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Abstract

This paper proposes a simple reparametrization001
for Prefix-Tuning – AoT P-Tuning, in which002
we embed prefixes to a hidden state before eval-003
uating the attention mechanism, saving a con-004
siderable amount of time needed for evaluation.005

We experimented with the proposed method on006
GLUE Benchmarking Datasets and observed007
that AoT P-tuning performed on par with or008
better than P-Tuning v2 while being up to 1.3×009
times faster during inference.010

1 Introduction011

P-Tuning (Liu et al., 2021b,a; Lester et al., 2021) is012

a promising way to fine-tune large Language Mod-013

els (LMs) (Devlin et al., 2019; Lan et al., 2020; Liu014

et al., 2019; Radford et al., 2019). While it cur-015

rently underperforms compared to other methods016

for parameter-efficient fine-tuning (Hu et al., 2022;017

Houlsby et al., 2019) on a wide range of tasks (Ding018

et al., 2022), it has a practical, valuable property019

that allows it to evaluate different trained prompts020

parallel in a multi-task manner. This property is021

why researchers aim to further develop P-Tuning022

methods.023

Although it is possible to perform multi-task024

evaluation with P-Tuning, it introduces significant025

computational overhead due to the concatenation026

of prefixes to sequences and the evaluation of atten-027

tion mechanism (Vaswani et al., 2017) on longer028

sequences.029

We propose a simple mechanism for parameter-030

efficient fine-tuning of Language Models, namely031

Ahead-of-Time (AoT) P-Tuning, for which we032

add input-dependent bias before each Transformer033

layer. Same as P-Tuning, it is possible to use AoT034

P-Tuning in multi-task inference setups when a035

single backbone LM is used for several downstream036

tasks.037

(a)

Figure 1: GLUE Macro scores (higher is better) across
RoBERTa-Base and RoBERTa-Large backbone models
with plain Fine-Tuning, P-Tuning v2, and proposed AoT
P-Tuning (with FC reparametrization). With the Base
model, AoT P-Tuning reached the same result as P-
Tuning v2. While for RoBERTa-Large, AoT P-Tuning
outperformed P-Tuning v2 and reached the same score
as Fine-Tuning. See Section 5.2 for more details.

The contribution of this paper can be summa- 038

rized as follows: 039

1. We described the intuition behind AoT P- 040

Tuning, which illustrates the connection of 041

the proposed method with P-Tuning. 042

2. We proposed two reparameterizations of AoT 043

P-Tuning weights: first based on a factorized 044

matrix trained from scratch, and second based 045

on a LM’s embeddings matrix passed through 046

a trainable Fully Connected network. 047

3. We experimented with the proposed method 048

on GLUE Benchmarking Datasets (Wang 049

et al., 2018) with the RoBERTa (Liu et al., 050

2019) model and observed that AoT P-Tuning 051

performed on par with or better than P-Tuning 052

v2 (Liu et al., 2021a) while being up to 1.3× 053

times faster during evaluation. 054
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Figure 2: Schematic comparison of P-Tuning v2 (left), and AoT P-Tuning (right). While plain P-Tuning concatenates
soft prompts to the sequences and thus causes computational overhead, AoT P-Tuning directly adds input-dependent
biases to Q, K, and V matrices. See Section 4 for more details of AoT P-Tuning architecture. Since the sequence
length is not increased, AoT P-Tuning takes significantly less time to evaluate, only requiring the overhead of adding
biases to the input sequence (See Section 5.3 for experiments with inference speed).

2 Recent Works055

Currently, a wide range of different methods could056

be referenced with P-Tuning. Liu et al. (2021b)057

proposed to add soft prompts to embeddings of058

the input sequence of the GPT-2 model (Radford059

et al., 2019) to train it on classification tasks. Lester060

et al. (2021) proposed a scheme similar to the one061

used in Liu et al. (2021b) but trained a T5 model062

(Raffel et al., 2020) with P-Tuning to show how063

the performance of the method changes with the064

increased scale of the backbone model.065

Lately, Qin and Eisner (2021); Li and Liang066

(2021); Liu et al. (2021a) proposed to add prefixes067

not only to the input embeddings but also at each068

layer of the Transformer model. Also, Liu et al.069

(2021a) proposed training linear classification head070

on top of the backbone model instead of utilizing071

LM head to obtain classification results.072

Due to this range of similar methods, we will fol-073

low the naming used by Liu et al. (2021a) and refer074

to Prompt-Tuning (adding soft prompts to the input075

embeddings) as P-Tuning v1 and to Prefix-Tuning076

(adding soft prefixes at each layer of Transformer077

backbone) as P-Tuning v2.078

3 Background079

3.1 Transformer Evaluation080

Having an input sequence x = {x1, . . . , xn},081

where xi is token index, the embeddings of in-082

put texts are evaluated as H0 = {Ex1 , . . . , Exn},083

where E ∈ R|V |×d is the embeddings matrix, |V |084

is the vocabulary size, d is the size of the hidden 085

state of the model, and Exi is an embedding of 086

token xi. Then hidden states H i are passed to the 087

(i+1)-th layer of the Transformer to evaluate H i+1, 088

with total l number of layers. 089

To do so, H i are firstly mapped through three 090

matrices Q, K, V ∈ Rd×d to get Q, K and V , 091

which are then used to evaluate the result of atten- 092

tion layer as: 093

A = attention(Q,K, V ) =

= softmax(
QKT

√
d

)V ∈ Rn×d.
(1) 094

After evaluation of A, it is passed through the 095

remaining layers1, including residual connections 096

and FC layers to get H i+1. We omit layer index i 097

for attention result A for visibility here and later. 098

3.2 P-Tuning v1 099

Having a pre-trained Transformer LM with param- 100

eters Θ, instead of fine-tuning all parameters of this 101

model on a downstream task, it is possible to define 102

soft prompts P ∈ Rp×d(Liu et al., 2021b), where 103

p is the length of prompt. P is then concatenated 104

to embeddings of input sequence as: 105

H ′0 = concat(P, H0) ∈ R(p+n)×d. (2) 106

1In fact, Transformer architecture implies evaluation of
multi-head Attention. We omit this fact in this paper for
simplification since all derivations could be easily extended
on the multi-head case.
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Then, only P and Classification Head are fine-107

tuned on a downstream task, while Θ remains108

frozen2.109

3.3 P-Tuning v2110

Instead of adding a single prompt P to the X ,111

Liu et al. (2021a) proposed to add soft prefixes112

at each layer of the Transformer model. To ap-113

ply P-Tuning v2, soft prefixes PK ,PV ∈ Rp×d114

are defined for each layer and concatenated to115

the K and V matrices before evaluating the atten-116

tion K ′ = concat(PK ,K), V ′ = concat(PV , V ).117

Then, Attention is evaluated as follows:118

A′ = attention(Q,K ′, V ′). (3)119

i-th component of A′ could be then written as:120

A′
i =

p∑
j=1

aj(Qi,K
′)PVj +

n∑
k=1

ak+p(Qi,K
′)Vk.

(4)
121

Note that a ∈ Rp+n are attention weights and122

thus
∑p+n

j=1 aj = 1.123

As for P-Tuning v1, only parameters of soft124

prefixes PK ,PV and Classification Head are opti-125

mized on a downstream task while freezing param-126

eters of a backbone model.127

3.4 P-Tuning Overhead128

While the Transformer model has O(n2) time com-129

plexity and GPU memory consumption for se-130

quence length n. For P-Tuning v1, this complexity131

transforms into O((n + p)2) since the length of132

input sequence is increased by the length of the133

prompt p, while for P-Tuning v2 the complexity is134

equal to O(n(n+ p)).135

Liu et al. (2021a) showed that for some tasks,136

prompt length p could reach values of 100, increas-137

ing time and memory footprints during the evalua-138

tion.139

4 Ahead-of-Time P-Tuning140

4.1 Proposed Mechanism141

With AoT P-Tuning, we propose to augment each142

Transformer layer with a simple procedure. We de-143

fine trainable matrices P ∈ R|V |×d for each layer.144

2Original implementation of P-Tuning v1 (Liu et al.,
2021b) implied utilizing the LM Head of a pre-trained model
instead of training a Classification Head. However, Liu et al.
(2021a) later showed that using a separate Classification Head
performs marginally better.

Then before evaluation of the i-th layer, we modify 145

hidden states as follows 146

H ′i = H i + {Px1 , . . . ,Pxn} ∈ Rn×d, (5) 147

where Pxj ∈ Rd is a lockup of xj-th prompt em- 148

bedding from P . Such a scheme allows us to save a 149

significant amount of time during evaluation since 150

AoT P-Tuning does not imply an increase in se- 151

quence length. Note that AoT P-Tuning, same as 152

plain P-Tuning, could be evaluated in parallel with 153

several tasks in a batch due to the fact that perform- 154

ing look-up from P can be easily parallelized. 155

As for P-Tuning v1 and P-Tuning v2, we only 156

optimize parameters of P and Classification Head 157

during fine-tuning. 158

4.2 AoT P-Tuning Parameter Efficiency 159

It is notable that, in most cases, one cannot afford 160

to optimize the weight P ∈ R|V |×d for each layer. 161

If we consider training RoBERTa-Large with such 162

a scheme (which has |V | = 50265, d = 1024 163

and l = 24), then storing all biases P will exceed 164

1.2B parameters, while the model itself has roughly 165

350M parameters. 166

To overcome this limitation, we propose two 167

reparametrizations of P so that it can use fewer 168

parameters during training. 169

The first is based on the Kronecker product 170

(namely, Kronecker AoT P-Tuning). More specif- 171

ically, we reparametrize P as 172

P = (A⊗ B)C, (6) 173

where A ∈ Ra×r, B ∈ Rb×r, C ∈ Rr2×d, a and 174

b are selected in such a way so a ∗ b = |V |, r is a 175

rank of factorization which is a hyperparameter to 176

tune, and ⊗ denotes the Kronecker product. 177

With this reparametrization, training AoT P- 178

Tuning becomes tractable. E.g., for RoBERTa- 179

Large, with a = 256, b = 200, and r = 20, P 180

will contain roughly 10M parameters, which is less 181

than 3% of the total number of parameters in the 182

model3. 183

The second approach to work with P , which we 184

used in our experiments, is based on passing the 185

3One may note that 256 ∗ 200 = 51200 ̸= 50265. How-
ever, 50265 is hard to factorize efficiently since 50265 =
1117 ∗ 32 ∗ 5. Because of this fact, we chose to mostly fac-
torize P in such a way as to make it slightly larger than the
original vocabulary size. Doing so allows us to select more
appropriate a and b from the perspective of parameter and
computational efficiency.
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Model A′
i =

Computatonal
Complexity

Trainable
Parameters

P-Tuning v2
p∑

j=1

aj(Qi,K
′)PVj +

n∑
k=1

ak+p(Qi,K
′)Vk O(n(p+ n)) 2ldp

Kron. AoT
P-Tuning

n∑
j=1

aj(Q
′
i,K

′)PxjV +

n∑
j=1

aj(Q
′
i,K

′)Vj O(n2) l(2rd+ r + d)

FC AoT
P-Tuning

O(n2) lr(a+ b+ rd)

Table 1: Side-by-side comparison of P-Tuning v2 and AoT P-Tuning (See Sections 3.3, 4 for details). For implied
attention results A′

i, differences in evaluation are shown in color.

(a) (b)

(c) (d)

Figure 3: (a-b) GLUE macro scores for AoT P-Tuning, P-Tuning v1, and P-Tuning v2 with RoBERTa-Base and
RoBERTa-Large. P-Tuning v2 reaches comparable with AoT P-Tuning results only with large prefix sizes. See
Section 5.2 for details. (c-d) Comparison of AoT P-Tuning evaluation time with P-Tuning v1 and P-Tuning v2 for
RoBERTa-Base and RoBERTa-Large. We evaluated AoT P-Tuning in two scenarios: with fused weight P and with
the re-evaluation of P during the inference to reduce memory footprint (See Section 4.2 for more details). Fused
AoT P-Tuning adds negligible computational overhead compared to plain Fine-Tuning and is faster than P-Tuning
v2 up to 1.3× times. Depending on prefix size, re-evaluating FC AoT P-Tuning performs up to 1.25× times faster
than P-Tuning v2. See Section 5.3 for more details.
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embeddings matrix E through a learnable Fully186

Connected network (namely, FC AoT P-Tuning).187

Thus, we reparametrize P as188

P = f(EW1 + b1)W2 + b2, (7)189

where W1 ∈ Rd×r, b1 ∈ Rr, W2 ∈ Rr×d,190

b2 ∈ Rd, f is a non-linearity, and r is a rank of191

mapping, which is also hyperparameter to tune as192

for Kronecker AoT P-Tuning.193

With FC AoT P-Tuning, we utilize knowledge194

stored in the pre-trained embeddings matrix E,195

which should hypothetically perform better than196

training P from scratch as Kronecker AoT P-197

Tuning.198

Note that for both Kronecker and FC AoT199

P-Tuning, we can evaluate only specific rows200

{Pxi , . . . ,Pxn} for input sequence {x1, . . . , xn},201

making training more efficient.202

For both reparametrizations, P could be fused203

once training is complete, and thus the rank of fac-204

torization r does not affect inference speed. During205

the evaluation, there is no need to store the full P in206

GPU memory. Instead, it could be stored in RAM,207

and only rows of these matrices should be placed208

in GPU memory to be added to the hidden states209

before each layer.210

From a certain perspective, choosing between211

AoT P-Tuning and P-Tuning is a trade-off between212

evaluation speed and RAM consumption during213

inference. If RAM is limited, then usual P-Tuning214

could be used at the cost of slower inference. In215

other cases, AoT P-Tuning could be used if there216

is enough volume of RAM and inference speed is217

crucial. Although, in most cases, P matrices for218

different tasks could be easily stored in the RAM.219

For RoBERTa-Large, a single task parameter will220

roughly require 2.4Gb if stored in half-precision.221

However, as we observed later in our ex-222

periments, for FC AoT P-Tuning, performing223

fusing is not crucial, and the re-evaluation of224

{Pxi , . . . ,Pxn} for each sequence ran at 98.5%225

the speed of fused P (See Section 5.3 for more226

details).227

4.3 Intuition Behind AoT P-Tuning and228

Connection to P-Tuning229

Having H ′, after passing through Q, K, and V we230

obtain Q′, K ′, and V ′. Note that V ′ = HV +231

{Px1 , . . . ,Pxn}V
def
= V + PxV .232

The result of the evaluation of Attention with233

AoT P-Tuning could be seen as:234

A′
i = attention(Q′,K ′, V ′) =

=

n∑
j=1

aj(Q
′
i,K

′)PxjV +

n∑
j=1

aj(Q
′
i,K

′)Vj .
(8) 235

From such a perspective, there is a clear connec- 236

tion of AoT P-Tuning (Equation 8) to P-Tuning v2 237

(Equation 4) with the following changes: 238

1. For AoT P-Tuning, attention weights aj , j ∈ 239

1, l are used for both terms in Equation 8. 240

2. For AoT, P-Tuning, attention is evaluated on 241

modified Q′. In addition, there is a difference 242

in the form of dependency of K ′ and V ′ on 243

prefix weight. For AoT P-Tuning, we add 244

prefixes to the K and V , while for P-Tuning 245

v2 prefixes are concatenated to these matrices. 246

3. For AoT P-Tuning, the first term of Equation 8 247

implies evaluation of Attention with a prompt 248

which is dependent on input text, while for 249

P-Tuning v2, the prompt PV is constant. 250

Considering Equation 8, AoT could be seen as a 251

form of the P-Tuning method, for which we embed 252

prefixes before evaluating the attention layer4. See 253

Table 1 for the side-by-side comparison of AoT 254

P-Tuning and P-Tuning v2. 255

5 GLUE 256

5.1 Experimental Details 257

We compared AoT P-Tuning (Kronecker and FC 258

reparametrizations of P) with P-Tuning v1, P- 259

Tuning v2, and plain fine-tuning on GLUE Bench- 260

marking Datasets (Wang et al., 2018). For each fine- 261

tuning approach, we experimented with RoBERTa- 262

Base and RoBERTa-Large backbone models. 263

For each task, we performed a grid hyperparam- 264

eter search (see Appendix Table 4 for hyperparam- 265

eter ranges5.). Each hyperparameter set was eval- 266

uated with 5 different seed values. Each value we 267

report for GLUE experiments is a median of task 268

4It is possible to think of AoT P-Tuning as a method which
adds bias after the evaluation of Transformer layer. In this
case, it could be seen as a method that directly models the
result of the evaluation of P-Tuning v2 with a slightly different
order of computations. However, we believe that this way is
more difficult to consider.

5Note that we used a wider range for RTE task since we
observed that P-Tuning v2 required larger hyperparameter
assignments to reach results reported by Liu et al. (2021a)
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RoBERTa-Base

Model STS-B SST-2 RTE QQP

Fine-Tuning 90.6 ± 0.3 95.0 ± 0.2 81.2 ± 0.7 89.6 ± 0.2

P-Tuning v1 86.9 ± 0.9 94.0 ± 0.3 60.3 ± 2.4 82.2 ± 1.5
P-Tuning v2 89.2 ± 0.3 94.6 ± 0.2 80.5 ± 3.4 86.4 ± 3.3

Kron. AoT P-Tuning (ours) 89.7 ± 0.2 94.0 ± 0.2 77.6 ± 1.4 88.2 ± 0.1
FC AoT P-Tuning (ours) 90.0 ± 0.2 94.4 ± 0.3 78.0 ± 1.3 87.9 ± 0.2

QNLI MRPC MNLI CoLA Macro

Fine-Tuning 92.4 ± 0.1 90.8 ± 0.5 87.0 ± 0.3 63.8 ± 1.4 86.3

P-Tuning v1 88.3 ± 0.5 82.0 ± 1.7 80.8 ± 0.6 45.8 ± 27.1 77.5
P-Tuning v2 91.9 ± 1.6 89.1 ± 1.1 85.3 ± 0.2 60.7 ± 2.6 84.7

Kron. AoT P-Tuning (ours) 90.7 ± 0.4 89.5 ± 1.1 84.6 ± 0.1 59.3 ± 1.2 84.2
FC AoT P-Tuning (ours) 91.3 ± 0.4 90.3 ± 0.3 85.4 ± 0.1 60.3 ± 2.2 84.7

RoBERTa-Large

Model STS-B SST-2 RTE QQP

Fine-Tuning 91.9 ± 0.2 96.1 ± 0.4 88.1 ± 1.5 90.3 ± 0.2

P-Tuning v1 75.5 ± 6.3 94.4 ± 0.4 62.8 ± 2.3 76.9 ± 2.5
P-Tuning v2 91.0 ± 0.4 96.1 ± 0.3 87.4 ± 1.5 86.6 ± 0.6

Kron. AoT P-Tuning (ours) 91.1 ± 0.8 96.2 ± 0.2 84.8 ± 1.3 89.4 ± 0.1
FC AoT P-Tuning (ours) 91.7 ± 0.4 96.7 ± 0.1 88.4 ± 0.9 88.7 ± 0.2

QNLI MRPC MNLI CoLA Macro

Fine-Tuning 94.3 ± 0.2 91.6 ± 0.6 89.9 ± 0.2 68.1 ± 1.9 88.8

P-Tuning v1 79.1 ± 2.4 79.0 ± 1.1 75.9 ± 18.3 24.7 ± 17.6 71.0
P-Tuning v2 94.0 ± 1.1 91.2 ± 0.9 89.4 ± 0.7 66.9 ± 1.5 87.8

Kron. AoT P-Tuning (ours) 94.2 ± 0.1 89.7 ± 0.9 89.3 ± 0.1 65.5 ± 1.9 87.5
FC AoT P-Tuning (ours) 94.1 ± 0.2 91.6 ± 0.8 89.6 ± 0.1 69.2 ± 0.9 88.8

Table 2: Results on the GLUE Dev set. Each result is median and std across several seeds, and the Macro column is
a mean score across all tasks. Fine-tuning is omitted from comparison with other methods and was not bolded for
visibility.

scores across different seeds. See Appendix Table269

5 for a list of metrics used for each task.270

We used Adam (Kingma and Ba, 2015) opti-271

mizer with a constant learning rate for each task272

and stopped training once the validation metric273

stopped increasing ("patience" parameter in Ap-274

pendix Table 3).275

For Kronecker AoT P-Tuning we parametrized276

matrix P = (A⊗B)C with a = 256, and b = 200.277

A and B were initialized randomly, while C was278

initialized as a zero matrix. For FC AoT P-Tuning,279

we initialized W1 randomly, while W2, b1, and b2280

were initialized with zeros. See Section 4.2 for281

reparametrization details.282

Each experiment was run on a single NVidia283

A100 GPU with total compute time being roughly284

equal to 400 days. 285

5.2 Results 286

See Table 2 for the results of trained models. 287

We observed that FC AoT P-Tuning performed 288

better than Kronecker AoT P-Tuning. We hypoth- 289

esize that this result is mostly caused by the fact 290

that FC reparametrization utilized a pre-trained em- 291

bedding matrix rather than learning biases from 292

scratch. 293

For RoBERTa-Base, FC AoT P-Tuning per- 294

formed on par with P-Tuning v2 and produced the 295

same Macro score. For RoBERTa-Large, FC AoT 296

P-Tuning outperformed P-Tuning v2 and showed a 297

Macro score equal to plain Fine-Tuning. We also 298

observed that both AoT P-Tuning reparametriza- 299
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tions showed a lower variance of metrics across300

different seeds. Note that P-Tuning v1 performed301

unstably and showed higher results with RoBERTa-302

Base (although still underperforming other meth-303

ods by a large margin).304

See Figures 3(a-b) for macro scores of P-Tuning305

v2 and AoT P-Tuning with different prefix lengths306

p and prefix ranks r6. We observed that P-Tuning307

v2 performed worse with shorter prompt lengths308

and became comparable to or better than AoT P-309

Tuning when p > 50. For RoBERTa-Large, FC310

AoT P-Tuning performed better for all prefixes311

r. We also provide per-task results with different312

prefix scales (see Appendix Figure 4). It is notable313

that P-Tuning v2, in most cases, suffers from small314

prefix size p and achieves results comparable with315

AoT P-Tuning with larger p (which corresponds to316

the result with Figures 3(a-b)).317

With per-task Expected Validation Performance318

(EVP) (Dodge et al., 2019), we observed that P-319

Tuning v2 highly depends on the number of hyper-320

parameter assignments for some tasks (see Figure321

5). E.g. for the RTE dataset, P-Tuning v2 only322

outperformed Kronecker AoT P-Tuning with 100323

hyperparameter assignments, which forced us to324

increase the ranges of hyperparameter search for325

this task (see Section 5.1). However, we observed326

that FC AoT P-Tuning outperformed other meth-327

ods when a large number of hyperparameter assign-328

ments was reached.329

5.3 Inference Speed Overhead330

With Figures 3(c-d), we also investigated the com-331

putational overhead of AoT P-Tuning compared to332

other baselines.333

To estimate inference speed overhead, we eval-334

uated each model 100 times on a sequence with335

length n = 128 and batch size 256.336

We evaluated AoT P-Tuning in two setups. The337

first setup implies fusing P for the inference, thus338

saving computational time at the cost of a higher339

memory footprint. Since P is fused, it no longer340

depends on factorization rank r for both FC and341

Kronecker AoT P-Tuning.342

For the second setup, we did not fuse P , but343

rather evaluated {Pxi , . . . ,Pxn} for each sequence.344

This approach emulates setup with limited memory345

during inference when fusing P is not feasible.346

6Note that best macro result across different scales of pre-
fixes in these Figures differs from the macro result from Table
2 since the macro score from Table 2 aggregates scores with
different prefix scales.

The growth of p P-Tuning v1 quickly reaches 347

2× speed overhead since its complexity depends on 348

p quadratically. While P-Tuning v2 involves linear 349

dependency on p (see Section 3.4 for details), it 350

also reaches up to 1.3× inference speed overhead 351

for large prefix lengths p. 352

Fused AoT P-Tuning adds negligible computa- 353

tional overhead (less than 1%) compared to plain 354

Fine-Tuning. Compared to P-Tuning v2, Fused 355

AoT P-Tuning performed up to 1.3× times faster, 356

depending on the prefix size used for P-Tuning v2. 357

When P is not fused, FC AoT P-Tuning is per- 358

forming 1.13− 1.25× times faster than P-Tuning 359

v2 with large prefixes p, which indicates that for 360

this reparametrization, performing weight fusing 361

is not crucial in most cases and huge inference 362

speed-up could be achieved without it. Although 363

not performing fusing of P could reduce memory 364

footprint during the inference, in such a setup, there 365

is no ability to perform multi-task inference, which 366

is available for both P-Tuning v1/v2 and Fused 367

AoT P-Tuning. 368

Kronecker’s reparametrization performed worse. 369

For small factorization rates (e.g., r ∈ [5, 10]), it 370

performed comparable to FC AoT P-Tuning. Al- 371

though, for larger r values, it performed up to 372

1.12× times slower than P-Tuning v2. Thus, it is 373

important to fuse P with such a reparametrization 374

when a large rank r is used. 375

6 Conclusion and Future Work 376

In this paper, we proposed a new method for 377

parameter-efficient fine-tuning of pre-trained mod- 378

els: AoT P-Tuning. We also proposed two 379

reparametrizations of learnable weights for this 380

method. 381

We observed that AoT P-Tuning performed on 382

par with P-Tuning v2 with RoBERTa-Base back- 383

bone while outperforming it and performing on 384

par with plain Fine-Tuning with RoBERTa-Large 385

measured by GLUE Benchmarking Datasets score. 386

While performing on par or better than P-Tuning 387

v2, AoT P-Tuning performed up to 1.3× times 388

faster than P-Tuning v2, adding a negligible infer- 389

ence time footprint compared to plain Fine-Tuning. 390

When FC AoT P-Tuning is used, we observed that 391

one could not fuse weights P in order not to in- 392

troduce memory footprint since it performs up to 393

1.25× times faster than P-Tuning v2. 394

We experimented only with two reparametriza- 395

tions based on the Kronecker product and FC net- 396

7



work. It is possible to further explore other possi-397

ble reparametrizations for weight P , which could398

further increase the performance of the proposed399

method.400
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4: Per-task GLUE Benchmarking Dataset results for a different number of trained parameters of P-Tuning v2
and AoT P-Tuning with RoBERTa-Base (a-h) and RoBERTa-Large (i-p). We also provide results of plain fine-tuning
for reference. See Section 5.2 for more details.

RTE
MNLI,
QQP QNLI

Other
Tasks

Epochs 200 5 10 100
Patience 20 2 2 10

Table 3: The number of maximum epochs used for
each GLUE and SuperGLUE Task. Once the Dev score
stopped increasing for "patience" steps, training was
halted. See Section 5.1 for more details.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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Figure 5: Expected Validation Performance (Dodge et al., 2019) of trained models with GLUE Benchmarking
Datasets for RoBERTa-Base (a-h) and RoBERTa-Large (i-p). See Section 5.2 for more details.
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Parameter Range

All Tasks, except RTE

P-Tuning v1/v2/AoT

batch size 16, 64

learning rate 1e−4, 5e−4, 5e−3, 1e−3

p 5, 10, 20, 50, 100

Kron. r 5, 10, 25, 30, 50

FC r 32, 64, 128, 256, 512

Fine-Tuning

learning rate
1e−5, 5e−5, 1e−4,
5e−4, 5e−3

RTE

batch size 16, 32, 64, 128

learning rate
1e−5, 5e−5, 1e−4, 5e−4,
5e−3, 1e−3, 2e−3, 1e−2

Table 4: Hyperparameter ranges used in experiments
with GLUE benchmarking datasets. p is the prompt
length used for P-Tuning v1/v2, and r is the rank of
weight factorization used for AoT P-Tuning (See Sec-
tion 4.2). Each hyperparameter set was evaluated with
different seed values. See Section 5.1 for more details.

Task Metric

CoLA Mattews Correlation

MRPC Accuracy+F1
2

RTE Accuracy

SST-2 Accuracy

MNLI Accuracy

QNLI Accuracy

QQP Accuracy+F1
2

STSB Pearson+Spearman
2

Table 5: Metrics used in our experiments for each task.
See Section 5.1 for more details.
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