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Abstract
The burgeoning size of Large Language Mod-001
els (LLMs) has led to enhanced capabilities002
in generating responses, albeit at the expense003
of increased inference times and elevated re-004
source demands. Existing methods of accel-005
eration, predominantly hinged on knowledge006
distillation, generally necessitate fine-tuning007
of considerably large models, such as Llama-008
7B, posing a challenge for average users. Fur-009
thermore, present techniques for expediting010
inference and reducing costs operate indepen-011
dently. To address these issues, we introduce a012
novel and intuitive Guidance-based Knowledge013
Transfer (GKT) framework. This approach014
leverages a larger LLM as a “teacher” to cre-015
ate guidance prompts, paired with a smaller016
“student” model to finalize responses. Remark-017
ably, GKT requires no fine-tuning and doesn’t018
necessitate the teacher and student models to019
have the same vocabulary, allowing for exten-020
sive batch generation to accelerate the process021
while ensuring user customization. GKT can be022
seamlessly integrated into cloud-edge collab-023
oration architectures, and is versatile enough024
for plug-and-play application across various025
models. It excels in both efficiency and af-026
fordability, epitomizing a “cheap and cheerful”027
solution. GKT achieves a maximum accuracy028
improvement of 14.18 %, along with a 10.72×029
speed-up on GSM8K and an accuracy improve-030
ment of 14.00 % along with a 7.73× speed-up031
in CSQA. When utilizing ChatGPT as teacher032
model and Llama2-70B as the student model,033
we can achieve 95.00% of ChatGPT’s perfor-034
mance at 52% of the cost. The results high-035
light substantial enhancements in accuracy and036
processing speed on the GSM8K and CSQA037
datasets, surpassing the performance of using038
either the student or teacher models in isolation.039

1 Introduction040

The swift advancement of large language models041

(LLMs) has dramatically pushed the frontiers of042

AI technology. LLMs, with their vast number of043

Figure 1: Cloud-edge collaboration: The GKT frame-
work facilitates cloud-edge collaboration by deploying
the larger teacher model on remote cloud servers and the
smaller student model on lightweight mobile devices.
GKT allows for brief guidance prompts to be easily
transmitted to mobile devices, significantly reducing
data transmission costs. In cloud-edge collaboration,
users can also perform simple personalized generation
settings on their mobile devices.

parameters, are exceptionally adept at comprehend- 044

ing human intentions, offering high-quality reason- 045

ing, and responses. However, the immense size 046

of these models is a double-edged sword. While 047

it improves model performance, it also leads to 048

slower inference times and higher computational 049

costs. As the demand for LLM usage increases, 050

relying solely on LLMs for auto-regressive infer- 051

ence actually demands an overwhelming amount 052

of computational resources and time, posing a sub- 053

stantial deployment challenges for cloud services 054

and resource-constrained devices. 055

Consequently, many recent studies (Leviathan 056

et al., 2023a; Ning et al., 2023; Jiang et al., 2023) 057

have taken steps to improve the inference efficiency 058

of LLMs. One prevalent and widely adopted ap- 059

proach is knowledge distillation (Hinton et al., 060

2015; Yim et al., 2017; Tunstall et al., 2023; Jiang 061

et al., 2023; Chiang et al., 2023; Li et al., 2023). 062

The majority of knowledge distillation frameworks 063

utilize large language models as “teacher” mod- 064
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els to generate training samples. These samples065

are then used to train more compact “student” lan-066

guage models, effectively teaching them to mimic067

the performance and capabilities of teacher model.068

However, this process still demands a carefully069

crafted data generation mechanism and the subse-070

quent training of the student model. Despite being071

smaller in size, to achieve satisfactory results in072

general tasks, many student models still maintain073

a considerable parameter size, often around 7B074

(Tunstall et al., 2023) and 13B (Jiang et al., 2023;075

Chiang et al., 2023). This is in line with the ob-076

servations by Wei et al. (2022a), who noted that077

the emergent abilities of LLMs for language under-078

standing typically become evident when the model079

size exceeds 10 billion parameters.080

Feature KD SD GKT
Accelerates Inference ✓ ✓ ✓

Preserves Model Architecture ✓ ✓ ✓

Eliminates Additional Fine-tuning ✗ ✓ ✓

Allows Custom Settings ✗ ✗ ✓

Enables Cloud-Edge Collaboration ✗ ✗ ✓

Allows Different vocabulary ✗ ✗ ✓

Table 1: Comparative analysis of Knowledge Distilla-
tion (KD), Speculative Decoding (SD), and Guidance-
based Knowledge Transfer (GKT).

To solve this limitation, another research line081

focuses on speculative decoding (Leviathan et al.,082

2023a; He et al., 2023; Leviathan et al., 2023b),083

which involves using a more efficient, smaller084

model to generate token predictions, which the085

larger target model then evaluates. If a token pre-086

diction is accepted, it’s used; if not, it’s discarded,087

and the target model generates a new token. The088

method is shown to significantly speed up inference089

without needing changes to the model’s architec-090

ture or training procedures. However, users often091

have diverse generation requirements, such as the092

desire to adjust generation parameters like temper-093

ature and top_p. While speculative decoding can094

ensure consistency with the output of the final large095

model, employing batch generation to save time096

during high concurrent access can impede the abil-097

ity to meet user-specific generation settings.098

Considering the limitations of these methods,099

we were inspired by the common human experi-100

ence of “Getting started is the hardest part.” and101

sociological studies (Goldberg et al., 2014) show-102

ing that effective prompts provided by teachers in103

classrooms can significantly improve student per-104

formance in exams. Thus, we propose a novel105

knowledge transfer framework: Guidance-based 106

Knowledge Transfer (GKT). Our framework in- 107

volves two steps: firstly, using an LLM as a teacher 108

model to generate guidance prompts from concur- 109

rent user inputs through batch generation. Sec- 110

ondly, a smaller LM acts as the student model, 111

which simply completes the answers based on the 112

guidance prompts, allowing for user-customized 113

generation settings. 114

GKT reduces the burden of LLM inference, 115

thereby speeding up response generation. Unlike 116

knowledge distillation, our framework does not re- 117

quire generating dataset from teacher model and 118

fine-tuning the student model. It also doesn’t ne- 119

cessitate the teacher and student models to have 120

the same vocabulary, allowing for extensive batch 121

generation to accelerate the process while ensur- 122

ing user customization. GKT can also be seam- 123

lessly integrated into cloud-edge collaboration ar- 124

chitectures as shown in Figure 1. GKT deploys the 125

larger teacher model on remote cloud servers and 126

the smaller student model on lightweight mobile 127

devices, such as smartphones. This setup allows 128

for brief guidance prompts to be easily transmitted 129

to mobile devices, significantly reducing data trans- 130

mission costs. In cloud-edge collaboration, users 131

can also perform simple personalized generation 132

settings on their mobile devices. The table 1 suc- 133

cinctly delineates the pros and cons between the 134

Guidance-based Knowledge Transfer (GKT) frame- 135

work, Knowledge Distillation (KD) and Specula- 136

tive Decoding (SD), providing a clear comparative 137

perspective. 138

Finally, our study follows the philosophy that 139

“No such thing as bad student. Only bad teacher.” 140

We conducted various experiments to explore the 141

optimal guidance strategies for the teacher model, 142

seeking answers to questions such as how much 143

and what type of help a teacher should provide to 144

maximize the student model’s accuracy while min- 145

imizing the teacher model’s inference time. The 146

results demonstrate that GKT not only achieves a 147

significant accuracy improvement of 14.18% on the 148

GSM8K dataset, but also enhances speed by 10.72 149

×. Furthermore, on the CSQA dataset, it records 150

a noteworthy accuracy increase of 14.00% along 151

with a 7.73 × acceleration in inference speed. 152

2 Method 153

The schematic representation of our Guidance- 154

Based Knowledge Transfer (GKT) framework is 155
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Teacher Model

… Student 
Model

Figure 2: System overview. Our framework consists of two steps: guidance generation and response completion. In
guidance generation, teacher model generates guidance prompts using batch generation to process concurrent user
inputs. In response completion, student model receives guidance prompt and complete the response. Student model
generates output with a batch size of 1 which allows customize generation settings by the user

depicted in Figure 2. GKT encompasses a two-step156

process: guidance generation and response comple-157

tion. During the guidance generation phase, a large158

language model serves as the “teacher” model. This159

model processes concurrent user inputs and em-160

ploys batch generation to craft guidance prompts.161

Subsequently, in the response completion stage, a162

smaller language model functions as the “student”163

model. This model offers flexibility in generation164

settings, allowing for user customization. The guid-165

ance prompt created in the first stage is then fed166

into this smaller model, facilitating the completion167

of the response with enhanced efficiency. We will168

now elaborate on each stage:169

Guidance Generation Given concurrent user in-
puts Q = {q1, q2, ..., qn}, where qi represents the
input question from user i, the teacher model Mt

batch generates the guidance prompts:

G = {g1, g2, ..., gn} = F(Mt(Q))

Here, G represents the batch-generated guidance,170

gi is the guidance for user i, and F(·) denotes the171

projection operation that generates the guidance172

prompt from the generated text. In this paper, we173

explore different projection operations including:174

(1) Cut-off guidance generation (2) Concise guid-175

ance generation (3) Hint guidance generation. We176

will elaborate on these methods in Section 4.2177

Response generation In response generation, we
use a smaller language model Ms as student model.
For every user i, Ms generates the final response
ri by:

ri = M i
s(gi)

Where M i
s stands for Ms under the user i’s custom 178

generation setting. 179

3 Experimental Settings 180

Datasets In this paper we use two challenge but 181

widely used dataset: GSM8K (Cobbe et al., 2021) 182

for arithmetic reasoning and CSQA (Talmor et al., 183

2019) for commonsense reasoning. GSM8K focus 184

on arithmetic reasoning which is a collection of 185

grade school math word problems, each requiring 186

2 to 8 steps to solve. The solutions mainly involve 187

a series of basic arithmetic calculations to arrive at 188

the final answer. CSQA focuses on commonsense 189

question answering which includes multiple-choice 190

questions that require commonsense knowledge for 191

answering. The detailed dataset statistics can be 192

found in Appendix A. In all our experiments, we 193

use the same prompt settings in Manual-CoT (Wei 194

et al., 2022b) otherwise stated. The full prompt can 195

be found in Appendix D 196

Hyperparameter All experiments were con- 197

ducted on an NVIDIA A800 GPU. Detailed hy- 198

perparameter settings for the experiments are pro- 199

vided in Appendix B. In our experiments, we tested 200

various teacher models, including Flan-t5-xl (Scao 201

et al., 2022), Bloom-7B(Scao et al., 2022), Llama2- 202

70B(Touvron et al., 2023) and Llama2-13B. Corre- 203

spondingly, the student models used were Flan-t5- 204

large, Bloom-3B, Llama2-13B and Llama2-7B. 205

4 Results and Exploration 206

In this section, we delve into the empirical re- 207

sults of our comprehensive analysis using the GKT 208

framework. The essence of this exploration lies in 209
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Dataset Model Output Length ACCteacher(%) ACC(%) ∆(ACC) Time(s) Speed Up

GSM8K

Single Model
Llama2-7B 200 - 13.87 - 6945.70 1.31×

300 - 14.40 - 10304.18 1.38×/13.98×
Llama2-13B 200 - 21.23 7.36 9066.17 -

300 - 23.65 9.25 14215.12 10.13×
Llama2-70B 300 - 56.63 42.23 / 32.98 144018.55 -
Bloom-3B 300 - 2.35 - 4376.05 1.00×
Bloom-7B 300 - 4.40 2.05 4392.74 -
GKT Framework
Llama2-13B−→Llama2-7B 30−→200 3.33 17.66 3.79 7762.62 1.17×

30−→300 3.33 17.82 3.42 10793.34 1.32×
40−→300 4.62 19.18 4.78 10871.01 1.31×
40(concise)−→300 4.62 19.26 4.86 10707.43 1.33×

Llama2-70B−→Llama2-7B 40−→300 7.81 28.58 14.18 13440.71 10.72 ×
Llama2-70B−→Llama2-13B 40−→300 7.81 35.41 11.76 16250.34 8.86×
Bloom-7B−→Bloom-3B 40−→300 2.05 2.58 0.23 5198.60 0.84×
Llama2-7B−→Bloom-3B 40−→300 3.71 6.82 4.47 4154.40 1.06×
Llama2-13B−→Bloom-3B 40−→300 4.62 7.73 5.38 4186.22 3.40×
Llama2-13B−→Bloom-7B 40−→300 4.62 10.31 5.91 3275.90 3.82×

CSQA

Single Model
Llama2-7B 100 - 60.69 - 3239.04 1.31 × / 13.36×

300 - 60.61 - 9321.51 1.30×
Llama2-13B 100 - 71.17 10.48 4235.46 10.22×

300 - 71.09 10.48 12128.50 -
Llama2-70B 100 - 76.58 15.89 / 5.41 43285.73 -
Bloom-3B 100 - 20.88 - 2157.97 1.05×
Bloom-7B 100 - 21.79 - 2269.35 -
GKT Framework
Llama2-13B−→Llama2-7B 10−→100 0.00 61.02 0.33 3472.33 1.22×

20−→100 0.00 64.70 4.01 3656.64 1.16×
30−→100 18.76 69.86 9.17 3579.21 1.18×
30 −→ 300 18.76 69.86 9.25 10171.32 1.19×
40 −→300 62.74 71.01 10.40 10068.97 1.20×
50 −→300 70.43 71.09 10.48 10361.78 1.17×

Llama2-70B−→Llama2-7B 30−→100 18.84 74.69 14.00 5600.38 7.73×
Llama2-70B−→Llama2-13B 30−→100 18.84 76.16 4.99 6598.43 6.56×
Bloom-7B−→Bloom-3B 20−→100 0.00 20.96 0.08 2395.36 0.95×

30−→100 11.06 20.63 -0.25 2250.04 1.01×
Llama2-7B−→Bloom-3B 30−→100 21.86 40.05 19.17 2134.58 1.52×
Llama2-13B−→Bloom-3B 30−→100 18.76 41.20 20.32 2210.29 1.92 ×
Llama2-13B−→Bloom-7B 30−→100 18.76 39.80 18.01 2405.20 1.76×

Table 2: Results for GSM8K and CSQA. “−→” signifies the transition from the teacher model to the student model,
with settings on the left of the arrow (Model, Output Length) pertaining to the teacher model, and those on the right
corresponding to the student model. “ACCteacher(%)” and “ACC(%)” denotes the mean accuracy(%) achieved by the
teacher model alone and the overall framework, respectively. “∆(ACC)” denotes the improvement in accuracy (%)
achieved by the GKT framework compared to using only the student model (∆(ACC) for Llama2-70B shows two
numbers separated by “/”, The number on the left (right) of the “/” is the change in accuracy when using Llama2-7B
(Llama2-13B) as the student model). “Speed Up” indicates the acceleration factor of the GKT framework relative to
using only the teacher model. (“Speed Up” for Llama2-7B shows two numbers separated by “/”, The number on
the left (right) of the “/” is the change in accuracy when using Llama2-13B (Llama2-70B) as the student model).
“concise” denotes that we use concise guidance generation method and the detailed analysis can be found in section
4.2

quantifying the effectiveness of GKT in enhanc-210

ing the accuracy of student models while ensuring211

computational efficiency. We first report the over-212

all results for the GKT on the GSM8K and CSQA213

datasets Then, we delve into various dimensions214

of knowledge transfer including the optimal guid-215

ance generation methods, the intriguing dynamics216

between different types of teacher and student mod-217

els, the influence that a teacher can exert on student218

and the optimal guidance length. 219

4.1 Overall Results 220

The overall results for the Guidance-based Knowl- 221

edge Transfer (GKT) framework on the GSM8K 222

and CSQA datasets are presented in Table 2. The 223

results indicate that on the GSM8K dataset, we 224

achieved a maximum accuracy improvement of 225

14.18 % compared to simply using the student 226
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model, along with a 10.72× speed up relative to the227

teacher model. On the CSQA dataset, we observed228

a accuracy improvement of 14.00 % compared to229

the student model, and a maximum 7.73× speed-up230

in comparison to the teacher model.231

4.2 How to facilitate student learning232

effectively?233

To investigate how to generate better guidance to234

assist student models in answering questions, we235

experimented with three different guidance genera-236

tion methods as described in Section 2: (1) Cut-off237

Guidance Generation, (2) Concise Guidance Gen-238

eration, and (3) Hint Guidance Generation.239

Cut-off Guidance Generation: We employed240

the simplest method of cutting off, where the241

teacher model generates only a fixed number of242

the first m tokens as guidance.243

Concise Guidance Generation: In this ap-244

proach, we added the prompt: “Provide the answer245

in a brief manner:” to guide the model to generate246

more concise guidance responses.247

Hint Guidance Generation: Here, we intro-248

duced the prompt “Provide a brief hint for the ques-249

tion:” to encourage the teacher model not to give di-250

rect answers but to offer hints in a guiding manner,251

aiding the student model in generating responses.252

The detailed results of these experiments on253

GSM8K can be seen in Table 3. To more intuitively254

understand the acceleration effect of each compo-255

nent in the Guidance-based Knowledge Transfer256

(GKT) framework, we have created a trace diagram257

of GKT’s performance on the GSM8K dataset, as258

illustrated in Figure 3. Intriguingly, we found that259

providing hints leads to poorer outcomes compared260

to directly giving the answer. We speculate that this261

may be due to the limited inferential and reason-262

ing capabilities of the smaller models. Instead of263

giving hints for them to infer, it might be more ef-264

fective to provide direct answers. We also observed265

that Concise Guidance Generation was relatively266

effective, as the brevity of the guidance reduces267

the inferential workload for the student model. By268

prompting the teacher model to produce shorter an-269

swers, this method not only improved the accuracy270

of the model’s responses but also accelerated the271

inference speed.272

GKT for Cloud-edge Collaboration LLM De-273

ployment Figure 3 demonstrates that utilizing274

only the Llama2-13B model for the GSM8K275

dataset, comprising a total of 1319 examples, re-276

sults in an average response time of 10.78 sec- 277

onds per example (14215.12 ÷ 1319 = 10.78s). 278

This implies a single-user service capability within 279

this timeframe. Conversely, the deployment of 280

the GKT framework in a Cloud-Edge collabora- 281

tion environment for LLMs markedly reduces the 282

large model’s response time to 0.38 seconds on av- 283

erage (506.73 ÷ 1319 = 0.38s), and the small 284

model processes each example in 7.86 seconds 285

(10364.28÷ 1319 = 7.86s), culminating in a total 286

response time of 8.24 seconds. Therefore, theoret- 287

ically, by employing batch processing, the GKT 288

framework can facilitate simultaneous service 289

to 24 users within the 8.24-second window. This 290

efficiency stems from the large model’s capacity 291

for batch processing in the cloud, which can con- 292

currently serve multiple users (with a batch size 293

of 24). At the same time, the small models are de- 294

ployed on distinct edge devices, facilitating parallel 295

operations and enabling personalized user experi- 296

ences. In stark contrast, reliance solely on the 297

Llama2-13B model limits service to a single user 298

within the 10.78-second timeframe. Hence, the 299

GKT framework substantially augments the par- 300

allelism in user service provision in Cloud-Edge 301

collaborative LLM deployments. 302

4.3 How To Identify the Right Teacher for the 303

Right Student ? 304

To find the right student for the right teacher, we 305

experimented with the decoder-only model Llama 306

and the encoder-decoder model Flan-t5. Our exper- 307

iments show that both types of models can achieve 308

certain improvements through GKT. However, an 309

intriguing phenomenon we observed was that re- 310

placing the teacher model of Flan-t5 with a larger 311

Llama model led to an accuracy decrease, rather 312

than an increase. We speculate that one possible 313

reason could be that for encoder-decoder models, 314

the encoder and decoder use different parameters. 315

Using a large model’s answers as input for the 316

smaller model’s encoder may disrupt the coherence 317

of thought, leading to reduced inferential ability. 318

In contrast, for decoder-only models, directly con- 319

catenating inputs and targets seems to aid in better 320

inference. The significant structural differences be- 321

tween T5 and Llama models could result in incon- 322

sistent thinking patterns between models, implying 323

that the teacher and student are not perfectly in 324

sync, thereby diminishing the overall effectiveness. 325

326
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Model Prompt Output Length ACC(%) ∆(ACC) Time(s) Speed Up
Single Model
Llama2-7B - 300 14.40 - 10304.18 1.38×
Llama2-13B - 300 23.65 9.25 14215.12 -
GKT Framework

Llama2-13B−→Llama2-7B
- 40−→300 19.18 4.78 10871.01 1.31×
"Provide the answer in a brief manner: " 40(concise)−→300 19.26 4.86 10707.43 1.33×
"Provide a brief hint for the question: " 40(hint)−→300 19.11 4.71 11190.12 1.27×

Table 3: Results of different guidance generation methods on GSM8K. “concise” and “hint” denotes Concise
Guidance Generation and Hint Guidance Generation respectively

0 2000 4000 6000 8000 10000 12000 14000 16000

Llama2-7B

Llama2-13B

Cut-off

Concise

Hint

Figure 3: The trace diagram for GKT framework on GSM8K. The vertical axis represents the guidance generation
method used (where “Llama2-13B” indicates the exclusive use of the Llama2-13B model for response generation,
and “Llama2-7B” denotes the sole use of the Llama2-7B model). The horizontal axis represents the runtime (s) of
the GKT across the entire dataset.

4.4 How Can a Teacher Influence His327

Student?328

Based on the above findings, we conducted further329

experiments to explore the impact of a teacher’s330

guidance on student models, specifically focusing331

on decoder-only models. In these experiments, we332

used Llama2 and Bloom, both decoder-only mod-333

els. The overall results can be seen in Table 5334

Table 5 presents a detailed overview of the im-335

pact of teacher model choice on the performance336

and efficiency of student models, as tested on the337

GSM8K and CSQA datasets. The results highlight338

the differential effects on accuracy and processing339

speed, depending on the combination of teacher340

and student models used. The results also revealed341

that the Llama model possesses stronger inferential342

capabilities and stores more common-sense knowl-343

edge, performing better on both datasets. When344

we provided the same Bloom student model with345

the more experienced teacher model Llama, un-346

der similar-sized teacher model conditions, we ob-347

served that the Llama model, as a teacher, could348

enhance the student model’s accuracy by 20 %. In349

contrast, using Bloom-7B as the teacher resulted in350

a decrease in accuracy. This outcome underscores 351

the critical influence of the teacher on the student. 352

Additionally, by comparing results on the 353

GSM8K and CSQA datasets, we found that this 354

approach of using larger models to guide smaller 355

ones can better transfer the common-sense knowl- 356

edge stored in the teacher model. However, it 357

had a less pronounced effect on mathematical 358

reasoning abilities in the GSM8K dataset. On 359

the CSQA dataset, when employing a Llama2-7B 360

teacher model, Bloom-3B model’s accuracy is im- 361

proved by nearly 20 %, with a 1.52 times speed 362

increase. These results convincingly demonstrate 363

that our method can effectively transfer the knowl- 364

edge and reasoning abilities stored in larger models 365

to smaller ones. 366

To delve deeper into the extent of influence a 367

teacher model can have on a student model, we 368

utilized the superior-performing ChatGPT (Ope- 369

nAI, 2023) as the teacher model, with Llama2-7B, 370

13B, and 70B serving as the student model. The 371

Table 6 clearly demonstrates that using a more pow- 372

erful teacher model significantly enhances perfor- 373

mance. When the number of guidance tokens is 374

kept constant, employing ChatGPT as the teacher 375
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Model Output Length ACC(%) ∆(ACC) Time(s) Speed Up
Single Model
Flan-t5-large (0.8B) 300 6.90 - 2343.06 1.09×
Flan-t5-xl (3B) 300 11.30 4.40 2557.76 -
Llama2-7B 300 14.40 - 10304.18 1.38×
Llama2-13B 300 23.65 12.35 14215.12 -
GKT Framework
Flan-t5-xl−→Flan-t5-large 40−→300 7.88 0.98 2190.05 1.17×
Llama2-13B−→Llama2-7B 40−→300 19.18 4.78 10871.01 1.31×
Llama2-13B−→Flan-t5-large 40−→300 6.52 -0.38 2330.48 6.10×
Llama2-7B−→Flan-t5-large 40−→300 6.21 -0.69 2284.67 4.51×

Table 4: Decoder-only Model VS Encoder-Decoder Model. We experimented with the decoder-only model Llama
and the encoder-decoder model Flan-t5.

Model Output Length ACC(%) ∆(ACC) Time(s) Speed Up
GSM8K
Llama2-13B−→Llama2-7B 40−→300 19.18 4.78 10871.01 1.31×
Bloom-7B−→Bloom-3B 40−→300 2.58 0.23 5198.60 0.84×
Llama2-7B−→Bloom-3B 40−→300 6.82 4.47 4154.40 1.06×
Llama2-13B−→Bloom-3B 40−→300 7.73 5.38 4186.22 3.40×
Llama2-13B−→Bloom-7B 40−→300 10.31 5.91 3725.90 3.82×
CSQA
Llama2-13B−→Llama2-7B 30−→100 69.86 9.17 3579.21 1.18×
Bloom-7B−→Bloom-3B 30−→100 20.63 -0.25 2250.04 1.01×
Llama2-7B−→Bloom-3B 30−→100 40.05 19.17 2134.58 1.52×
Llama2-13B−→Bloom-3B 30−→100 41.2 20.32 2210.29 1.92×
Llama2-13B−→Bloom-7B 30−→100 39.8 18.01 2405.2 1.76×

Table 5: Comparative analysis of teacher influence on student models using decoder-only models, Llama and Bloom.

Average Output Length ACC ∆(ACC)
ChatGPT Ours

Full ChatGPT 76.68 - 68.16 -

Llama2-7B

- 10 −→ 300 19.41 0.23
- 20 −→ 300 27.52 8.34
- 30 −→ 300 32.83 13.65
- 40 −→ 300 40.79 21.61

Llama2-13B - 40 −→ 300 48.14 24.49
Llama2-70B - 40 −→ 300 64.75 8.12

Table 6: Result on GSM8K when using ChatGPT as
teacher model and Llama2-7B, 13B, 70B as student
model. “−→” signifies the output length transition from
ChatGPT to the Llama2 model. “∆(ACC)” denotes
the improvement in accuracy (%) achieved by GKT
framework compared to using only the corresponding
Llama2 model. “Full ChatGPT” denotes the ChatGPT
performance on GSM8K without GKT

model results in a substantial improvement over376

using Llama2-13B as the teacher model. Specifi-377

cally, on the GSM8K dataset, there’s an increase of378

21.53 % compared to Llama2-13B teacher (from379

19.26% to 40.79% ). We can also see from the ta-380

ble that stronger student model can preserve more381

teacher model abilities. From another perspective,382

this approach allows for more cost-effective out- 383

comes. When utilizing ChatGPT’s API interface 384

and employing the best performance Llama2-70B 385

as the student model, we can achieve 95.00% of 386

ChatGPT’s performance at 52% of the cost, effec- 387

tively showcasing the GKT framework’s “cheap 388

and cheerful” charm. 389

4.5 Further Exploration 390

In exploring the ideal amount of guidance a teacher 391

model should offer to student models, we plotted 392

accuracy against varying guidance lengths for the 393

GSM8K and CSQA datasets (from 10 to 40 tokens). 394

The detailed experiment can be found in Appendix 395

C.1. Our results indicate that the teacher model 396

should output the first 40 tokens for the GSM8K 397

dataset and the first 30 tokens for the CSQA dataset, 398

as these lengths optimize performance. We also 399

investigated the influence of few-shot exemplars 400

on student models’ performance in Appendix C.2. 401

The overall performance improved with an increase 402

of exemplar number. Consequently, we chose 8- 403

shot exemplars for GSM8K and 7-shot for CSQA, 404
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aligning with the Manual-CoT (Wei et al., 2022b).405

5 Related Work406

The aspect most relevant to our work is knowl-407

edge distillation(Tunstall et al., 2023; Jiang et al.,408

2023; Chiang et al., 2023; Li et al., 2023; Chen409

et al., 2023). Knowledge distillation involves con-410

densing the expertise from larger models into more411

compact versions, thereby ensuring these smaller412

models retain high efficiency while still achieving413

impressive performance. Li et al. (2023) introduces414

Symbolic Chain-of-Thought Distillation (SCoTD),415

which trains a smaller "student" language model416

using the outputs (reasoning chains) of a larger417

"teacher" model. The teacher model first generates418

multiple reasoning chains for a given task, show-419

casing step-by-step problem-solving. The student420

model then are fine-tuned on these examples, essen-421

tially mimicking the teacher’s reasoning process.422

This training enables the student model to perform423

complex reasoning tasks more effectively, despite424

its smaller size. Tunstall et al. (2023) presents425

a distillation framework named Distilled Direct426

Preference Optimization (dDPO) result in a 7B427

model named ZEPHYR. The method comprises428

three steps: (1) distilled supervised fine-Tuning429

(2) AI feedback through preferences and (3) dis-430

tilled direct preference optimization. Different431

from knowledge distillation, our work focuses on432

leveraging the knowledge of larger models to en-433

hance the overall efficiency and performance. The434

proposed GKT framework circumvents the usual re-435

quirements of producing a distillation dataset from436

a teacher model or fine-tuning the student model,437

streamlining the knowledge transfer process.438

Another line of study that is related to our work439

is speculative decoding (Leviathan et al., 2023a).440

Speculative decoding uses two models: the origi-441

nal target model and a much smaller approximate442

model. The smaller model handles autoregres-443

sive sampling, while the larger assesses the out-444

put. Simple tokens are generated by the smaller445

model, with complex tokens handled by the larger.446

Based on speculative decoding, (He et al., 2023)447

proposed Retrieval-Based Speculative Decoding448

(REST) which combines speculative decoding with449

retrieval techniques. Instead of using a smaller450

LM for draft generation, REST bypasses the need451

for an additional small LM by retrieving draft to-452

kens from a pre-built datastore containing context-453

continuation pairs. These drafts are then verified454

by a large LM. 455

Recently, Ning et al. (2023) proposed skeleton- 456

of-thought (SoT). SoT first guides LLMs to first cre- 457

ate a concise “skeleton” of an answer and then fill 458

in each point of the skeleton in parallel, speeding 459

up the response process. Xu et al. (2023) introduces 460

Super In-Context Learning (SuperICL), a method 461

enhancing the performance of large language mod- 462

els (LLMs) by integrating them with smaller, lo- 463

cally fine-tuned models. These smaller models, 464

acting as plug-ins, provide task-specific knowledge 465

and predictions. The process involves fine-tuning 466

a small model on task-specific data, using it to 467

generate predictions and confidence scores for in- 468

context examples, and combining these with the 469

LLM’s general language understanding. This ap- 470

proach aims to overcome limitations of In-Context 471

Learning (ICL) in handling larger datasets, improv- 472

ing both performance and stability on supervised 473

tasks. While SuperICL also integrates LLMs and 474

LMs, it primarily focuses on enhancing model per- 475

formance without considering the efficiency of the 476

framework. This focus on performance enhance- 477

ment can even negatively impact overall efficiency. 478

Whereas, GKT focuses on finding the optimal bal- 479

ance between efficiency and effectiveness 480

6 Conclusion 481

We introduce the innovative Guidance-based 482

Knowledge Transfer (GKT) framework, designed 483

to leverage the knowledge of larger models to en- 484

hance the efficiency and performance of smaller 485

models, while maintaining the flexibility of person- 486

alized generation settings, allowing users to freely 487

adjust the generation parameters. The unique col- 488

laborative framework of GKT seamlessly integrates 489

into cloud-edge architectures, deploying smaller 490

models on edge devices to minimize data trans- 491

mission delays and expedite response generation. 492

Our results demonstrate remarkable improvements: 493

a maximum accuracy increase of 14.18% and a 494

10.72× speed-up on the GSM8K dataset, and a 495

14.00% accuracy enhancement with a 7.73× speed 496

increase on the CSQA dataset. Moreover, when uti- 497

lizing ChatGPT as teacher model and Llama2-70B 498

as the student model, we can achieve 95.00% of 499

ChatGPT’s performance at 52% of the cost. GKT 500

signify major strides in performance metrics, com- 501

bining accuracy with computational speed-ups - all 502

wrapped up in a “cheap and cheerful” package. 503
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Limitation504

The Guidance Knowledge Transfer (GKT) frame-505

work exhibits certain limitations compared to tra-506

ditional knowledge distillation methods. Knowl-507

edge distillation primarily relies on a pre-trained508

smaller model, often leading to faster inference509

speeds. However, the GKT framework still depends510

on a large model to generate guidance prompts dur-511

ing inference. This approach aims to reduce the512

limitations brought about by fine-tuning through513

performance loss during inference while support-514

ing customized configurations of the framework.515

Moreover, the length of guidance prompts gener-516

ated by the GKT framework for different datasets is517

specific. Although the generation method is univer-518

sally applicable, finding a universally appropriate519

length for guidance prompts that suits various sce-520

narios remains a challenge. This means that addi-521

tional adjustments and optimizations may be neces-522

sary for different datasets and application contexts523

to ensure optimal performance. Therefore, one of524

the future research directions is to explore how to525

more effectively determine the appropriate lengths526

of guidance prompts to enhance the universality527

and flexibility of the GKT framework.528
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Appendix674

A Dataset Statistics675

The detailed dataset statistics can be found in Table676

7

Dataset GSM8K CSQA

#Instance 1319 1221
Average input length

47 28
(Words)

Answer Format int str

Question Format
grade school single-choice

math problems question
Few-shot 8 7

Table 7: Dataset statistics

677

B Hyperparameters678

The detailed hyperparameter settings can be found679

in Table 8

Parameters Value
batch size (Bloom 7B) 32
batch size (Llama2 13B) 24
batch size (Llama2 70B) 10
top_p 0.9
temperature 0.8
max_seq_len 1024

Table 8: Hyperparameters

680

C Further Exploration681

C.1 How much guidance should a teacher682

offer to students ?683

To investigate the optimal amount of assistance684

a teacher should provide to a student, or in other685

words, to determine the most suitable guidance686

length for maximizing student benefits, we con-687

ducted experiments. Intuitively, one might assume688

that the more a teacher model outputs, the higher689

the accuracy of the model’s response. However,690

longer guidance tends to weaken the model’s accel-691

eration effect. Therefore, we plotted a line graph692

showing the changes in accuracy as the guidance693

length varied from 10 to 40, in intervals of 10, as694

depicted in Figure 5. Based on our experiments,695

we established that for the GSM8K dataset, the696

teacher model should output the first 40 tokens of697

the answer. For the CSQA dataset, which gener-698

ally requires shorter responses, we set the teacher699

model to output the first 30 tokens.700

10 20 30 40
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A
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%
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Figure 4: Performance of different length ranges. We
use Llama2-13B as teacher model and Llama2-7B as
student model.

C.2 How few-shot exemplars affect students? 701

2 4 6 8
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Figure 5: Performance of different few-shot exemplar
number

In this investigation, we focused on the role of 702

few-shot exemplars in influencing the performance 703

of student models. We used a range of few-shot ex- 704

emplars, provided through Manual-CoT (Wei et al., 705

2022b), acros GSM8K and CSQA. The variation in 706

accuracy with the change in the number of few-shot 707

exemplars is illustrated in Figure 5. As depicted in 708

Figure 5, it can be observed that the performance 709

of the student models improves with the increase in 710

the number of exemplars. Thus, in this experiment, 711

we select 8-shot for GSM8K and 7-shot for CSQA 712

in line with the Manual-CoT. 713

D Prompt used for GSM8K and CSQA 714

The prompt used for GSM8K and CSQA can be 715

found in Figure 6 and Figure 7 respectively. 716
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Figure 6: The prompt used for GSM8K
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Figure 7: The prompt used for CSQA
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