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Abstract

Link prediction is a vital task in graph machine learning, involving the anticipation
of connections between entities within a network. In the realm of drug discov-
ery, link prediction takes the form of forecasting interactions between drugs and
target genes. Likewise, in recommender systems, link prediction entails suggest-
ing items to users. In temporal graphs, link prediction ranges from friendship
recommendations to introducing new devices in wireless networks and dynamic
routing. However, a prevailing challenge in link prediction lies in the reliance on
topological neighborhoods and the lack of informative node metadata for making
predictions. Consequently, predictions for nodes with low degrees, and especially
for newly introduced nodes with no neighborhood data, tend to be inaccurate
and misleading. State-of-the-art models frequently fall short when tasked with
predicting interactions between a novel drug and an unexplored disease target or
suggesting a new product to a recently onboarded user. In temporal graphs, the
link prediction models often misplace a newly introduced entity in the evolving
network. This paper delves into the issue of observation bias related to the inequity
of data availability for different entities in a network, unavailability of informative
node metadata, and explores how contemporary models struggle when it comes to
making inductive link predictions for low-degree and previously unseen isolated
nodes. Additionally, we propose a non-end-to-end training approach harnessing
informative node attributes generated by unsupervised pre-training on corpora
different from and with significantly more entities than the observed graphs to
enhance the overall generalizability of link prediction models.

1 Introduction

Graph datasets are ubiquitous in diverse domains, encompassing social networks (Ball and Newman,
2013), collaboration networks (Wang et al., 2020b), protein-protein interaction (PPI) networks (Qi
et al., 2006), drug-target interaction (DTI) networks (Yamanishi et al., 2008), power grids (Pagani
and Aiello, 2011), and transportation networks (Lordan and Sallan, 2020). These real-world graphs
are often characterized by sparsity and partial observability, making the problem of link prediction for
unobserved edges of paramount importance (Liben-Nowell and Kleinberg, 2007). The significance
of link prediction extends to numerous applications, ranging from predicting protein interactions
(Kovács et al., 2019) to understanding drug responses (Stanfield et al., 2017), recommending products
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(Lakshmi and Bhavani, 2021), completing knowledge graphs (Nickel et al., 2016), and suggesting
connections in social networks (Adamic and Adar, 2003).

Moreover, Link prediction is a crucial task in temporal networks (Qin and Yeung, 2023). Applications
range from friendship and item recommendations (Campana and Delmastro, 2017; Wang et al.,
2020a), intrusion detection on the internet (King and Huang, 2023), channel allocation in wireless
networks (Gao et al., 2020), traffic detection and dynamic routing in optical networks (Vinchoff et al.,
2020; Aibin et al., 2021), and molecular dynamic simulations (Ashby and Bilbrey, 2021). Similar
to static graphs, the majority of the temporal link prediction models (Rossi et al., 2020; Xu et al.,
2020) combine graph neural networks leveraging neighborhood topology with memory modules for
predicting future links in both continuous and discrete time domains.

Link prediction in static graphs has been extensively studied, resulting in various methods including
similarity-based indices, probabilistic approaches, and dimensionality reduction techniques (Kumar
et al., 2020). For link prediction, latent representations such as Node2Vec (Grover and Leskovec,
2016) are commonly employed, capturing graph topology in low-dimensional feature vectors (Cao
et al., 2015; Perozzi et al., 2014; Tang et al., 2015; Wang et al., 2016). Graph neural networks (GNN)
(Zhang and Chen, 2018), graph convolutional network (GCN) (Zhang et al., 2022), graph attention
network (GAT) (Veličković et al., 2018), and variational graph auto-encoder (VGAE) (Kipf and
Welling, 2016) have been recently used in link prediction tasks. Although these topology-based
approaches achieve commendable performance in transductive link prediction, where the nodes are
shared between train and test datasets, these methods fail in making link predictions for never-before-
seen nodes (Chatterjee et al., 2023b,a; Szymborski and Emad, 2022). GraphSAGE (Hamilton et al.,
2017) and GraIL (Teru et al., 2019) tackle inductive link prediction in static graphs, although they
leverage the neighborhood of a newly arrived node. Thus, these models are unable to handle the nodes
lacking neighborhood topology, in other words, the nodes that lack sufficient samples in train and
test datasets. DEAL (Hao et al., 2021) makes inductive link prediction for nodes having only node
attributes. However, the DEAL alignment mechanism between node attributes and graph structure
creates a high overlap between the attributes and neighborhood topology, combined with the lack of
informative node metadata in real-world graphs, making the prediction task difficult for unseen nodes
lacking sufficiently observed neighborhood topology.

Similar to static graphs, temporal graphs compute the embedding of time-dependent topology via
shallow encoders, decomposition approaches, random walk, or autoencoders and train a downstream
decoder for making temporal link prediction (Kazemi et al., 2020). Similar to GraphSAGE in
static graphs, state-of-the-art (SOTA) temporal inductive link prediction models like DyHATR (Xue
et al., 2020), DGCN (Manessi et al., 2020), TGAT (Xu et al., 2020), DyRep (Trivedi et al., 2018),
and TGN-attn (Rossi et al., 2020) execute inductive link prediction in temporal graphs where the
neighborhood-topology of test nodes is known. Thus, these models are limited to the nodes with
plentiful data samples and fail to make predictions for newly arrived single nodes.

Recent research has underscored the importance of inductive link prediction, particularly for nodes
lacking neighborhood information, and for improving the interpretability of predictions. For instance,
AI-Bind (Chatterjee et al., 2023b) addresses the challenge of predicting the binding between a novel
drug and an uncharacterized target, where both entities lack established interaction records in existing
databases (Wishart et al., 2017; Liu et al., 2007). The concept of observation bias in PPI networks was
first identified by Park et al. (Park and Marcotte, 2012). Link prediction models tend to excel when
dealing with proteins that have abundant samples in the training dataset. In scenarios with random
train-test splits, the majority of links in both train and test datasets are attributed to the hub nodes
(Barabási and Alber, 1999), and overall test performance heavily relies on these highly connected
nodes (Chatterjee et al., 2023b). Consequently, during inductive testing, these models struggle to
provide meaningful predictions for proteins with fewer or no samples. RAPPPID (Szymborski and
Emad, 2022) highlights the necessity of learning from protein molecular structures rather than relying
solely on the PPI topology for better prediction on proteins with fewer samples in the databases used
in training. Similar to AI-Bind in the context of DTI, RAPPPID proposes inductive tests using node
attributes in PPI networks. Analogous situations arise in temporal networks, such as when introducing
a new IoT (Internet of Things) device into a wireless network (Gao et al., 2020) or studying the
binding of a new molecule via molecular dynamic simulations (Ashby and Bilbrey, 2021).

Contributions: (1) We address the challenge of observation bias due to unequal data availability
among entities, leading to inferior model performance when dealing with low-degree and isolated
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nodes lacking sufficient examples in both training and testing. (2) We propose unsupervised pre-
training of node attributes on corpora different from and larger than the observed graph. These
attributes combined with a downstream decoder trained in a non-end-to-end fashion enhance the per-
formance of inductive link prediction, particularly for isolated nodes that have never been encountered
before.

2 Problem Formulation

2.1 Static Graphs

Consider a graph instance G = (V,E,X), where V represents the set of vertices (or nodes), E
represents the set of edges (or links), and the node attributes are captured in the matrix X . Nw(u) and
N ′

w(u) represent the neighborhoods of node u seen by the link prediction model w during training
and testing, respectively. |Nw(u)| and |N ′

w(u)| are the number of the immediate neighbors (a.k.a.,
degree) of node u observed by the link prediction model w in training and testing, respectively.
We focus on undirected unipartite graphs, although this formulation can be extended to encompass
directed, bipartite, and multilayered graphs as well. For instance, G could represent a PPI network,
where nodes correspond to proteins, links represent interactions between proteins and node attributes
are molecular structure embeddings obtained using ProtVec (Asgari and Mofrad, 2015) on the amino
acid sequences of the proteins.
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Figure 1: SOTA link prediction models leverage the neighborhood topology of nodes. In the top
scenario, since the neighborhood topologies of the inductive test nodes a and b are well-observed, the
topology-based encoders can represent these nodes adequately for downstream link prediction. In the
bottom scenario, the neighborhoods of the inductive test nodes are unobserved by the model. Thus,
in the absence of informative node metadata, the model fails to predict new edges for these newly
arrived nodes a and b.

We construct a link prediction model w using supervised learning on the set of links E. The edge set
is partitioned into observed and unobserved edges during training as E = Eo ∪ Eu. Our goal is to
learn a function that maps the observed nodes and node attributes (Vo, Xo) to the observed edges
Eo, with the hope that it will generalize to the unobserved edges Eu. We also define three types
of link prediction scenarios based on the observed and unobserved nodes, denoted as Vo and Vu,
respectively:

• Transductive: Predicting (a, b) ∈ Eu, where a, b ∈ Vo,
• Semi-inductive: Predicting (a, b) ∈ Eu, where a ∈ Vo and b ∈ Vu or vice-versa,
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• Inductive: Predicting (a, b) ∈ Eu, where a, b ∈ Vu.

In this work, we focus on the semi-inductive and inductive link prediction scenarios. The link
prediction model takes input {Vo, Xo, Eo}, and makes predictions on Eu induced by the isolated
node(s) u where |Nw(u)| = 0 and |N ′

w(u)| = 0 ∀u ∈ Vu (see Figure 1).

2.2 Temporal Graphs

We consider discrete-time temporal graphs (Holme and Saramäki, 2012), where the graph instances
are captured at intervals of ∆t, with time stamps t0, t1 = t0 +∆t, ..., tn = t0 + n∆t.

The temporal graph instances of the evolving network are denoted as Gt0 = (Vt0 , Et0 , Xt0), Gt1 =
(Vt1 , Et1 , Xt1), ..., Gtn = (Vtn , Etn , Xtn), corresponding to time stamps t0, t1, ..., tn, respectively.
We define the unobserved node set from time tj to tj+1 as Vu = Vtj+1

\Vtj , and the unobserved edge
set as Eu = Etj+1 \Etj . In this setting, the link prediction model takes input Gtj = (Vtj , Etj , Xtj )
and makes predictions on Eu induced by the isolated node(s) u, where |Nw(u)| = 0 and |N ′

w(u)| = 0
∀u ∈ Vu.

3 Observation Bias

Power-law degree distributions are common in real-world graphs (Barabási and Alber, 1999; Faloutsos
et al., 1999), resulting in a majority of nodes having low degrees while a few are highly connected.
Traditional machine learning cross-validation randomly splits edges, leading to both train and test sets
being dominated by high-degree nodes (hubs). This allows the SOTA models to effectively learn the
neighborhood topology of the hubs, resulting in accurate predictions and overall high performance
(Mara et al., 2022, 2020; Chatterjee et al., 2023b,a).

However, this success is not uniform across nodes with varying degrees. In real-world data, a node’s
degree often correlates with the available information or samples. For example, extensively studied
drugs with more samples in databases like DrugBank (Wishart et al., 2017) and BindingDB (Liu et al.,
2007) become hubs in the training dataset for DTI prediction. Models like (Huang et al., 2020b,a)
heavily rely on these well-explored drugs, leading to accurate hub-related predictions. However,
they struggle when predicting interactions involving new drugs with low degrees due to limited data
(Chatterjee et al., 2023b). Predicting in data-scarce scenarios is crucial, particularly for rare diseases
(Genes, 2022) and developing new drugs for them when information is lacking in established disease
databases like DisGeNET (Pinero et al., 2019).

In Figure 2, we delve into this phenomenon within the benchmark drug-drug interaction (DDI)
network (Wishart et al., 2017; Guney, 2017) from Open Graph Benchmark (OGB) (Hu et al., 2020).
We employ GraphSAGE (Hamilton et al., 2017), an inductive link prediction method designed for
static graphs. The drugs in ogbl-ddi do not contain any node metadata. Thus, GraphSAGE only
leverages the DDI topology. We illustrate the power-law degree distribution inherent in the DDI
graph in Figure 2E, which confirms the presence of low-degree drugs and hubs. Consequently, certain
drugs benefit from richer training data. Figure 2F breaks down the performance of GraphSAGE based
on observed node neighborhoods during training, revealing its limitations when dealing with nodes
with |Nw(u)| = 0. Conversely, for drugs with ample training samples and high degrees, GraphSAGE
attains significantly higher prediction performance.

4 Experiments

4.1 Methodology

To improve inductive link prediction performance for isolated and low-degree nodes, we model link
prediction as a pairwise learning task (Ying and Zhou, 2015) on node attributes. The methodology
is visualized in Figure 3. Instead of learning the node representations and training the downstream
decoder altogether in a traditional end-to-end setting (Božič et al., 2020), we first learn the node
attributes on a large corpus independent of the observed graph and then train the decoder on the
training edges. We test our method on three static graphs from OGB (Hu et al., 2020) and one
temporal graph from Reddit (Kumar et al., 2018). The methodology for obtaining the pre-trained
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Figure 2: GraphSAGE applied to the ogb-ddi dataset. (A) Sample training graph instance. (B)
Transductive link prediction: Predicting the link between nodes v and y is facilitated by leveraging
neighborhood topology. (C) Semi-inductive link prediction: Link prediction for a new node a depends
on the degree of the existing node in the graph. Preferential attachment (Barabási and Alber, 1999) is
a key mechanism in the emergence of power-law degree distributed graphs, and hence the edge u-a is
more likely to exist and is easier to predict compared to the edge v-a. (D) GraphSAGE struggles with
link prediction for nodes a and b whose neighborhoods are unobserved. (E) The drug-drug interaction
network exhibits a power-law degree distribution. (F) GraphSAGE excels in link prediction for
high-degree nodes but falters for nodes with limited observed edges or no neighborhood data. Results
are reported based on a 5-fold cross-validation.

node attributes is described here: (a) In ogbl-ppa (protein-protein interaction network), we employ
100-dimensional ProtVec vectors as node attributes (Asgari and Mofrad, 2015), trained on a larger
and more diverse dataset of 1,640,370 amino acid trigram sequences from the Swiss-Prot database
(Bairoch, 1996), compared to the ogbl-ppi graph, which contains 576,289 proteins. (b) In ogbl-collab
(collaboration network), we employ 128-dimensional Word2Vec embeddings trained on a vast corpus
of 10 billion Google news articles (Mikolov et al., 2013), which is both disjoint from and considerably
larger than the 300 million papers authored by 235,868 researchers in ogbl-collab. The average of
the Word2Vec embeddings of the papers for each author is used as node attributes. (c) In ogbl-ddi
(drug-drug interaction network), we begin by retrieving drug molecular SMILES (Weininger, 1988)
from PubChem (Kim et al., 2015). Subsequently, we utilize 300-dimensional Mol2vec embeddings
(Jaeger et al., 2018) as node attributes, which were pre-trained on an extensive corpus of 19.9 million
chemicals from ZINC (Irwin et al., 2012) and ChEMBL (Gaulton et al., 2011) libraries. This training
corpus significantly surpasses the 4,267 drugs found in ogbl-ddi. (d) In the Reddit hyperlink network,
we create pre-trained node attributes from post content using GloVe word embeddings trained on
a massive corpus of 840 billion tokens (Pennington et al., 2014). It’s worth noting that the Reddit
network (Kumar et al., 2018), consisting of 3.6 billion tokens, involving 118,381 users and 51,278
subreddits, is substantially smaller than the GloVe training dataset.

Training the node attributes on a corpus larger than the observed graph makes the attributes gen-
eralizable toward newly arrived nodes since the embeddings are independent of the training graph
topology. In the next phase, we train a decoder in a supervised manner on the training graph, with the
concatenation of the pair of node embeddings for each training link as input. This decoder is then
used for predicting the link probabilities on unseen nodes.

We use random node split inspired by GraIL (Teru et al., 2019) for creating inductive and semi-
inductive link prediction scenarios in static graphs. In this train-test-validation split method, we
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randomly split the nodes of the original graph V into three groups (Vtrain, Vvalidation, and Vtest) at
an 80:10:10 ratio. Then, we obtain the subgraphs Gtrain, Gvalidation, and Gtest induced by Vtrain,
Vvalidation, and Vtest, respectively. This approach creates multiple disconnected components in the
test data, making the test graph topology significantly different from the train graph.
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Figure 3: Our methodology pre-trains the node attributes in an unsupervised manner on a corpus
significantly different from and larger than the observed training graph. These node attributes are
then concatenated and passed through a decoder, which is trained in a supervised fashion using the
links in the train graph. In our two-shot learning (unsupervised + supervised) setup, we formulate link
prediction as a binary classification task, where the output of the decoder represents the probability
of an unobserved edge existing between two unseen nodes. We implemented a multi-layer perception
(MLP) as our decoder architecture.

4.2 Inductive Link Prediction on Isolated Nodes in Static Graphs

Our approach does not rely on the neighborhood topology of nodes for making link predictions,
but relies solely on the pre-trained node attributes, and is able to make accurate link predictions for
unseen isolated nodes. We use as the downstream decoders (see Figure 3) OGB-defined MLPs (see
here). These MLPs take concatenated attributes of the two nodes at the end of each edge as input.
We compare our approach with the top-performing state-of-the-art model from the OGB leaderboard
PLNLP (Wang et al., 2021). PLNLP combines SAGE (Hamilton et al., 2017) neighborhood encoders
concatenated with OGB node attributes (Hu et al., 2020) with pairwise learning decoders. ogbl-ddi
has no node attributes in the benchmark. ogbl-ppi has 58-dimensional one-hot node attributes that
indicate the species that the corresponding protein comes from. ogbl-collab has 128-dimensional
features, obtained by averaging the word embeddings of papers that are published by the authors.

PLNLP outperforms multiple well-established static link prediction models like GraphSAGE (Hamil-
ton et al., 2017), GCN (Kipf and Welling, 2017), SEAL (Zhang and Chen, 2017), Node2vec (Grover
and Leskovec, 2016), DeepWalk (Perozzi et al., 2014), and CFLP (Zhao et al., 2022). Our findings,
summarized in Table 1, demonstrate that the inductive performance of PLNLP is significantly lower
compared to its transductive performance. Thus, the majority of the prediction power of PLNLP
is derived from leveraging the neighborhood-topology of the nodes. Furthermore, our approach
combining pre-trained node attributes with MLP outperforms PLNLP in the inductive test scenario
(see Table 2). Thus, learning from neighborhood topology is insufficient in inductive link prediction
scenarios involving isolated nodes, and the need to learn from informative node attributes is validated.

4.3 Inductive Link Prediction on Isolated Nodes in Temporal Graphs

We evaluate our approach on temporal networks for link prediction on newly arrived nodes. We utilize
the Reddit hyperlink network dataset (Kumar et al., 2018), which spans 3 years (2014-2017) and
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Table 1: PLNLP is a top-performing link prediction model from OGB leaderboard leveraging
pairwise learning with SAGE neighborhood encoders and OGB-provided node attributes. PLNLP’s
performance significantly reduces from transductive to inductive link prediction scenarios. Hits@Top
K is evaluated with default values: K=100 for ogbl-ppa, K=50 for ogbl-collab, and K=20 for ogbl-ddi,
as recommended by OGB benchmark metrics. We conduct a 5-fold cross-validation for each dataset.

Dataset Transductive Hits@Top K Inductive Hits@Top K
ogbl-ppa 32.38± 2.58 0.09± 0.03
ogbl-collab 70.59± 0.29 11.56± 0.93
ogbl-ddi 90.88± 3.13 0.01± 0.02

Table 2: Our non-end-to-end training approach of combining MLP and pre-trained node attributes
outperforms PLNLP in inductive tests involving isolated nodes in terms of three performance metrics
AUROC, AUPRC, and Hits@Top K. Hits@Top K is evaluated with default values: K=100 for
ogbl-ppa, K=50 for ogbl-collab, and K=20 for ogbl-ddi, as recommended by OGB benchmark
metrics. AUROC is the Area Under the Receiver Operating Characteristics and AUPRC is the Area
Under the Precision Recall Curve (average precision). We conduct a 5-fold cross-validation for each
dataset.

Dataset PLNLP Pre-trained Node Attributes
AUROC AUPRC AUROC AUPRC

ogbl-ppa 0.51± 0.03 0.12± 0.04 0.78± 0.03 0.35± 0.03
ogbl-collab 0.61± 0.03 0.23± 0.07 0.97± 0.02 0.92± 0.02

ogbl-ddi 0.50± 0.04 0.11± 0.07 0.54± 0.02 0.21± 0.02

Dataset PLNLP Pre-trained Node Attributes
Hits@TopK(%) Hits@TopK(%)

ogbl-ppa 0.09± 0.03 0.39± 0.03
ogbl-collab 11.56± 0.93 36.44± 3.11

ogbl-ddi 0.01± 0.02 0.39± 0.02

consists of subreddit communities. We train each year and execute link prediction for newly arrived
isolated nodes in the following year. We employ a 3-layer MLP decoder with hidden layer sizes of
100, a learning rate of 0.001, 200 epochs, ReLU activation, and ADAM solver. We compare our
approach leveraging pre-trained node attributes with DyHATR (Xue et al., 2020), a state-of-the-art
temporal link prediction model, in inductive link prediction. DyHATR uses a hierarchical attention
mechanism to learn heterogeneous information from graph topology and incorporates recurrent neural
networks with temporal attention to capture evolutionary patterns. DyHATR outperforms multiple
SOTA temporal link prediction models such as DHNE (Yin et al., 2019), metapath2vec-GRU and
metapath2vec-LSTM (Dong et al., 2017), dyngraph2vec (Goyal et al., 2020), GraphSAGE-LSTM,
and DySAT (Sankar et al., 2020). We observe in Table 3 that our approach outperforms DyHATR for
newly arrived isolated nodes.

Table 3: We evaluate inductive link prediction performance on newly arrived isolated nodes across
various temporal instances of the subreddit network. Non-end-to-end training with pre-trained
node attributes yields the best performance compared to DyHATR in inductive tests for isolated nodes.

Model 2014-2015 2016-2017 2017-2018
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Pre-trained Node Attributes 0.70 0.66 0.63 0.60 0.69 0.65
DyHATR 0.45 0.25 0.45 0.48 0.46 0.28
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5 Related work

Joachims (1999) highlighted inductive test challenges in machine learning, particularly in text classi-
fication. Present link prediction models (Ai et al., 2022) combine graph topology and node attributes.
Successful transductive methods like Planetoid (Yang et al., 2016), GraphSAGE (Hamilton et al.,
2017), and GraIL (Teru et al., 2019) share effective performance when train and test graphs have
similar topologies. However, they struggle with nodes lacking observed neighborhood topologies, es-
pecially those with limited data samples. DEAL (Hao et al., 2021) innovatively combines topological
data and node attributes for link prediction. SEG (Ai et al., 2022) improves transductive performance
using a one-layer graph convolutional network (GCN) for topology encoding and an MLP for node
attributes. Yet, the absence of informative node attributes in real-world networks limits these models
to graph topology.

Erhan et al. (2010) explained the advantages of unsupervised pre-training, a concept we apply to link
prediction. End-to-end training can lead to overfitting to observed nodes, hampering generalization to
unseen ones. To address this, we use unsupervised pre-training of node attributes and a downstream
decoder trained in a non-end-to-end fashion, coupled with low learning rates and early stopping
on validation data. This approach helps the model find a more generalizable minimum, greatly
enhancing inductive link prediction for unseen isolated nodes. Erhan et al. (2010) also noted that
larger unsupervised pre-training datasets can further improve generalizability.

The inadequacy of SOTA models in inductive link prediction in DTIs and PPIs has recently come
under scrutiny in AI-Bind (Chatterjee et al., 2023b) and RAPPPID (Szymborski and Emad, 2022),
respectively. AI-Bind’s findings reveal a marked decline in the performance of two prominent SOTA
DTI prediction models, DeepPurpose (Huang et al., 2020a) and MolTrans (Huang et al., 2020b),
when transitioning from transductive tests (DeepPurpose AUROC 0.82 ± 0.003, AUPRC 0.48 ±
0.004; MolTrans AUROC 0.86 ± 0.07, AUPRC 0.80 ± 0.09) to inductive tests (DeepPurpose AUROC
0.60 ± 0.066, AUPRC 0.42 ± 0.063; MolTrans AUROC 0.62 ± 0.02, AUPRC 0.48 ± 0.03). Similar
observations apply to two SOTA PPI prediction models, SPRINT (Li and Ilie, 2017) and DeepPPI
(Richoux et al., 2019), with their inductive link prediction performance (SPRINT AUROC 0.65;
DeepPPI AUROC 0.63) significantly lower than their transductive counterparts (SPRINT AUROC
0.97; DeepPPI AUROC 0.87).

AI-Bind addresses inductive link prediction in DTI bipartite graphs by integrating network-derived
negatives and employing a two-shot learning strategy (Chatterjee et al., 2023b). RAPPPID enhances
inductive PPI prediction with LSTM-regularized protein embeddings (Hochreiter and Schmidhuber,
1997), but struggles with generalization beyond the training data (Szymborski and Emad, 2022). Our
approach combines unsupervised pre-training of node attributes with a two-shot learning-trained
downstream decoder, resulting in significant inductive link prediction improvements across diverse
unipartite graphs, even with traditional random negative sampling (Yang et al., 2020).

Node attributes play a crucial role in graph stream problems, dynamic network research (Jiang
et al., 2015; Li et al., 2018), and cold-start scenarios (Gantner et al., 2010; Li et al., 2021). While
pre-training has been used in dynamic network research (Shao et al., 2022) and cold-start problems
(Liu et al., 2023; Hao et al., 2023; Wang et al., 2022), it has primarily focused on training GNN model
parameters rather than node attributes. Our method introduces pre-training for node attributes, which
is novel and has proven to be crucial in developing interpretable and generalizable link prediction
models (Chatterjee et al., 2023b; Szymborski and Emad, 2022).

6 Conclusion and Future Work

Our work builds on link prediction models’ strengths in transductive tests, emphasizing the need
for robust inductive link prediction in both static and temporal graphs. We note a considerable
performance drop in state-of-the-art models during inductive tests, especially for isolated nodes. Our
two-shot learning method, involving unsupervised pre-training of node attributes on a significantly
larger corpus than the observed graph, improves inductive link prediction for new isolated nodes.
We will investigate the impact of pre-trained node attributes’ training corpus size on inductive
link prediction. In essence, our approach addresses data biases in link prediction and bolsters
generalizability in both static and temporal graphs.

Our code has been made open-source at: https://github.com/ChatterjeeAyan/ILP.

8

https://github.com/ChatterjeeAyan/ILP


Acknowledgment

R. Walters is supported by NSF grants 2107256 and 2134178.

References
Lada A Adamic and Eytan Adar. 2003. Friends and neighbors on the Web. Social Networks 25, 3

(July 2003), 211–230. https://doi.org/10.1016/s0378-8733(03)00009-1

Baole Ai, Zhou Qin, Wenting Shen, and Yong Li. 2022. Structure Enhanced Graph Neural Networks
for Link Prediction. https://doi.org/10.48550/ARXIV.2201.05293

Michał Aibin, Nathan Chung, Tyler Gordon, Liam Lyford, and Connor Vinchoff. 2021. On Short- and
Long-Term Traffic Prediction in Optical Networks Using Machine Learning. In 2021 International
Conference on Optical Network Design and Modeling (ONDM). IEEE, Gothenburg, Sweden, 1–6.
https://doi.org/10.23919/ONDM51796.2021.9492437

Ehsaneddin Asgari and Mohammad R. K. Mofrad. 2015. Continuous Distributed Representation
of Biological Sequences for Deep Proteomics and Genomics. PLOS ONE 10, 11 (Nov. 2015),
e0141287. https://doi.org/10.1371/journal.pone.0141287

Michael Hunter Ashby and Jenna A. Bilbrey. 2021. Geometric learning of the conformational
dynamics of molecules using dynamic graph neural networks. arXiv:2106.13277 [cs.LG]

A Bairoch. 1996. The SWISS-PROT protein sequence data bank and its new supplement TREMBL.
Nucleic Acids Research 24, 1 (Jan. 1996), 21–25. https://doi.org/10.1093/nar/24.1.21

Brian Ball and M.E.J. Newman. 2013. Friendship networks and social status. Network Science 1, 1
(apr 2013), 16–30. https://doi.org/10.1017/nws.2012.4

Albert-László Barabási and Réka Alber. 1999. Emergence of Scaling in Random Networks. Science
286, 5439 (Oct. 1999), 509–512. https://doi.org/10.1126/science.286.5439.509
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