Ahead-of-Time P-Tuning

Anonymous ACL submission

Abstract

This paper proposes a simple reparametrization
for Prefix-Tuning — AoT P-Tuning, in which
we embed prefixes to a hidden state before eval-
uating the attention mechanism, saving a con-
siderable amount of time needed for evaluation.

We experimented with the proposed method on
GLUE Benchmarking Datasets and observed
that AoT P-tuning performed on par with or
better than P-Tuning v2 while being up to 1.3x
times faster during inference.

1 Introduction

P-Tuning (Liu et al., 2021b,a; Lester et al., 2021) is
a promising way to fine-tune large Language Mod-
els (LMs) (Devlin et al., 2019; Lan et al., 2020; Liu
et al., 2019; Radford et al., 2019). While it cur-
rently underperforms compared to other methods
for parameter-efficient fine-tuning (Hu et al., 2022;
Houlsby et al., 2019) on a wide range of tasks (Ding
et al., 2022), it has a practical, valuable property
that allows it to evaluate different trained prompts
parallel in a multi-task manner. This property is
why researchers aim to further develop P-Tuning
methods.

Although it is possible to perform multi-task
evaluation with P-Tuning, it introduces significant
computational overhead due to the concatenation
of prefixes to sequences and the evaluation of atten-
tion mechanism (Vaswani et al., 2017) on longer
sequences.

We propose a simple mechanism for parameter-
efficient fine-tuning of Language Models, namely
Ahead-of-Time (AoT) P-Tuning, for which we
add input-dependent bias before each Transformer
layer. Same as P-Tuning, it is possible to use AoT
P-Tuning in multi-task inference setups when a
single backbone LM is used for several downstream
tasks.

89

Fine-Tuning
P-Tuning v2
1 &= AoT P-Tuning (ours)

® © ®
o ~ ®©

GLUE Macro Score
©

. []

RoBERTa-Base

RoBERTIa-Large
(@

Figure 1: GLUE Macro scores (higher is better) across
RoBERTa-Base and RoBERTa-Large backbone models
with plain Fine-Tuning, P-Tuning v2, and proposed AoT
P-Tuning (with FC reparametrization). With the Base
model, AoT P-Tuning reached the same result as P-
Tuning v2. While for RoBERTa-Large, AoT P-Tuning
outperformed P-Tuning v2 and reached the same score
as Fine-Tuning. See Section 5.2 for more details.

The contribution of this paper can be summa-
rized as follows:

1. We described the intuition behind AoT P-
Tuning, which illustrates the connection of
the proposed method with P-Tuning.

2. We proposed two reparameterizations of AoT
P-Tuning weights: first based on a factorized
matrix trained from scratch, and second based
on a LM’s embeddings matrix passed through
a trainable Fully Connected network.

3. We experimented with the proposed method
on GLUE Benchmarking Datasets (Wang
et al., 2018) with the RoBERTa (Liu et al.,
2019) model and observed that AoT P-Tuning
performed on par with or better than P-Tuning
v2 (Liu et al., 2021a) while being up to 1.3
times faster during evaluation.

Py,

Py,
Q1

1%
Q2 *

1%}
Qs

Vs

~————

-
L

Rl |RK| |RK

(2)+ &

Q1 +|P.Q i +|RV
~— ~—
™\ ™\

Q: =+ |PQ % V2 +|RY
~— ~—
—\ ™\

Qs +|RQ Vs +|RY
~— ~—

Figure 2: Schematic comparison of P-Tuning v2 (left), and AoT P-Tuning (right). While plain P-Tuning concatenates
soft prompts to the sequences and thus causes computational overhead, AoT P-Tuning directly adds input-dependent
biases to), K, and V matrices. See Section 4 for more details of AoT P-Tuning architecture. Since the sequence
length is not increased, AoT P-Tuning takes significantly less time to evaluate, only requiring the overhead of adding
biases to the input sequence (See Section 5.3 for experiments with inference speed).

2 Recent Works

Currently, a wide range of different methods could
be referenced with P-Tuning. Liu et al. (2021b)
proposed to add soft prompts to embeddings of
the input sequence of the GPT-2 model (Radford
etal., 2019) to train it on classification tasks. Lester
et al. (2021) proposed a scheme similar to the one
used in Liu et al. (2021b) but trained a TS model
(Raffel et al., 2020) with P-Tuning to show how
the performance of the method changes with the
increased scale of the backbone model.

Lately, Qin and Eisner (2021); Li and Liang
(2021); Liu et al. (2021a) proposed to add prefixes
not only to the input embeddings but also at each
layer of the Transformer model. Also, Liu et al.
(2021a) proposed training linear classification head
on top of the backbone model instead of utilizing
LM head to obtain classification results.

Due to this range of similar methods, we will fol-
low the naming used by Liu et al. (2021a) and refer
to Prompt-Tuning (adding soft prompts to the input
embeddings) as P-Tuning v1 and to Prefix-Tuning
(adding soft prefixes at each layer of Transformer
backbone) as P-Tuning v2.

3 Background

3.1 Transformer Evaluation

Having an input sequence z = {zi1,...,z,},
where z; is token index, the embeddings of in-
put texts are evaluated as H = {FE,,,..., E,, },
where F € R!VI*? is the embeddings matrix, |V/|

is the vocabulary size, d is the size of the hidden
state of the model, and E,, is an embedding of
token ;. Then hidden states H" are passed to the
(i4-1)-th layer of the Transformer to evaluate H'+?,
with total [number of layers.

To do so, H' are firstly mapped through three
matrices Q, IC, V € R¥™? to get Q, K and V,
which are then used to evaluate the result of atten-
tion layer as:

A = attention(Q, K, V) =

T 1
\2)WV e R4, M

After evaluation of A, it is passed through the
remaining layers!, including residual connections
and FC layers to get H*+!. We omit layer index i
for attention result A for visibility here and later.

= softmax(

3.2 P-Tuning vl

Having a pre-trained Transformer LM with param-
eters O, instead of fine-tuning all parameters of this
model on a downstream task, it is possible to define
soft prompts P € RP*?4(Liu et al., 2021b), where
p is the length of prompt. P is then concatenated
to embeddings of input sequence as:

H" = concat(P, H) e RP+Mxd (2)

'In fact, Transformer architecture implies evaluation of
multi-head Attention. We omit this fact in this paper for
simplification since all derivations could be easily extended
on the multi-head case.

Then, only P and Classification Head are fine-
tuned on a downstream task, while © remains

frozen?.

3.3 P-Tuning v2

Instead of adding a single prompt P to the X,
Liu et al. (2021a) proposed to add soft prefixes
at each layer of the Transformer model. To ap-
ply P-Tuning v2, soft prefixes Py, Py € RP*?
are defined for each layer and concatenated to
the K and V matrices before evaluating the atten-
tion K’ = concat(Pg, K), V' = concat(Py, V).
Then, Attention is evaluated as follows:

A" = attention(Q, K', V). 3)

i-th component of A’ could be then written as:

p n
A; =" a;(Qi, KNPy, + > apap(Qi, K Vi
j=1 k=1
“4)
Note that a € RP*™ are attention weights and
thus ?ZIL aj =1.

As for P-Tuning v1, only parameters of soft
prefixes Pk, Py and Classification Head are opti-
mized on a downstream task while freezing param-
eters of a backbone model.

3.4 P-Tuning Overhead

While the Transformer model has Q(n?) time com-
plexity and GPU memory consumption for se-
quence length n. For P-Tuning v1, this complexity
transforms into O((n + p)?) since the length of
input sequence is increased by the length of the
prompt p, while for P-Tuning v2 the complexity is
equal to O(n(n + p)).

Liu et al. (2021a) showed that for some tasks,
prompt length p could reach values of 100, increas-
ing time and memory footprints during the evalua-
tion.

4 Ahead-of-Time P-Tuning

4.1 Proposed Mechanism

With AoT P-Tuning, we propose to augment each
Transformer layer with a simple procedure. We de-
fine trainable matrices P € RIVI*? for each layer.

2Original implementation of P-Tuning vl (Liu et al.,
2021b) implied utilizing the LM Head of a pre-trained model
instead of training a Classification Head. However, Liu et al.
(2021a) later showed that using a separate Classification Head
performs marginally better.

Then before evaluation of the i-th layer, we modify
hidden states as follows

H'=H +{Py,..., Py, } R (5)
where P, € R? is a lockup of x;-th prompt em-
bedding from P. Such a scheme allows us to save a
significant amount of time during evaluation since
AoT P-Tuning does not imply an increase in se-
quence length. Note that AoT P-Tuning, same as
plain P-Tuning, could be evaluated in parallel with
several tasks in a batch due to the fact that perform-
ing look-up from P can be easily parallelized.

As for P-Tuning vl and P-Tuning v2, we only
optimize parameters of P and Classification Head
during fine-tuning.

4.2 AoT P-Tuning Parameter Efficiency

It is notable that, in most cases, one cannot afford
to optimize the weight P € RIV!*¢ for each layer.
If we consider training RoOBERTa-Large with such
a scheme (which has |[V| = 50265, d = 1024
and [= 24), then storing all biases P will exceed
1.2B parameters, while the model itself has roughly
350M parameters.

To overcome this limitation, we propose two
reparametrizations of P so that it can use fewer
parameters during training.

The first is based on the Kronecker product
(namely, Kronecker AoT P-Tuning). More specif-
ically, we reparametrize P as

P=(A®B)C, (6)

where A € RA*" B e RY>" C e RT2Xd, a and
b are selected in suchawaysoaxb=|V|,risa
rank of factorization which is a hyperparameter to
tune, and ® denotes the Kronecker product.

With this reparametrization, training AoT P-
Tuning becomes tractable. E.g., for RoOBERTa-
Large, with ¢ = 256, b = 200, and r = 20, P
will contain roughly 10M parameters, which is less
than 3% of the total number of parameters in the
model?.

The second approach to work with P, which we
used in our experiments, is based on passing the

30One may note that 256 * 200 = 51200 # 50265. How-
ever, 50265 is hard to factorize efficiently since 50265 =
1117 % 3% % 5. Because of this fact, we chose to mostly fac-
torize P in such a way as to make it slightly larger than the
original vocabulary size. Doing so allows us to select more
appropriate a and b from the perspective of parameter and
computational efficiency.

Computatonal Trainable
Model Al = Complexity Parameters
D n
P-Tuning v2 Z a;(Qi, K'Y Py, + Z i p(Qi, K)Vi | O(n(p+n)) 2ldp
j=1 k=1
Kron. AoT - . -
P-Tuning > a;(Q KNP V4D a;(Q KNV, O(n?) [(2rd + 1 + d)
j=1 j=1
FC AoT 2
P-Tuning O(n*) Ir(a+b+rd)

Table 1: Side-by-side comparison of P-Tuning v2 and AoT P-Tuning (See Sections 3.3, 4 for details). For implied
attention results A}, differences in evaluation are shown in color.

RoBERTa-Base Macro Score RoBERTa-Large Macro Score
0.86
0.885
0.85
o ._.__———0\.\. o 0.880
S 0.84 S
) 0
o o
E g 0.8751
= 0.83 =
0.8701
0.82 4 ~@- FC AoT P-Tuning =@~ FC AoT P-Tuning
P-Tuning v2 P-Tuning v2
Kron. AoT P-Tuning Kron. AoT P-Tuning
0.81 Fine-Tuning 0.865 Fine-Tuning
108 107 107
Trainable Parameters Trainable Parameters
(@ (b)
Inference Time RoBERTa-Base Inference Time RoBERTa-Large
2.04 Fine-Tuning 204 Fine-Tuning
~—+ Fused AoT P-Tuning - Fused AoT P-Tuning
1.9 P-Tuning v1 1.9 4 P-Tuning v1
184 P-Tuning v2 18 P-Tuning v2
: Kron. AoT P-Tuning : Kron. AoT P-Tuning
1.7 =@~ FC AoT P-Tuning 1.74 =@~ FC AoT P-Tuning
]] Q 1
g6 Lis
Fasd "1
© ©
> >
w 1.4 W 1.4
1.34 1.34
1.2 1.24
1 ‘*‘——.—_‘.”4‘
10 e e e e e
108 107
Trainable Parameters Trainable Parameters
© (d)

Figure 3: (a-b) GLUE macro scores for AoT P-Tuning, P-Tuning v1, and P-Tuning v2 with RoBERTa-Base and
RoBERTa-Large. P-Tuning v2 reaches comparable with AoT P-Tuning results only with large prefix sizes. See
Section 5.2 for details. (c-d) Comparison of AoT P-Tuning evaluation time with P-Tuning v1 and P-Tuning v2 for
RoBERTa-Base and RoBERTa-Large. We evaluated AoT P-Tuning in two scenarios: with fused weight P and with
the re-evaluation of P during the inference to reduce memory footprint (See Section 4.2 for more details). Fused
AoT P-Tuning adds negligible computational overhead compared to plain Fine-Tuning and is faster than P-Tuning
v2 up to 1.3 x times. Depending on prefix size, re-evaluating FC AoT P-Tuning performs up to 1.25X times faster
than P-Tuning v2. See Section 5.3 for more details.

embeddings matrix E through a learnable Fully
Connected network (namely, FC AoT P-Tuning).
Thus, we reparametrize P as

P = f(EW) + b1)Ws + by, %

where W, € R¥" b € R", W, € R"™*4,
by € RY, f is a non-linearity, and r is a rank of
mapping, which is also hyperparameter to tune as
for Kronecker AoT P-Tuning.

With FC AoT P-Tuning, we utilize knowledge
stored in the pre-trained embeddings matrix F,
which should hypothetically perform better than
training P from scratch as Kronecker AoT P-
Tuning.

Note that for both Kronecker and FC AoT
P-Tuning, we can evaluate only specific rows
{Ps;,-..,Pg,} for input sequence {z1,..., 2},
making training more efficient.

For both reparametrizations, P could be fused
once training is complete, and thus the rank of fac-
torization 7 does not affect inference speed. During
the evaluation, there is no need to store the full P in
GPU memory. Instead, it could be stored in RAM,
and only rows of these matrices should be placed
in GPU memory to be added to the hidden states
before each layer.

From a certain perspective, choosing between
AoT P-Tuning and P-Tuning is a trade-off between
evaluation speed and RAM consumption during
inference. If RAM is limited, then usual P-Tuning
could be used at the cost of slower inference. In
other cases, AoT P-Tuning could be used if there
is enough volume of RAM and inference speed is
crucial. Although, in most cases, P matrices for
different tasks could be easily stored in the RAM.
For RoBERTa-Large, a single task parameter will
roughly require 2.4Gb if stored in half-precision.

However, as we observed later in our ex-
periments, for FC AoT P-Tuning, performing
fusing is not crucial, and the re-evaluation of
{Ps;y..., Py, } for each sequence ran at 98.5%
the speed of fused P (See Section 5.3 for more
details).

4.3 Intuition Behind AoT P-Tuning and
Connection to P-Tuning

Having H’, after passing through Q, C, and V we

obtain @, K’, and V’'. Note that V' = HYV +
(Pore o Pe WV 1P,
The result of the evaluation of Attention with

AoT P-Tuning could be seen as:

Al = attention(Q’, K", V') =
n n 8
S @ KNP+ S (@ Ky ©

j=1 j=1

From such a perspective, there is a clear connec-
tion of AoT P-Tuning (Equation 8) to P-Tuning v2
(Equation 4) with the following changes:

1. For AoT P-Tuning, attention weights a;, j €
1,1 are used for both terms in Equation 8.

2. For AoT, P-Tuning, attention is evaluated on
modified Q’. In addition, there is a difference
in the form of dependency of K’ and V'’ on
prefix weight. For AoT P-Tuning, we add
prefixes to the K and V, while for P-Tuning
v2 prefixes are concatenated to these matrices.

3. For AoT P-Tuning, the first term of Equation 8
implies evaluation of Attention with a prompt
which is dependent on input text, while for
P-Tuning v2, the prompt Py is constant.

Considering Equation 8, AoT could be seen as a
form of the P-Tuning method, for which we embed
prefixes before evaluating the attention layer®. See
Table 1 for the side-by-side comparison of AoT
P-Tuning and P-Tuning v2.

5 GLUE

5.1 Experimental Details

We compared AoT P-Tuning (Kronecker and FC
reparametrizations of P) with P-Tuning v1, P-
Tuning v2, and plain fine-tuning on GLUE Bench-
marking Datasets (Wang et al., 2018). For each fine-
tuning approach, we experimented with RoBERTa-
Base and RoBERTa-Large backbone models.

For each task, we performed a grid hyperparam-
eter search (see Appendix Table 4 for hyperparam-
eter ranges>.). Each hyperparameter set was eval-
uated with 5 different seed values. Each value we
report for GLUE experiments is a median of task

*1t is possible to think of AoT P-Tuning as a method which
adds bias after the evaluation of Transformer layer. In this
case, it could be seen as a method that directly models the
result of the evaluation of P-Tuning v2 with a slightly different
order of computations. However, we believe that this way is
more difficult to consider.

>Note that we used a wider range for RTE task since we
observed that P-Tuning v2 required larger hyperparameter
assignments to reach results reported by Liu et al. (2021a)

RoBERTa-Base

Model | STS-B SST-2 RTE QQP |
Fine-Tuning | 90.6+03 95.0+02 812+0.7 89.6+02 |
P-Tuning vl | 86.9+0.9 940+03 603+24 822+15
P-Tuning v2 | 89.2+0.3 94.6+0.2 80.5+34 864+33
Kron. AoT P-Tuning (ours) | 89.7+0.2 94.0+£0.2 77.6x14 88.2%0.1
FC AoT P-Tuning (ours) | 90.0 0.2 944+03 780+13 87.9+0.2
| QNLI MRPC MNLI CoLA | Macro
Fine-Tuning | 924+0.1 908+0.5 87.0+03 638+14 | 863
P-Tuning vl | 88.3+0.5 820+1.7 808+06 458+27.1| 775
P-Tuningv2 | 91.9+1.6 89.1+1.1 853+02 60.7+2.6 | 84.7
Kron. AoT P-Tuning (ours) | 90.7+0.4 89.5+1.1 84.6+0.1 593+1.2 84.2
FC AoT P-Tuning (ours) | 91.3+£04 90.3+03 854+0.1 603+22 84.7
RoBERTa-Large
Model | STS-B SST-2 RTE QQP |
Fine-Tuning | 91.9+02 96.1+04 88.1%1.5 90302 |
P-Tuning vl | 75.5+6.3 944+04 628+23 769+25
P-Tuning v2 | 91.0+0.4 96.1+03 874+15 86606
Kron. AoT P-Tuning (ours) | 91.1+0.8 96.2+0.2 84.8+1.3 894+0.1
FC AoT P-Tuning (ours) | 91.7+04 96.7+0.1 884+0.9 88.7+0.2
| QNLI MRPC MNLI CoLA | Macro
Fine-Tuning | 943+02 91.6+0.6 89.9+02 68.1%19 | 888
P-Tuning vl | 79.1£24 79.0+1.1 759+183 247176 | 71.0
P-Tuning v2 | 94.0+1.1 912+09 894+07 669+15 | 87.8
Kron. AoT P-Tuning (ours) | 94.2+0.1 89.7+0.9 89.3+0.1 65.5+£1.9 87.5
FC AoT P-Tuning (ours) | 94.1+02 91.6+0.8 89.6+0.1 69.2+0.9 | 888

Table 2: Results on the GLUE Deyv set. Each result is median and std across several seeds, and the Macro column is
a mean score across all tasks. Fine-tuning is omitted from comparison with other methods and was not bolded for

visibility.

scores across different seeds. See Appendix Table
5 for a list of metrics used for each task.

We used Adam (Kingma and Ba, 2015) opti-
mizer with a constant learning rate for each task
and stopped training once the validation metric
stopped increasing ("patience" parameter in Ap-
pendix Table 3).

For Kronecker AoT P-Tuning we parametrized
matrix P = (A® B)C with a = 256, and b = 200.
A and B were initialized randomly, while C was
initialized as a zero matrix. For FC AoT P-Tuning,
we initialized W, randomly, while W, b1, and b
were initialized with zeros. See Section 4.2 for
reparametrization details.

Each experiment was run on a single NVidia
A100 GPU with total compute time being roughly

equal to 400 days.

5.2 Results

See Table 2 for the results of trained models.

We observed that FC AoT P-Tuning performed
better than Kronecker AoT P-Tuning. We hypoth-
esize that this result is mostly caused by the fact
that FC reparametrization utilized a pre-trained em-
bedding matrix rather than learning biases from
scratch.

For RoBERTa-Base, FC AoT P-Tuning per-
formed on par with P-Tuning v2 and produced the
same Macro score. For RoBERTa-Large, FC AoT
P-Tuning outperformed P-Tuning v2 and showed a
Macro score equal to plain Fine-Tuning. We also
observed that both AoT P-Tuning reparametriza-

tions showed a lower variance of metrics across
different seeds. Note that P-Tuning v1 performed
unstably and showed higher results with RoOBERTa-
Base (although still underperforming other meth-
ods by a large margin).

See Figures 3(a-b) for macro scores of P-Tuning
v2 and AoT P-Tuning with different prefix lengths
p and prefix ranks r°. We observed that P-Tuning
v2 performed worse with shorter prompt lengths
and became comparable to or better than AoT P-
Tuning when p > 50. For RoBERTa-Large, FC
Ao0T P-Tuning performed better for all prefixes
r. We also provide per-task results with different
prefix scales (see Appendix Figure 4). It is notable
that P-Tuning v2, in most cases, suffers from small
prefix size p and achieves results comparable with
AoT P-Tuning with larger p (which corresponds to
the result with Figures 3(a-b)).

With per-task Expected Validation Performance
(EVP) (Dodge et al., 2019), we observed that P-
Tuning v2 highly depends on the number of hyper-
parameter assignments for some tasks (see Figure
5). E.g. for the RTE dataset, P-Tuning v2 only
outperformed Kronecker AoT P-Tuning with 100
hyperparameter assignments, which forced us to
increase the ranges of hyperparameter search for
this task (see Section 5.1). However, we observed
that FC AoT P-Tuning outperformed other meth-
ods when a large number of hyperparameter assign-
ments was reached.

5.3 Inference Speed Overhead

With Figures 3(c-d), we also investigated the com-
putational overhead of AoT P-Tuning compared to
other baselines.

To estimate inference speed overhead, we eval-
uated each model 100 times on a sequence with
length n = 128 and batch size 256.

We evaluated AoT P-Tuning in two setups. The
first setup implies fusing P for the inference, thus
saving computational time at the cost of a higher
memory footprint. Since P is fused, it no longer
depends on factorization rank 7 for both FC and
Kronecker AoT P-Tuning.

For the second setup, we did not fuse P, but
rather evaluated {Py,, . .., Py, } for each sequence.
This approach emulates setup with limited memory
during inference when fusing P is not feasible.

Note that best macro result across different scales of pre-
fixes in these Figures differs from the macro result from Table
2 since the macro score from Table 2 aggregates scores with
different prefix scales.

The growth of p P-Tuning v1 quickly reaches
2x speed overhead since its complexity depends on
p quadratically. While P-Tuning v2 involves linear
dependency on p (see Section 3.4 for details), it
also reaches up to 1.3x inference speed overhead
for large prefix lengths p.

Fused AoT P-Tuning adds negligible computa-
tional overhead (less than 1%) compared to plain
Fine-Tuning. Compared to P-Tuning v2, Fused
AoT P-Tuning performed up to 1.3 times faster,
depending on the prefix size used for P-Tuning v2.

When P is not fused, FC AoT P-Tuning is per-
forming 1.13 — 1.25% times faster than P-Tuning
v2 with large prefixes p, which indicates that for
this reparametrization, performing weight fusing
is not crucial in most cases and huge inference
speed-up could be achieved without it. Although
not performing fusing of P could reduce memory
footprint during the inference, in such a setup, there
is no ability to perform multi-task inference, which
is available for both P-Tuning v1/v2 and Fused
AoT P-Tuning.

Kronecker’s reparametrization performed worse.
For small factorization rates (e.g., r € [5, 10]), it
performed comparable to FC AoT P-Tuning. Al-
though, for larger r values, it performed up to
1.12x times slower than P-Tuning v2. Thus, it is
important to fuse P with such a reparametrization
when a large rank r is used.

6 Conclusion and Future Work

In this paper, we proposed a new method for
parameter-efficient fine-tuning of pre-trained mod-
els: AoT P-Tuning. We also proposed two
reparametrizations of learnable weights for this
method.

We observed that AoT P-Tuning performed on
par with P-Tuning v2 with RoBERTa-Base back-
bone while outperforming it and performing on
par with plain Fine-Tuning with RoBERTa-Large
measured by GLUE Benchmarking Datasets score.

While performing on par or better than P-Tuning
v2, AoT P-Tuning performed up to 1.3x times
faster than P-Tuning v2, adding a negligible infer-
ence time footprint compared to plain Fine-Tuning.
When FC AoT P-Tuning is used, we observed that
one could not fuse weights P in order not to in-
troduce memory footprint since it performs up to
1.25x times faster than P-Tuning v2.

We experimented only with two reparametriza-
tions based on the Kronecker product and FC net-

work. It is possible to further explore other possi-
ble reparametrizations for weight P, which could
further increase the performance of the proposed
method.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP), pages 2185—
2194, Hong Kong, China. Association for Computa-
tional Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In ICLR 2022.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt

tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021a. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. CoRR, abs/2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Cite arxiv:1907.11692.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203-5212, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998—-6008.

Alex Wang, Amapreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bow-
man. 2018. Glue: A multi-task benchmark
and analysis platform for natural language un-
derstanding. Cite arxiv:1804.07461Comment:
https://gluebenchmark.com/.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.21203/rs.3.rs-1553541/v1
https://doi.org/10.21203/rs.3.rs-1553541/v1
https://doi.org/10.21203/rs.3.rs-1553541/v1
https://doi.org/10.21203/rs.3.rs-1553541/v1
https://doi.org/10.21203/rs.3.rs-1553541/v1
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224
https://proceedings.mlr.press/v97/houlsby19a.html
https://www.microsoft.com/en-us/research/publication/lora-low-rank-adaptation-of-large-language-models/
https://www.microsoft.com/en-us/research/publication/lora-low-rank-adaptation-of-large-language-models/
https://www.microsoft.com/en-us/research/publication/lora-low-rank-adaptation-of-large-language-models/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461

ROBERTa-Base STSB

ROBERTa-Base QQP.

ROBERTa-Base QNLI

ROBERTa-Base MNLI

o. 0,925
0905 0s70
089
0900 o 0s6s
038
o=
< asss ——r" 0860
g Low
5 0,690 1 Z 0915 >
g Zoss g P rea— Zosss p—
goos 2 oss g osso ——
2 8 0s10
§ om0 ™ 084
o7 & FC Aol pTuning o 8- FC Aol pTuning & C Aot PTuning 8- C Aol PTuning
PTuning v2 PTuning v2 0905 PTuning v2 o840 PTuning v2
o8 T Puning - T Puning T Puning T Puning
fineTuning fine-Tuning fine-Tuning 0a3s fine Tuning
o o o to
Trainable Parameters Trainable Parameters Trainable Parameters Trainable Parameters
ROBERTa-Base SST-2 ROBERTa-Base RTE ROBERTa-Base MRPC RoBERTa-Base ColA
06s
050
09475 0800 ‘/’/‘\o———Q
o062
0775 a4
09150 g o8 <
0750 £ 060 0-0//‘\'/.
>.0.9425 T 2 0386 £
AN g 7 g
Boms g Boss
5 osa0 o g H
g Zomo %o H
09375 g0
067 H
8- £ oTPTuning 8- £ AoTPTuning o052 8- £ AoTPTuning 8- £ AoTPTuning
09350 PTuning v2 0.650 PTuning v2 P-Tuning v2 054 PTuning v2
eon. AT PTuning Keon. T PTuning Keon, AT PTuning eon. Ao P
09325 fine-Tuning os2s Fine uning o0 fineuning . FneTuning
o £ £ £3 £ £3
Trainable Parameters Trainable Parameters Trainable Parameters Trainable Parameters
ROBERTa-Large STSB RoBERTa-Large QQP . ROBERTa-Large QNLI a0 RoBERTa-Large MNLI
09200 050
o175 0945 0900
B 088 L PS
g oo 0940 R & 0895 ./‘\O\K
g oo1zs < > 2z s
& Zoss € oo3s "/\ € 090)
£ 09100 H g g
ooors o8 0930 os8s
03050
0925 0880
o082
09025
o o
B3 B3 B3 B3
Trainable Parameters Trainable Parameters Trainable Parameters Trainable Parameters
ROBERTa-Large SST-2 ROBERTa-Large RTE ROBERTa-Large MRPC ROBERTa-Large ColA
052
——
0.966 oars == g0 om0
ost B
e ass0 /\
o 5 oue SN
0952 - 0s2s . H N
3 7 Zos
g g Sos g
g Bams g H
0958 e £
0150 £ oe
0956 -8~ FC AGT PTuning 8- FCAGT PTuning 086 8- FCAGT PTuning -8~ FC AGT PTuning
ing v2 s Puning v2 Puning vz Puning vz
Keon, AT PTuning Keon. AT Puning Keon, AT PTuning Keon, AT PTuning
0954
Fine-Tuning 0.700 Fine-Tuning 085 FineTuning a“n Fine-Tuning

3
Trainable Parameters

(m)

3
Trainable Parameters

(m)

3
Trainable Parameters

(0)

3
Trainable Parameters

(p)

Figure 4: Per-task GLUE Benchmarking Dataset results for a different number of trained parameters of P-Tuning v2
and AoT P-Tuning with RoOBERTa-Base (a-h) and RoBERTa-Large (i-p). We also provide results of plain fine-tuning
for reference. See Section 5.2 for more details.

MNLI, Other
RTE QQP QNLI Tasks

Epochs | 200 5 10 100
Patience 20 2 2 10

Table 3: The number of maximum epochs used for
each GLUE and SuperGLUE Task. Once the Dev score
stopped increasing for "patience" steps, training was
halted. See Section 5.1 for more details.

EVP STSB RoBERTa-Base EVP QQP RoBERTa-Base EVP QNLI RoBERTa-Base EVP MNLI ROBERTa-Base

09
£ 09 e — —— —_—
H ~= 030
£ o z 08 - /
Fos 508 7 7
& g 8oss g 7
< K 3 g /
§or gor Zos0 o7
g s]]
H] gors]
soe Sos 06
g H Zon 2
Sos Tos £ £
3 i goes Los
] —— FC A0T PTuning 2 —— FC A0T PTuning & —— FC A0T PTuning & —— FC A0T PTuning
Zoa PTuning v2 & PTuning v2 s PTuning v2 PTuning v2
g Keon. AT PTuning 04 Kron. AT PTuning Kron. AT PTuning Kron. AT PTuing
Puning v1 Puning vi PTuning vi 04 Puning v1
0ss
3 i3 3 2 i3 3 2 It 3 2 o &
Hyperparameter assignments Hyperparameter assignments Hyperparameter assignments Hyperparameter assignments
EVP SST-2 RoBERTa-Base EVP RTE ROBERTa-Base EVP MRPC RoBERTa-Base EVP CoLA RoBERTa-Base
095 e —— < —
080 —— 050 £06
2090 > = 3
3 3 208 Sos
] Sors H g
Soes M 3 o6 H
< < 8 Loa
H Son < E]
B os0 3 gom £
= 2 g co3
3 H 300 2
<o 2% 7 = K]
8] Boso 3=
Zorn —— FC AOT PTuning 2o —— FC A0T PTuning g —— FC A0T PTuning For —— FC AoT PTuning
Pnngv2 Puningv2 gorm Puningv2 g Puningv2
Keon. AT PTuning Kkron. AT PTuring Kron. AT PTuning g Kron. AT Puning
068 PTuning v1 055 PTuning v1 076, PTuning v1 woo PTuning v1
3 3 3 I3 T i3 o 3 3 3 2 k3 i3
Hyperparameter assignments Hyperparameter assignments Hyperparameter assignments Hyperparameter assignments
EVP STSB RoBERTa-Large EVP QQP RoBERTa-Large EVP QNLI RoBERTa-Large EVP MNLI RoBERTa-Large
09 095 —
c09 09
H - 030
gos / o8 7 Zos
& / 8 & o0ss g
1 Zor 8030 Zor
gos s Som £
Sos Zos fon Zos
504 Boss -
3 Zos g Zos
Zos — fcaorpunng g — £ poTPng go® — £ T Png H — £ T Png
g Puning v2 - Puning v2 0ss Puning v2 04 Puning v2
Soz Kron. AT Puning Kron. AoT Puing Kron. AoT Puing Kron. AoT Puning
Puning v1 Puning vi 080 Puning v1 PTuning vi
107 10° 107 107 10" 10 10° 10" 10 10° 10 10°
Hyperparameter assignments Hyperparameter assignments Hyperparameter assignments Hyperparameter assignments
EVP SST-2 RoBERTa-Large EVP RTE RoBERTa-Large EVP MRPC ROBERTa-Large EVP CoLA RoBERTa-Large
L 030 <
095 = /_,—’ T —— so7
0s0 = — 2
/ 085 = e E]
Zos 7 > gos
g £ o080 8 S /
goss g Soss Sos| T
b Sors H 2 /
£ o0 2 5 Fos
z Zon £ 00 £
Sors H H §os
2 Zoes H 2
£on0 g 30" o2
g §oso g s
$ou — FC poTPring i — FCpoTPning H — FC poTPring o — FC poTPring
“ PTuning v2 “oss PTuning v2 &o70 PTuning v2 K] PTuning v2
Keon. AT PTuning Kron. AT PTuing Kron. AT PTuning g Kron. AT PTuing
o.80 PTuning vi 050 PTuning vi PTuning vi & 0o PTuning vi
3 i3 3 I3 i3 i3 gt 2 It 3 2 o &
Hyperparameter assignments Hyperparameter assignments Hyperparameter assignments Hyperparameter assignments

(m) (n) (0) ()

Figure 5: Expected Validation Performance (Dodge et al., 2019) of trained models with GLUE Benchmarking
Datasets for RoOBERTa-Base (a-h) and RoBERTa-Large (i-p). See Section 5.2 for more details.

10

Parameter | Range
All Tasks, except RTE

P-Tuning v1/v2/AoT
batch size | 16, 64
learning rate | le—4, 5e—4, be—3, le—3

p | 5,10, 20, 50, 100
Kron. r | 5, 10, 25, 30, 50
FCr | 32,64, 128, 256, 512

Fine-Tuning

le—5, be—5, le—4,

learning rate Be—4. 5o—3

RTE
batch size | 16, 32, 64, 128

le—>5, be—>5, le—4, be—4,
5e—3, le—3, 2e—3, le—2

learning rate

Table 4: Hyperparameter ranges used in experiments
with GLUE benchmarking datasets. p is the prompt
length used for P-Tuning v1/v2, and r is the rank of
weight factorization used for AoT P-Tuning (See Sec-
tion 4.2). Each hyperparameter set was evaluated with
different seed values. See Section 5.1 for more details.

Task ‘ Metric
CoLA ‘ Mattews Correlation
MRPC ‘ Accura20y+F1

RTE ‘ Accuracy
SST-2 ‘ Accuracy
MNLI ‘ Accuracy
QNLI ‘ Accuracy

QQP ‘ AccuranerFl
STSB ‘ Pearson+Spearman

2

Table 5: Metrics used in our experiments for each task.
See Section 5.1 for more details.

11

