

000 001 002 003 004 005 ROBOMoRE: LLM-BASED ROBOT CO-DESIGN VIA 006 JOINT OPTIMIZATION OF MORPHOLOGY AND REWARD 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Robot co-design, the joint optimization of morphology and control policy, remains
029 a longstanding challenge in the robotics community. Existing approaches often
030 converge to suboptimal designs because they rely on fixed reward functions, which
031 fail to capture the diverse motion modes suited to different morphologies. We
032 propose **RoboMoRe**, a large language model (LLM)-driven framework that inte-
033 grates morphology and reward shaping for co-optimization within the robot design
034 loop. RoboMoRe adopts a dual-stage strategy: in the coarse stage, an LLM-based
035 *Diversity Reflection* mechanism is proposed to generate diverse and high-quality
036 morphology–reward pairs and *Morphology Screening* is performed to reduce un-
037 potential candidates and efficiently explore the design space; in the fine stage, top
038 candidates are iteratively refined through alternating LLM-guided updates to both
039 reward and morphology. This process enables RoboMoRe to discover efficient
040 morphologies and their corresponding motion behaviors through joint optimization.
041 The result across eight representative tasks demonstrate that without any task-
042 specific prompting or predefined reward and morphology templates, RoboMoRe
043 significantly outperform human-engineered design results and competing methods.
044 Additional experiments demonstrate robustness of RoboMoRe on manipulation
045 and free-form design tasks.
046

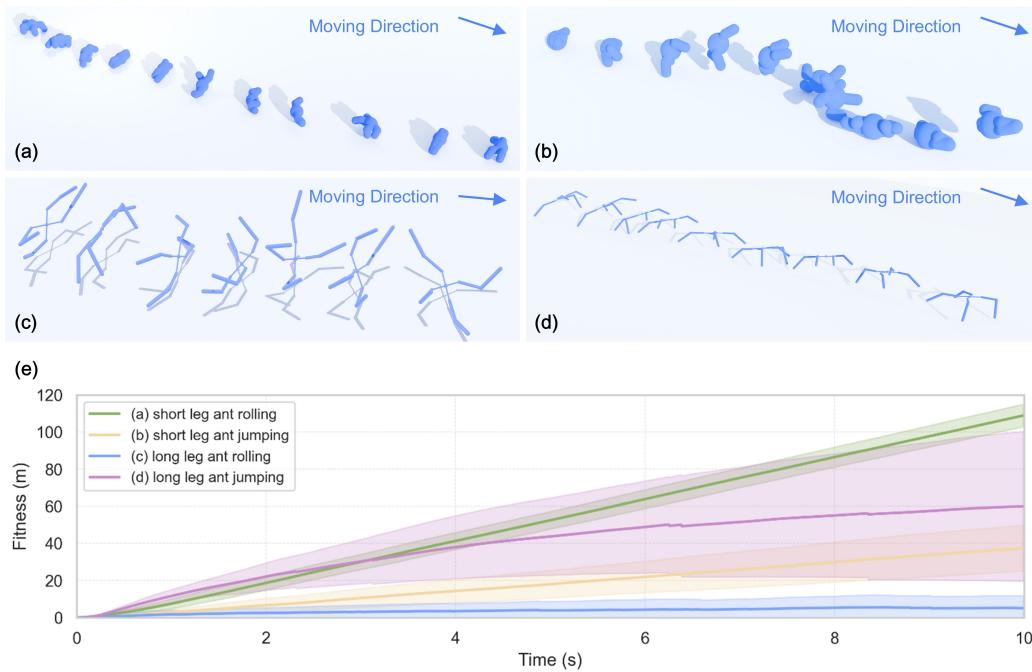
1 INTRODUCTION

047 **Figure 1: Diverse motion behaviors and robot morphologies generated by RoboMoRe.** **Orange:**
048 A bio-inspired long-legged robot crawling forward in a climber posture. **Blue:** A uniform robot
049 advancing by jumping. **Purple:** A low-center-of-gravity robot rolling forward along the ground.

050 One of the main goals of artificial intelligence is to develop effective approaches for the creation of
051 embodied intelligent systems Steels & Brooks (2018). Inspired by natural organisms, where body
052 structure and brain are two key factors for completing any task in a real environment, a successful
053 intelligent robot typically requires concurrently optimizing its structure design and control mechanism

054 Saridis (1983). Such a co-design problem has been a long-standing key challenge in the robotics and
 055 machine learning communities Wang et al. (2023); Ma et al. (2021); Xu et al. (2021).
 056

057 Although many existing approaches have achieved promising results, they typically rely on a fixed
 058 reward function, which significantly limits the potential of robot co-design Lu et al. (2025); Zhao
 059 et al. (2020). Under such constraints, robots are only capable of learning a narrow range of motion
 060 behaviors tied to a single, static objective. For robots with varying morphologies, a single, uniform
 061 reward function severely constrains improvements in locomotion performance and the exploration of
 062 diverse motion modalities Cui et al. (2025); Wang (2024); Han et al. (2024).
 063



086 **Figure 2: Examples of short-leg and long-leg ants exhibiting rolling and jumping behaviors.**
 087 (a–d) Representative motion behaviors across the four design cases. (e) Time-series fitness (walking
 088 distance) over 100 independent evaluations for each design case.

089 To address this limitation, we introduce **RoboMoRe**—a novel LLM-based robot co-design framework
 090 that jointly optimizes both **Robot Morphology** and **Reward** functions. The core philosophy of
 091 RoboMoRe is to identify optimal reward functions tailored to each robot morphology. By tailoring
 092 reward functions to match specific morphologies, we can unlock a wider variety of motion behaviors
 093 and boost overall performance. For example, as shown in Figure 2, a long-legged robot might benefit
 094 from a reward that encourages jumping, while a low-profile robot might perform better with a reward
 095 that promotes rolling (Appendix D).
 096

097 Yet, optimizing morphology and reward simultaneously is far from trivial: coupling the two dramatically
 098 enlarges the design space, making it difficult to guarantee both optimization quality and speed.
 099 To address this challenge, RoboMoRe adopts a Coarse-to-Fine optimization paradigm. In the coarse
 100 phase, we introduce a general *Diversity Reflection* mechanism to enhance exploration of the joint
 101 space and mitigates the risk of premature convergence to local optima. In parallel, we observe a
 102 morphology-dominant bottleneck property: poor morphologies impose a hard cap on efficiency that
 103 reward shaping cannot overcome (see Appendix G.3.1). Leveraging this insight, RoboMoRe performs
 104 a *Morphology Screening* mechanism to effectively screening out unpromising morphologies and
 105 accelerating subsequent optimization. In the fine phase, the most promising candidates are iteratively
 106 refined using an alternating optimization scheme Bezdek & Hathaway (2003): the LLM first adjusts
 107 the reward to better suit the current morphology, then updates the morphology accordingly. This
 108 alternating cycle ensures steady convergence toward high-performing morphology–reward pairs,
 109 while maintaining computational efficiency.

108 In summary, our contributions are:
 109

- 110 1. We propose RoboMoRe, a general co-design framework that leverages LLM to jointly
 111 optimize robot morphology and reward functions.
- 112 2. We adopt a Coarse-to-Fine optimization paradigm, where the coarse stage leverages Diversity
 113 Reflection and Morphology Screening to promote broad exploration of the design space
 114 while efficiently pruning low-potential candidates, and the fine stage employs alternating
 115 refinement to precisely optimize the remaining morphology–reward pairs.
- 116 3. Experiments across eight representative design tasks show that RoboMoRe uncovers novel
 117 morphologies and motion modalities, significantly outperforming both human-designed and
 118 competing automated methods, with a $2.1\times$ speedup and a $1.8\times$ reduction in cost. Additional
 119 experiments further demonstrate its robustness on manipulation and free-form design tasks.

120
 121 **2 RELATED WORK**
 122

123 **Robot Co-design** Early evolutionary robotics demonstrated that co-evolving morphology and
 124 control policies outperform sequential design, highlighting the interdependence of “body” and “brain”
 125 in agents Bravo-Palacios et al. (2020). Early work framed robot co-design as a graph search problem
 126 and addressed using the advanced evolutionary algorithms, yielding progressively more intriguing
 127 result Sims (2023); Ha (2019); Pathak et al. (2019); Wang et al. (2019); Zhao et al. (2020). However,
 128 as both kinematic complexity and task difficulty grow, approaches such as evolutionary algorithms,
 129 Bayesian optimization, and deep reinforcement learning must contend with vast design spaces that
 130 demand substantial computational resources and more efficient search strategies, thereby constraining
 131 their development. Recently, large language models (LLMs) hold significant promise for transforming
 132 the robot design process thanks to their strong in-context learning capabilities and extensive prior
 133 knowledge. However, research on LLM-based robot co-design remains limited to only a few early
 134 exploratory studies Zhang (2024); Qiu et al. (2024); Lehman et al. (2023); Song et al.. Among these,
 135 LASER Song et al. has shown promising results in designing soft voxel robots (SVR), particularly
 136 with regard to reflecting diversity. However, it still relies on carefully crafted task-specific prompts
 137 and a highly narrow method for diversity reflection which can only be applied to SVR, greatly limits
 138 its generalizability to other types of robots. In contrast, our work introduces highly general prompts
 139 and a more flexible approach to diversity reflection. Most importantly, existing methods share a
 140 critical limitation with fixed reward strategies, which significantly hinders their effectiveness in robot
 141 co-design.

142 In general, while these methods demonstrate potential, previous approaches have not incorporated
 143 reward shaping. By fixing the reward function and only optimizing robot morphology—i.e., *Fixed*
 144 *Reward, Varying Morphology*—they have restricted the possibilities of true co-design. In our paper,
 145 we argue that reward shaping can encourage different robots to develop distinct and diverse movement
 146 strategies, ultimately resulting in superior performance.

147 **Reward Shaping** Reward shaping is a pivotal component in the development of robotic control
 148 strategies. Early reward engineering methods predominantly relied on manual trial-and-error tuning
 149 Knox et al. (2023) and inverse reinforcement learning (IRL) Ho & Ermon (2016). Manual tuning
 150 is time-consuming and requires substantial domain expertise, whereas IRL demands costly expert
 151 demonstrations and frequently produces opaque, black-box reward functions, thereby limiting its
 152 practical applicability. Subsequent researches have investigated automated reward optimization via
 153 evolutionary algorithms Faust et al. (2019); Chiang et al. (2019), but these efforts were typically
 154 limited to task-specific implementations that only tuned parameters within predefined reward
 155 templates. Related diversity-oriented RL methods focus on discovering varied behaviors under a fixed
 156 embodiment, but they do not address structural diversity and therefore have limited applicability
 157 to morphology-level design in co-design settings Eysenbach et al. (2018). More recently, large
 158 language models (LLMs) have been used to generate reward functions for new tasks. For instance,
 159 Eureka Ma et al. (2023) provides a general framework that, without any task-specific prompting or
 160 pre-defined reward templates, can generate reward functions that outperform human-engineered ones.
 161 Similarly, Text2Reward Yang (2024) shows that LLM-based reward shaping can produce symbolic,
 162 interpretable rewards and enable robots to learn novel locomotion behaviors (e.g., *Hopper backflip*,
 163 *Ant lying down*). Beyond reward-centric methods, Co-Imitation Rajani et al. (2023) demonstrates that

162 morphology and control can be jointly optimized through imitation learning; however, its objective is
 163 based on expert demonstration matching rather than on generating or shaping task rewards.
 164

165 Inspired by these advances, we introduce LLM-driven reward shaping into robot co-design. By gen-
 166 erating diverse reward functions with LLMs, RoboMoRe enables robots with varying morphologies
 167 to discover novel motion strategies, significantly enhancing their performance.

168 **Table 1: Comparison of RoboMoRe with related literature.**

Literature	Method	Mor. Design	Reward Shaping	Diversity	Iterations	Optimum
EvoGym Bhatia et al. (2021)	BO, EA	✓	✗	N/A	Slow	Local
RoboGrammar Zhao et al. (2020)	Graph Search	✓	✗	N/A	Slow	Local
RoboMorph Qiu et al. (2024)	LLM	✓	✗	Off	Fast	Local
LASER Song et al.	LLM	✓	✗	On	Fast	Local
Eureka Ma et al. (2023)	LLM	✗	✓	Off	Fast	Local
RoboMoRe (Ours)	LLM	✓	✓	On	Fast	Near Global

3 PROBLEM DEFINITION (ROBOT CO-DESIGN)

178 The Robot Co-design problem involves jointly optimizing a robot’s morphology and control policy
 179 to maximize its performance in a given environment. It is defined as a tuple $P = \langle \mathcal{M}, \Theta, \mathcal{R}, \mathcal{A}, F \rangle$,
 180 where \mathcal{M} is the environment model, Θ is the robot morphology design space, and \mathcal{R} is the space
 181 of reward functions. $\mathcal{A}(\theta, R) : \Theta \times \mathcal{R} \rightarrow \Pi$ is the co-design algorithm that takes a robot design θ
 182 and reward function R , then learns an optimal policy π . F is the fitness function which measures
 183 real-world performance but can only be accessed through policy execution. Existing works aim to
 184 solve this problem via searching the optimal robot design θ^* that lead to the highest performance
 185 given a fixed reward function R_0 :

$$\theta^* = \arg \max_{\theta \in \Theta} F(\pi_{\theta, R_0}), \quad (1)$$

186 However, this can lead to local optimum due to limitation of R_0 . To address this, our objective is
 187 to jointly optimize the robot morphology θ^* and reward function R^* that lead to the global optimal
 188 performance:
 189

$$\theta^*, R^* = \arg \max_{\theta \in \Theta, R \in \mathcal{R}} F(\pi_{\theta, R}), \quad (2)$$

190 where the optimized policy is obtained by $\pi_{\theta, R} := \mathcal{A}(\theta, R)$.
 191

4 METHOD

192 In this section, we formally introduce the RoboMoRe pipeline (Fig. 3), which follows a Coarse-to-Fine
 193 optimization paradigm. The coarse stage leverages Diversity Reflection and Morphology Screening
 194 to generate diverse morphology–reward candidates and prune unpromising ones, ensuring broad yet
 195 efficient exploration of the design space (Sec 4.1). The fine stage then iteratively refines the most
 196 promising candidates through an alternating optimization scheme, where the LLM adjusts reward
 197 functions and morphologies in turn until convergence on high-performing design pairs (Sec 4.2).
 198

4.1 COARSE OPTIMIZATION WITH DIVERSITY REFLECTION AND MORPHOLOGY SCREENING

199 The goal of coarse optimization is to approximate the distribution of morphology–reward pairs near
 200 the global optimum. Traditional approaches typically rely on random sample (e.g., sampling initial
 201 candidates from gaussian distribution) Ha (2019); Bhatia et al. (2021), which although ensures
 202 diversity, often fails to generate samples sufficiently close to the global optimum. As a result,
 203 these methods require hundreds of thousands of optimization steps to converge, making them
 204 computationally expensive and inefficient. To address this, RoboMoRe leverage LLM with Diversity
 205 Reflection to generate high-quality and diverse samples, coupled with a Morphology Screening
 206 mechanism ensuring efficiency.

207 RoboMoRe leverages LLMs to generate initial samples. For morphology design, the task description
 208 and a masked robot structure file (e.g., MJCF XML) are provided to the LLM, which then generates a
 209 novel set of design parameters. All morphology-related parameters (e.g., limb lengths) are masked
 210 to eliminate human priors, ensuring fair and unbiased comparisons. For reward design, RoboMoRe

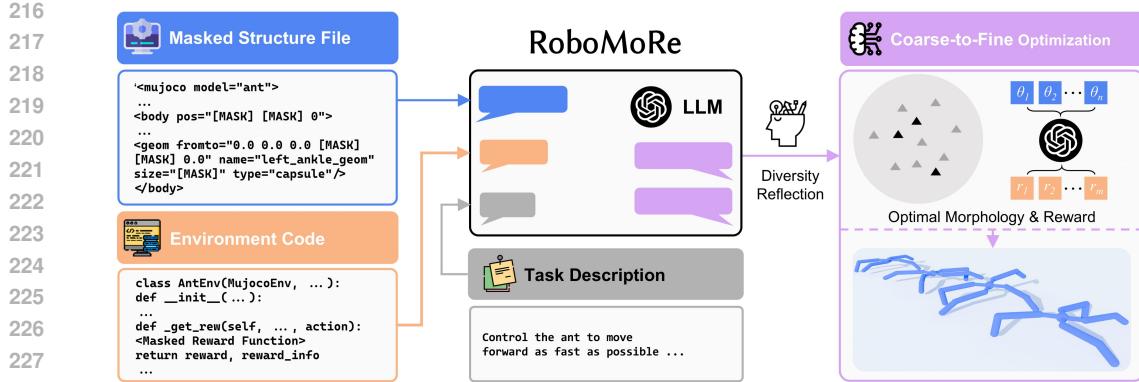


Figure 3: **The overall pipeline of RoboMoRe.** The LLM receives the task description, environment code, and a masked robot structure file as input. The environment code specifies simulation variables for reward design, while the masked structure file defines incomplete morphology parameters to be completed by the LLM. Our algorithm adopts a coarse-to-fine strategy: in the coarse phase, the LLM leverages *Diversity Reflection* to generate a broad set of morphology–reward samples and *Morphology Screening* to filter unpotential candidates; in the fine phase, morphologies and rewards are alternately refined, converging toward an optimal morphology–reward pair.

ingests the raw environment source code—excluding any predefined reward functions—as context, enabling the LLM to synthesize task-specific reward functions that are executable in Python and directly compatible with the simulator. A strict output format enforces structural consistency and correctness. To ensure scalability across diverse tasks, RoboMoRe employs a highly generalizable prompting strategy (Appendix A).

Although LLMs can produce high-quality samples by leveraging their strong reasoning and generation capabilities, without explicit mechanisms to promote diversity they often produce repetitive outputs and converge to suboptimal local optima (Table 4). This challenge is non-trivial, as simply increasing the sampling temperature leads to extremely slower generation, syntactically invalid outputs, and still fails to prevent repetitive motion behaviors (Appendix I). To address this, we propose *Diversity Reflection*, a general and effective mechanism in which the LLM reflects on previously generated samples and deliberately produces new candidates that maximize diversity relative to past designs. *Diversity Reflection* is task-agnostic and can be seamlessly extended to other domains without modification. Experimental results in Sec. 6.3 demonstrate that it consistently improves both sample diversity and optimization performance across diverse tasks.

In parallel, the enlarged design space introduced by joint optimization increases computational overhead and can hinder optimization speed. Hence, RoboMoRe introduces *Morphology Screening* to enhance optimization efficiency. This mechanism is grounded in the observation of morphology-dominant bottleneck property: suboptimal morphologies impose an inherent ceiling on efficiency that cannot be alleviated by reward shaping (Appendix G.3.1). Specifically, we observe that the first LLM-generated reward function generally lacks motion-specific priors, making it a suitable prior for assessing morphology quality. It is therefore used to evaluate all morphology candidates with the reinforcement learning algorithm, after which only the top-performing morphologies are retained for subsequent iterations, while low-performing ones are excluded from further reward evaluations. By discarding such morphology candidates early, RoboMoRe reduces redundant computations and accelerates optimization without compromising final performance.

4.2 FINE OPTIMIZATION WITH MORPHOLOGY REWARD ALTERNATING

In fine optimization, we adopt an alternating optimization strategy that iteratively refines both components toward the global optimum. Top candidates from the coarse stage are provided to the LLM, which derives *textual gradients* ($\frac{\partial_{LLM} f}{\partial \theta}, \frac{\partial_{LLM} f}{\partial r}$) as inferred optimization directions, and uses them to progressively improve morphology and reward along this momentum. Meanwhile, several promising coarse-stage results are retained to broaden the search space and uncover additional optimization opportunities. Please see Appendix H for the algorithm details.

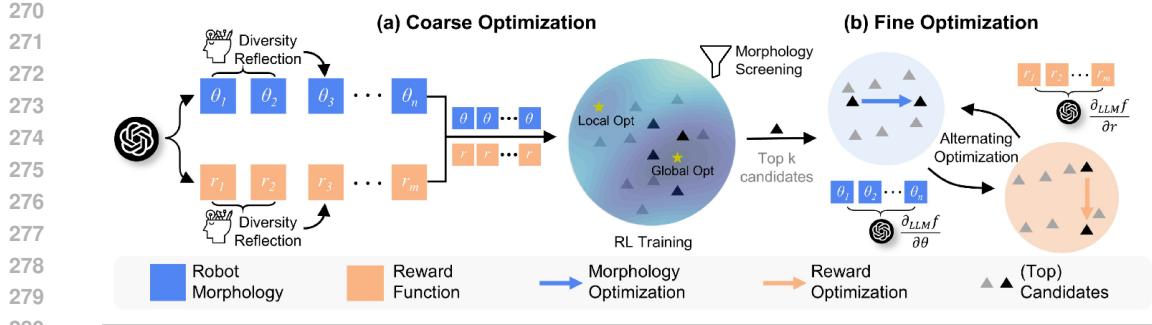


Figure 4: **Overview of Coarse-to-Fine algorithm.** (a) In the coarse optimization stage, the LLM first generates diverse and high-quality reward functions and robot morphologies using a Diversity Reflection mechanism. These reward–morphology pairs are trained via reinforcement learning, after which a Morphology Screening step filters out unpromising designs to ensure efficiency. (b) In the fine optimization stage, the LLM employs alternating optimization to jointly refine both the robot’s reward and morphology, leading to an optimized design and control strategy.

5 EXPERIMENT SETUP

Environments We implemented our environments using the MuJoCo Gym simulator Towers et al. (2024), covering eight distinct robot design tasks: Ant, Ant-Powered, Ant-Desert, Ant-Jump, Hopper, Half-Cheetah, Swimmer and Walker. For morphology design, we mask certain parameters in the MuJoCo XML files to prevent the LLM from gaining prior knowledge of the robot’s design. For reward function design, the LLM is provided with the official environment code with the reward functions removed. Regarding task descriptions, we use the official descriptions from the environment repository whenever available. Detailed information on robot design morphologies, reward functions, and task descriptions can be found in Appendix E.

Baselines We consider 4 strong baselines to highlight performance of RoboMoRe: 1) **Bayesian Optimization (BO)** is a classic algorithm designed to optimize expensive-to-evaluate functions Snoek et al. (2012); Rasmussen (2003). It employs a probabilistic model (e.g. Gaussian Process) as a surrogate for the objective function and determines where to sample based on predicted mean and uncertainty. 2) **Eureka** is a general LLM-based reward shaping framework Ma et al. (2023). Similar to an evolutionary algorithm, It uses an LLM to generate a large number of samples, select the best-performing ones, and acts as a heuristic operator for mutation. 3) **Eureka (Mor.)** is a variant of the Eureka framework in which the original reward shaping prompt is replaced with RoboMoRe’s morphology design prompt (Appendix A.1.2), enabling the LLM to design robot morphology. 4) **Human** represents the template morphology and reward functions from official Mujoco website Towers et al. (2024).

Evaluation Metrics In all experiments, we use a normalized metric **efficiency** to evaluate performance, which is defined as division of fitness and robot volume. This choice is crucial for stimulating the LLM’s material-aware design capabilities rather than brute-force scaling. We compute volume using custom scripts for each type of robot. While fitness is also reported (e.g., distance for locomotion, height for jumping tasks), **efficiency** serves as the core metric in our optimization iterations. Please refer to Appendix F for more implementation details.

6 RESULTS

6.1 COMPARISON WITH COMPETING METHODS

RoboMoRe outperforms human design robots and competing methods. Table 2 shows that RoboMoRe consistently generates highly performant and efficient designs, significantly surpassing both human-designed and baseline methods (Fig. 5). The performance gap is most striking in efficiency, as humans rarely approach near-optimal designs for complex tasks. Competing methods

underperform mainly because Eureka and Eureka (Mor.) neglect diversity, producing repetitive suboptimal offspring, and both focus narrowly on either reward or morphology. Section 6.3 and Section 6.2 analyze these aspects. Robustness tests on Ant-Powered (gear power variation) and Ant-Desert (terrain variation) further confirm RoboMoRe’s advantages, with details in Appendix G.4 and G.5.

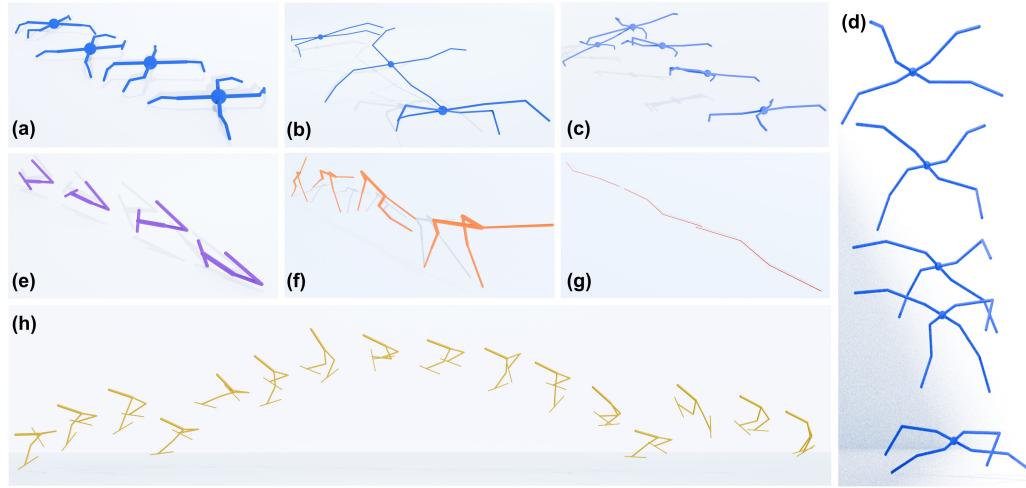


Figure 5: **Optimal designs generated by RoboMoRe.** (a) Ant. (b) Ant-Powered, where motor power is doubled. (c) Ant-Desert, with the terrain replaced by desert. (d) Ant-Jump, where the task is changed from locomotion to jumping. (e) Hopper. (f) Half-Cheetah. (g) Swimmer. (h) Walker.

Table 2: **Performance comparison of human and competing methods across eight tasks.** We report both efficiency and fitness metrics. Note that we set efficiency as the optimization goal instead of fitness in implementation.

Metric	Method	Ant	Ant-Powered	Ant-Desert	Ant-Jump	Hopper	Half-Cheetah	Swimmer	Walker
Efficiency ↑ (Fitness/Volume)	Bayesian Optimization	707.13	74.52	223.61	3.53	128.00	4242.89	57.53	111.95
	Eureka	121.54	24.91	49.82	7.60	428.11	12,157.92	23.96	139.73
	Eureka (Mor.)	5,203.82	1,160.94	2.51	229.55	609.04	15,531.26	16,335.19	1,946.60
	Human	68.22	26.13	29.84	6.83	433.69	11,975.34	18.86	170.29
Fitness↑	RoboMoRe	31,038.41	32657.10	36,995.77	902.76	3,776.66	495,373.71	57,627.40	6,665.85
	Bayesian Optimization	390.14	41.11	100.49	1.95	2.75	194.82	8.66	2.54
	Eureka	8.81	4.54	9.08	1.38	6.77	257.55	2.56	3.92
	Eureka (Mor.)	143.07	41.52	0.08	5.33	1.61	145.09	89.04	2.91
Fitness↑	Human	12.43	4.76	5.44	1.24	6.86	253.69	2.01	4.78
	RoboMoRe	165.18	70.30	39.60	1.48	15.10	135.71	109.35	4.17

6.2 EFFECTIVENESS OF REWARD SHAPING AND MORPHOLOGY DESIGN

Reward Shaping can improve performance by inspiring morphology-suited motion behaviors. Table 3 shows that reward shaping improves performance across most tasks by aligning rewards with morphology-specific locomotion strategies. The effect is particularly strong in tasks with rich morphological parameterization: for example, Half-Cheetah achieves nearly a twofold improvement in efficiency when reward shaping is applied. By contrast, simpler tasks such as Swimmer, with only a few parameters and a low-dimensional action space, exhibit limited benefits. These findings indicate that reward shaping provides the greatest gains when morphology is highly parameterized and the state space more complex.

Table 3: **Ablation study of RoboDesign across efficiency metrics under different Reward (Rew.) and Morphology (Mor.) configurations.**

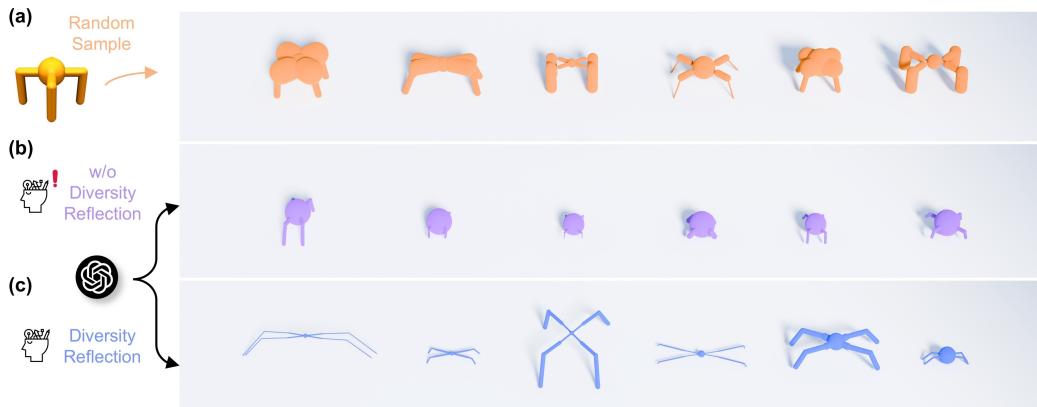
Method	Metric	Ant	Ant-Powered	Ant-Desert	Ant-Jump	Hopper	Half-Cheetah	Swimmer	Walker
Efficiency ↑	RoboDesign (w/o Mor. & Rew.)	21.64	8.68	20.69	6.08	94.19	4,984.63	6.82	15.36
	RoboDesign (w/o Mor.)	97.74	18.04	15.79	279.42	561.61	7,945.81	15.63	22.37
	RoboDesign (w/o Rew.)	6,190.39	3,026.53	3,742.68	6.34	1,653.59	67,992.31	22,009.94	1401.21
	RoboDesign (Full)	10,464.17	6,537.45	8,001.67	396.45	1,951.44	129,440.98	21,931.15	1,482.60

378 **Morphology Design still plays a fundamental role.** Although reward shaping can enhance
 379 performance by encouraging novel motion patterns, morphology design remains crucial. Removing
 380 morphology optimization (w/o Mor.) leads to drastic efficiency drops. In Half-Cheetah, efficiency
 381 decreases by more than one order of magnitude compared to the full model, and similar or even
 382 larger degradations appear in tasks such as Walker and Ant-Powered. These results indicate that
 383 poor morphologies impose hard bottlenecks that reward shaping alone cannot overcome. Variation in
 384 material usage across designs further explains the disparities in efficiency, highlighting that template
 385 morphologies are far from optimal and that morphology co-optimization is indispensable.

386 6.3 ANALYSIS OF DIVERSITY AND COMPUTATIONAL EFFICIENCY

389 **Table 4: Performance comparison of RoboMoRe variants in terms of efficiency, morphology**
 390 **diversity, and reward diversity.** For clarity, only results from the coarse optimization stage are
 391 reported.

Metric	Method	Ant	Ant-Powered	Ant-Desert	Ant-Jump	Hopper	Half-Cheetah	Swimmer	Walker
Efficiency ↑	RoboMoRe (Random Sample)	12.91	11.83	12.91	3.70	86.39	1,451.44	116.44	42.17
	RoboMoRe (w/o Diversity Reflection)	136.91	45.56	52.44	32.36	111.91	1,536.94	2,338.88	87.54
	RoboMoRe (w/ Diversity Reflection)	487.13	398.60	151.52	49.41	375.52	9,557.07	4,607.74	149.54
Morphology Diversity (Coefficient of Variation) ↑	RoboMoRe (Random Sample)	0.51	0.50	0.49	0.48	0.55	0.99	0.41	0.60
	RoboMoRe (w/o Diversity Reflection)	0.44	0.46	0.57	0.44	0.53	0.82	0.29	0.43
	RoboMoRe (w/ Diversity Reflection)	0.64	0.70	0.64	0.66	0.54	1.38	0.61	0.50
Reward Diversity (Self-BLEU) ↓	RoboMoRe (w/o Diversity Reflection)	0.70	0.67	0.70	0.57	0.70	0.75	0.74	0.72
	RoboMoRe (w/ Diversity Reflection)	0.50	0.46	0.46	0.48	0.47	0.45	0.43	0.42



412 **Figure 6: Qualitative results among (a) Random Sample, (b) RoboMoRe (w/o Diversity Reflec-
 413 tion), (c) RoboMoRe.** It can be observed that RoboMoRe with Diversity Reflection could generate
 414 more high-quality and diverse robot morphology examples compared to others.

416 **RoboMoRe produces high quality and diverse morphology parameters and reward functions.**
 417 We compare our method against two baselines: (1) Random Sample (RS), a commonly used strategy
 418 in Evolutionary Algorithms (EA) and Bayesian optimization (BO), where initial designs are sampled
 419 from a Gaussian distribution Frazier (2018); Bäck & Schwefel (1993), and (2) a setting without
 420 Diversity Reflection (w/o DR). Morphology diversity is quantified using the **coefficient of variation**
 421 Bedeian & Mossholder (2000), while reward diversity is assessed via the **Self-BLEU** metric Zhu et al.
 422 (2018). All diversity metrics are averaged over fifty generated samples. Table 4 illustrates that the
 423 Diversity Reflection mechanism substantially improves both the performance of generated samples
 424 and the diversity of rewards and morphologies.

425 While Random Sample introduces diversity, it often generates low-quality designs—such as bulky and
 426 unbalanced legs for the Ant robot, see Fig. 6. This low initial quality explains why traditional methods
 427 such as EA and BO typically require thousands of iterations to converge. In contrast, LLMs, even
 428 without diversity reflection, are capable of generating higher-quality samples thanks to their inherent
 429 reasoning and design capabilities. However, without explicitly promoting diversity, such methods
 430 fail to explore more performant regions of the design space, resulting in suboptimal performance.
 431 RoboMoRe achieves the best overall performance because it effectively leverages Diversity Reflection
 432 to generate samples that are both high-quality and diverse, enabling a more efficient and robust design

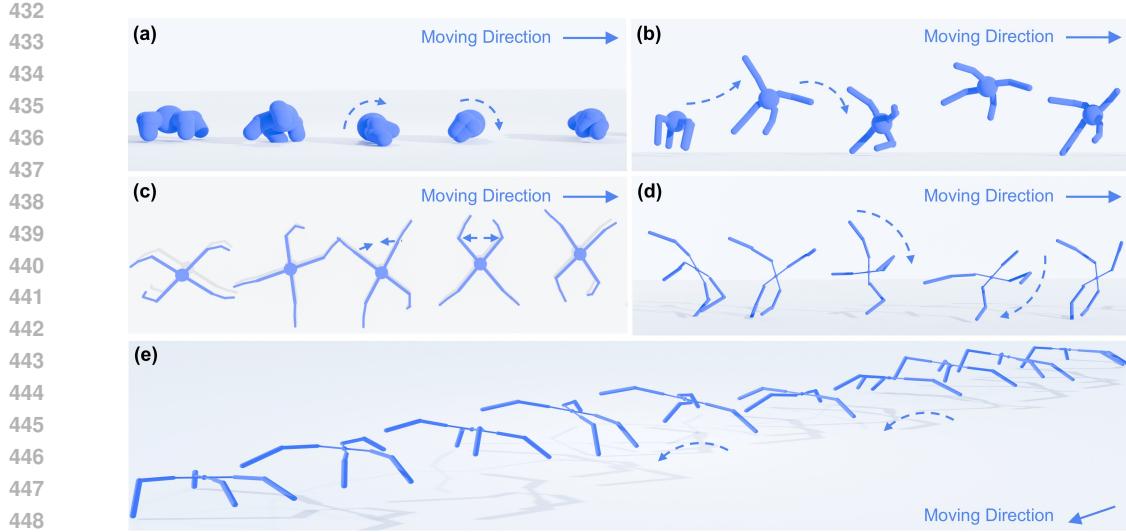


Figure 7: **Qualitative results of diverse and novel motion behaviors uncovered by RoboMoRe.** (a) The short-legged, low-center-of-gravity robot rolls forward along the ground. (b) The uniform robot propels itself forward with sideways hops. (c) The crab-inspired robot repositions itself and scuttles forward in a crab-walking manner. (d) The agile, lightweight robot advances by executing a side flip. (e) The agile, long-legged robot moves forward with a light hopping gait.

optimization process (Fig. 7). Additional comparison on Diversity Reflection with LaSER can be found in Appendix G.3.

Computational efficiency of RoboMoRe. Table 5 compares both computational runtime and LLM token cost across methods. Each iteration takes about 15 minutes on an RTX 4080 Super GPU with a 24-core CPU, so Eureka requires about 20 hours (80 iterations) and BO about 25 hours (100 iterations) to complete one design task. In contrast, RoboMoRe finishes in roughly 10 hours (41 iterations), cutting runtime by about 50%. In terms of LLM token usage, Eureka consumes about 170–200K tokens (\$2.0) per run, while RoboMoRe requires only 105K tokens (\$1.1), also reducing token expenditure by 50%. This efficiency stems from RoboMoRe’s modularized generation and Morphology Screening. First, unlike Eureka which issues $16 \times 5 = 80$ queries per run, RoboMoRe requires only 25 morphology and 5 reward queries. Second, Morphology Screening further accelerates optimization by filtering unpromising samples early. Please see details on Appendix G.3.1.

6.4 ADDITIONAL RESULTS ON MANIPULATION AND FREE-FORM DESIGN

We further evaluate RoboMoRe on two additional and challenging benchmarks: (i) high-DOF manipulation (DM Control Tunyasuvunakool et al. (2020)), where a robot arm with twenty-three tunable morphology parameters is tested across four manipulation tasks (Insert peg, Insert ball, Bring peg, Bring ball), and (ii) free-form soft-voxel robotics design (EvoGym Bhatia et al. (2021)) across four tasks (Walker-v0, Carrier-v0, Pusher-v0, Jumper-v0). Results from Table 6 reveal that reward shaping and morphology design contribute complementary benefits: removing either component leads to substantial performance drops, highlighting the necessity of morphology–reward co-optimization for discovering efficient and diverse robotic behaviors. Further experiments on free-form soft-voxel robotics demonstrate robustness of RoboMoRe. Details are provided in Appendix G.1 (manipulation) and Appendix G.2 (free-form soft-voxel robotics).

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
Table 6: **Performance comparison on DM-Control manipulator tasks.** Results are averaged over 100 runs.

Method	Insert peg			Insert ball			Bring peg			Bring ball		
	Fitness ↑	Efficiency ↑	Success % ↑	Fitness ↑	Efficiency ↑	Success % ↑	Fitness ↑	Efficiency ↑	Success % ↑	Fitness ↑	Efficiency ↑	Success % ↑
RoboMoRe (w/o rew.)	10.20	29,154.94	15	19.28	80,857.70	34	20.54	66,966.59	29	18.35	36,258.80	34
RoboMoRe (w/o mor.)	10.22	6,702.98	17	16.47	10,792.47	24	14.38	9,424.37	22	16.47	11,238.10	24
Human	6.35	4,165.91	10	15.66	10,265.19	24	10.41	6,824.57	12	8.90	11,238.10	24
RoboMoRe	14.20	43,958.53	18	24.26	89,646.18	59	24.97	96,157.95	34	24.26	56,261.08	50

6.5 ABLATION OF COARSE-TO-FINE OPTIMIZATION.

Both coarse and fine stages contribute significantly to co-design performance. Fig. 8 illustrates the complementary roles of the coarse and fine stages in achieving optimal co-design. The coarse stage explores the joint morphology–reward space broadly, producing diverse candidates, while the fine stage refines them through alternating updates. In high-dimensional or complex tasks, coarse exploration alone cannot deliver near-optimal designs, making fine refinement essential. Conversely, in simpler environments such as Swimmer and Hopper, the fine stage alone can match or slightly surpass the coarse stage. Overall, the full two-stage pipeline consistently achieves the best performance across tasks.

7 CONCLUSION

In conclusion, we present RoboMoRe, an LLM-driven framework that integrates reward shaping into the robot co-design process. By adopting a coarse-to-fine optimization strategy—combining Diversity Reflection and Morphology Screening with alternating LLM-guided refinement—RoboMoRe successfully discovers novel, diverse and high-performing morphology-reward pairs. Experiments demonstrate our method consistently outperforms human baselines and prior co-design approaches. We hope RoboMoRe contributes to a deeper understanding of morphology and reward joint optimization in robot design and serves as a springboard for future innovations at the intersection of generative AI and embodied intelligence.

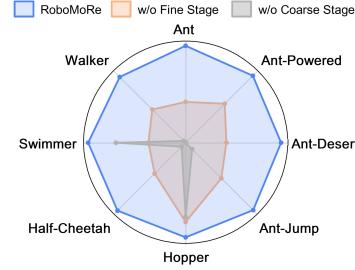


Figure 8: **Comparison of efficiency for RoboMoRe, w/o Fine Stage, and w/o Coarse Stage.**

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 **Ethics statement** This work does not involve human or animal subjects and therefore does not raise
541 concerns related to IRB approval or human data privacy. All experiments were conducted on publicly
542 available simulation environments, and we provide full details of task settings and preprocessing in
543 the appendix to ensure transparency. No proprietary or sensitive data were used, and no conflicts of
544 interest or external sponsorships influenced this research. We have carefully reviewed the ICLR Code
545 of Ethics and affirm that our work complies with its principles of fairness, transparency, research
546 integrity, and responsible dissemination.

547 **Reproducibility statement** We have taken several steps to ensure the reproducibility of our
548 results. All algorithmic details of RoboMoRe, including the Coarse-to-Fine optimization pipeline,
549 Diversity Reflection, Morphology Screening mechanisms, hyperparameters, training configurations,
550 and evaluation metrics are provided in Appendix E and F. To facilitate replication, we include detailed
551 prompts and pseudocode for LLM interactions in Appendix A and H. The additional environments
552 used (DM Control and EvoGym) are publicly available and discussed in details, and we provide full
553 details of task settings and preprocessing steps in Appendix G.1 and G.2.

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 REFERENCES
595

596 Joshua Achiam. Spinning up in deep reinforcement learning. 2018. URL <https://spinningup.openai.com>.

597

598 Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
599 optimization. *Evolutionary computation*, 1(1):1–23, 1993.

600

601 Arthur G Bedeian and Kevin W Mossholder. On the use of the coefficient of variation as a measure
602 of diversity. *Organizational Research Methods*, 3(3):285–297, 2000.

603

604 James C Bezdek and Richard J Hathaway. Convergence of alternating optimization. *Neural, Parallel
& Scientific Computations*, 11(4):351–368, 2003.

605

606 Jagdeep Bhatia, Holly Jackson, Yunsheng Tian, Jie Xu, and Wojciech Matusik. Evolution gym:
607 A large-scale benchmark for evolving soft robots. *Advances in Neural Information Processing
Systems*, 34:2201–2214, 2021.

608

609 Gabriel Bravo-Palacios, Andrea Del Prete, and Patrick M Wensing. One robot for many tasks:
610 Versatile co-design through stochastic programming. *IEEE Robotics and Automation Letters*, 5(2):
611 1680–1687, 2020.

612

613 Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning navigation
614 behaviors end-to-end with autorl. *IEEE Robotics and Automation Letters*, 4(2):2007–2014, 2019.

615

616 Jieming Cui, Tengyu Liu, Ziyu Meng, Jiale Yu, Ran Song, Wei Zhang, Yixin Zhu, and Siyuan
617 Huang. Grove: A generalized reward for learning open-vocabulary physical skill. *arXiv preprint
arXiv:2504.04191*, 2025.

618

619 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. *arXiv preprint arXiv:1802.06070*, 2018.

620

621 Aleksandra Faust, Anthony Francis, and Dar Mehta. Evolving rewards to automate reinforcement
622 learning. *arXiv preprint arXiv:1905.07628*, 2019.

623

624 Peter I Frazier. A tutorial on bayesian optimization. *arXiv preprint arXiv:1807.02811*, 2018.

625

626 M Gazzola, LH Dudte, AG McCormick, and L Mahadevan. Forward and inverse problems in the
627 mechanics of soft filaments. *Royal Society open science*, 5(6):171628, 2018. doi: 10.1098/rsos.
171628. URL <https://doi.org/10.1098/rsos.171628>.

628

629 Moritz A Graule, Thomas P McCarthy, Clark B Teeple, Justin Werfel, and Robert J Wood. Somogym:
630 A toolkit for developing and evaluating controllers and reinforcement learning algorithms for soft
robots. *IEEE Robotics and Automation Letters*, 7(2):4071–4078, 2022.

631

632 David Ha. Reinforcement learning for improving agent design. *Artificial life*, 25(4):352–365, 2019.

633

634 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
635 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. *arXiv preprint arXiv:1812.05905*, 2018.

636

637 Xu Han, Qiannan Yang, Xianda Chen, Xiaowen Chu, and Meixin Zhu. Generating and evolving
638 reward functions for highway driving with large language models. In *2024 IEEE 27th International
Conference on Intelligent Transportation Systems (ITSC)*, pp. 831–836. IEEE, 2024.

639

640 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural
information processing systems*, 29, 2016.

641

642 W Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward (mis)
643 design for autonomous driving. *Artificial Intelligence*, 316:103829, 2023.

644

645 LASeR. Laser. <https://github.com/WoodySJR/LASeR>, 2024. Accessed: 2025-09-24.

646

647 Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
648 Evolution through large models. In *Handbook of evolutionary machine learning*, pp. 331–366.
Springer, 2023.

648 Haofei Lu, Zhe Wu, Junliang Xing, Jianshu Li, Ruoyu Li, Zhe Li, and Yuanchun Shi. Bodygen:
 649 Advancing towards efficient embodiment co-design. *arXiv preprint arXiv:2503.00533*, 2025.
 650

651 Pingchuan Ma, Tao Du, John Z Zhang, Kui Wu, Andrew Spielberg, Robert K Katzschatmann, and
 652 Wojciech Matusik. Diffqua: A differentiable computational design pipeline for soft underwater
 653 swimmers with shape interpolation. *ACM Transactions on Graphics (TOG)*, 40(4):1–14, 2021.

654 Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
 655 Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
 656 large language models. *arXiv preprint arXiv:2310.12931*, 2023.
 657

658 Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to control
 659 self-assembling morphologies: a study of generalization via modularity. *Advances in Neural
 660 Information Processing Systems*, 32, 2019.

661 Kevin Qiu, Krzysztof Ciebiera, Paweł Fijałkowski, Marek Cygan, and Łukasz Kuciński. Robomorph:
 662 Evolving robot morphology using large language models. *arXiv preprint arXiv:2407.08626*, 2024.
 663

664 Chang Rajani, Karol Arndt, David Blanco-Mulero, Kevin Sebastian Luck, and Ville Kyrki. Co-
 665 imitation: learning design and behaviour by imitation. In *Proceedings of the AAAI Conference on
 666 Artificial Intelligence*, volume 37, pp. 6200–6208, 2023.

667 Carl Edward Rasmussen. Gaussian processes in machine learning. In *Summer school on machine
 668 learning*, pp. 63–71. Springer, 2003.
 669

670 George Saridis. Intelligent robotic control. *IEEE Transactions on Automatic Control*, 28(5):547–557,
 671 1983.

672 Karl Sims. Evolving virtual creatures. In *Seminal Graphics Papers: Pushing the Boundaries, Volume
 673 2*, pp. 699–706. 2023.

674 Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
 675 learning algorithms, 2012. URL <https://arxiv.org/abs/1206.2944>.
 676

677 Junru Song, Yang Yang, Huan Xiao, Wei Peng, Wen Yao, and Feifei Wang. Laser: Towards diversified
 678 and generalizable robot design with large language models. In *The Thirteenth International
 679 Conference on Learning Representations*.

680 Luc Steels and Rodney Brooks. *The artificial life route to artificial intelligence: Building embodied,
 681 situated agents*. Routledge, 2018.

682 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 683 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 684 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

685 Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
 686 Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
 687 continuous control. *Software Impacts*, 6:100022, 2020.

688 Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution: Towards efficient
 689 automatic robot design. *arXiv preprint arXiv:1906.05370*, 2019.
 690

691 Tsun-Hsuan Wang, Pingchuan Ma, Andrew Everett Spielberg, Zhou Xian, Hao Zhang, Joshua B
 692 Tenenbaum, Daniela Rus, and Chuang Gan. Softzoo: A soft robot co-design benchmark for
 693 locomotion in diverse environments. *arXiv preprint arXiv:2303.09555*, 2023.

694 Zhaoyue Wang. Towards socially and morally aware rl agent: Reward design with llm. *arXiv preprint
 695 arXiv:2401.12459*, 2024.
 696

697 Jie Xu, Andrew Spielberg, Allan Zhao, Daniela Rus, and Wojciech Matusik. Multi-objective graph
 698 heuristic search for terrestrial robot design. In *2021 IEEE international conference on robotics
 699 and automation (ICRA)*, pp. 9863–9869. IEEE, 2021.

702 Yanchao Yang. Text2reward: Reward shaping with language models for reinforcement learning.
703 In *International Conference on Learning Representations (ICLR)*, 2024 (07/05/2024-11/05/2024,
704 Vienna, Austria), 2024.

705 Lechen Zhang. Cuda-accelerated soft robot neural evolution with large language model supervision.
706 *arXiv preprint arXiv:2405.00698*, 2024.

708 X Zhang, FK Chan, T Parthasarathy, and M Gazzola. Modeling and simulation of complex dy-
709 namic musculoskeletal architectures. *Nature Communications*, 10(1):1–12, 2019. doi: 10.1038/
710 s41467-019-12759-5. URL <https://doi.org/10.1038/s41467-019-12759-5>.

711 Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg, Daniela Rus,
712 and Wojciech Matusik. Robogrammar: graph grammar for terrain-optimized robot design. *ACM*
713 *Transactions on Graphics (TOG)*, 39(6):1–16, 2020.

715 Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texxygen:
716 A benchmarking platform for text generation models. In *The 41st international ACM SIGIR*
717 *conference on research & development in information retrieval*, pp. 1097–1100, 2018.

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756	APPENDIX OUTLINE	
757		
758		
759	A Full Prompts	17
760	A.1 Coarse Optimization Prompts	17
761	A.1.1 Prompts for Reward Shaping	17
762	A.1.2 Prompts for Morphology Design	17
763	A.1.3 Prompts for Diversity Reflection	18
764	A.2 Fine Optimization	18
765	A.2.1 Prompts for Alternating Refinement	18
766		
767		
768		
769	B Discussion	19
770		
771		
772	C Limitation	19
773		
774	D Motivation	19
775		
776	E Environment and Task Details	20
777		
778	E.1 Ant	21
779	E.1.1 Task Description	21
780	E.1.2 Output Format	21
781	E.2 Ant-Powered	21
782	E.2.1 Task Description	21
783	E.2.2 Output Format	21
784	E.3 Ant-Desert	21
785	E.3.1 Task Description	21
786	E.3.2 Output Format	21
787	E.4 Ant-Jump	22
788	E.4.1 Task Description	22
789	E.4.2 Output Format	22
790	E.5 Hopper	22
791	E.5.1 Task Description	22
792	E.5.2 Output Format	22
793	E.6 Half-Cheetah	22
794	E.6.1 Output Format	23
795	E.7 Swimmer	23
796	E.7.1 Output Format	23
797	E.8 Walker	23
798	E.8.1 Task Description	23
799	E.8.2 Output Format	24
800		
801		
802		
803		
804		
805		
806		
807		
808		
809	F Implementation Details	25

810	G Additional Results	26
811	G.1 Implementation on Manipulation Tasks	26
812	G.2 Implementation on Free-form Design	26
813	G.3 Additional Analysis: Diversity Reflection vs. LASeR DiRect	26
814	G.3.1 Analysis on Diversity Reflection and Morphology Screening	27
815	G.4 Robustness across Different Gear Powers	30
816	G.5 Robustness across Different Terrains	30
817		
818		
819		
820		
821	H Algorithm Details	31
822		
823	I Proof of Temperature Scaling on Diversity	32
824		
825	J LLM Usage Statement	32
826		
827		
828	K More Visualization Results	33
829	K.1 Comparison of optimal morphology design via different methods	33
830	K.2 Ant: Best Reward Function	34
831	K.3 Ant-Powered: Best Reward Function	34
832	K.4 Ant-Desert: Best Reward Function	35
833	K.5 Ant-Jump: Best Reward Function	35
834	K.6 Hopper: Best Reward Function	36
835	K.7 Half-Cheetah: Best Reward Function	36
836	K.8 Swimmer: Best Reward Function	37
837	K.9 Walker: Best Reward Function	37
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864
865

A FULL PROMPTS

866
867

A.1 COARSE OPTIMIZATION PROMPTS

868
869
870
871
872
873

We take the Ant as an example to illustrate the prompt used in coarse optimization. The prompt for morphology design mainly consists of three parts: the task description, a masked MuJoCo XML file, and the required output format. The MuJoCo XML is masked to prevent LLMs from seeing the human-designed structure in advance. For brevity, we show only part of the MuJoCo XML file and environment code. Please refer to MuJoCo Gym for more details Towers et al. (2024).

874
875

A.1.1 PROMPTS FOR REWARD SHAPING

876
877
878

You are a reward engineer trying to write reward functions to solve reinforcement learning tasks **as** effectively **as** possible.
 Your goal **is** to write a reward function **for** the environment that will **help** the agent learn the task described **in** text.
 Task Description: The ant **is** a 3D quadruped robot consisting of a torso (free rotational body) **with** four legs attached to it, where each leg has two body parts. The goal **is** to coordinate the four legs to move **in** the forward (right) direction by applying torque to the eight hinges connecting the two body parts of each leg **and** the torso (nine body parts **and** eight hinges). You should write a reward function to make the robot move **as** faster **as** possible.

879
880
881
882
883

Here **is** the environment codes:

```
class AntEnv(MujocoEnv, utils.EzPickle):
    <Environment Code>
```

884
885
886

A template reward can be:

```
def _get_rew(self, x_velocity: float, action):
    <reward function code you should write>
    return reward, reward_info
```

887
888
889

The output of the reward function should consist of two items:

- (1) 'reward', which **is** the total reward.
- (2) 'reward_info', a dictionary of each individual reward component.

890
891
892

The code output should be formatted **as** a Python code string: ````python ...````.

893
894
895
896
897
898
899

Some helpful tips **for** writing the reward function code:

- (1) You may find it helpful to normalize the reward to a fixed **range** by applying transformations like 'numpy.exp' to the overall reward **or** its components.
- (2) Make sure the **type** of each **input** variable **is** correctly specified **and** the function name **is** "def _get_rew():"
- (3) Most importantly, the reward code's input variables must contain only attributes of the provided environment class definition (namely, variables that have the prefix 'self.'). Under no circumstances can you introduce new input variables.

900
901

A.1.2 PROMPTS FOR MORPHOLOGY DESIGN

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Role: You are a robot designer trying to design robot parameters to increase the fitness function **as** effective **as** possible.
 Your goal **is** to design parameters of robot that will **help** agent achieve the fitness function **as** high **as** possible.
 Fintess function: walk distance/material cost.
 Task Description: The ant **is** a 3D quadruped robot consisting of a torso (free rotational body) **with** four legs attached to it, where each leg has two body parts. The goal **is** to coordinate the four legs to move **in** the forward (right) direction by applying torque to the eight hinges connecting the two body parts of each leg **and** the torso (nine body parts **and** eight hinges).
 Here **is** the xml **file**:

```
"""
<mujoco model="ant">
    ...
    <worldbody>
        <light cutoff="100" diffuse="1 1 1" dir="-0 0 -1.3" directional="true" exponent="1"
        pos="0 0 1.3" specular=".1 .1 .1"/>
        <geom conaffinity="1" condim="3" material="MatPlane" name="floor" pos="0 0 0" rgba="0.8
        0.9 0.8 1" size="40 40 40" type="plane"/>
        <body name="torso" pos="0 0 {height}">
            <camera name="track" mode="trackcom" pos="0 -3 0.3" xyaxes="1 0 0 0 1"/>
            <geom name="torso_geom" pos="0 0 0" size="{param1}" type="sphere"/>
            <joint armature="0" damping="0" limited="false" margin="0.01" name="root" pos="0 0 0"
            type="free"/>
    </worldbody>
</mujoco>
```

```

918     <body name="front_left_leg" pos="0 0 0">
919         <geom fromto="0.0 0.0 0.0 {param2} {param3} 0.0" name="aux_1_geom" size="{param8}" type="capsule"/>
920         <body name="aux_1" pos="{param2} {param3} 0">
921             <joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/>
922             <geom fromto="0.0 0.0 0.0 {param4} {param5} 0.0" name="left_leg_geom" size="{param9}" type="capsule" />
923             <body pos="{param4} {param5} 0" >
924                 <joint axis="-1 1 0" name="ankle_1" pos="0.0 0.0 0.0" range="30 100" type="hinge"/>
925                 <geom fromto="0.0 0.0 0.0 {param6} {param7} 0.0" name="left_ankle_geom" size="{param10}" type="capsule"/>
926             </body>
927         </body>
928     </body>
929     ...
930     """
931 </mjoco>
932 Attention:
933 1. For reducing material cost to ensure the efficiency of robot design, you should reduce redundant parameters and increase parameters who control the robot.
934 2. Your design should fit the control gear and others parts of robots well.
935 Output Format:
936 Please output in json format without any notes:
937 { "parameters": [<param1>, <param2>, ..., <param10>], "description": "<your simple design style description>", }
938 # param1 is the size of the torso, positive.
939 # param2 is the end attachment x point of leg, positive.
940 # param3 is the end attachment y point of leg, positive.
941 # param4 is the end attachment x point of hip, positive.
942 # param5 is the end attachment y point of hip, positive.
943 # param6 is the end attachment x point of ankle, positive.
944 # param7 is the end attachment y point of ankle, positive.
945 # param8 is the size of the leg, positive.
946 # param9 is the size of the hip, positive.
947 # param10 is the size of the ankle, positive.

```

A.1.3 PROMPTS FOR DIVERSITY REFLECTION

Please propose a new morphology design, which can promote high fitness function **and is** quite different **from all** previous morphology designs **in** the design style. (Morphology)

Please write a new reward function to encourage more robot motion behaviours, which can promote high fitness function **and is** quite different **from all** previous reward functions **in** the design style. (Reward)

A.2 FINE OPTIMIZATION

A.2.1 PROMPTS FOR ALTERNATING REFINEMENT

There are also some design parameters **and** their fitness. Please carefully observe these parameters **and** their fitness, **try** to design a new parameter to further improve the fitness. (Morphology)

There are also some reward functions **and** their fitness. Please carefully observe these reward functions **and** their fitness, **try** to write a reward function to further improve the fitness. (Reward)

962
963
964
965
966
967
968
969
970
971

972 **B DISCUSSION**
973974 RoboMoRe is designed to be task-agnostic and broadly generalizable, yet several directions remain to
975 strengthen its practicality and scope. First, we will expand evaluation to more demanding benchmarks,
976 especially soft-robotics platforms Graule et al. (2022); Gazzola et al. (2018); Zhang et al. (2019),
977 where single-robot training can exceed a day and makes large-scale search nontrivial. Second,
978 incorporating vision-language models could improve generalization and reduce prompt engineering
979 by injecting visual priors and design commonsense.980 A core next step is transferring RoboMoRe from simulation to hardware. Concretely, we will: (i)
981 instantiate co-designed morphologies on modular robot platforms, mapping MJCF parameters to
982 URDF and controller settings; (ii) use domain randomization and hardware-in-the-loop evaluation to
983 close the sim-to-real gap; (iii) assess energy efficiency, robustness, and safety under real disturbances;
984 and (iv) study bio-inspired embodiments where joint optimization of morphology and reward can
985 yield more efficient locomotion and manipulation. Together, these efforts aim to validate RoboMoRe
986 on physical systems while preserving its sample efficiency and diversity benefits.
987988 **C LIMITATION**
989990 **Limited Evaluation Loop** Our study is restricted to tasks defined on parameterized models (*e.g.*,
991 MuJoCo XML descriptions with adjustable morphology parameters or structure matrix in soft voxel
992 robots). While this setting allows controlled evaluation and systematic optimization, it does not fully
993 capture the challenges of unstructured design spaces or real-world hardware constraints such as CAD
994 models.
995996 **Simulation-to-Reality Gap** Our framework has so far been evaluated only in virtual environments.
997 While simulation provides a controlled and efficient testbed, it inevitably simplifies real-world
998 conditions such as sensor noise, actuation limits, material wear, and unmodeled dynamics. As a result,
999 the effectiveness of RoboMoRe on physical robots remains unverified, and its direct transferability to
1000 hardware is still uncertain.1001 **Lack of In-depth Optimization Theory** While our empirical results demonstrate the effectiveness
1002 of RoboMoRe, we do not provide rigorous theoretical analysis of its optimization properties, such as
1003 convergence guarantees, sample complexity, or diversity-quality trade-offs.
10041005 **Prompt Specification Dependence** Although our prompting is designed to be a relatively-general
1006 scheme, it still requires lightweight specification of design parameters in output format (semantics,
1007 valid ranges, and basic constraints). Empirically, this dependence becomes stronger as tasks grow
1008 in parameter count and coupling complexity. While this requirement can be reduced by adding an
1009 automated parameter interpreter (*e.g.*, parsing MJCF/URDF to infer names, ranges, and constraints)
1010 or by letting the LLM first self-interpret parameters before generation, we leave fully removing this
1011 dependence to future work and anticipate it will diminish as model capabilities improve.
10121013 **D MOTIVATION**
10141015 To verify our hypothesis, we conducted experiments to quantitatively evaluate the performance of
1016 two representative robot morphologies, short leg ant and long leg ant. By designing different reward
1017 functions, we encouraged each robot to adopt distinct motion modalities. Specifically, we encouraged
1018 the robot to adopt a rolling motion along the ground by augmenting the template reward function
1019 with an angular velocity term and a jumping motion on the air by augmenting the template reward
1020 function with a bouncing reward term.1021 As shown in Fig. 2, the experimental results indicate that the short leg ant, characterized by a bulky
1022 body and low center of gravity, exhibits low fitness in the jumping modality but achieves significantly
1023 higher fitness when utilizing the rolling modality. Conversely, the long leg ant robot, benefiting from
1024 its slender limbs and elevated center of gravity, performs exceptionally well in the jumping modality.
1025 However, its motion efficiency drastically decreases under the rolling modality due to frequent
1026 overturning and difficulty recovering balance. These results clearly illustrate the strong dependence

1026 of robot performance on appropriate motion modalities, highlighting that optimal efficiency can only
 1027 be achieved when morphology and modality are suitably matched.
 1028

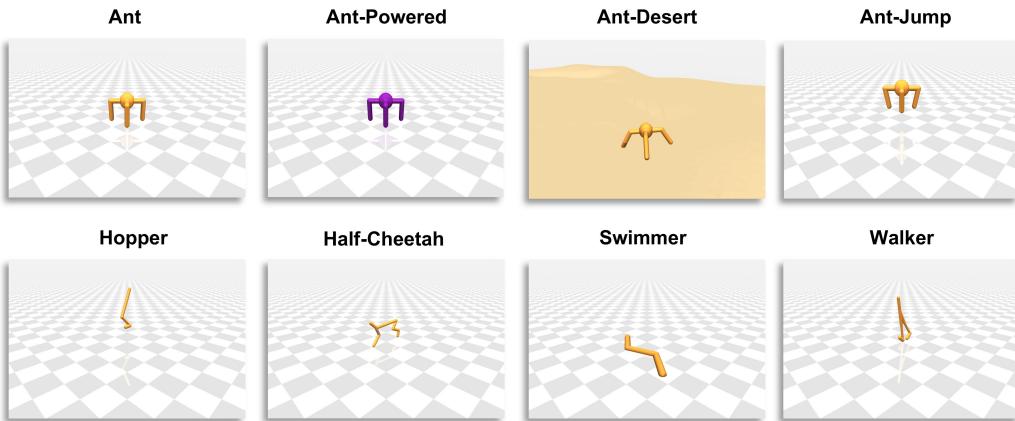
1029 In addition, Table 7 presents the fitness and
 1030 efficiency of the ant robot under different
 1031 conditions. We observe that the long-leg
 1032 ant exhibits a clear advantage in terms of ef-
 1033 ficiency, but only when paired with a well-
 1034 suited reward function. This finding un-
 1035 derscores the importance of co-optimizing
 1036 both morphology and control strategy in robot design to achieve optimal efficiency.
 1037

Table 7: **Fitness and Efficiency on four cases.**

Case	(a)	(b)	(c)	(d)
Fitness	108.83	37.39	59.94	5.13
Efficiency	288.76	109.50	1457.65	124.75

E ENVIRONMENT AND TASK DETAILS

1039 This section provides additional details on the environments and tasks used in our experiments. We
 1040 build upon standard environments from MuJoCo Gym, including Ant, Walker, Hopper, Half-Cheetah,
 1041 and Swimmer, and use their built-in reward functions and morphologies as human-designed baselines
 1042 for comparison. To further evaluate the robustness of RoboMoRe across diverse settings, we introduce
 1043 three customized environments: Ant-Desert, Ant-Jump, and Ant-Powered. Task descriptions are used
 1044 as input to both the Morphology Design Prompt and the Reward Shaping Prompt. The output format
 1045 constrains the LLM’s response to a set of robot morphology parameters, which are then fed into
 1046 our custom design scripts to generate a complete MuJoCo XML file, following Ha (2019). We will
 1047 open-source these design scripts alongside the code.



1063 **Figure 9: Human designed agents in eight different environments for visualization.** Purple
 1064 indicates agents in an augmented gear power.
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080

E.1 ANT

1081

E.1.1 TASK DESCRIPTION

1083

The ant **is** a 3D quadruped robot consisting of a torso (free rotational body) **with** four legs attached to it, where each leg has two body parts. The goal **is** to coordinate the four legs to move **in** the forward (right) direction by applying torque to the eight hinges connecting the two body parts of each leg **and** the torso (nine body parts **and** eight hinges).

1089

1090

E.1.2 OUTPUT FORMAT

1091

1092

```
Please output in json format without any notes:
{ "parameters": [<param1>, <param2>, ..., <param10>],
  "description": "<your simple design style description>",
  # param1 is the size of the torso, positive.
  # param2 is the end attachment x point of leg, positive.
  # param3 is the end attachment y point of leg, positive.
  # param4 is the end attachment x point of hip, positive.
  # param5 is the end attachment y point of hip, positive.
  # param6 is the end attachment x point of ankle, positive.
  # param7 is the end attachment y point of ankle, positive.
  # param8 is the size of the leg, positive.
  # param9 is the size of the hip, positive.
  # param10 is the size of the ankle, positive.
```

1101

1102

E.2 ANT-POWERED

1103

1104

E.2.1 TASK DESCRIPTION

1105

1106

The ant **is** a 3D quadruped robot consisting of a torso (free rotational body) **with** four legs attached to it, where each leg has two body parts. The goal **is** to coordinate the four legs to move **in** the forward (right) direction by applying torque to the eight hinges connecting the two body parts of each leg **and** the torso (nine body parts **and** eight hinges)

1109

1110

E.2.2 OUTPUT FORMAT

1111

1112

```
Please output in json format without any notes:
{ "parameters": [<param1>, <param2>, ..., <param10>],
  "description": "<your simple design style description>",
  # param1 is the size of the torso, positive.
  # param2 is the end attachment x point of leg, positive.
  # param3 is the end attachment y point of leg, positive.
  # param4 is the end attachment x point of hip, positive.
  # param5 is the end attachment y point of hip, positive.
  # param6 is the end attachment x point of ankle, positive.
  # param7 is the end attachment y point of ankle, positive.
  # param8 is the size of the leg, positive.
  # param9 is the size of the hip, positive.
  # param10 is the size of the ankle, positive.
```

1121

1122

E.3 ANT-DESERT

1124

1125

E.3.1 TASK DESCRIPTION

1126

1127

The ant **is** a 3D quadruped robot consisting of a torso (free rotational body) **with** four legs attached to it, where each leg has two body parts. The goal **is** to coordinate the four legs to move **in** the forward (right) direction by applying torque to the eight hinges connecting the two body parts of each leg **and** the torso (nine body parts **and** eight hinges).

1129

1130

1131

E.3.2 OUTPUT FORMAT

1132

1133

```
Please output in json format without any notes:
{ "parameters": [<param1>, <param2>, ..., <param10>],
  "description": "<your simple design style description>",
  }
```

```

1134     # param1 is the size of the torso, positive.
1135     # param2 is is the end attachment x point of leg, positive.
1136     # param3 is is the end attachment y point of leg, positive.
1137     # param4 is the end attachment x point of hip, positive.
1138     # param5 is the end attachment y point of hip, positive.
1139     # param6 is the end attachment x point of ankle, positive.
1140     # param7 is the end attachment y point of ankle, positive.
1141     # param8 is the size of the leg, positive.
1142     # param9 is the size of the hip, positive.
1143     # param10 is the size of the ankle, positive.
1144
1145
1146
1147
1148
1149

```

E.4 ANT-JUMP

E.4.1 TASK DESCRIPTION

The ant **is** a 3D quadruped robot consisting of a torso (free rotational body) **with** four legs attached to it, where each leg has two body parts. The goal **is** to coordinate the four legs to jump **in** the upward direction by applying torque to the eight hinges connecting the two body parts of each leg **and** the torso (nine body parts **and** eight hinges)

E.4.2 OUTPUT FORMAT

```

1153 Please output in json format without any notes:
1154 { "parameters": [<param1>, <param2>, ..., <param10>],
1155   "description": "<your simple design style description>", }
1156     # param1 is the size of the torso, positive.
1157     # param2 is is the end attachment x point of leg, positive.
1158     # param3 is is the end attachment y point of leg, positive.
1159     # param4 is the end attachment x point of hip, positive.
1160     # param5 is the end attachment y point of hip, positive.
1161     # param6 is the end attachment x point of ankle, positive.
1162     # param7 is the end attachment y point of ankle, positive.
1163     # param8 is the size of the leg, positive.
1164     # param9 is the size of the hip, positive.
1165     # param10 is the size of the ankle, positive.
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

```

E.5 HOPPER

E.5.1 TASK DESCRIPTION

The hopper **is** a two-dimensional one-legged figure consisting of four main body parts - the torso at the top, the thigh **in** the middle, the leg at the bottom, **and** a single foot on which the entire body rests. The goal **is** to make hops that move **in** the forward (right) direction by applying torque to the three hinges that connect the four body parts.

E.5.2 OUTPUT FORMAT

```

1173 Please output in json format without any notes:
1174 { "parameters": [<param1>, <param2>, ..., <param10>],
1175   "description": "<your simple design style description>", }
1176     # param1 is the size of the torso, positive.
1177     # param2 is is the end attachment x point of leg, positive.
1178     # param3 is is the end attachment y point of leg, positive.
1179     # param4 is the end attachment x point of hip, positive.
1180     # param5 is the end attachment y point of hip, positive.
1181     # param6 is the end attachment x point of ankle, positive.
1182     # param7 is the end attachment y point of ankle, positive.
1183     # param8 is the size of the leg, positive.
1184     # param9 is the size of the hip, positive.
1185     # param10 is the size of the ankle, positive.
1186
1187

```

E.6 HALF-CHEETAH

The HalfCheetah **is** a 2-dimensional robot consisting of 9 body parts **and** 8 joints connecting them (including two paws). The goal **is** to **apply** torque to the joints to make the cheetah run forward (right) **as** fast **as** possible, **with** a positive reward based on the distance moved forward **and** a negative reward **for** moving backward.

1188
 1189 The cheetah's torso and head are fixed, and torque can only be applied to the other 6 joints
 1190 over the front and back thighs (which connect to the torso), the shins (which connect to the
 1191 thighs), and the feet (which connect to the shins), and the goal is to move as fast as
 1192 possible towards the right by applying torque to the rotors and using fluid friction.

1193 E.6.1 OUTPUT FORMAT

1194
 1195 Please output **in json format** without **any** notes:
 1196 `{"parameters": [<param1>, <param2>, ..., <param24>],
 "description": "<your simple design style decription>"}
 1197 Parameters Description:
 1198 # param1: start point of torso (x), negtive
 1199 # param2: end point of torso (x) and start point of head (x), positive
 1200 # param3: end point of head (x).
 1201 # param4: end point of head (z).
 1202 # back leg parameters
 1203 # param5: end point of bthigh (x) and start point of bshin (x), sometimes positive.
 1204 # param6: end point of bthigh (z) and start point of bshin (z), negative.
 1205 # param7: end point of bshin (x) and start point of bfoot (x), sometimes negtive.
 1206 # param8: end point of bshin (z) and start point of bfoot (z), negative.
 1207 # param9: end point of bfoot (x), sometimes positive.
 1208 # param10: end point of bfoot (z), negative.
 1209 # forward leg parameters
 1210 # param11: end point of fthigh (x) and start point of fshin (x), sometimes negative.
 1211 # param12: end point of fthigh (z) and start point of fshin (z), negative.
 1212 # param13: end point of fshin (x) and start point of ffoot (x), sometimes positive.
 1213 # param14: end point of fshin (z) and start point of ffoot (z), negative.
 1214 # param15: end point of ffoot (x), sometimes positive.
 1215 # param16: end point of ffoot (z), negative.
 1216 # size information
 1217 # param17: torso capsule size.
 1218 # param18: head capsule size.
 1219 # param19: bthigh capsule size.
 1220 # param20: bshin capsule size.
 1221 # param21: bfoot capsule size.
 1222 # param22: fthigh capsule size.
 1223 # param23: fshin capsule size.
 1224 # param24: ffoot capsule size.`

1217 E.7 SWIMMER

1218
 1219 The swimmers consist of three **or** more segments ('links') **and** one less articulation joints
 1220 ('rotors') - one rotor joint connects exactly two links to form a linear chain. The swimmer
 1221 **is** suspended **in** a two-dimensional pool **and** always starts **in** the same position (subject to
 1222 some deviation drawn **from** a uniform distribution), **and** the goal **is** to move **as** fast **as**
 1223 possible towards the right by applying torque to the rotors **and** using fluid friction.

1224 E.7.1 OUTPUT FORMAT

1225
 1226 Please output **in json format** without **any** notes:
 1227 `{"parameters": [<param1>, <param2>, ..., <param6>],
 "description": "<your simple design style decription>"}
 1228 Parameters Description:
 1229 # param1 is the length of first segment, positive.
 1230 # param2 is the length of second segment, positive.
 1231 # param3 is the length of third segment, positive.
 1232 # param4 is the size of first segment, positive.
 1233 # param5 is the size of second segment, positive.
 1234 # param6 is the size of third segment, positive.`

1235 E.8 WALKER

1236 E.8.1 TASK DESCRIPTION

1237
 1238 The walker **is** a two-dimensional bipedal robot consisting of seven main body parts - a single
 1239 torso at the top (**with** the two legs splitting after the torso), two thighs **in** the middle
 1240 below the torso, two legs below the thighs, **and** two feet attached to the legs on which the
 1241 entire body rests. The goal **is** to walk **in** the forward (right) direction by applying torque to
 the six hinges connecting the seven body parts.

1242
1243

E.8.2 OUTPUT FORMAT

```

1244 Please output in json format without any notes:
1245 { "parameters": [<param1>, <param2>, ..., <param10>],
1246   "description": "<your simple design style description>", }
1247   # param1 is the size of the torso, positive.
1248   # param2 is is the end attachment x point of leg, positive.
1249   # param3 is is the end attachment y point of leg, positive.
1250   # param4 is is the end attachment x point of hip, positive.
1251   # param5 is the end attachment y point of hip, positive.
1252   # param6 is the end attachment x point of ankle, positive.
1253   # param7 is the end attachment y point of ankle, positive.
1254   # param8 is the size of the leg, positive.
1255   # param9 is the size of the hip, positive.
1256   # param10 is the size of the ankle, positive.
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

1296 **F IMPLEMENTATION DETAILS**
1297

1298 In line with standard reinforcement learning
1299 practices, we employ distributed trajectory sam-
1300 pling across multiple CPU threads to accel-
1301 erate training. Each model is trained using
1302 four random seeds on a system equipped with
1303 one AMD EPYC 7T83 processor and a single
1304 NVIDIA RTX 4080 Super GPU. Our framework
1305 is built on Python 3.8.20, MuJoCo 2.3.1, Stable-
1306 Baselines3 2.4.1, and CUDA 12.4. For all envi-
1307 ronments considered, training a single policy for
1308 5e5 steps takes approximately 15 minutes using
1309 24 CPU cores and one RTX 4080 Super GPU. GPT-4-turbo serves as the foundation model in most
1310 of our experiments. As shown in Table 8, for coarse optimization, we empirically set the number of
1311 morphologies \mathcal{N}_M to 25, the number of reward functions \mathcal{N}_R to 5, and the number of Morphology
1312 Screening \mathcal{N}_{MS} to 3, for trade-off between speed and design quality. For fine optimization, we
1313 select k as 5% best candidates from coarse stage. This remains computationally efficient and practi-
1314 cal—especially when compared to conventional methods like Bayesian Optimization or Evolutionary
1315 Algorithms, which often require several thousand iterations to converge.

1316 **Policy Training** We use the Soft Actor-Critic (SAC) algorithm Haarnoja et al. (2018) from Stable-
1317 Baselines3 as the reinforcement learning backbone for all experiments, ensuring consistency across
1318 tasks. Hyperparameters are configured based on the recommendations from Gym SpinningUp
1319 Achiam (2018), which are well-suited for training both human-designed robot morphologies and
1320 their corresponding reward functions. To accelerate training, we leverage parallel environments via
1321 SubprocVecEnv with 16 instances. Experimental results are averaged over 100 independent runs
1322 to mitigate randomness. Each candidate is initially trained for 5×10^5 steps for efficiency, and
1323 the top-performing candidate is retrained for 10^6 steps to ensure a fair comparison with alternative
1324 methods such as Bayesian Optimization (BO) and Eureka—both of which typically converge within
1325 this training budget across most tasks Achiam (2018). Table 9 demonstrates detailed parameters for
1326 policy training.

1327 **Table 9: SAC Training Hyperparameters**
1328

1329 Parameter	1330 Value
1331 Number of environments	1332 16
1333 Learning rate	1334 3e-4
1335 Buffer size	1336 2,000,000
1337 Learning starts	1338 10,000
1339 Batch size	1340 1024
1341 τ	1342 0.005
1343 γ	1344 0.99
1345 Train frequency	1346 8
1347 Gradient steps	1348 4
1349 Policy kwargs	1350 [512, 512]

1351 **Comparison Methods** We adopt Bayesian Optimization with a batch size of 1 and 100 iterations,
1352 using a Gaussian Process surrogate model with a Matérn 5/2 kernel, automatic relevance determina-
1353 tion (ARD), and the Expected Improvement (EI) acquisition function. For Eureka, we follow the
1354 recommended configuration with 5 iterations and 16 populations per iteration.

1350 G ADDITIONAL RESULTS

1352 G.1 IMPLEMENTATION ON MANIPULATION TASKS

1354 We adapted the task descriptions from the DM-Control paper to our prompt design and developed a
 1355 custom script to bridge the DM-Control Suite with OpenAI Gym. We evaluated each design using
 1356 three metrics: (a) Fitness, defined as the speed of successful manipulation; (b) Efficiency, computed
 1357 as fitness normalized by robot volume; and (c) Success rate, measured as the percentage of successful
 1358 completions. Each design was independently tested over 100 trials and the results were averaged. All
 1359 other experimental settings followed those in the main RoboMoRe framework. It should be noted
 1360 that, for this task, we provide the LLM with human template morphology parameters, but we do not
 1361 include any descriptions of the output format parameters.

1362 G.2 IMPLEMENTATION ON FREE-FORM DESIGN

1364 We further evaluate RoboMoRe on EvoGym, a benchmark for free-form soft voxel robot (SVR)
 1365 design. The framework was applied without introducing task-specific prompts or context learning.
 1366 Task descriptions and output format were directly taken from LASER main paper, and the output
 1367 format was adapted to match the SVR specification. Only minor adjustments were made to the
 1368 training setup, such as increasing batch size and the number of parallel environments.

1369 Table 10 summarizes the results across four EvoGym tasks. RoboMoRe achieves competitive
 1370 or superior performance relative to Bayesian Optimization (BO) and Genetic Algorithms (GA).
 1371 For example, RoboMoRe reaches 3.12 on Pusher-v0, compared to 2.74 for BO and 2.15 for GA.
 1372 On Jumper-v0, RoboMoRe maintains stable positive performance (0.077), whereas both baselines
 1373 produce negative results. On average across tasks, RoboMoRe achieves 2.01, outperforming BO
 1374 (1.81) and GA (0.82). These findings indicate that RoboMoRe can be directly extended to free-form
 1375 robot co-design without requiring extensive manual reconfiguration, highlighting its generality and
 1376 adaptability.

1377 Table 10: Performance on EvoGym free-form soft voxel robot (SVR) tasks. RoboMoRe is compared
 1378 against Bayesian Optimization (BO) and Genetic Algorithm (GA).

Method	Walker-v0	Carrier-v0	Pusher-v0	Jumper-v0	Average
RoboMoRe	3.91	0.93	3.12	0.08	2.01
BO	3.96	0.79	2.74	-0.24	1.81
GA	2.37	0.36	2.15	-1.61	0.82

1386 G.3 ADDITIONAL ANALYSIS: DIVERSITY REFLECTION VS. LASER DiRECT

1388 To further investigate this distinction, we conducted an additional experiment comparing RoboMoRe
 1389 with the LASER DiRect mechanism, using the implementation provided in the official LASER github
 1390 repository LASER (2024). The EvoGym Walker-v0 environment was adopted as the benchmark, and
 1391 twenty robot designs were generated for each method. Structural diversity was quantified using two
 1392 complementary measures. The first is Cosine Diversity, which captures the directional differences
 1393 between robot structures in a high-dimensional embedding space. The second is Hamming Diversity,
 1394 which measures voxel-level differences in occupied positions across robot designs.

1395 Table 11: Comparison of RoboMoRe and LASER on structural diversity in EvoGym Walker-v0.

Method	Cosine Diversity \uparrow	Hamming Diversity \uparrow	Tokens \downarrow	Time (s) \downarrow
LASER	0.3189	16.79	54,807	315.4
RoboMoRe	0.7187	37.83	28,537	57.8

1402 The results show that RoboMoRe achieves higher structural diversity on both metrics while requiring
 1403 fewer tokens and significantly less generation time. These findings support the claim that RoboMoRe's

1404 diversity reflection mechanism is not only more general but also more efficient, extending beyond
 1405 SVR-specific applications.
 1406

1407 G.3.1 ANALYSIS ON DIVERSITY REFLECTION AND MORPHOLOGY SCREENING

1409 To more concretely demonstrate the effectiveness of the Diversity Reflection mechanism, we visualize
 1410 the 5×25 efficiency matrices across multiple tasks for Random Sample, RoboMoRe w/o Diversity
 1411 Reflection (DR), and RoboMoRe. Due to the large variation in data magnitude, we apply a logarithmic
 1412 scale to the color map. As shown in Fig. 10, robots generated by Random Sample generally exhibit
 1413 low efficiency, whereas those designed by RoboMoRe consistently achieve significantly higher
 1414 performance across most tasks (see Table 4). Notably, while RoboMoRe w/o DR still achieves
 1415 reasonably good results, the lack of morphological diversity causes the selected samples to concentrate
 1416 around local optima, thereby leading to a slightly lower average efficiency compared to the full
 1417 RoboMoRe configuration.

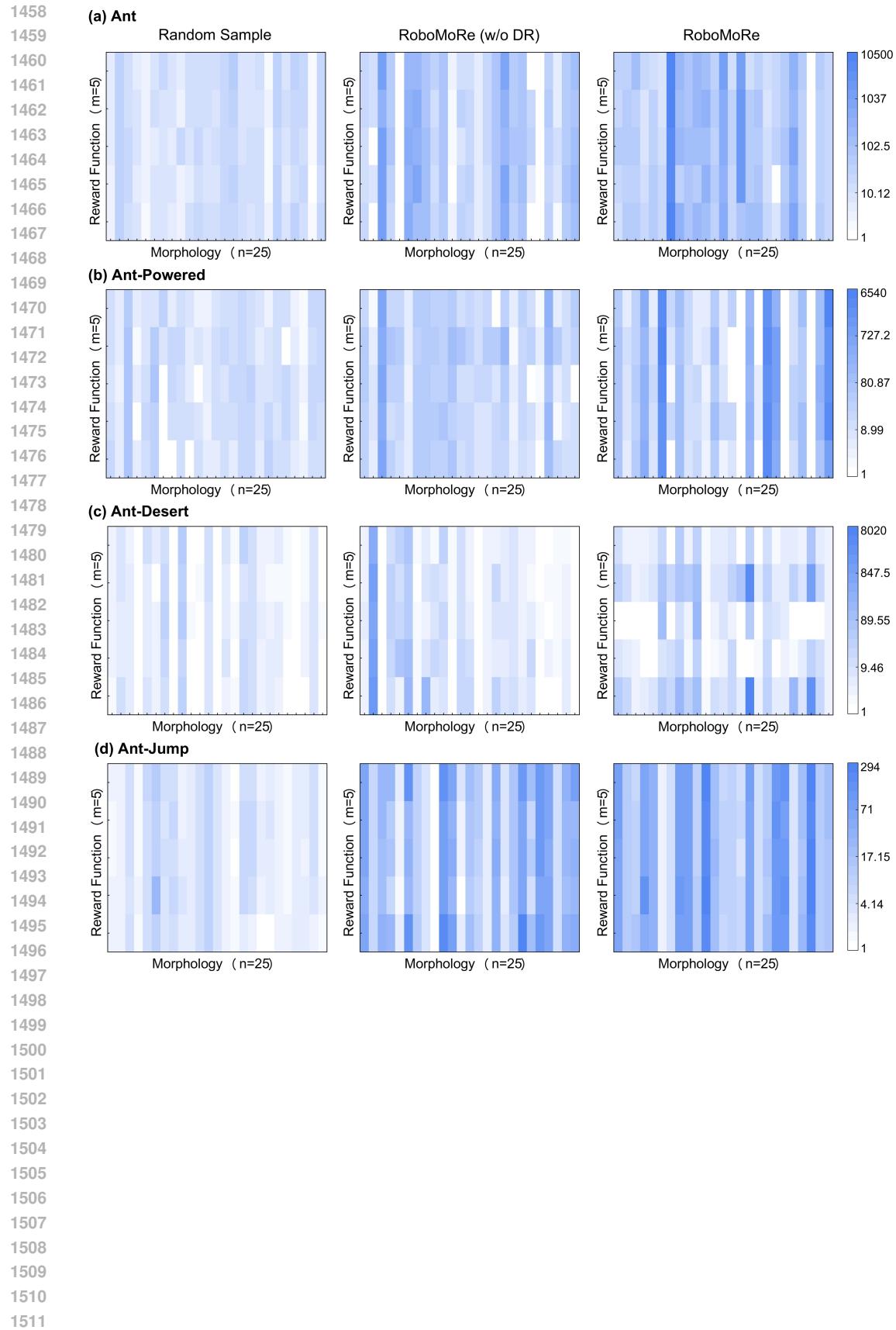
1418 Fig. 10 further illustrates the rationale behind *Morphology Screening*: morphology largely determines
 1419 the upper bound of co-optimization performance. Morphologies that perform poorly under the initial
 1420 general reward consistently exhibit low performance across other reward functions as well. This
 1421 observation indicates that it is unnecessary to optimize all reward functions for low-performing
 1422 morphologies, and comparable results can be achieved by focusing only on promising candidates.

1423 Table 12: Efficiency Comparison between RoboMoRe (w/o Morphology Screening) and (w/ Mor-
 1424 phology Screening).

Method	Ant	Walker	Swimmer	Half-Cheetah	Hopper	Ant-Powered	Ant-Jump	Ant-Desert
w/o Morphology Screening (25x5)	10464.17	1482.59	21931.14	129440.98	1951.44	2777.38	396.45	8001.67
w/ Morphology Screening (37)	10464.17	1482.59	21931.14	129440.98	1701.61	2777.38	396.45	8001.67

1429 Analysis of Morphology Screening is also shown here. Rather than exhaustively evaluating all 25×5
 1430 = 125 reward-morphology pairs, RoboMoRe first evaluates all 25 morphologies with a fixed reward
 1431 (e.g., reward0), then selects the top-3 morphologies to evaluate across the remaining 4 rewards. This
 1432 results in only 37 evaluations ($25 + 3 \times 4$) while still recovering the same global optimum as shown
 1433 in Table 12.

1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457



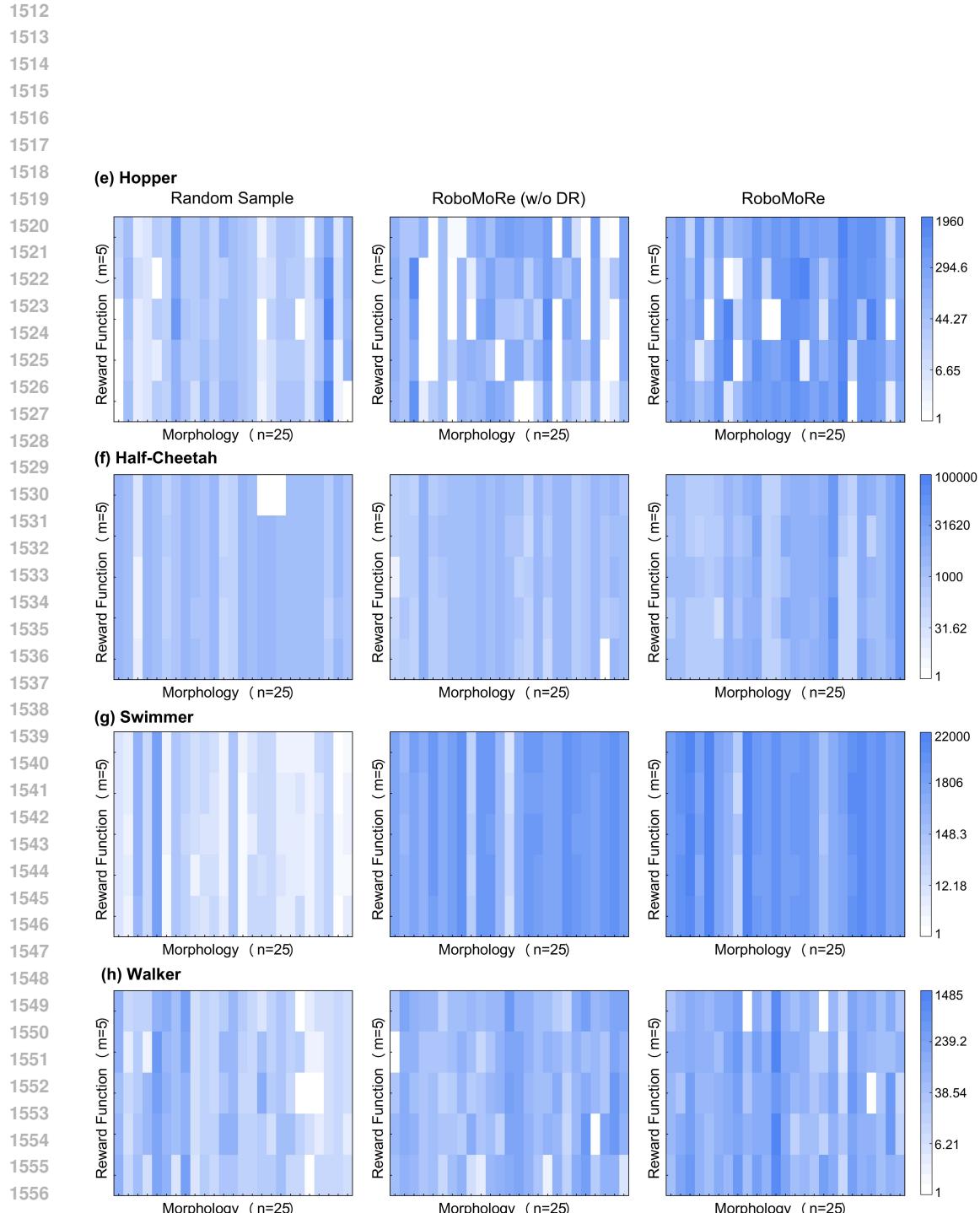


Figure 10: Coarse optimization results across 8 tasks (a-h) for Random Sample, RoboMoRe w/o Diversity Reflection (DR), and RoboMoRe.

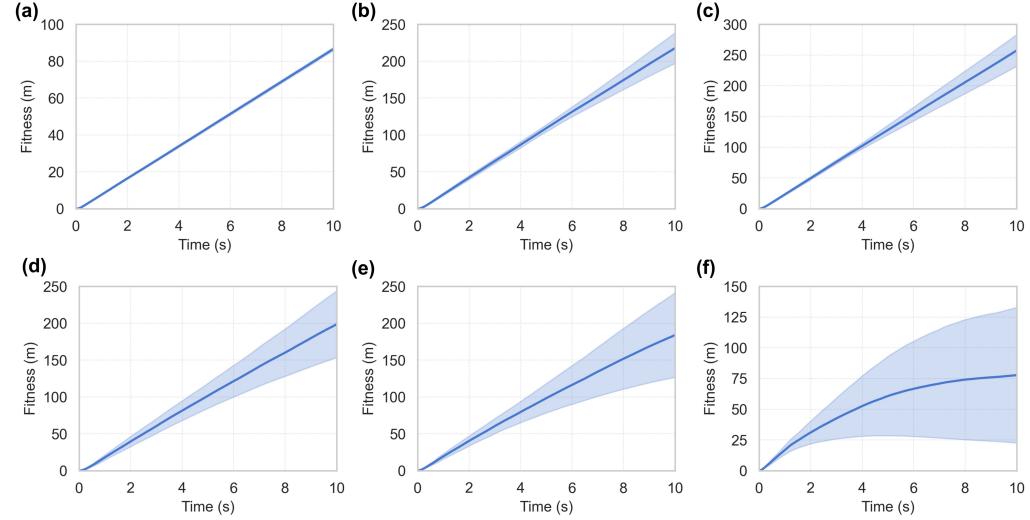
1566
1567

G.4 ROBUSTNESS ACROSS DIFFERENT GEAR POWERS

1568
1569
1570
1571
1572

To validate the robustness of RoboMoRe-generated designs across varying levels of motor power, we selected the top-performing design from the Ant-Powered task and retrained the model under five additional power settings. These power levels were configured directly through the MuJoCo XML files. The results, summarized in Fig. 11, show that the design discovered by RoboMoRe demonstrates strong adaptability and maintains consistent performance across a wide range of actuation capabilities.

1573



1590

Figure 11: **Different power settings and corresponding results.** (a) Ant-Powered-50. (b) Ant-Powered-100. (c) Ant-Powered-150. (d) Ant-Powered-200. (e) Ant-Powered-250. (f) Ant-Powered-300.

1594

G.5 ROBUSTNESS ACROSS DIFFERENT TERRAINS

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604

To further validate the robustness of RoboMoRe-generated designs across diverse terrains, we selected the top-performing design in Ant-Desert task and retrained the model on additional three distinct environments: ground, snow, and hills. These terrains were procedurally generated using Perlin noise and calibrated with realistic friction coefficients to reflect natural surface properties. The results, summarized in Fig. 12, demonstrate that the design discovered by RoboMoRe exhibits strong adaptability and consistent performance across all tested terrains, highlighting its robustness in diverse physical conditions.

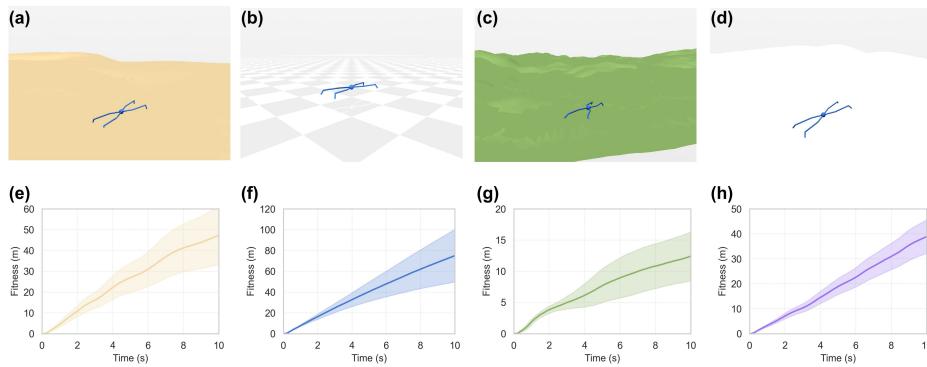
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 12: **Different terrain environments and corresponding results.** (a) Ant-Desert. (b) Ant-Ground. (c) Ant-Hills. (d) Ant-Snow. (e) Results for Ant-Desert. (f) Results for Ant-Ground. (g) Results for Ant-Hills. (h) Results for Ant-Snow.

1620 **H ALGORITHM DETAILS**
1621
1622
1623

1624 **Algorithm 1: Coarse-to-Fine Optimization**

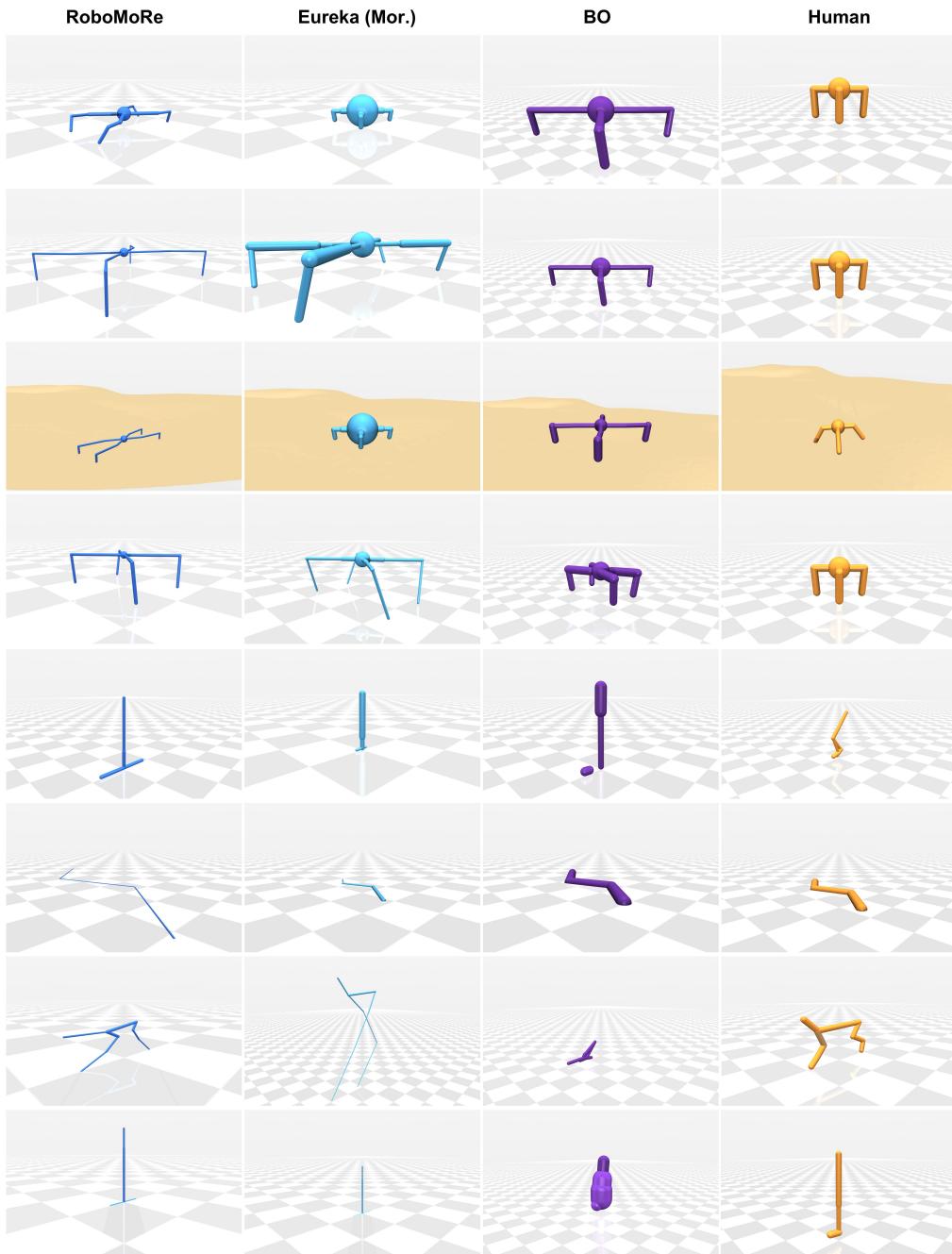
1625 **Data:** Number of morphologies $\mathcal{N}_{\mathcal{M}}$, number of rewards $\mathcal{N}_{\mathcal{R}}$, number of morphology screening
1626 candidates $\mathcal{N}_{\mathcal{MS}}$;
1627 Morphology prompt $P_{\mathcal{M}}$, reward prompt $P_{\mathcal{R}}$, diversity prompt $P_{\text{diversity}}$;
1628 RL training algorithm $\text{RL}(\cdot)$ (e.g., SAC); Fine optimization selection count k ;
1629 **Result:** Optimized morphology θ^* and reward function r^*

1630 // Coarse Optimization: Grid Search with Diversity Reflection.;
1631 $\Theta \leftarrow \emptyset$;
1632 $\theta_1 \leftarrow \text{ProposeMorphology}(P_{\mathcal{M}})$;
1633 $\Theta \leftarrow \Theta \cup \{\theta_1\}$;
1634 **for** $i \leftarrow 2$ **to** $\mathcal{N}_{\mathcal{M}}$ **do**
1635 $\theta_i \leftarrow \text{ProposeMorphology}(\Theta, P_{\mathcal{M}}, P_{\text{diversity}})$;
1636 $\Theta \leftarrow \Theta \cup \{\theta_i\}$;
1637 $\mathcal{R} \leftarrow \emptyset$;
1638 $r_1 \leftarrow \text{ProposeReward}(P_{\mathcal{R}})$;
1639 $\mathcal{R} \leftarrow \mathcal{R} \cup \{r_1\}$;
1640 **for** $j \leftarrow 2$ **to** $\mathcal{N}_{\mathcal{R}}$ **do**
1641 $r_j \leftarrow \text{ProposeReward}(\mathcal{R}, P_{\mathcal{R}}, P_{\text{diversity}})$;
1642 $\mathcal{R} \leftarrow \mathcal{R} \cup \{r_j\}$;
1643 $\mathcal{F} \leftarrow \emptyset$;
1644 $\mathcal{F}, \Theta = \text{Morphology_Screen}(\mathcal{F}, \Theta, \mathcal{N}_{\mathcal{MS}})$;
1645 **foreach** $\theta \in \Theta$ **do**
1646 **foreach** $r \in \mathcal{R}$ **do**
1647 $F \leftarrow \text{RL}(\theta, r)$;
1648 $\mathcal{F} \leftarrow \mathcal{F} \cup \{(\theta, r, F)\}$;
1649 $\mathcal{S}_{\text{coarse-best}} \leftarrow \text{Top}(\mathcal{F}, k)$;
1650 // Fine Optimization: Alternating Morphology and Reward Optimization;
1651 $\mathcal{S}_{\text{fine}} \leftarrow \emptyset$;
1652 **foreach** $(\theta, r) \in \mathcal{S}_{\text{coarse-best}}$ **do**
1653 $\theta^* \leftarrow \theta, r^* \leftarrow r$;
1654 $F^* \leftarrow \text{RL}(\theta^*, r^*)$;
1655 **while** not converged **do**
1656 improved \leftarrow False;
1657 // Morphology Optimization;
1658 $\theta' \leftarrow \text{ImproveMorphology}(\theta^*, r^*, \Theta, \mathcal{F})$;
1659 $F' \leftarrow \text{RL}(\theta', r^*)$;
1660 **if** $F' > F^*$ **then**
1661 $\theta^* \leftarrow \theta', F^* \leftarrow F'$;
1662 improved \leftarrow True;
1663 // Reward Function Optimization;
1664 $r' \leftarrow \text{ImproveReward}(\theta^*, r^*, \mathcal{R}, \mathcal{F})$;
1665 $F' \leftarrow \text{RL}(\theta^*, r')$;
1666 **if** $F' > F^*$ **then**
1667 $r^* \leftarrow r', F^* \leftarrow F'$;
1668 improved \leftarrow True;
1669 **if** not improved **then**
1670 **break**;
1671 $\mathcal{S}_{\text{fine}} \leftarrow \mathcal{S}_{\text{fine}} \cup \{(\theta^*, r^*, F^*)\}$;
1672 **return** Best (θ^*, r^*) from $\mathcal{S}_{\text{fine}}$;
1673

1674 **I PROOF OF TEMPERATURE SCALING ON DIVERSITY**
16751676 To examine whether temperature scaling can improve diversity, we conducted a controlled experiment
1677 using the Ant task. Both morphology and reward diversity were evaluated under different temperature
1678 settings, and the results were compared against RoboMoRe’s Diversity Reflection mechanism.
16791680 Table 13: Impact of temperature scaling on diversity. Morphology and reward diversity are averaged
1681 over 50 samples; motion modality diversity is assessed qualitatively.
1682

Method (Ant task)	Morphology Diversity ↑	Reward Diversity ↓	Motion Modality↑
T=1.0 (Default)	0.73	0.67	Low
T=1.1	0.78	0.62	Low
T=1.2	0.80	0.53	Low
T=1.3	0.83	0.48	Low
T=1.4	0.85	0.50	Low (artifacts)
T=1.5	0.94	0.41	Low (artifacts)
DR (T=1.0)	0.87	0.45	High

1691 The results from Fig. 13 indicate that temperature scaling can increase morphological diversity,
1692 particularly at higher values (e.g., $T = 1.3$ and above). However, this comes with notable drawbacks.
1693 At elevated temperatures ($T \geq 1.4$), the LLM frequently produced malformed or syntactically
1694 invalid reward functions, and response latency increased significantly. Moreover, while temperature
1695 scaling enhances surface-level variability in reward outputs, it does not effectively promote behavioral
1696 diversity: motion modalities remained highly repetitive across trials.
16971698 By contrast, the Diversity Reflection mechanism explicitly considers the joint interaction between
1699 morphology and reward, leading to reward–morphology pairs that generate qualitatively distinct
1700 motion behaviors. This highlights its advantage over temperature-based sampling, which primarily
1701 induces superficial diversity at the cost of reliability.
17021703 **Conclusion.** Increasing a extremely high temperature (e.g., $T=1.5$) can yield greater morphological
1704 variation, but it often degrades generation stability and fails to produce meaningful behavioral
1705 diversity. In comparison, Diversity Reflection provides a more robust and effective approach to
1706 achieving functional diversity in robot co-design.
17071708 **J LLM USAGE STATEMENT**
17091710 We acknowledge the use of large language models (LLMs) during the preparation of this work, LLMs
1711 were used to aid drafting and polish the writing.
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728 **K MORE VISUALIZATION RESULTS**
17291730 **K.1 COMPARISON OF OPTIMAL MORPHOLOGY DESIGN VIA DIFFERENT METHODS**
17311732 Fig. 13 presents the optimized morphology design. Evidently, RoboMoRe is capable of producing
1733 highly efficient structures, demonstrating its effectiveness in morphology optimization.
17341733 **Figure 13: Optimized morphology with comparison methods.**
17341735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782 K.2 ANT: BEST REWARD FUNCTION
1783

```

1784 import numpy as np
1785 def _get_rew(self, x_velocity: float, action):
1786     # Encourage not just moving forward but also involving some controlled lateral movement
1787     # to demonstrate agility and dynamic control capability.
1788
1789     # Reward for moving forward
1790     forward_reward = self._forward_reward_weight * x_velocity
1791
1792     # Reward for controlled lateral movement (moderate y_velocity to demonstrate lateral
1793     # agility)
1794     target_y_velocity = 0.5 # moderate lateral speed target, can be tuned
1795     lateral_movement_reward = -np.abs(self.data.qvel[1] - target_y_velocity) *
1796     self._forward_reward_weight
1797
1798     # Minimize the control effort to promote energy efficiency.
1799     control_cost = self.control_cost(action)
1800
1801     # Health reward for maintaining a physically feasible and stable posture.
1802     health_reward = self.healthy_reward
1803
1804     # Total reward computation
1805     reward = forward_reward + lateral_movement_reward - control_cost + health_reward
1806
1807     # Reward details for debugging and analysis purposes
1808     reward_info = {
1809         'forward_reward': forward_reward,
1810         'lateral_movement_reward': lateral_movement_reward,
1811         'control_cost': control_cost,
1812         'health_reward': health_reward
1813     }
1814
1815     return reward, reward_info

```

1806
1807 K.3 ANT-POWERED: BEST REWARD FUNCTION
1808

```

1809 import numpy as np
1810 def _get_rew(self, x_velocity: float, action):
1811     # Encourage forward movement with a target velocity for optimal speed
1812     target_velocity = 1.0 # Desired forward velocity
1813     velocity_error = np.abs(x_velocity - target_velocity) # Calculate deviation from target
1814     forward_reward = self._forward_reward_weight * np.exp(-velocity_error) # Exponential
1815     decay for reward
1816
1817     # Penalize lateral (y-direction) movement to maintain focus on forward motion
1818     y_velocity_penalty = -abs(self.data.qvel[1]) # Penalize any motion in the y direction
1819
1820     # Introduce a reward for efficient alternate leg movement to promote stability and
1821     # locomotion style
1822     leg_pair_1 = np.abs(action[0] + action[1] - (action[4] + action[5]))
1823     leg_pair_2 = np.abs(action[2] + action[3] - (action[6] + action[7]))
1824     alternate_leg_movement_reward = (np.exp(-leg_pair_1) + np.exp(-leg_pair_2)) / 2.0
1825
1826     # Maintain healthy posture by rewarding stability within the Z-limits
1827     health_reward = self.healthy_reward
1828
1829     # Evaluate the efficiency of movement through control costs
1830     control_cost = self.control_cost(action)
1831
1832     # Penalize excessive contact forces to minimize instability
1833     contact_cost = self.contact_cost
1834
1835     # Calculate total reward by combining all components
1836     reward = forward_reward + y_velocity_penalty + alternate_leg_movement_reward -
1837     control_cost + health_reward - contact_cost
1838
1839     # Reward info for monitoring individual components
1840     reward_info = {
1841         "forward_reward": forward_reward,
1842         "y_velocity_penalty": y_velocity_penalty,
1843         "alternate_leg_movement_reward": alternate_leg_movement_reward,
1844         "control_cost": control_cost,
1845         "contact_cost": contact_cost,
1846         "health_reward": health_reward,
1847     }
1848
1849     return reward, reward_info

```

1836
1837

K.4 ANT-DESERT: BEST REWARD FUNCTION

```

1838 import numpy as np
1839 def _get_rew(self, x_velocity: float, action):
1840     # Reward for forward movement, emphasizing an exponential growth to encourage high speeds.
1841     forward_reward = self._forward_reward_weight * np.exp(x_velocity - 1) # Exponential
1842     # growth for incentivizing high speeds
1843
1844     # Encourage lateral stability: penalize the absolute value of lateral (y-axis) velocity
1845     y_velocity = self.data.qvel[1]
1846     lateral_stability_penalty = -np.abs(y_velocity) # Negative as we want to minimize
1847     lateral_movement
1848
1849     # Control cost to penalize excessive energy usage
1850     control_cost = self.control_cost(action)
1851
1852     # Keep the robot in a healthy state
1853     healthy_reward = self.healthy_reward
1854
1855     # Minimize contact costs to promote gentle contacts with the ground
1856     contact_cost = self.contact_cost
1857
1858     # Total reward calculation combining all components
1859     reward = forward_reward + healthy_reward + lateral_stability_penalty - control_cost -
1860     contact_cost
1861
1862     # Detailed reward breakdown for analysis and debugging
1863     reward_info = {
1864         'forward_reward': forward_reward,
1865         'lateral_stability_penalty': lateral_stability_penalty,
1866         'control_cost': control_cost,
1867         'contact_cost': contact_cost,
1868         'healthy_reward': healthy_reward
1869     }
1870
1871     return reward, reward_info

```

1861
1862

K.5 ANT-JUMP: BEST REWARD FUNCTION

1863

1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

```

1864 import numpy as np
1865 def _get_rew(self, x_velocity: float, action):
1866     # Decomposing the reward function
1867     jump_height = self.data.body(self._main_body).xpos[2] # Z position gives the height
1868
1869     # Reward for jumping higher
1870     height_reward = np.exp(jump_height - 1) # exponential reward starting from height 1
1871
1872     # Control cost to make sure the robot uses minimum effort to jump
1873     control_cost = self.control_cost(action)
1874
1875     # Contact cost to penalize excessive force usage in contacts, promoting smooth jumping
1876     contact_cost = self.contact_cost
1877
1878     # Component to support healthy posture
1879     healthy_posture_reward = self.healthy_reward
1880
1881     # Combination of different components of the reward
1882     reward = (
1883         height_reward * self._forward_reward_weight
1884         - contact_cost
1885         - control_cost
1886         + healthy_posture_reward
1887     )
1888
1889     # Reward info for better analysis and debugging
1890     reward_info = {
1891         "height_reward": height_reward,
1892         "control_cost": control_cost,
1893         "contact_cost": contact_cost,
1894         "healthy_posture_reward": healthy_posture_reward,
1895     }
1896
1897     return reward, reward_info

```

1890
1891

K.6 HOPPER: BEST REWARD FUNCTION

```

1892 import numpy as np
1893 def _get_rew(self, x_velocity: float, action):
1894     # Encourage efficient forward movement by not just rewarding speed but also smooth
1895     # progression
1896     smoothness_reward = -np.sum(np.abs(np.diff(action)))  # Decrease reward for large
1897     # differences in consecutive actions
1898
1899     # Reward forward velocity, with an exponential component to prioritize higher speeds
1900     # exponentially
1901     exponential_speed_reward = self._forward_reward_weight * np.exp(x_velocity) - 1  # Using
1902     # exp to exponentially prefer higher velocities, subtract 1 to center around zero for small
1903     # velocities
1904
1905     # Penalty for using too much control input, which promotes efficiency
1906     control_penalty = self._ctrl_cost_weight * np.sum(np.square(action))
1907
1908     # Healthy state reward, keeping the hopper upright and in a healthy range
1909     health_bonus = self.healthy_reward
1910
1911     # Total reward calculation
1912     total_reward = exponential_speed_reward + smoothness_reward - control_penalty +
1913     health_bonus
1914
1915     # Tracking reward details for better understanding and debugging
1916     reward_info = {
1917         'smoothness_reward': smoothness_reward,
1918         'exponential_speed_reward': exponential_speed_reward,
1919         'control_penalty': control_penalty,
1920         'health_bonus': health_bonus,
1921         'total_reward': total_reward
1922     }
1923
1924     return total_reward, reward_info

```

1915

K.7 HALF-CHEETAH: BEST REWARD FUNCTION

```

1916 import numpy as np
1917 def _get_rew(self, x_velocity: float, action):
1918     # Reward for moving forward emphasizing higher speeds
1919     forward_reward = self._forward_reward_weight * x_velocity
1920
1921     # Calculate control cost using the predefined method
1922     control_cost = self.control_cost(action)
1923
1924     # Reward for energy efficiency: velocity per control effort
1925     efficiency = x_velocity / (control_cost + 1e-5)  # Avoid division by zero
1926     normalized_efficiency_reward = np.exp(efficiency) - 1  # Shifted by -1 to normalize
1927     # around 0
1928
1929     # Calculate smoothness reward: penalize fluctuations in velocity
1930     if not hasattr(self, 'prev_velocity'):
1931         self.prev_velocity = x_velocity
1932     smoothness_penalty = -np.abs(x_velocity - self.prev_velocity)  # Penalize changes in
1933     # velocity
1934     self.prev_velocity = x_velocity  # Update the previous velocity for the next step
1935     smoothness_reward = np.exp(smoothness_penalty) - 1  # Normalize the smoothness reward
1936
1937     # Action symmetry bonus: rewards symmetrical actions between limbs
1938     if len(action) % 2 == 0:
1939         left_actions = action[1::2]
1940         right_actions = action[0::2]
1941         symmetry_penalty = -np.sum(np.abs(left_actions - right_actions))
1942     else:
1943         symmetry_penalty = 0
1944     symmetry_reward = np.exp(symmetry_penalty) - 1
1945
1946     # Combine all components to form the total reward
1947     total_reward = forward_reward - control_cost + normalized_efficiency_reward +
1948     smoothness_reward + symmetry_reward
1949
1950     # Reward info dictionary for debugging and analysis
1951     reward_info = {
1952         'forward_reward': forward_reward,
1953         'control_cost': control_cost,
1954         'normalized_efficiency_reward': normalized_efficiency_reward,
1955         'smoothness_reward': smoothness_reward,
1956     }

```

```

1944         'symmetry_reward': symmetry_reward,
1945         'total_reward': total_reward
1946     }
1947
1948     return total_reward, reward_info
1949
1950

```

K.8 SWIMMER: BEST REWARD FUNCTION

```

1951 import numpy as np
1952 def _get_rew(self, x_velocity: float, action):
1953     # Define efficient swimming characteristics. Aim to maintain balance between forward
1954     motion and control.
1955
1956     # Base forward reward for moving right, placed higher for higher velocities
1957     forward_reward = self._forward_reward_weight * (x_velocity ** 2) # Quadratic reward
1958     amplifies strong velocities
1959
1960     # Introduce a reward for stability: Encourage minimal yawing (side ways movements).
1961     stability_reward = -0.5 * (self.data.qpos[1] ** 2) # Penalizing lateral position squared
1962     to discourage side motion
1963
1964     # Punishing excessive control inputs, to favor smooth swimming rather than jerky movements
1965     control_penalty = self.control_cost(action)
1966
1967     # Incentivize maintaining a certain baseline velocity (e.g., cruising speed), with a soft
1968     penalty for deviations
1969     ideal_velocity = 1.0
1970     velocity_penalty = 0.5 * ((x_velocity - ideal_velocity) ** 2) # Penalizes big deviations
1971     from ideal
1972
1973     # Compute the total reward
1974     total_reward = forward_reward + stability_reward - control_penalty - velocity_penalty
1975
1976     # Debugging and analysis information containing detailed components of the reward
1977     reward_info = {
1978         'forward_reward': forward_reward,
1979         'stability_reward': stability_reward,
1980         'control_penalty': control_penalty,
1981         'velocity_penalty': velocity_penalty,
1982     }
1983
1984     return total_reward, reward_info
1985
1986

```

K.9 WALKER: BEST REWARD FUNCTION

```

1987 import numpy as np
1988 def _get_rew(self, x_velocity: float, action):
1989     # Reward for forward motion, scaled exponentially to favor higher speeds but with
1990     diminishing returns
1991     forward_reward = np.exp(0.3 * x_velocity) - 1
1992
1993     # Penalty to discourage excessive use of actuator torques, promoting energy efficiency
1994     control_penalty = self.control_cost(action)
1995
1996     # Bonus for maintaining a healthy mechanics of motion, which includes staying upright
1997     health_bonus = self.healthy_reward
1998
1999     # Additional reward for synchronous and rhythmic leg movements
2000     # We can leverage the sine of the sum of relevant joint angles to promote a smooth cyclic
2001     locomotion
2002     angles = self.data.qpos[2:7] # Assuming indices 2-6 are joint angles
2003     rhythmic_movement_bonus = np.sum(np.sin(angles))
2004
2005     # Compute total reward considering all the components
2006     reward = forward_reward + rhythmic_movement_bonus + health_bonus - control_penalty
2007
2008     # Organize detailed reward components for diagnostic purposes
2009     reward_info = {
2010         'forward_reward': forward_reward,
2011         'rhythmic_movement_bonus': rhythmic_movement_bonus,
2012         'health_bonus': health_bonus,
2013         'control_penalty': control_penalty
2014     }
2015
2016     return reward, reward_info
2017
2018

```