
Proceedings of Machine Learning Research 156, 2021 MICCAI Computational Pathlogy (COMPAY) Workshop

Self-supervised learning improves dMMR/MSI detection
from histology slides across multiple cancers

Charlie Saillard charlie.saillard@owkin.com
Owkin, Inc.

Olivier Dehaene olivier.dehaene@gmail.com
Owkin, Inc.

Tanguy Marchand tanguy.marchand@owkin.com
Owkin, Inc.

Olivier Moindrot omoindrot@gmail.com
Owkin, Inc.
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Abstract

Microsatellite instability (MSI) is a tumor phenotype whose diagnosis largely impacts pa-
tient care in colorectal cancers (CRC), and is associated with response to immunotherapy
in all solid tumors. Deep learning models detecting MSI tumors directly from H&E stained
slides have shown promise in improving diagnosis of MSI patients. Prior deep learning
models for MSI detection have relied on neural networks pretrained on ImageNet dataset,
which does not contain any medical image. In this study, we leverage recent advances in
self-supervised learning by training neural networks on histology images from the TCGA
dataset using MoCo V2. We show that these networks consistently outperform their coun-
terparts pretrained using ImageNet and obtain state-of-the-art results for MSI detection
with AUCs of 0.92 and 0.83 for CRC and gastric tumors, respectively. These models gen-
eralize well on an external CRC cohort (0.97 AUC on PAIP) and improve transfer from
one organ to another. Finally we show that predictive image regions exhibit meaningful
histological patterns, and that the use of MoCo features highlighted more relevant patterns
according to an expert pathologist.
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1. Introduction

Microsatellite Instability (MSI) is a frequent tumor phenotype characterized by an abnor-
mal repetition of short DNA motifs caused by a deficiency of the DNA mismatch repair
system (MMR). MMR deficient tumors (dMMR) result from defects in the major MMR
genes, namely MLH1, MSH2, MSH6, PMS2. These defects arise either sporadically or as a
hereditary condition named Lynch syndrome (LS), predisposing patients to develop cancers
in several organs.

Recent studies have shown that immune checkpoint blockade therapy has a promising
response in dMMR/MSI cancers regardless of the tissue of origin [Le et al. (2017)]. In 2017,
this genomic instability phenotype became the first pan-cancer biomarker approved by the
US FDA, allowing the use of pembrolizumab (Keytruda) for patients with dMMR/MSI
solid tumors at the metastatic stage [Prasad et al. (2018)].

As of today, systematic MSI screening is only recommended for colorectal cancer (CRC)
and endometrial cancer [Svrcek et al. (2019)] where the prevalence is relatively high (10%
to 20%), principally to detect LS patients and provide them with adequate follow-up. In
early stages of CRC, MSI tumors are associated with good prognosis and resistance to
chemotherapy [Sargent et al. (2010)], making the diagnosis of this phenotype all the more
essential for patient care and therapeutic decision. dMMR/MSI diagnosis is traditionally
done using immunohistochemistry (IHC), polymerase chain reaction (PCR) assays, or next
generation sequencing. Those methods can be time-consuming, expensive, and rely on
specific expertise which may not be available in every center.

Deep learning based MSI classifiers using H&E stained digital images offer a new alter-
native for a broader and more efficient screening [Echle et al. (2020)]. In CRC, previous
work suggests that the use of such models as pre-screening tools could eventually replace
IHC and PCR for a subset of tumors classified as microsatellite stable (MSS) or unstable
(MSI) with a high probability [Kacew et al. (2021)]. In other locations where MSI preva-
lence is lower and screening not done as routine practice, predictive models of MSI status
from WSI could be used as efficient pre-screening tools.

In this work, we leverage recent advances in self-supervised learning (SSL) on images.
We show that SSL permits to reach state-of-the-art results on colorectal and gastric cancer
cohorts from The Cancer Genome Atlas (TCGA), generalizes well on an unseen colorectal
cohort (PAIP), and could pave the way for classifiers on locations with low MSI prevalence.

2. Related Work

Expert models Several histology patterns on H&E images have been reported to cor-
relate with MSI, such as tumor-infiltrating lymphocytes, lack of dirty necrosis or poor
differentiation [(Greenson et al. (2009)]. A series of models based on clinico-pathological
features have been developed [Greenson et al. (2009); Jenkins et al. (2007); Hyde et al.
(2010); Fujiyoshi et al. (2017); Román et al. (2010)] and reported ROC-AUC performances
ranging from 0.85 to 0.92 in various cohorts of patients with CRC. These methods however
require time-consuming annotations from expert pathologists and are prone to inter-rater
variability.
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Deep learning models In a seminal publication, Kather et al. (2019) proved the fea-
sibility to determine the dMMR/MSI status from H&E stained whole slide images (WSI)
using deep learning. They trained a first ResNet [He et al. (2016)] to segment tumor regions
on WSI, and a second one to predict MSI/MSS status in each tumor tile. Each ResNet was
pretrained on ImageNet and the last 10 layers were fine-tuned. Models were trained and
validated on different TCGA cohorts and obtained respectively AUCs of 0.77, 0.81 and 0.75
on Colorectal, Gastric and Endometrial formalin-fixed paraffin-embedded (FFPE) datasets.

In a larger scale study focusing on CRC only [Echle et al. (2020)], the same team later
trained a model on n = 6406 patients, reaching 0.96 AUC (95% CI 0.93–0.98) on an external
dataset of n = 771 patients. Tumor tissues were manually outlined by pathologists.

Since then, different works based on deep learning methods have been published [Zhang
et al. (2018); Cao et al. (2020); Hong et al. (2020); Yamashita et al. (2021); Bilal et al.
(2021); Lee et al. (2021)] and are reviewed in Hildebrand et al. (2021). The vast majority
rely on networks pretrained on the ImageNet dataset [Deng et al. (2009)] and only the last
layers are re-trained or fine-tuned. Most of these papers also rely on tumor segmentation
as a first step in their models (either by a pathologist or by a deep learning model).

Self-Supervised learning Over the past few years, rapid progress has been made in the
field of SSL using contrastive learning or self-distillation strategies: simCLR [Chen et al.
(2020a,b)] , MoCo [He et al. (2020); Chen et al. (2020c, 2021)], BYOL [Grill et al. (2020)],
achieving impressive performances on ImageNet without using any labels. Such models
have also been shown to outperform supervised models in transfer learning tasks [Chen
et al. (2020a); Caron et al. (2021); Li et al. (2021b)].

These advances are of particular interest in medical imaging applications where labeled
datasets are hard to collect, and especially in histology where each WSI contains thousands
of unlabeled images. There is growing evidence that SSL is a powerful method to obtain
relevant features for various prediction tasks from histology images [Dehaene et al. (2020);
Lu et al. (2019); Li et al. (2021a); Koohbanani et al. (2021); Gildenblat and Klaiman (2019);
Abbet et al. (2021); Srinidhi et al. (2021)]. In this work, we show that self-supervision can
be efficiently used to detect dMMR/MSI tumors from histology slides, and outperform
ImageNet pretrained models across and between several tumors.

3. Methods

3.1 Proposed pipeline

First, a U-Net neural network [Ronneberger et al. (2015)] is used to segment tissue on the
input WSI and discard the background, as well as artifacts. Second, segmented tissue is
divided into N (typically between 10,000 and 30,000) smaller images called tiles. Each tile
has a fixed shape of 224 × 224 pixels (resolution of 0.5 micron per pixel). Third, the N
tiles are embedded into feature vectors of shape D using a pretrained convolutional neural
network. Fourth, the N × D features are aggregated using a multiple instance learning
model. This final model is the only one trained using MSI/MSS labels.

In this study, we benchmarked 2 different feature extractors (ResNet-50 pretrained with
supervised learning on ImageNet [Deng et al. (2009)] or with SSL on TCGA) and 3 multiple
instance learning models (MeanPool, Chowder and DeepMIL).
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Figure 1: Overview of the proposed pipeline.

ImageNet feature extraction We first extracted features using the last layer of a
ResNet-50 pretrained using supervised learning on the ImageNet-1k dataset. We used an
auto-encoder to reduce dimension to D = 256 because we observed empirically that it signif-
icantly improves the performances of Chowder while yielding similar results for MeanPool
and DeepMIL. We did not observe similar improvements with MoCo features.

MoCo feature extraction Following Dehaene et al. (2020), we trained several ResNet-
50 models using Momentum Contrast v2 (MoCo v2[Chen et al. (2020c)]). We used the exact
same parameters and data augmentation scheme but a bigger ResNet backbone was used
(the bottleneck number of channels is twice larger in every block). Three different feature
extractors were trained: MoCo-CRC using 4.7M tiles from TCGA-CRC, MoCo-Gastric
using 4.7M tiles from TCGA-Gastric, and MoCo-CRC-Gastric using the concatenation of
the two previous datasets. Each model was trained for 200 epochs (approximately 30 hours)
on 16 NVIDIA Tesla V100. The obtained MoCo features have a dimension D = 2048.

MeanPool As a baseline multiple instance learning method, we used a simple average
pooling of the tile features followed by a logistic regression either with or without L2 pe-
nalization (C = 0, 0.5 or 1).

Chowder We implemented a variant of Chowder [Courtiol et al. (2018)]. A multilayer
perceptron (MLP) with 128 hidden neurons and sigmoid activation is applied to each tile’s
features to output one score. The R (R = 10, 25 or 100) top and bottom scores are then
concatenated and fed into a MLP with 128 and 64 hidden neurons and sigmoid activations.

DeepMIL We reimplemented the attention based model proposed by Ilse et al. (2018). A
linear layer with N neurons (N = 64, 128 or 256 here) is applied to the embedding followed
by a Gated Attention layer with N hidden neurons. A linear layer followed by a sigmoid
activation is then applied to the output.

For both Chowder and DeepMIL, a random subset of n = 8000 tiles per WSI was used
to accelerate training. All hyperparameters were tuned on the different training sets (see
Results). Chowder and DeepMIL were trained with a learning rate of 0.001 using cross-
entropy loss and the Adam optimizer [Kingma and Ba (2014)]. When multiple WSI were
available for a given patient, we averaged the predictions of the models at test time.
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Size MSI positive Location Origin

TCGA-CRC 555 78 (14%) Colon (74%) - Rectum (26%) US, 36 centers
TCGA-CRC-Kather 360 65 (18%) Colon (74%)- Rectum (26%) US, 34 centers
TCGA-Gastric 375 64 (17%) Gastric US, 22 centers
TCGA-Gastric-Kather 284 60 (21%) Gastric US, 20 centers
PAIP 47 12 (26 %) Colon Korea, 3 centers

Table 1: Datasets used in this study.

Methods TCGA-CRC-Kather TCGA-Gastric-Kather

Kather et al. (2019) 0.77 (0.62-0.87) 0.81 (0.69 - 0.90)
Yamashita et al. (2021) 0.82 (0.71-0.91) -
Bilal et al. (2021) 0.90 -

Ours - MeanPool 0.85 (0.76 - 0.94) 0.78 (0.68 - 0.88)
Ours - Chowder 0.92 (0.84 - 0.99) 0.83 (0.75 - 0.92)
Ours - DeepMIL 0.85 (0.75 - 0.94) 0.79 (0.69 - 0.89)

Table 2: AUCs on Kather et al. (2019) train/test split. 95% CI are computed following
[DeLong et al. (1988)] for our models, and using boostrapping for Kather et al.
(2019) and Yamashita et al. (2021).

3.2 Datasets

Three different cohorts were used in this study and are summarized in Table 1. For all
cohorts, only FFPE images were used.

TCGA-CRC is a dataset of n = 555 patients from 36 centers in the US with col-
orectal tumors. It is a combination of two cohorts from TCGA: TCGA-COAD (colon
adenocarcinoma) and TCGA-READ (rectum adenocarcinoma). TCGA-STAD (stomach
adenocarcinoma), later referred as TCGA-Gastric, is a dataset of n = 375 patients from
22 centers in the US with gastric cancer. For both datasets, MSS/MSI-H labels defined
by PCR assays were retrieved using TCGA-biolinks [Colaprico et al. (2016)]. As recom-
mended by ESMO guidelines [Luchini et al. (2019)], MSI-L patients were classified as MSS.
TCGA-CRC-Kather and TCGA-Gastric-Kather are variants of respectively TCGA-CRC
and TCGA-Gastric datasets published by Kather et al. (2019). They were used here for
comparison purposes. These datasets consist of a lower number of cases because MSI-L
patients were excluded. The exact same MSI labels were used.

PAIP (cohort from the Pathology AI Platform, http://www.wisepaip.org) is a dataset
of n = 47 patients from 3 centers in Korea with colorectal tumors. MSS/MSI-H labels were
determined using PCR assays.
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TCGA-CRC TCGA-Gastric

Echle et al. (2020) 0.74 (0.66–0.80) -
Kather et al. (2020) - 0.72
Bilal et al. (2021) 0.86 -

ImageNet MoCo-CRC ImageNet MoCo-Gastric

Ours - MeanPool 0.84 (0.05) 0.87 (0.05) +0.03 0.76 (0.04) 0.82 (0.05) +0.06

Ours - Chowder 0.81 (0.05) 0.88 (0.04) +0.07 0.73 (0.07) 0.83 (0.06) +0.11

Ours - DeepMIL 0.82 (0.05) 0.88 (0.05) +0.06 0.74 (0.01) 0.85 (0.05) +0.11

Table 3: Performances for 3 × 5 folds cross-validation (AUC), means, and standard devia-
tions on TCGA-CRC and TCGA-Gastric datasets. Mean, lower and upper bounds
on 3 folds are reported by Echle et al. (2020), means on respectively 4 folds and 3
folds are reported by Bilal et al. (2021) and Kather et al. (2020)

4. Results

4.1 Cross-validations on TCGA-CRC and TCGA-Gastric

We first compared three multiple instance learning models, MeanPool, Chowder and Deep-
MIL, using the MoCo-CRC features on the TCGA-CRC-Kather cohort, and the MoCo-
Gastric features on the TCGA-Gastric-Kather cohort. For the sake of comparison, we used
the exact same train / test split as in [Kather et al. (2019)] and compared our results with
the ones published in the literature on this split.

We tuned the hyperparameters of Chowder (R = 10, 25 or 100), DeepMIL (size of at-
tention layer = 64, 128 or 256), MeanPool (l2 penalization = 0, 0.5 or 1) and the number
of epochs (ranging from 5 to 120) using a grid search on the training sets. For both TCGA-
CRC-Kather and TCGA-Gastric-Kather, Chowder model performed best and obtained re-
spectively AUCs of 0.92 and 0.83, achieving state-of-the-art results on these datasets (see
Table 2).

To analyze the gain of MoCo features over ImageNet ones, we ran larger cross-validation
experiments using 15 distinct splits on the full TCGA cohorts (5 fold cross-validation, re-
peated 3 times) and reported results in Table 3. For a fair comparison, we tuned the hy-
perparameters of all models on the training set of the Kather split. In all our experiments,
MoCo substantially outperformed ImageNet in both TCGA-CRC and TCGA-Gastric co-
horts. Results obtained with MoCo features were also better than the ones previously
reported with cross-validation. We also report cross-validation results using center split in
Supplementary Table S1.

4.2 External validation on CRC dataset PAIP

A limitation of the previous experiments is that ResNet using SSL were pretrained on the
full TCGA cohorts, slightly breaking the train/test split independence assumption even if
no MSI/MSS labels were used. Thus, we further evaluated MSI detection on an independent
cohort of n = 47 colon cases from PAIP organisation. We used the median prediction of the
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Methods ImageNet MoCo-CRC

MeanPool 0.61 (0.42 - 0.80) 0.82 (0.66 - 0.99) +0.21

Chowder 0.86 (0.74 - 0.97) 0.97 (0.93 - 1.00) +0.11

DeepMIL 0.83 (0.67 - 1.0) 0.90 (0.78 - 1.00) +0.07

Table 4: AUCs on PAIP for models trained on TCGA-CRC. Bilal et al. (2021) report AUC
of 0.98 but no CI interval is given.

Methods ImageNet MoCo-CRC MoCo-CRC-Gastric

MeanPool 0.76 (0.69-0.82) 0.67 (0.59-0.74) 0.76 (0.69-0.82)
Chowder 0.71 (0.64-0.78) 0.73 (0.66-0.80) 0.78 (0.73-0.84)
DeepMIL 0.72 (0.66-0.78) 0.71 (0.64-0.79) 0.80 (0.75-0.86)

Table 5: AUCs for models trained on TCGA-CRC and evaluated on TCGA-Gastric with
different feature extractors.

ensemble of models trained during cross-validation in the previous experiment. Chowder
with MoCo-CRC features yielded an AUC of 0.97 on par with the 0.98 reported in Bilal
et al. (2021), and significantly higher than Chowder with ImageNet features (AUC of 0.82,
p = 0.03 with DeLong’s test [DeLong et al. (1988)]). The superiority of MoCo-CRC features
was observed for all models (Table 4), confirming that the MoCo-CRC pretrained backbone
is a more robust feature extractor than the ImageNet for histology images.

4.3 Transfer CRC to Gastric

We assessed the performances for MSI detection when transferring models trained on
TCGA-CRC to TCGA-Gastric with three different feature extractors: ImageNet, MoCo-
CRC, MoCo-CRC-Gastric. For fair comparison, all hyperparameters were tuned on the
training split of TCGA-CRC-Kather (Supplementary Table S2).

MoCo-CRC-Gastric models consistently yielded the best results on TCGA-Gastric with
AUCs up to 0.80 (Table 5) while also demonstrating high performances on TCGA-CRC
(Supplementary Table S3). Surprisingly, the ImageNet MeanPool model, which performed
poorly on PAIP, also obtained a high AUC of 0.76, however significantly lower compared
to 0.80 (p = 0.05 with DeLong’s test). To our knowledge, this is the best performance
reported in a transfer setting from one organ to another.

5. Interpretability

Within Chowder, each tile is associated with a single score and a MLP is applied to the top
and lowest scores of the WSI (Section 3.1). To explore potential differences in interpretabil-
ity when using ImageNet or MoCo features, a pathologist expert in dMMR tumors reviewed
the subset of tiles associated with extreme scores within TCGA-CRC and TCGA-Gastric
cohorts, for both feature extractors.
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Figure 2: Most predictive regions identified by Chowder A. Tiles most predictive of MSI and
MSS phenotypes in CRC. B. Similar for gastric cancer. C. Heatmaps obtained
with ImageNet or MoCo-CRC features.

Among the top scored tiles (Figure 2 A, B), the pathologist recognized histological pat-
terns which have been previously described as associated with MSI tumors [Greenson et al.
(2009)], including tumor lymphocyte infiltration, mucinous differentiation and presence of
dirty necrosis - the latter being more frequently detected in gastric tumors. While ImageNet-
based models outputs were based on patterns within and outside tumor regions (such as
lymphocyte infiltration in the tumor microenvironment), MoCo-based models clearly fo-
cused on tumor epithelium, highlighting both poor differentiation of epithelial cells and
tumor infiltrating lymphocytes (TILs) as patterns associated with MSI tumors. Specifi-
cally, MoCo models better segmented tumoral regions, as shown by the tile scores heatmap
at the WSI level (Figure 2 C).

Overall, lowest scored tiles were unrelated to known MSI patterns, displaying non tu-
moral tissues such as muscle cells. In the TCGA-CRC cohort, the MoCo-CRC model
additionally highlighted the presence of intratumoral epithelial cells without MSI tumor
characteristics, showing once again a higher focus on tumor regions, in line with the regions
actually inspected by a pathologist when searching for MSI related patterns.

6. Discussion

In this work, we showed that feature extractors pretrained using SSL (MoCo V2) on TCGA
reach state-of-the-art results for MSI prediction both in colorectal and gastric cancers (Table
2). Extensive cross-validations showed the clear superiority of these models over their
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counterparts pretrained using ImageNet (Table 3). In addition, the former generalize better
on an external CRC cohort (Table 4). Finally, we observed that using a feature extractor
pretrained on several organs using SSL (Table 5) opens the way to both state-of-the-art
performances in cross-validation and robust generalization from one organ to another.

There are several limitations to our current study. First, our models could benefit from
being trained on more data as shown in the training curve from Echle et al. (2020) (Fig-
ure 1.c). Second, our models should be validated on larger cohorts, encompassing different
patient populations, treatments (neoadjuvant chemotherapy can impact cell morphology),
scanner manufacturer and sample types (resections, biopsies). Third, SSL techniques are
evolving rapidly using new architectures such as Vision Transformers [Dosovitskiy et al.
(2020)] and more experiments are required to find how to apply them in histology, includ-
ing taking into account the spatial arrangement of the tiles. However, such experiments
require access to extensive computational resources, which limits reproducibility. Finally,
in contrast to several concurrent works [Echle et al. (2020); Bilal et al. (2021); Kather et al.
(2019)] that fine-tuned the backbones, while our study kept them entirely frozen.

A recent study, Kacew et al. (2021) showed that performances of deep learning models
may impact the diagnosis of MSI for patients with CRC. Notably, MSI diagnosis is not
routinely done for patients with other solid tumors, missing the identification of candi-
date patients for immunotherapy. Our results indicate that SSL is a promising solution
to develop accurate models for frequent tumor localization such as oesophagus, pancreas,
small intestine or even brain, where images are available but MSI prevalence is too low for
systematic IHC or molecular testing.
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Supplementary Tables and Figures

TCGA-CRC TCGA-Gastric

Split ImageNet MoCo-CRC ImageNet MoCo-Gastric

MeanPool CV 0.84 (0.05) 0.87 (0.05) +0.03 0.76 (0.04) 0.82 (0.05) +0.06

MeanPool CV centers 0.78 (0.10) 0.85 (0.07) +0.07 0.72 (0.12) 0.85 (0.07) +0.13

DeepMIL CV 0.82 (0.05) 0.88 (0.05) +0.06 0.74 (0.01) 0.85 (0.05) +0.11

DeepMIL CV centers 0.79 (0.059) 0.84 (0.11) +0.05 0.73 (0.15) 0.85 (0.05) +0.12

Chowder CV 0.81 (0.05) 0.88 (0.04) +0.07 0.73 (0.07) 0.84 (0.06) +0.11

Chowder CV centers 0.75 (0.15) 0.83 (0.12) +0.08 0.72 (0.08) 0.86 (0.05) +0.14

Table S1: Cross-validation performances (AUC) on TCGA-CRC and TCGA-Gastric. We
report mean and standard deviation on 3× 5 folds. We split the data into 5 fold
either randomly (CV) or by ensuring that all samples from a center are in the
same set (CV centers).

10



MICCAI COMPAY 2021

Feature extractor Train dataset MeanPool Chowder DeepMIL

ImageNet CRC C = 1 R = 100 N = 64
100 epochs 30 epochs

ImageNet Gastric C = 0.0 R = 25 N = 64
30 epochs 20 epochs

MoCo-CRC CRC C = 0.5 R = 10 N = 32
10 epochs 10 epochs

MoCo-Gastric Gastric C = 1.0 R = 100 N = 128
30 epochs 10 epochs

MoCo-CRC-Gastric CRC C = 0.5 R = 100 N = 64
30 epochs 10 epochs

Table S2: Hyperparameters used for the different models. All hyperparameters were tuned
on the training sets of the TCGA-CRC-Kather or TCGA-Gastric-Kather cohorts.
C refers to L2 penalization coefficient, R to the number of extreme tiles used in
Chowder and N to the size of the attention layer in DeepMIL.

Methods MoCo-CRC-Gastric

MeanPool 0.86 (0.04)
Chowder 0.88 (0.05)
DeepMIL 0.88 (0.06)

Table S3: Cross-validation performances (AUC) on TCGA-CRC, for the models trained
using the features of MoCo-CRC-Gastric. The result reported are the mean and
the standard deviation from 5-fold cross-validation repeated 3 times.

Epochs

V
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io
n 

A
U

C

Figure S1: Validation Curves of Chowder with ImageNet and MoCo-CRC features. The
plot represents the average validation AUCs per epoch of all runs of the cross-
validation for Chowder trained with ImageNet and MoCo-CRC features, de-
picted in Table 3.
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and Armand Joulin. Emerging properties in self-supervised vision transformers. arXiv
preprint arXiv:2104.14294, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hin-
ton. Big self-supervised models are strong semi-supervised learners. arXiv preprint
arXiv:2006.10029, 2020b.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momen-
tum contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. arXiv preprint arXiv:2104.02057, 2021.

Antonio Colaprico, Tiago C Silva, Catharina Olsen, Luciano Garofano, Claudia Cava, Da-
vide Garolini, Thais S Sabedot, Tathiane M Malta, Stefano M Pagnotta, Isabella Cas-
tiglioni, et al. Tcgabiolinks: an r/bioconductor package for integrative analysis of tcga
data. Nucleic acids research, 44(8):e71–e71, 2016.

Pierre Courtiol, Eric W Tramel, Marc Sanselme, and Gilles Wainrib. Classification and
disease localization in histopathology using only global labels: A weakly-supervised ap-
proach. arXiv preprint arXiv:1802.02212, 2018.

Olivier Dehaene, Axel Camara, Olivier Moindrot, Axel de Lavergne, and Pierre Courtiol.
Self-supervision closes the gap between weak and strong supervision in histology. arXiv
preprint arXiv:2012.03583, 2020.

12



MICCAI COMPAY 2021

Elizabeth R DeLong, David M DeLong, and Daniel L Clarke-Pearson. Comparing the areas
under two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics, pages 837–845, 1988.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

Amelie Echle, Heike Irmgard Grabsch, Philip Quirke, Piet A van den Brandt, Nicholas P
West, Gordon GA Hutchins, Lara R Heij, Xiuxiang Tan, Susan D Richman, Jeremias
Krause, et al. Clinical-grade detection of microsatellite instability in colorectal tumors
by deep learning. Gastroenterology, 159(4):1406–1416, 2020.

Kenji Fujiyoshi, Tatsuro Yamaguchi, Miho Kakuta, Akemi Takahashi, Yoshiko Arai, Mina
Yamada, Gou Yamamoto, Sachiko Ohde, Misato Takao, Shin-ichiro Horiguchi, et al.
Predictive model for high-frequency microsatellite instability in colorectal cancer patients
over 50 years of age. Cancer medicine, 6(6):1255–1263, 2017.

Jacob Gildenblat and Eldad Klaiman. Self-supervised similarity learning for digital pathol-
ogy. arXiv preprint arXiv:1905.08139, 2019.

Joel K Greenson, Shu-Chen Huang, Casey Herron, Victor Moreno, Joseph D Bonner,
Lynn P Tomsho, Ofer Ben-Izhak, Hector I Cohen, Phillip Trougouboff, Jacob Bejhar,
et al. Pathologic predictors of microsatellite instability in colorectal cancer. The Ameri-
can journal of surgical pathology, 33(1):126, 2009.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,
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