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Abstract

Sparse reward remains a valuable and challenging
problem in multi-agent reinforcement learning
(MARL). This paper addresses this issue from
a new perspective, i.e., lazy agents. We empiri-
cally illustrate how lazy agents damage learning
from both exploration and exploitation. Then,
we propose a novel MARL framework called
Lazy Agents Avoidance through Influencing Ex-
ternal States (LAIES). Firstly, we examine the
causes and types of lazy agents in MARL using
a causal graph of the interaction between agents
and their environment. Then, we mathematically
define the concept of fully lazy agents and teams
by calculating the causal effect of their actions
on external states using the do-calculus process.
Based on definitions, we provide two intrinsic
rewards to motivate agents, i.e., individual dili-
gence intrinsic motivation (IDI) and collabora-
tive diligence intrinsic motivation (CDI). IDI and
CDI employ counterfactual reasoning based on
the external states transition model (ESTM) we
developed. Empirical results demonstrate that
our proposed method achieves state-of-the-art per-
formance on various tasks, including the sparse-
reward version of StarCraft multi-agent challenge
(SMAC) and Google Research Football (GRF).
Our code is open-source and available at https:
//github.com/liuboyin/LAIES.
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1. Introduction
Cooperative multi-agent reinforcement learning (MARL) is
an active and fast-growing field that has been applied to a
wide range of real-world problems, such as traffic control
(Li, 2020), supply chain management (Fuji et al., 2018),
network routing (Rosenbaum et al., 2017), and robotics
(Perrusquı́a et al., 2021; Lillicrap et al., 2015).

Centralized training with decentralized execution (CTDE)
has been a significant paradigm of cooperative MARL and
can effectively deal with nonstationarity while learning de-
centralized policies for agents (Foerster et al., 2016; Yang
et al., 2020; Rashid et al., 2020). In CTDE, agents have
access to other agents’ information and the global state, but
during execution, each agent acts independently based on
their policies. Many methods have been proposed following
the paradigm of CTDE, including MADDPG (Lowe et al.,
2017), MAPPO (Yu et al., 2021), VDN (Sunehag et al.,
2017), QMIX (Rashid et al., 2018), MAVEN (Connerney
et al., 2015) and QPLEX (Wang et al., 2020a). Among
these methods, QMIX stands out as it represents the joint
action-value using a non-negative function approximator
and achieves superior performance on many MARL bench-
marks due to well-designed auxiliary rewards.

Although these MARL approaches progress significantly in
complex cooperative tasks, well-designed auxiliary rewards
are essential in fostering cooperative or competitive behavior
among agents. However, sparse reward scenarios are very
typical in MARL applications in the real world. Designing a
useful reward function is also notoriously difficult (Abbeel
& Ng, 2004), particularly for non-specialists. Sparse reward
problem is especially serious when agents must explore
large and uncertain environments. In such tasks, agents may
not have enough information to develop an optimal behavior
and may learn to exploit suboptimal but easily accessible
solutions (Sutton & Barto, 2018).

In this paper, we solve the problem of sparse rewards in
MARL from a new perspective, i.e., lazy agent. In multi-
agent systems, lazy agents refer to agents that do not actively
participate in the teamwork or do not contribute significantly
to the system’s overall performance. Since the reward struc-
ture in a sparse reward environment does not adequately
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incentivize active participation or contributions to the sys-
tem’s overall performance, agents may lack motivation to
contribute (Bolander et al., 2018). As a result, agents may
default to passive or lazy behavior, as they do not perceive
direct benefits from taking proactive or risky actions.

We propose a novel framework called Lazy Agents Avoid-
ance through Influencing External States (LAIES) to solve
sparse reward problems. We first decompose the global
states into internal and external states and then construct a
causal graph of the interaction between agents and the en-
vironment. By analyzing this graph, we identify the causes
of lazy agents in MARL and mathematically define the con-
cept of lazy agents and teams. To address lazy agents, we
introduce two intrinsic rewards that incentivize agents and a
team to have a causal effect on external states. We develope
a model for external state transitions to support counter-
factual reasoning and use this model to calculate intrinsic
rewards. Finally, our approach is evaluated on two scenarios,
StarCraft multi-agent challenge (SMAC) (Samvelyan et al.,
2019a) and Google Research Football (GRF) (Kurach et al.,
2019). Results demonstrate the effectiveness of our method
in avoiding lazy agents and improving overall performance
in MARL with sparse rewards.

2. Background
This section provides the context necessary to comprehend
LAIES and its relationship to existing works.

2.1. Decentralized Partially Observable Markov
Decision Process

We consider a fully cooperative multi-agent task as a de-
centralized partially observable Markov decision process
(Dec-POMDP) (Oliehoek & Amato, 2016), which can be
defined as a tuple M =< N,S,A, P, r, Z,O, γ >, where
N denotes a finite set of agents and s ∈ S the true state
of the environment, γ ∈ [0, 1) the discount factor. At
each time step, each agent j ∈ N receives his own ob-
servation oj ∈ O and then chooses an action aj ∈ A on
a global states s, forming a joint action vector a⃗. It re-
sults in a joint reward r(s, a⃗) and causes a transition on the
environment based on the transition function P (s′|, s, a⃗).
Each agent has its own action-observation history hj∈Tj ≡
(Zj × A)∗, conditioned by a stochastic policy πj(aj |hj).
The joint policy π then induces a joint action-value function:
Qπ

tot(s, a⃗) = Es0:∞,a0:∞ [Gt| s0 = s, a0 = a⃗, π], where
Gt =

∑∞
t=0 γ

trt+1 is the expected discounted return.

2.2. Causal Inference

Causal inference is the process of determining whether a
change in one variable is the cause of a change in another
variable. Understanding causality is important in the context

of MARL because it can help agents to better understand
how their actions and behaviors are affecting the environ-
ment and other agents.

Causal graphs are graphical representations of a set of
variables and their causal relationships to one another. In
a causal graph, variables are represented as nodes, and the
relationships between variables are represented as edges
connecting the nodes. The direction of the edge indicates
the direction of causality, with the arrow pointing from the
cause to the effect (Pearl, 1988).

Do-calculus process is a causation framework that allows
us to identify causal effects using the causal assumptions
encoded in the causal graph. It gives us tools to identify
any causal estimand that is identifiable. Concretely, a causal
estimand is denoted as P (O|do(M = m), C = c), where
O is a set of outcome variables, M is a set of treatment
variables, and C is a set of covariates.

2.3. Related Works

Existing works addressing the problem of sparse rewards in
MARL from several perspectives.

The most straightforward solution to the sparse reward prob-
lem is enhancing exploration. The idea behind this approach
is that by increasing the agent’s ability to explore the state
space, it can more efficiently discover states that lead to
higher rewards. MAVEN (Connerney et al., 2015) learns
a diverse ensemble of monotonic approximations with the
help of a latent space to explore. One standard method
for enhancing exploration is using an exploration bonus
(Pathak et al., 2017; Liu et al., 2021), an additional reward
signal provided to the agent for visiting novel states, such as
curiosity-driven (Pathak et al., 2017). Lastly, some methods
use an ensemble of agents to enhance exploration, where a
group of agents works together to explore the state space
more efficiently. CMAE (Liu et al., 2021) shares a common
exploring goal selected from multiple projected state spaces.
However, these methods only emphasize exploration with-
out investigating which states are worth exploring, resulting
in limited performance in complex scenarios.

Encouraging influential behaviors (Liu et al., 2020) between
agents is also a proposed approach for addressing the sparse
reward problem in MARL. Influential behaviors can be
achieved in MARL by directly shaping other agents’ policy
updates (Foerster et al., 2017; Letcher et al., 2018), maxi-
mizing the mutual information (MI) between agents’ actions
(Jaques et al., 2019), identifying the relationship between
its behavior and the other agent’s future strategy (Xie et al.,
2021), considering each agent’s impact on the converged
policies of other agents (Kim et al., 2022), and maximizing
the MI associated with high-level collaborative behaviors
and minimizing the MI with low-level one (Li et al., 2022).
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(a) QMIX (0.2 million) (b) QMIX (0.6 million) (c) QMIX (1 million) (d) LAIES (0.2 million)

(e) Win Rate (f) Rewards (g) Mean Episode Steps (h) Allies Alive (i) Enemies Alive

Figure 1. (a), (b) and (c) depict the policies obtained by QMIX after 0.2 million steps, 0.6 million steps, and 1 million steps of training
respectively, under the condition of sparse rewards. (d) illustrates the policy obtained by LAIES after 0.2 million steps of training. The
green and red points label lazy agents and diligent agents, respectively. The curves in (e) - (i) represent the average test results of five
different random seeds.

However, encouraging influential behaviors may lead to
unwanted coalitions, where certain groups of agents col-
laborate to achieve their own goals but not necessarily the
overall objective of the task. Additionally, subgoal-based
approaches have emerged as an effective method for ad-
dressing the sparse reward problem in MARL. HDMARL
(Tang et al., 2018) uses a predefined set of subgoals based
on domain knowledge, while MASER (Jeon et al., 2022)
automatically generates subgoals from experience replay
buffers for multiple agents. However, domain-knowledge-
based subgoal-based approaches are not easily extended to
different tasks, and automatically generated subgoals may
not provide adequate performance.

3. Why QMIX Fails with Sparse Reward
In this section, we will use the QMIX method as an example
and discuss the challenges many existing MARL methods
encounter in sparse reward tasks. Specifically, we will use
the 3m task in SMAC to illustrate these challenges. The
3m task involves controlling a team of three red Marines
to eliminate three blue Marines, with three types of reward,
i.e., +1 for a win, 0 for a tie, and -1 for a loss.

Figures 1(a), 1(b) and 1(c) illustrate that QMIX falls into a
local optimum, resulting in a negative strategy of controlling
the red Marines to simply survive until the end of the round.
At least one agent is an avoider who learns to hide at the edge
of the map to avoid being discovered by the enemy. From a
cooperative perspective, these avoiders can be considered

lazy agents. The existence of these lazy agents will lead to
the failure of the whole task. As seen in Figure 1(f), the
reward obtained by agents for actively attacking the blue
Marines is lower than that obtained by the negative evasion
strategy when the win rate is below 50%. Consequently,
the structure of the reward promotes agents to engage in
laziness.

The presence of lazy agents leads to inadequate exploration.
From an exploration perspective, a strategy with a win rate
of 50% is harder to explore than an evasion strategy, al-
though the average rewards for both strategies are the same.
The evasion strategy only requires the agent to select the
move action. Hence only the red Marines’ state space is
required to be explored to find this strategy. However, a
50% win rate strategy necessitates exploring the entire state
space. In Figures 1(a), 1(b) and 1(c), lazy agents hiding
at the edge of the map without interacting with the blue
Marines leads to low exploration efficiency of the state
space of the blue Marines. Figures 1(h) and 1(i) confirm
this, demonstrating that QMIX’s learned approach continu-
ously maintains a greater survival rate for the red Marines
but fails to eliminate the enemy successfully. This means
that the lazy behavior of agents leads to the health-related
portion of the blue Marines’ state space of the blue Marines
being insufficiently explored.

Additionally, the presence of lazy agents leads to ineffective
cooperation. As depicted in Figure 1(d), the agent requires
a coordinated offensive strategy to overcome the opponent.
The presence of lazy agents (shown in Figures 1(b) and
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1(c)), however, results in the gradual elimination of agents.
Figure 1(i) demonstrate that the lazy behavior of the agent
causes no blue Marine to be killed during the whole training
process.

Hence, QMIX fails due to inadequate exploration and inef-
fective cooperation caused by lazy agents. CMAE encour-
ages agents to explore the entire state space jointly, thus
alleviating the problem of low exploration efficiency caused
by the lazy behavior of agents. Therefore, CMAE can learn
a strategy with a 50% win rate illustrated in Figure 1(e).
LAIES is an effective approach to address the issue of lazy
agents by encouraging diligent behavior in agents. As shown
in Figures 1(e), 1(g), 1(h), and 1(i), LAIES outperforms
other methods in terms of winning rate, task completion
speed, proactive attacks, and enemy kills. These experimen-
tal results demonstrate that LAIES can effectively overcome
the challenges of sparse reward environments and prevent
the emergence of lazy agents. In the following sections, we
will provide a detailed methodology for LAIES and present
further experimental studies to support our findings.

4. Method
This section introduces our framework LAIES to improve
cooperative MARL with sparse reward.

4.1. What is the Lazy Agent?

To study lazy agents, the first step is to define lazy agents
and teams. Firstly, we define external states:

Definition 4.1. The global states st = (sit, s
e
t ) can be di-

vided into two parts: those states directly associated with
a group of agents, such as position, are internal states sit.
Other states that agents can influence that are not directly as-
sociated with them is the external state set , such as enemies’
positions and health in 3m task.

Remark 4.2. External states may not be present in all tasks,
such as matrix games, but they are present in most compli-
cated tasks. This paper’s research focuses on tasks involving
external states.

In MARL, agents alter their internal states through action
selection, leading to changes in external states. The final
goal’s reach always correlates more with external states,
such as three blue Marines’ death in the 3m task of SMAC,
the ball entering a goal in GRF, and a target point covered in
a coverage task. Exploring external states can be more diffi-
cult under sparse reward conditions due to the potential for
failure and punishment, as illustrated in Figure 1(f) where
LAIES receives punishment when its win rate is below 50%.
Therefore, this work considers a lazy agent as one whose
strategy cannot influence external states.

Figure 2 shows the causal diagrams of three types of lazy

(a) Lazy agent

𝑠𝑠𝑡𝑡

𝑠𝑠𝑡𝑡𝑒𝑒 𝑠𝑠𝑡𝑡𝑖𝑖

𝑎𝑎𝑡𝑡
𝑗𝑗

𝑠𝑠𝑡𝑡+1𝑒𝑒

ℎ𝑡𝑡

𝑎𝑎𝑡𝑡
~𝑗𝑗

(b) Lazy agent
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𝑗𝑗
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(c) Lazy agent

𝑠𝑠𝑡𝑡

𝑠𝑠𝑡𝑡𝑒𝑒 𝑠𝑠𝑡𝑡𝑖𝑖

𝑎𝑎𝑡𝑡
𝑗𝑗

𝑠𝑠𝑡𝑡+1𝑒𝑒

ℎ𝑡𝑡
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~𝑗𝑗

(d) Diligent agent

𝑠𝑠𝑡𝑡
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Figure 2. Causal diagrams of three types of lazy agents and dili-
gent agent. We mainly consider agent j here. ht is the historical
state trajectory information. a∼j

t is joint action except for agent j.

agents j and one diligent agent j. In Figure 2(a), external
states set are not a cause of the agent j’s action ajt which
is also not a cause of set+1. For example, in SMAC, an
agent may run to the edge of the map without observing
and influencing any enemies (shown in Figure 1(a)). In
Figure 2(b), set is not a cause of ajt , but ajt is a cause of set+1.
For example, the agent may adopt a random strategy that
has only short-term impacts on external states and does not
significantly influence them in the long term. In Figure 2(c),
set is a cause of the agent j’s action ajt which is not a cause
of set+1, such as an agent in SMAC just avoiding an enemy
within sight (shown in Figures 1(b) and 1(c)).

In the context of MARL, lazy agents typically refer to the
third type of agent described in Figure 2(c). Since external
states generally are part of an agent’s observation, the agent
often uses it to make decisions, but it may not necessarily
affect the transition of external states. Emphasizing the
influence of the set on ajt makes the agent j more attentive
to external states’ information. Figure 2(d) illustrates the
causal graph for a diligent agent, where the agent’s decisions
are influenced by and influence external states. Since lazy
agents are a common issue with sparse reward, this work
aims to avoid their occurrence, i.e., to enhance the agent’s
influence on external states.

The above analysis qualitatively analyzes the emergence of
lazy agents in MARL scenarios. Next, we need to provide a
mathematical definition of lazy agents. According to Figure
2(c) and Figure 2(d), the first step is to calculate the causal
effect between ajt and set+1. As shown in Figure 2(d), set+1

have four parents, i.e., ajt , ht, a
∼j
t and st, all of which are a

direct cause of set+1, which bring both causal and non-causal
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associations between ajt and set+1. The causal effect of ajt
on set+1 can be calculated as

Yset+1
(Aj

t = ajt ) = P (set+1|do(A
j
t = ajt ))

=
∑
wt

P (set+1|a
j
t , wt)P (wt|do(Aj

t = ajt ))

=
∑
wt

P (set+1|a
j
t , wt)P (wt)

(1)

where wt = {st, ht, a
∼j
t } is a node set; the potential

outcome Yset+1
(Aj

t = ajt ) denotes what your outcome
would be, if you were to take treatment Aj

t = ajt . Since
Yset+1

(Aj
t = ajt ) only calculates the causal effect at time t,

we have P (wt) = 1. Then,

Yset+1
(Aj

t = ajt ) = P (set+1|a
j
t , wt) (2)

Then, the treatment effect of ajt to set+1 can be mathemati-
cally calculated as:

τaj
t
= DKL

[
Yset+1

(Aj
t = ajt )∥Yset+1

(Aj
t ̸= ajt )

]
= DKL

[
P (set+1|a

j
t , wt)∥P (set+1|wt)

]
,

(3)

where τaj
t

is called as individual diligence degree (IDD).

Similarly, we can also calculate the treatment effect of joint
action a⃗t to set+1:

τa⃗t
= DKL

[
Yset+1

(A⃗t = a⃗t)∥Yset+1
(A⃗t ̸= a⃗t)

]
= DKL

[
P (set+1 |⃗at, st, ht)∥P (set+1|st, ht)

]
,

(4)

where τa⃗t
is called as collaborative diligence degree (CDD)

and the potential outcome Yset+1
(A⃗t = a⃗t) denotes what

your outcome would be, if you were to take treatment At =
a⃗t. With above derivation, we can give the mathematical
definition of a fully lazy agent and lazy team:

Definition 4.3. The agent j is a fully lazy agent iff∑T
t=0 τaj

t
= 0.

Definition 4.4. The team is fully lazy iff
∑T

t=0 τa⃗t
= 0.

Remark 4.5. Since the final objective always correlates
with external states, we believe an agent or team is fully
lazy when they fail to have any influence on external states
within an episode.

4.2. Individual Diligence Intrinsic Motivation

In practice, most agents do not exhibit complete laziness
but are less diligent than desired. To encourage more proac-
tive behavior, we can use IDD as intrinsic motivation to
encourage agents to be diligent. Using Definition 4.3, the

Individual Diligence Intrinsic motivation (IDI) can be calcu-
lated as

rIDI
t =

|N |∑
j=1

τaj
t
. (5)

External States Transition Model (ESTM): The calcu-
lation of IDI involves the distribution of external states.
However, sampling from the distribution during online ex-
ploration could bring big variance. Furthermore, the envi-
ronment model is not available. To address this problem, we
model the transition of external states using neural networks,
shown in Figure 3. ESTM uses states and joint action as
input to predict external states at next time. Under CTDE
paradigm, whole episode’s global states are available dur-
ing the training phase when we use and train ESTM. With
ESTM, we can conveniently conduct do-operator on agent’s
action and calculate a potential outcome.

Linear Network

Data Flow

GRU

𝑠𝑠𝑡𝑡

𝑠𝑠𝑡𝑡+1𝑒𝑒

…𝑎𝑎𝑡𝑡1 𝑎𝑎𝑡𝑡
𝑗𝑗 𝑎𝑎𝑡𝑡𝑛𝑛…

do-operator

=𝑌𝑌 𝑠𝑠𝑡𝑡+1
𝑒𝑒

𝑒𝑒 (𝐴𝐴𝑡𝑡
𝑗𝑗 = 𝑎𝑎𝑡𝑡

𝑗𝑗)

Figure 3. Network architecture of ESTM. GRU is used to capture
historical information.

Since the state transition is always fixed given st, ht and a⃗t,
P (set+1|do(⃗at), st, ht) and P (set+1|st, ht) obey one-point
distribution. Therefore we replace the KL-divergence of
distribution with MSE loss of external states to calculate the
treatment effect in practice. τaj

t
is calculated as:

τaj
t
= MSE(Yset+1

(Aj
t = ajt ), Yset+1

(Aj
t ̸= ajt )). (6)

In Eq.6, Yset+1
(Aj

t = ajt ) is observable while Aj
t ̸= ajt is

counterfactual. To compute the latter, we can intervene
on ajt by replacing it with a counterfactual action which
is used to get a potential counterfactual outcome of set+1

with the help of ESTM. We can enumerate all other avail-
able actions of the agent and calculate the mean value of
these potential counterfactual outcomes as Yset+1

(Aj
t ̸= ajt ).

Mathematically, it can be formulated as follows:

τaj
t
= MSE(Yset+1

(Aj
t = ajt ),

1

|A| − 1

|A|∑
k=1,ak ̸=aj

t

Yset+1
(Aj

t = ak))
(7)

where |A| is the size of action set A.
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4.3. Collaborative Diligence Intrinsic Motivation

IDI encourages each agent to exert its influence on external
states. However, emphasizing each agent’s influence does
not mean maximization of the whole team’s influence. To
address this problem, we propose collaborative diligence
intrinsic motivation (CDI), which calculates the causal ef-
fect of joint action on external states. Specifically, CDI is
calculated as

rCDI
t = MSE(Yset+1

(A⃗t = a⃗t),

1

|A|n − 1

|A|n∑
k=1,⃗ak ̸=a⃗t

Yset+1
(A⃗t = a⃗k)).

(8)

To calculate CDI, we need to calculate all possible coun-
terfactual combinations of joint action, which grow expo-
nentially as agents increase. In practice, we can randomly
sample several joint actions instead to calculate the mean
counterfactual potential outcome.

4.4. Overall Optimization Objective

In this paper, we have introduced two terms of intrinsic
rewards to avoid lazy agents in MARL with sparse reward.
The ultimate intrinsic reward is calculated as

rI = β1 ∗ rIDI + β2 ∗ rCDI , (9)

where β1 and β2 are non-negative scaling factors of IDI
and CDI, respectively. LAIES adopts QMIX to estimate
joint action-values, and is trained in an end-to-end way to
minimize the following loss:

L(θ) =
b∑

i=1

[
(ytoti −Qtot(τ, a, s; θ))

2
]
, (10)

ytoti = rE + rI + γmaxa′Qtot(τ
′, a′, s′; θ−), (11)

where rE represents the extrinsic reward, b is the batch
size of transitions sampled from the replay buffer, θ− the
parameters of a target network.

5. Experiments
In this section, we evaluate LAIES on a variety of complex
multi-agent tasks with sparse reward to answer the following
questions:

Q1 Can LAIES effectively avoid lazy agents and outperform
related baselines? (Sections 5.2 and 5.3)

Q2 Whether IDI and CDI contribute collectively to the final
performance of LAIES? (Section 5.4)

Q3 Whether a more successful strategy results in agents
having a greater influence on external states? And whether

IDD and CDD effectively reflect the diligence of the agents
and the team ? (Section 5.5)

Q4 Whether LAIES is still effective in combining with the
policy-gradient-based method? (Appendix B.1)

5.1. Experimental Setup

To evaluate the effectiveness of LAIES, we conduct experi-
ments with different scenarios on two popular MARL bench-
marks, i.e., SMAC 1 (Samvelyan et al., 2019a) and GRF
(Kurach et al., 2019). We use the sparse reward setting in
both games without specific instructions. In SMAC, LAIES
is compared against many state-of-the-art (SOTA) meth-
ods, including CMAE (Liu et al., 2021), MAVEN (Mahajan
et al., 2019), MASER (Jeon et al., 2022), QMIX (Rashid
et al., 2018), and RODE (Wang et al., 2020b). Since CMAE
did not publicly release their code for the SMAC scenario,
we used the highest reported score from their paper as a
representation of their performance in the graph. To show
the outstanding performance of LAIES more conveniently
in SMAC, we have added a curve QMIX-DR (QMIX with
dense rewards). In GRF, we compare LAIES with QMIX,
QPLEX (Wang et al., 2020a), CDS (Li et al., 2021), and
MAVEN. For evaluation, all experiments are carried out
with six random seeds. In SMAC, external states refer to
opponents’ positions and health, whereas opponents’ and
ball’s positions and directions are in GRF. The details of the
architecture of our method and baselines can be found in
Appendix A.1. More details about SMAC and GRF can be
found in Appendix A.2 and A.3, respectively.

5.2. Superior Performance on SMAC

The proposed method demonstrates superior performance
compared to the SOTA methods, as evidenced by the results
in Figure 4.

2m vs 1z is an easy map, where the ally has 2 Marines and
the enemy has 1 Zealot. Here, external states are observed
Zealot’s state. In LAIES, Marines are encouraged to influ-
ence Zealot’s state, including position and health, strength-
ening the exploration of external states space. CMAE can
reach a win rate of over 40% with 0.5 million training steps.
As demonstrated in the learning curves of Figure 4(a), our
method reaches a higher level of performance than CMAE.

MMM is an easy map where the ally has 1 Medivac, 2
Marauders, and 7 Marines fighting with an enemy team of
equal strength. As shown in Figure 4(b), LAIES has a lower
variance and converges faster than QMIX-DR. It is worth
noting that the experimental results indicate that LAIES can
reach nearly 100% success rate in this task.

5m vs 6m is a hard map where the ally has 5 Marines, and

1We use the SC2.4.10 version.
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LAIES MAVENQMIXQMIX-DR MASER

a b c d

e f g h

CMAE RODE

Figure 4. Comparison of our method against baseline methods on eight maps in StarCraft II with the evaluation index of test winning rate.

the enemy has 6 Marines. The comparison of the learning
curves in Figure 4.e clearly illustrates the superior perfor-
mance of our method over QMIX-DR in terms of both
convergence and final performance, achieving nearly ten
percentage points higher than QMIX-DR.

6h vs 8z is a super hard map, the ally has 6 Hydralisks,
and the enemy has 8 Zealots. LAIES still shows superior
performance in this task with acceptable variance and a final
winning rate.

As depicted in Figure 4, although the QMIX, RODE, and
MAVEN methods exhibit exceptional performance in dense
reward scenarios in SMAC, they consistently underperform
in all sparse reward scenarios. Although MASER achieves
good performance when the reward is not dense by gener-
ating subgoals from the experience replay buffer, it fails
to perform effectively when the reward is highly sparse.
The proposed method LAIES demonstrates superior perfor-
mance on all tasks, including easy, hard, and super hard
maps. In SMAC, a complex reward function (given in in
Appendix A.2) is built using expert knowledge, primarily
considering the number of defeated enemies and their health
value. QMIX-DR utilizes this reward function for learning.
While QMIX can learn effective strategies in scenarios with
dense rewards, it still performs worse than LAIES in four
scenarios, i.e., MMM, 3s vs 3z, 5m vs 6m and 8m vs 9m.
These four scenarios share a common characteristic: a rela-
tively small gap in the strength of the enemy and our forces.
For example, in MMM, the strength of both sides is symmet-
rical. By comparing Figure 4.e and Figure 4.f, we can see
that the initial gap in strength between the enemy and our
forces decreases, and the performance advantage of LAIES
over QMIX-DR also increases. We know that laziness is
more likely to arise when one team has a significant ad-
vantage over the other in real-world teamwork. In SMAC,

the reward shaping is feature-based and does not attribute
damage to specific agents, which provides an opportunity
for lazy behavior. While LAIES’s intrinsic motivation is to
consider the causal impact of each agent’s behavior on the
next external state, it encourages each agent to participate
in the team cooperation and participate in changing external
states. Therefore, in tasks where lazy agents are more likely
to occur, LAIES can achieve better results, which also re-
flects the fact that LAIES can indeed avoid the generation
of lazy agents.

5.3. Performance on Google Research Football

In this section, we evaluate our approach on four GRF tasks.
Compared to SMAC, GRF emphasizes team collaboration,
where agents must learn collaborative skills such as off-ball
moving and passing to score. As shown in Figure 5, LAIES
surpasses other methods in terms of convergence speed and
final win rate across all tasks.

As shown in Figure 5(a), LAIES exhibited the fastest con-
vergence and highest final win rate among the compared
methods. QMIX closely followed LAIES in performance,
while CDS and QPLEX demonstrated effective strategies.
MAVEN requires more time to explore practical strategies.
Notably, LAIES displayed a lower variance across random
seeds and achieved convergence earlier than QMIX.

In the academy 3vs2 task, the agents face two defenders
in front of the goal and must coordinate their passing and
movement to bypass the defense. Due to the difficulty level
being set to 1, our ball-holding agents are subject to active
interception attempts from the opponents. As shown in
Figure 5(b), compared to the other four methods, LAIES
consistently performs in this task, ultimately achieving a
win rate above 40%.
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a b c d

LAIES MAVENQMIX CDS QPLEX

Figure 5. Comparison of our method against baseline methods on four tasks in GRF with the evaluation index of test winning rate.

LAIES QMIXQMIX-IDI QMIX-CDI

a b c d

Figure 6. Ablation studies on two maps in SMAC and two tasks in GRF with the evaluation index of test winning rate.

In the academy 3vs3 task, three defenders in front of the
goal make it challenging for the agents to score directly.
As illustrated in Figure 5(c), QMIX and MAVEN cannot
discover effective scoring strategies in this scenario. CDS
and QPLEX discover effective strategies in several random
seeds but are limited to local optima. However, LAIES still
learns effective strategies in this task.

In the academy counterattack task, the agents control four
players on the right half of the field and face two defenders
and a goalkeeper on the right half of the field. As demon-
strated in Figure 5(d), LAIES still outperforms other meth-
ods. Despite a slower exploration of scoring strategies com-
pared to QMIX, LAIES can converge to a higher win rate at
a faster rising.

5.4. Ablation Studies

As shown in Figure 6, we conducted an ablation study
to evaluate the individual contributions of IDI and CDIt.
QMIX-IDI represents QMIX with IDI. QMIX-CDI means
QMIX with CDI. We choose four representative tasks to
conduct ablation studies.

MMM2 and 8m vs 9m are tasks in SMAC. Here, the empha-
sis is on each agent’s impact on opponents, and each agent
needs to work together to damage the enemy. Lazy agents
may cause task failure and collective punishment. As shown
in Figure 6 (a) and 6 (b), the removal of IDI significantly
drops performance on MMM2 and 8m vs 9m. These results
indicate that IDI is crucial in enabling the agent to learn

effective strategies in SMAC. Furthermore, the comparison
of LAIES and QMIX-IDI means that CDI allows LAIES to
learn and converge to better strategies. This is consistent
with our proposed objective of CDI, which aims to improve
training by encouraging agents to collectively select joint
actions that have a more significant causal effect on external
states.

Academy 3vs2 and academy 3vs3 are tasks in GRF. As
shown in Figures 6(c) and 6(d), the absence of the IDI or
CDI component significantly decreases performance, in-
dicating that both components play a crucial role in final
learning results. The comparison between the QMIX-CDI
and QMIX-IDI curves highlights that CDI plays a more
dominant role in GRF tasks. The QMIX-CDI and LAIES
begin to learn effective strategies after similar training steps
and earlier than QMIX-IDI. This is in contrast to the results
obtained in the SMAC, which may be because the latter
environment emphasizes the individual’s impact on external
states, as success in this environment requires each agent
to attack the enemy. On the other hand, in GRF tasks, the
changes in external states are holistic, such as the oppo-
nent considering all our players before making a decision.
Therefore, in GRF, it is more critical for agents to influence
external states jointly.

5.5. The Relationship of External States and Diligence

In this study, we suppose that agents with higher levels of
diligence will have a stronger influence on external states.
We experimented with the 5m vs 6m task in SMAC to vali-
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(a) Test Win Rate (b) Training Rewards (c) IDD (d) CDD

Figure 7. Experimental results on 5m vs 6m task in SMAC. Figures (c) and (d) are the change curve of IDD and CDD of QMIX and
QMIX-DR during training.

date this proposition.

As shown in Figure 7(a), QMIX cannot learn practical strate-
gies unless dense rewards are added (QMIX-DR). In Figure
7(c), the IDD curve of QMIX continually decreases as the
training progresses and eventually converges to a value close
to 0. Figure 7(b) shows that its rewards remain at 0; whereas
in QMIX-DR, the IDD curve continuously increases, in line
with the upward trend of the reward curve in Figure 7(b).
The experimental results in Figure 7(c) show that the IDD
remains lower when the agent cannot complete the task. In
contrast, when the agent can complete the task, the IDD
remains at a higher level, and as the win rate improves, the
IDD also increases. These experimental results demonstrate
that the agent’s behavior significantly impacts external states
as the strategy improves. As shown in Figure 7(d), the trend
of the curve is similar to that in Figure 7(c), and the results
also indicate that failed strategies have a smaller impact on
external states. Still, as the strategy’s win rate increases, its
effects on external states will also increase. Additionally, in
Figures 7(c) and 7(d), the QMIX-DR curves are consistently
higher than the QMIX curves, which is consistent with the
results in Figures 7(a) and 7(b). This suggests that our met-
ric effectively reflects the diligence of the agents and the
team.

In conclusion, these experimental findings show that dili-
gent agents have a greater influence on external states and
show that IDD and CDD can accurately reflect the agents’
diligence.

6. Conclusions & Future Work
This paper investigates the sparse reward problem in MARL
with a new perspective, i.e., lazy agents. Taking the 3m task
in SMAC as an example, we analyze why QMIX fails in
sparse reward scenarios. Utilizing an agent-environment
interaction causal graph, we identified the causes of lazy
agents and provided a mathematical definition for them in
the context of MARL. To address this issue, we proposed
two intrinsic rewards, IDI and CDI, which encourage agents
and teams, respectively, to exert influence on external states.
Through experiments, we demonstrate the effectiveness of

our proposed method compared to SOTA methods.

This paper has two main limitations. Firstly, it is possible
to categorize states as internal and external. Most existing
MARL scenarios are team competition scenarios, where
agents must cooperate to defeat opponents. The external
states can be selected as the opponent states in these scenar-
ios. However, in those tasks without opponents, the choice
of external states may require domain knowledge. Secondly,
this paper defines ’lazy agents’ regarding their influence
on external states, but their laziness may not be limited to
not impacting external states. For example, for the role of
Medivac in MMM tasks of SMAC, its laziness is reflected
in not impacting the states of alliance agents. Therefore,
both the definition and solution of lazy agents are worthy of
further studies.
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A. Experiment Details
A.1. LAIES and Baselines

In this paper, we compare our approach with several methods. LAIES is developed based on the QMIX. For QMIX and
QPLEX, we use the code framework in https://github.com/hijkzzz/pymarl2. LAIES is also implemented
based on this code framework. Except for the additional parameters in LAIES, all other parameters are set the same
with QMIX, such as batch size, learning rate, parallel environments, etc. For MAVEN, we use the code in https:
//github.com/starry-sky6688/MARL-Algorithms. For CDS, MASER and RODE, we use the code provided
by the author. For SMAC and GRF tasks, we ensure the same environmental settings as LAIES, including reward,
observation, states settings, avail actions, etc. It is noted that LAIES, QMIX and QPLEX using 8 parallel environments
(parallel runner) whereas RODE, MAVEN and CDS using 1 parallel environment (episode runner).

In LAIES, we introduce two important hyperparameters: β1 and β2, correlated to the MI regularizers. For SMAC scenarios,
we use {β1,β2} = {100, 0.2} on 3m, 1c3s5z, 3s vs 3z, 8m vs 9m, MMM2, and 6h vs 8z, {β1,β2} = {600, 0.3} on
2m vs 1z, {β1,β2} = {200, 0.3} on 5m vs 6m, {β1,β2} = {20, 0.02} on MMM. For GRF scenarios, we also search the
best hyperparameters, and use {β1,β2}={1,8} on all tasks. It is noted that intrinsic rewards are annealed after mean rewards
over 0.

Experiments are carried out on NVIDIA GTX3090 GPU.

A.2. SMAC

StarCraft II (Samvelyan et al., 2019b) is a popular real-time strategy game, which derives many micromanagement scenarios.
In the micromanagement scenarios, the agents need to cooperate to eliminate the enemies. This benchmark consists of
various maps classified as easy, hard, and super hard. We test our method on nine micromanagement tasks i.e., 3m, 2m vs 1z,
MMM, 1c3s5z, 3s vs 3z, 5m vs 6m, 8m vs 9m, MMM2, and 6h vs 8z. Details of these maps are shown in Table 1.

Table 1. SMAC challenges.

Task Ally Units Enemy Units Type Difficulty

3m 3 Marines 3 Marines homogeneous, symmetric easy
2m vs 1z 2 Marines 1 Zealot micro-trick: alternating fire easy

MMM
1 Medivac,

2 Marauders,
7 Marines

1 Medivac,
2 Marauders ,

7 Marines
heterogeneous, symmetric easy

1c3s5z
1 Colossi ,
3 Stalkers,
5 Zealots

1 Colossi ,
3 Stalkers,
5 Zealots

heterogeneous, symmetric easy

3s vs 3z 3 Stalkers 3 Zealots micro-trick: kiting hard
5m vs 6m 5 Marines 6 Marines homogeneous, asymmetric hard
8m vs 9m 8 Marines 9 Marines homogeneous, asymmetric hard

MMM2
1 Medivac,

2 Marauders,
7 Marines

1 Medivac,
2 Marauders ,

8 Marines
Asymmetric, Heterogeneous super hard

6h vs 8z 6 Hydralisks 8 Zealots micro-trick: focus fire super hard

Except for QMIX-DR, we use sparse reward settings in SMAC. All enemies die resulting in a positive reward of +1.
Conversely, if all of our allies are eliminated, we receive a negative reward of -1. In instances where both teams have
surviving bots at the end of an episode, a neutral reward of 0 is obtained.

In QMIX-DR, there is a a shaped reward based on the hit-point damage on the enemies and a special incentive for winning
the battle (SMAC default dense reward setting). The detailed reward of each scenario is defined as follows:

rt =

∑N
k=1 ∆ht

k +N t
death × rkill∑N

k=1 H
k
total +N × rkill + rwin

(12)

where N represents the number of enemies. N t
death represents the number of enemies died at step t. Hk

total total is the total
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health of enemy k. ∆ht
k = ht

k − ht−1
k is the health difference of enemy k between two steps. rkill and rwin are the special

bonuses for killing the enemy and winning the battle, which are set as 10 and 200, respectively.

A.3. GRF Tasks

In GRF, agents are trained to play football in a physics-based 3D simulator. GRF is a challenging task for its inner
stochasticity and sparse reward. The agents must learn high-level cooperation skills such as passing, obstructing opponents
for teammates, et al., and then score a goal. We choose four academy tasks (3 official and 1 hand-crafted) to evaluate
our method, i.e., academy run pass and shoot with keeper (abbreviated as academy 2vs2), academy 3vs1 with keeper
(abbreviated as academy 3vs2), academy counterattack hard (abbreviated as academy counterattack), and academy 3v3. In
all these tasks, the offside is prohibited and the difficulty is set as 1 in academy 2vs2 , academy 3vs2 and academy 3vs3. In
these tasks, external states refer to opponents’ and ball’s positions and directions.

The initial positions of players, opponents, and the ball are shown in Fig. 8. In these tasks, we control the left team, where
each agent must choose an action from available actions, including run, pass, dribble, shot, etc. We have rewritten the
available actions based on expert knowledge. For example, shooting is allowed only when the player is close to the goal and
holding the ball. All agents must cooperate well to organize offenses and seize fleeting opportunities. There are only two
types of rewards: (1) a reward +10 for the left team to score a goal; (2) a reward −5 for the left team failing to score a goal.
An episode will be terminated when reaching the following four situations: (1) the ball controlled by opponents, (2) the ball
returning to left half-court, (3) scoring a goal (4) the ball bouncing out of fields. The observation contains the positions and
directions of the ego-agent, teammates, and the ball.

During training, we ensure that LAIES and other algorithms, including QMIX, CDS, QPLEX, and MAVEN, have the same
environment settings, including the available actions, reward settings, observations, and states.

(a) academy 2vs2 (b) academy 3vs2 (c) academy 3v3 (d) academy counterattack

Figure 8. Visualization of the initial position of each agent in five GRF tasks. Blue dots represent the agent. Red dots are opponents, and
the green dot denotes the ball.

B. More Experimental Results
B.1. LAIES with IPPO

In the previous experimental analysis, the combination of LAIES and QMIX, a value-based method, significantly improves
its training performance in sparse reward scenarios. To further verify the effectiveness of LAIES in policy gradient methods,
we combine LAIES with IPPO and test its performance in four SMAC tasks, i.e., 3m, 2m vs 1z, MMM and 1c3s5z. To
ensure a fair comparison, all parameters are kept consistent with IPPO, except for the additional parameters introduced by
LAIES.

As shown in Figure 9, in the 2m vs 1z and 3m tasks, LAIES achieved better results than any other method. In the MMM
task, LAIES outperforms IPPO-DR in terms of variance and final win rate and learns strategies to defeat opponents earlier.
In the 1c3s5z task, LAIES performs far better than IPPO-DR, learning a strategy to kill all enemies with a probability
of nearly 80% after one million training steps. In contrast, IPPO-DR can only learn a strategy to defeat enemies with a
probability of nearly 20%.

Overall, the experimental results demonstrate that LAIES can effectively improve the training of policy gradient algorithms
in sparse reward scenarios and achieve outstanding results in StarCraft tasks.
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Figure 9. Comparison of our method against baseline methods on four tasks in SMAC with the evaluation index of test winning rate.
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