
which undergoes rigorous verification. Upon verifi-
cation, the system generates the refined task ¢"+!
by integrating ¢"*! with all historical relationships
{R',R?,...,R"}.

Width-based extension. The goal of the width-
based extension is to generate a new task that needs
to be decoupled into multiple sub-tasks to be com-
pleted. For simplicity, for two sub-tasks ¢; — a1
and qo — a2, the combined task q,;q4n can be
represented as

(Quidth = @1 + q2) = a1 + as, “4)

where the + indicates using LLM to merge and
rephrase two question strings.

Trajectory generation. Two strategies exist for
generating execution trajectories in this task: (1)

For simple tasks, such as atomic tasks, existing
agents can directly infer and capture the trajec-
tory, including tool selection, parameters, return
results, and plans. (2) For complex tasks, such
as depth-wise extension tasks, the sub-task trajec-
tory is recorded while iteratively expanding and
validating new atomic tasks.

3.3 Task Verification

Under this generation workflow, the verification
of generated tasks can be easily performed in two
distinct phases:

Atomic task verification: An atomic task is de-
fined as a simple agent task solvable via a single
tool call. During verification, we relax this defi-
nition slightly: for each candidate task, we evalu-
ate the task agent’s output within a limited num-
ber of tool-use steps (e.g., three) and compare it
with an infer-LLM separately. A judge-LLM ver-
ifies whether only the agent’s output contains the
golden answer, retaining only validated tasks. (see
Appendix E for more details)

Task extension verification: This process is con-
ducted purely through linguistic analysis without
agent involvement. During depth-wise extension,



we first employ a judge-LLM to validate: (1)
whether the obtained i’jﬂ“ and its relation R"*!
constitute a proper superset of 7. with logically
sound relationships, and (2) whether the final input
index ¢ in ¢" is appropriately replaced by gt
in the expanded task ¢"!. Furthermore, an infer-
LLM derives the merged task, while the judge-
LLM filters out tasks where the correct result is
easily inferred, preventing information leakage that
could render the task trivially solvable after merg-
ing.(see Appendix D for more details).

This framework ensures efficiency by applying
agent reasoning only in atomic task verification
at creation, while relying on LLM-based verifica-
tion elsewhere for faster execution. It also enables
complex task generation beyond agent capabilities,
with reverse reasoning providing supervisory sig-
nals to enhance agent learning or reinforcement
learning.

4 Experiments

4.1 Corpus Construction

Figure 4: Corpus source distribution.

We collect seed documents across modalities to
generate tool-specific atomic tasks, extracting key
insights for relevance. For instance, our PDF pro-
cessor constructs atomic tasks by combining titles
with core findings, enhancing the need for agent-
based PDF tool invocation. To support atomic task
generation, we constructed a dataset comprising
webpages, PDF files, and images. Webpage data
constitutes the largest proportion (75%), sourced
from up-to-date news across multiple domains. Im-
age data accounts for 15%, primarily derived from
financial reports and research papers, with filter-
ing to retain images containing information beyond
text. PDF data makes up 10%, originating from
English financial documents and academic publica-
tions.

4.2 Synthetic Tasks Analysis

Human Evaluation. To verify the validity of the
results, we randomly sampled 60 atomic tasks and
48 depth-based extension tasks using human evalu-
ation and scored them.

Table 1: Human evaluation for the generated tasks.

Linguistic fluency 91.7%
Atomic Accuracy 95.0%

Single answer 83.3%

Information leakage | 11.7%
Depth-based | Extended validity 82.3%
extension Non-superset 8.5%

As shown in Table 1, these results highlight the

overall effectiveness and controllability of task gen-
eration.
Agent reasoning analysis. To practically assess
task difficulty, we sample 1,000 tasks and deploy
both Smolagents [16] and Oagents [45], for execu-
tion and validation. While both agents performed
identical tasks, Oagents incorporated advanced tool
capabilities for refined analysis.

Responses were evaluated by comparing the
agents’ outputs to the golden answer, following
a three-point scoring scheme: 2 for fully correct
responses, 1 for answers that included the golden
answer but contained additional information, and 0
for incorrect responses.

In Figure 6, task failure rates increase from web
pages to PDFs and then to images within PDFs, in-
dicating that multi-hop web search tasks are more
manageable for agents, while complex comprehen-
sion challenges, such as PDF extraction and image
interpretation, remain difficult. Additionally, these
results demonstrate that our generated tasks span
varying difficulty levels, including those that pose
significant challenges for current agent capabilities.
Comparison with the GAIA dataset. Table 2
presents the accuracy comparison of Smolagent on
the GAIA dataset and our generated dataset. The re-
sults indicate that tasks derived from different tool
corpora align with GAIA’s varying difficulty levels,
with image understanding tasks posing the greatest
challenge and achieving accuracy comparable to
Level3 data.

Unlike GAIA, which requires extensive human
annotation, our approach automates task genera-
tion, eliminating the need for labor-intensive data
labeling while maintaining scalability and adapt-
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Table 2: Accuracy comparison of Smolagents on the
GAIA dataset and our synthetic tasks.

Levell Level2 Level3 Avg.

GAIA 5471 43.02 2692 44.20

. PDF html  Image Avg.
syntheticTask | 504 507 221 424

ability for agent self-evolution and optimization.

4.3 Enhancing Task Generation Efficiency via
Prompt Learning

We employ rejection sampling in both atomic task
generation and task extension. To reduce the rejec-
tion rate and enhance sampling efficiency, several
key challenges must be addressed:

* Efficiently extract candidate answers from the

corpus to support atomic task formation and
minimize rejections (Section 3.1).

* Guide the agent to find an input index z’?frl,
ensuring coherent depth-wise extension.

* Prompt the LLM in depth-wise extension to
articulate the relationship R"*! between the
previous input index 77 and observed content
C™ 1, refining task construction and mitigat-
ing incoherence-related rejections.

* Integrate tasks to ensure precise substitution,
ie., ¢"™ = f(¢g"*1, R"), and clarity while
maintaining logical coherence.

We evaluate atomic task generation and task ex-
tension independently. For atomic task generation,
three metrics are assessed: (1) pass rate, the ratio of
validated atomic tasks to candidate tasks; (2) task
density, the average number of validated tasks per
document; and (3) sampling time, the processing
time per document. For depth-based extension, two
metrics are evaluated: (1) pass rate, the proportion
of successful extensions over ny, attempts (set to 6);
and (2) sampling time, the time required for each
task extension.

To enhance the LLM’s capability in identifying
intermediate objectives, we employ bootstrap few-
shot learning [5] to systematically optimize four
prompts corresponding to key challenges. Each



Method

SFT RL GAIA (%) WebWalker

BrowserComp HLE

Qwen-2.5-7B-Instruct

R1-Searcher [19] v v 20.4 - - -
WebSailor [8] v v 37.9 - 6.7 -
7.5k MHQA v 20.4 234 3.6 4.2
5k MHQA + 2.5k TaskCraft v 34.0 52.6 6.4 13.2
+ 6k TaskCraft (RL) v v 40.8 55.6 8.0 15.6
DeepSeek-R1-Distill-Llama-8B

7.5k MHQA v 21.6 28.6 3.6 9.6
5k MHQA + 2.5k TaskCraft v 33.0 594 7.6 12.8
QwQ-32B

Search-ol [9] v v 39.8 34.1 - -
SimpleDeepSearcher [20] v v 50.5 - - -
WebSailor [8] v v 50.5 - - -
WebThinker [10] v v 48.5 46.5 - 15.8
‘WebDancer [29] v v 51.5 43.2 2.8 -
Qwen-2.5-32B-Instruct

Search-ol [9] v v 28.2 - - -
SimpleDeepSearcher [20] v v 40.8 - - -
WebSailor [8] v v 53.2 - 10.5 -
7.5k MHQA v 38.8 36.8 5.6 10.8
5k MHQA + 2.5k TaskCraft v 50.5 63.0 10.9 16.3
+ 8k TaskCraft (RL) v v 534 - - -

Table 3: Performance on agentic task benchmarks.

prompt for atomic task generation is enhanced by
appending 20 randomly sampled examples. Vari-
ous prompt configurations are evaluated iteratively
based on pass rates to select optimal examples. For
depth-based extension, we optimize prompts using
10 randomly sampled examples, refining them to
maximize task complexity.

Table 4: Effectiveness of generated task data in prompt
learning and depth-wise extension across six extension
attempts.

Method Pass rate  Time
Atomic Task 549%  29.1s
+ Optimization 68.1%  23.5s
Depth-wise @6 41.0%  31.5s
+ Optimization 51.2%  30.2s

Table 4 examines atomic task generation and
depth-wise task extension before and after prompt
learning, highlighting the role of generated task
data in enabling self-evolution within the gener-
ation workflow. These results validate the effec-
tiveness of generated task data in enhancing sam-
pling efficiency and supporting workflow adapta-
tion. The optimized prompts are presented in Ap-
pendix E.2.

4.4 Agent Models Fine-Tuning

To validate the effectiveness of our synthetic
tasks, we apply SFT to refine an LLM with tool-
integrated reasoning in agentic scenarios. We

conduct experiments using models from different
families and scales, evaluating their performance
on the GAIA [11] (a subset of GAIA compris-
ing 103 search-tool-based tasks), WebWalker [30],
BrowserComp [28], and HLE [12].

For SFT learning, to ensure the performance
gains are not merely due to learning the output for-
mat, we use two types of training data: 7.5k tasks
sampled from existing multi-hop QA datasets (de-
noted as MHQA, including HotpotQA and NQ),
and 2.5k synthetic tasks via our pipeline. All tasks
are converted into agent-compatible trajectories
using Oagents. To further enhance model perfor-
mance, we incorporate additional generated data
and apply DAPO [39] for continued RL training.

As shown in Table 3, adding 2.5k TaskCraft
tasks to Sk MHQA consistently boosts performance
across all models and benchmarks, underscoring
that data quality outweighs model size or archi-
tecture. Even without reinforcement learning, our
data alone enables models to match state-of-the-
art methods that use both SFT and RL. Scaling
further with more TaskCraft tasks and RL leads
to substantial gains, achieving new SOTA results.
For instance, on WebWalker, our Qwen-2.5-7B-
Instruct model significantly outperforms the prior
best, including the larger QWQ-32B. The results
demonstrate that TaskCraft data is highly scalable
and effectively enhances agent model performance,
enabling them to reach state-of-the-art levels.



4.5 Effectiveness of Tool Context in
Constructing Agentic Tasks.

In atomic task generation, we incorporate the input
index 77 and the tool-answer relation R to structure
tasks. To evaluate its effectiveness, we conduct an
ablation study where an LLM directly generates
single-tool tasks ¢ without using i or R. We as-
sess performance via pass rate, resolution time,
average tool usage, and usage variance.

Table 5: The effectiveness of tool context.

2

Method Passrate Time #Tool-use o
LLM only 18.5% 119.7s 2.8 1.2
Ours 43.0% 86.7s 2.1 0.4

Compared to direct GPT-4.1 prompting, our
method significantly improves atomic task genera-
tion, achieving higher success rates and faster task
construction. It produces more atomic and consis-
tent tasks, with fewer and more stable tool invoca-
tions, highlighting the limitations of vanilla LLMs
in agentic task design and the robustness of our
structured workflow.

5 Related Work

5.1 Instruction Data Generation

Synthetic data has emerged as a promising solution
for enhancing performance and enabling new capa-
bilities. STaR [41] augments learning with chain-
of-thought (CoT) rationales but often requires a
substantial number of task queries beforehand.
Methods such as Self-Instruct [27], Self-Chat [33],
NuminaMath [7], and OpenMathInstruct-2 [23]
generate data from minimal seed examples using
LLMs, yet they struggle to extend task generation
for multiple tool invocations. WizardLM [32] em-
ploys Evol-Instruct to incrementally enhance in-
struction complexity. However, it relies primar-
ily on rule-based modifications, making its gener-
ated instructions unsuitable for agentic task scenar-
ios. MetaMath [38] generates mathematical data
by rewriting questions, but adapting agent tasks
to environmental feedback presents challenges be-
yond simple rephrasing. Weblnstruct [40] extracts
question-answer pairs from a pre-training corpus
across multiple domains; however, the generated
questions often fail to incorporate tool utilization.
AutoAct [14] uses a self-planning mechanism to
generate planning trajectories for QA tasks.

5.2 Language Agent

Existing research on agentic task execution ad-
vances along two main axes: role specializa-
tion and functional partitioning. Role-based ap-
proaches, such as AutoGPT [17], AutoGen [31],
and Camel [6], organize collaborative agents by
dynamically assigning tools. In contrast, frame-
works like Barcelona2, Omne, and AgentIM' adopt
functional partitioning to optimize modular effi-
ciency. SmolAgents [16] integrates ReAct [37]
and CodeAct [26] into a hierarchical agent system
for iterative code-based task execution. Magnetic-
One [2] enhances multimodal performance by de-
coupling perception [34, 35], planning [18, 22],
and execution [15, 26] modules. Dynamic orches-
tration mechanisms address real-time adaptation
and robustness. Trase-Agent [24] adapts strategies
based on feedback, while TapeAgents [1] uses asyn-
chronous communication to improve coordination.
Studies show that stable sub-agent interactions out-
perform complex centralized orchestration. To ad-
vance autonomy, AutoAgent [21] supports no-code
agent customization via natural language coordi-
nation, modular workflows, and self-managing file
systems. Hybrid systems like h20GPTe-Agent [3]
explore multi-agent optimization, achieving strong
results in code generation, though cross-modal bot-
tlenecks remain a challenge.

6 Conclusion

We present TASKCRAFT, an automated workflow
for scalable, multi-tool, verifiable agentic task gen-
eration. Through width-based and depth-based ex-
tension, our framework constructs hierarchically
complex challenges. Inspired by bootstrap few-
shot learning, a self-evolving prompt optimization
is introduced to improve sampling efficiency. Ex-
periments with SFT across multiple LLMs confirm
that TaskCraft data enhances multi-hop reasoning
and agentic performance, which match the state-of-
the-art RL models despite relying solely on SFT.
Further scaling with TaskCraft tasks and apply-
ing RL training yields substantial gains, achiev-
ing state-of-the-art performance on four agentic
benchmarks. The created dataset contains 41k tool-
reliant tasks across diverse difficulty levels, with
12.6k executed trajectories and 5k multi-hop de-
compositions.

IThese are closed-source frameworks.



7 Limitation

This work currently focuses on constructing atomic
tasks for common tools, including browsing, PDF
processing, and image analysis. Future iterations
will enable users to generate atomic tasks tailored
to their agents’ specific tool requirements. Due
to the dataset’s scale, inter-task correlations and
interactions remain underexplored and present op-
portunities for future investigation.
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Figure 7: Analysis of all tasks.

As illustrated in Figure 7, task generation ex-
hibits a hierarchical decay pattern across all do-
mains as hop count increases, revealing distinct
scalability trends:

* pdf_tool domain: Shows gradual perfor-
mance attenuation with hop depth, 1-hop tasks
accounting for 60.13% (8,115 tasks), decreas-
ing to 13.49% (1,820 tasks) for 2-hop and
11.22% (1,514 tasks) for 3-hop. The sharp
drop in 5-7 hop tasks (6.94% combined) in-
dicates limited deep-extension capability, yet
surpasses other domains in depth scalability.

* image_tool domain: Presents the most pro-
nounced performance decay, with 1-3 hops
comprising 87.10% (7,125/8,180 tasks) but
only 5.71% (467 tasks) for 5-7 hops, high-
lighting fundamental constraints in deep hier-
archical task generation.

* web_tool domain: In the web_tool domain,
1-hop tasks dominate, constituting 70.01%
(13,467 tasks) of the total. However, this do-
main also has the highest absolute number of
deep extensions, with 5-7 hop tasks account-
ing for 5.66% (1,089 tasks).

Web Tool
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Figure 8: Distribution of atomic data.

Atomic task analysis. We collect data from web-
pages, PDF files, and images to support the gen-
eration of atomic tasks, which form the basis of
the dataset, totaling 26,527 instances as shown in
Figure 8.

Among them, atomic conclusions from web-
based tools account for the largest proportion,
reaching 50.77%, with sources spanning multiple
domains: academic (27.11%), cultural (6.42%),
economic (5.36%) and governmental (5.05%) re-
sources. These derive from up-to-date news and
curated online materials for relevance.

Image-based tools contribute 18.64% of the data,
extracting structured insights (e.g., key trends, com-
parisons) from charts/tables in financial reports and
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research papers. Strict verification excludes con-
clusions directly replicating source text to avoid
redundancy.

PDF-based extraction accounts for 30.59%, sup-
plementing the dataset with findings from finan-
cial reports and academic publications. This multi-
source approach enhances diversity while maintain-
ing consistency in atomic fact representation.

By systematically integrating these extraction
methods, we ensure high-quality task generation,
providing a robust foundation for downstream
model training and optimization.

B Experiments on Multi-hop QA Tasks

We first evaluate our models across three estab-
lished multi-hop question answering benchmarks:
HotpotQA [36], Musique [25], and Bamboogle
[13]. These datasets present diverse challenges in
reasoning and search, providing a robust evaluation
platform.

We compare the baseline workflow (Search-
R1 [4], which leverages reinforcement learning for
LLM model optimization) with the agent workflow
after applying SFT using the generated tasks.

Method HotpotQA Musique Bamboogle Avg.
Qwen2.5-3B-Base

Search-R1 0.284 0.049 0.088 0.140
+ SFT 0.344 0.111 0.280 0.245
Qwen2.5-3B-Instruct

Search-R1 0.324 0.103 0.264 0.230
+SFT 0.340 0.104 0.264 0.236

Table 6: Performance across three datasets and two
models. Avg. denotes average.

As shown in Table 6, our synthetic data proves
valuable in SFT training, showing average per-
formance improvements of +14.0% (Qwen2.5-3B-
Base) and +6.0% (Qwen2.5-3B-Instruct) compared
to their respective base workflows, validating our
data generation approach. Compared to the Search-
R1 baseline, the trained model demonstrates sub-
stantial improvements. This suggests that our syn-
thetic data not only enhances immediate task execu-
tion but also optimizes RL initialization effectively.

C Scalability of TaskCraft Data

To further examine the scalability of TaskCraft-
generated data, we trained a Qwen2.5-7B-instruct
models on randomly sampled subsets of 1,000,
3,000, and 5,000 tasks and evaluated them on
GAIA-103, using identical training and inference
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settings (pass@3, 3 epochs, learning rate = le-6,
batch size = 16).

Table 7: GAIA-103 Performance by Data Size

Data Size Pass@3 on GAIA-103
1,000 17.5%
3,000 31.1%
5,000 39.8%

As shown in Table 7, the results exhibit a clear
upward trend, suggesting that larger TaskCraft
training sets yield progressively better perfor-
mance.

D Verification Requirements for
Depth-Based Extension

Effective n-hop task extension requires rigorous
verification to ensure valid multi-hop reasoning.
The transformation must preserve superset validity:

=7

= F R - i

&)

n+1 _

f(@™H R") = a (6)

Current depth-based extension methods often
introduce two critical flaws when replacing tool
inputs ¢ without proper verification:

q

* Pseudo-Superset Task: Superficial substitu-
tions that preserve semantic equivalence but
lack genuine superset relationships

* Information Leakage: Premature disclo-
sure of information that should only emerge
through proper multi-step reasoning

These issues undermine the intended multi-hop rea-
soning process.

D.1 Pseudo-Superset Task

A fundamental limitation arises when replacing
17 with a semantically equivalent but non-superset
index ¢
example:

%H. Consider the following task extension

Query (¢"): How many travel trends for
2022 does ’Travel Trends 2025 | Our An-
nual Report” present?

Answer: 5




Substituting 77 ( "Travel Trends 2025 | Our An-

nual Report") with the synonymous i’T”rl ("2025

Annual Travel Trends Report") yields a intermedi-
ate task:

Intermediate task

Query (¢"1): What is the title of 2025
Annual Travel Trends Report?
Answer : Travel Trends 2025

Despite valid hop annotations, the intermediate
question does not constitute an effective extension:
it does not represent a necessary tool-use step. The
core issue lies in the absence of a genuine super-
set relationship between 77 and z'g‘fl, leading to
superficial expansion.

Extended task

Query (¢"t1"): How many travel trends
for 2022 does ’2025 Annual Travel Trends
Report’ present?

Answer: 5

D.2 Information Leakage

A second failure mode occurs when expanded tasks
inadvertently expose original answers, enabling
large language models (LLMs) to bypass tool re-
trieval. For instance, consider the extended task:

Extended task

Query (¢"*1): In the AP Sports daily sum-
mary, Charter and Cox’s proposed merger is
valued at approximately $34.5 billion. What
is the exact amount?

Answer : 34.5B USD

While this query appropriately conceals the pre-
vious u7 ("Sports In Brief"), it directly reveals the
answer "34.5B USD", allowing the LLM to bypass
the intended retrieval process. This compromises
the essential tool dependency required for multi-
hop task answering.

D.3 Verification for Task Extension

To address these challenges, we propose a rigorous
verification framework to ensure the validity of
ith, g and ¢"*! in task extension.

D.3.1 Strict Superset Verification

ig‘fl must be the index of a strict superset of 7,

and the relationship can be formalized as:
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¢t = [t R = i

(M

where R denotes hierarchical relations (e.g.,
contains, part_of). Valid extensions must intro-
duce genuine depth, such as "Sports In Brief"' —
"AP News’s Sports Section” (relation: contains),
while rejecting synonymous substitutions. Addi-
tionally, invalid extensions that allow the LLM to
derive i directly should be excluded.

D.3.2 Information Leakage Verification

"t =f@* " R") > a ®)

The extended query ¢"*! must adhere to the
information-sealing principle to ensure proper tool-
use reasoning. This requires that the query does
not directly expose the original answer, and any
query from which the LLM can directly obtain the
answer should be filtered out.

D.4 Advantages of the Verification
Framework

Our approach provides three key advantages:

* Superset Integrity: Guarantees valid hierar-
chical progression (e.g., column — page —
website) without logical gaps.

* Strict Tool Dependency: Enforces authentic
multi-hop reasoning by eliminating solution
shortcuts, ensuring mandatory tool-use.

* Transparent Reasoning: Offers full explain-
ability through explicit relation paths (R™).

A properly expanded task under this framework
would appear as follows:

Qualified Extended task

Query (¢"*1): According to the recurring
AP News’s sports section feature that reg-
ularly provides concise summaries of top
sports events and highlights, what is the
merger value currently being pursued by
US cable giants Charter and Cox as they
face increasing competition from streaming
services?

Answer : 34.5B USD

E Core Prompts

This section presents key components of the verifi-
cation prompts used in our framework.



E.1 Atomic task verification

The following prompt is used in atomic task verifi-
cation (Section 3.3):

Atomic task verification

Task: Evaluate the consistency between the
golden answer (GA) and another answer
(AA, either agent or LLM-generated) as fol-
lows:

¢ 2 points (Fully Consistent): AA and
GA are semantically equivalent, even
if phrased differently.
....(Example)....

* 1 point (Partially Consistent): AA
includes all GA information but adds
valid extra details.

....(Example)....

* 0 points (Inconsistent): AA omits key
GA information or contradicts it.
....(Example)....

The criteria prioritize semantic equivalence
while accommodating informative expan-
sions or reductions.

A task is retained as an atomic task if and only if:
(1) the AgentScore strictly exceeds the LLMScore,
and (2) the AgentAnswer is non-zero.

E.2 optimized prompts

The following prompts is optimized prompt men-
tioned in (Section 4.3):

14

Atomic Conclusion Extraction

Task: Extract standalone conclusions from
document chunks meeting these criteria:

1. Atomicity: Extract only indivisible ba-
sic facts ....(Example)....

. Verifiability: Include at least one def-
inite identifier (numeric value, time,
unique name) and reject vague expres-
sions ....(Example)....

. Timeliness Handling: Explicitly mark
time ranges for time-sensitive informa-
tion ....(Example)....

4. Citation Integrity: Embed complete
content of cited references ....(Exam-
ple)....

....(Example)....

Depth-wise Extension with i+ and R"+!

Task: Identify a minimal unique superset
for an input element based on its attributes,
ensuring the superset+relationship uniquely
points to the element.

....(Example)....

Relationship expression guidelines:

1. Clearly show hierarchical/ownership.
Indicate position for series sub-items;
clarify ownership for parts of a super-
set

. Specify input content’s positioning
(e.g., time range, publication field, role
in superset)

. Use research/industry standard word-
ing

4. Provide only necessary associations

....(Example)....




Logical Substitution: ¢"*! as f(¢" ™!, R")

Task: Substitute elements in core queries
using auxiliary queries while preserving:

1. Complexity Balance: The new query
should be slightly more complex than
the original core Query and require
more steps to solve. But do not make
too many changes to the core query.

2. Answer Uniqueness: The new query
should point to the unique answer:
golden answer, and should not point
to other answers.

3. Answer Concealment: The new query
must not reveal information about the
golden answer.

Natural Language Polish: After
merging, polish the question to make
it conform to human expression habits
without changing the original mean-
ing. Do not modify the proper nouns
appearing in it.

....(Example)....

E.3 Strict Superset Verification

The following prompt is used in Appendix D.3.1:

g Srict Superset Verification S

Task: Verify if index i%ﬂ uniquely deter-
mines subset 47~ under relation R" in given
queries.

Criteria:

1. SupersetSubset Relationship:
. i’}“ must be the index of a super-

set that properly contains 7.
. i’%“ # i1 (excluding synonym

pairs like CAR/AUTOMOBILE)

2. Relationship Validity:

* The relationship R" must explic-
itly and uniquely link the super-
set to the subset (no many-to-one

mappings)
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F Further Training Detail

For SFT training, we synthesize 3,202 multi-hop
tasks and their trajectories and apply content mask-
ing to search tool contexts in these trajectories.

For RL training, we follow the Search-R1 [4]
and use the 2018 Wikipedia dump as a knowledge
source and the ES embedding model as a retriever.
For fair evaluation, we fix the retrieval depth to 3
passages for all methods. We merge the training
sets of NQ and HotpotQA to form a unified dataset.
Evaluation is conducted on the test or validation
sets of three datasets to assess both in-domain and
out-of-domain performance. Exact Match is used
as the evaluation metric. In the PPO settings, we set
the learning rate of the policy LLM to le-6 and that
of the value LLM to le-5. Training is conducted
for 500 steps, with warm-up ratios of 0.285 and
0.015 for the policy and value models, respectively.
We use Generalized Advantage Estimation with
parameters A = 1 and v = 1. We employ vVLLM
for efficient LLM rollouts, configured with a tensor
parallelism degree of 1 and a GPU memory alloca-
tion ratio of 0.6. Our sampling strategy utilizes a
temperature parameter of 1.0 and top-p threshold
of 1.0. For policy optimization, we apply KL diver-
gence regularization with coefficient 7=0.001 and
implement a clip ratio e=0.2. The action budget is
constrained to 4, with a default retrieval depth of 3
passages per query.
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