
Published as a conference paper at ICLR 2024

FEDTRANS: CLIENT-TRANSPARENT UTILITY
ESTIMATION FOR ROBUST FEDERATED LEARNING

Mingkun Yang∗, Ran Zhu∗, Qing Wang, Jie Yang
Department of Software Technology
Delft University of Technology
{m.yang-3,r.zhu-1,qing.wang,j.yang-3}@tudelft.nl

ABSTRACT

Federated Learning (FL) is an important privacy-preserving learning paradigm
that plays an important role in the Intelligent Internet of Things. Training a global
model in FL, however, is vulnerable to the data noise across the clients. In this
paper, we introduce FedTrans, a novel client-transparent client utility estimation
method designed to guide client selection for noisy scenarios, mitigating perfor-
mance degradation problems. To estimate the client utility, we propose a Bayesian
framework that models client utility and its relationships with the weight param-
eters and the performance of local models. We then introduce a variational in-
ference algorithm to effectively infer client utility at the FL server, given only a
small amount of auxiliary data. Our evaluation results demonstrate that leveraging
FedTrans to select the clients can improve the accuracy performance (up to 7.8%),
ensuring the robustness of FL in noisy scenarios 1.

1 INTRODUCTION

We live in a world with billions of Internet of Things (IoT) devices deployed to perform various
tasks. These devices sense the surroundings and upload the collected data to servers, where tech-
niques such as deep learning are used to perform various tasks such as sensing human activities. The
data transfer to cloud or edge servers raises privacy issues. Federated Learning (FL), a distributed
training paradigm, has thus been proposed to preserve privacy (McMahan et al., 2017). In FL, a
cloud or edge server coordinates the training of local models in connected devices, i.e., clients, to
learn a global model. The clients only update the server about the weights of their local models.
Based on many rounds of the updates from the clients, FL learns the global model gradually by
aggregating clients’ weights. Since there is no need for the clients to upload their sensed data, FL
has become a popular privacy-preserving learning framework and is being heavily studied for many
privacy-sensitive application scenarios such as disease diagnosis (Yang et al., 2021), monitoring (Wu
et al., 2020), and object detection (Liu et al., 2020).

A key challenge of FL is the data utility of the involved clients. The widely accepted norm in FL
is that the server adopts the random selection strategy and treats each client with the same selection
probability. This is based on the assumption that all the clients with heterogeneous distribution can
acquire high-quality labels/data and have equal contributions to the model learning. In reality, this
assumption does not stand. Studies have reported that existing datasets could easily have more than
30% label errors (Konovalov et al., 2017; Ren et al., 2017). FL server inevitably aggregates the
updated local weights from unreliable clients which could degrade the performance of the global
model trained at the FL server. The issue is further complicated by the compounded relationship
between noisy data and the heterogeneous local data distributions (non-iid), which affects the con-
vergence and final performance of the model. To demonstrate this, we conduct an experiment, using
the CIFAR10 dataset and without loss of generality flipping the labels at the clients, with an average
label flipping rate of 16.5% across the noisy/corrupted clients, and show the results in Figure 1 (the
results under more types of noise can be found in Section 3). We have the following observation:
unreliable clients –the clients with noisy data– slow the learning of the global model and reduce its
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accuracy. This can be observed clearly in the non-iid setting by comparing the dash-red curve and
solid-red curve. Randomly selecting clients under the non-IID setting with/without noise, fails to
account for the potential variations in data characteristics across clients, leading to suboptimal per-
formance in terms of the model convergence and the final accuracy. This performance degradation
also exists under the IID setting (dash-green curve vs. solid-green curve).
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Figure 1: The noise impact on the global model
performance shows different patterns under two
data distributions illustrating that data hetero-
geneity and quality are tightly coupled issues.

The above observation validates the importance
of selecting reliable clients for training the global
model at the FL server. To achieve this, a critical
step is to assess the client utility in a way that can
reflect the quality of updates uploaded by clients
in the most practical non-IID scenarios. How-
ever, it is nontrivial to infer client utility due to
FL server’s lack of accessibility to clients’ local
data. Therefore, the key problem is how to infer
client utility without compromising privacy. Ide-
ally, the estimation of the client utility should be
transparent to the clients, i.e., no additional oper-
ations are required on the client side.

In this work, we design FedTrans (Figure 2), a novel client utility evaluation framework that enables
client selection guidance for heterogeneous and noisy scenarios to ameliorate performance degrada-
tion. We exploit a small but high-quality auxiliary data to explore two complementary strategies for
client utility inference: 1) creating synthetic clients based on the auxiliary data to build a discrim-
inator that distinguishes high-utility clients from lower ones based on their weight parameters, and
2) evaluating the performance of local models as an indicator of client utility. We propose a unified
Bayesian framework that seamlessly couples these two strategies and further introduces a variational
inference algorithm that allows the inference based on these strategies to benefit from each other,
thereby reaching an effect where the whole is greater than the sum of its parts. We execute experi-
ments on two public datasets under the Dirichlet distribution, using six different label/feature/hybrid
noise types. The results demonstrate that our FedTrans delivers better accuracy performance (up
to 7.8%) and significantly faster convergence speed (a reduction of over 56% in time consumption,
refer to Appendix E) compared to competing FL methods in noisy heterogeneous settings.

2 FEDTRANS DESIGN

To overcome the data noise issue, it is important to precisely estimate the utility of parameter up-
dates from clients for updating the global model. For this problem, previous work mainly takes
an approach that estimates utility by comparing weight updates among local models and treating
updates that disagree more with those from other clients as less useful (Li et al., 2021; Xu et al.,
2022). The effectiveness of such methods depends on the validity of two assumptions: 1) that the
majority of local updates are high-quality, which is not necessarily always true in real applications;
and 2) that data noise is the only factor of the quality of local updates, which largely overlooks the
intertwined effect heterogeneous local data distributions bring on the resulting weight updates in
local clients. An alternative approach is to infer the update utility by evaluating participating clients
against a certain benchmark, by including high-quality auxiliary data with correct labels and a dis-
tribution representative of the data distribution that the global model encounters in the application.
We note that in the real applications, it is feasible for the service provider to obtain a small amount
of auxiliary dataset (Jeong et al., 2018; Tuor et al., 2021; Yang et al., 2022a) (e.g., by soliciting data
from paid, anonymous workers). Such an approach does not compromise user privacy provided that
the auxiliary data is hosted on the server and the computation is also carried out on the server. A
practical limitation of such an approach, however, is that the auxiliary data comes at a cost – as
it requires human labor for labeling – and thus the data can only be of limited size. It, therefore,
remains an important open question how to best leverage a limited amount of auxiliary data in a
cost-effective way for estimating the client’s update utility for robust FL.

Problem Definition. The i-th round of FL involves a set of participating clients J i that report
their local updates {W∗

i,j}j∈J i to the server. Given a set of well-labeled and balanced data Da, the
server has to infer the utilities of local updates {θj}j∈J i to guide the selection of a subset of clients
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Figure 2: FedTrans pipeline: it leverages a small, auxiliary data on the server to infer client utility,
using a Bayesian framework that considers both the weight parameters and performance of local
models. A learnable discriminator outputs the client utility while the training lacks labels. To tackle
this, we apply a variational inference algorithm to update the parameters of the discriminator.

Ĵ i ⊆ J i for global model aggregation. The process of utility estimation at the server is transparent
to all the clients; in other words, no additional operations are required on the client side.

In this way, the model aggregation performed at the server can be formulated as:

W̄∗
i = argmin

W

∑
j∈Ĵ i

p̂jLDj
(W), (1)

where W̄∗
i refers to the weight parameters of the global model; p̂j is the weight of the local client j in

aggregation satisfying
∑|Ĵ i|

j=1 p̂j = 1, e.g., the fraction of local samples; LDj (·) is the corresponding
training loss. In this paper, we mainly focus on the estimation of client utility; that means, p̂j and
LDj

(·) can be arbitrary existing aggregation and local training schemes.

Privacy Guarantee. As a client-transparent approach, auxiliary dataDa resides in the central server.
In this way, FedTrans retains the same level of privacy protection as FedAvg or other SOTA frame-
works, since the local data and the training process remain unchanged from the user’s perspective.
An additional advantage of including auxiliary data is that it makes FL more resilient to adversarial
attacks: it becomes more challenging to disguise malicious behavior since the performance of the
local model can be easily evaluated on the auxiliary data.

2.1 MODELING THE CLIENT’S UTILITY

FedTrans makes use of the auxiliary data to infer client utility θj by fusing two kinds of information:
1) the weight parameters from clients and 2) the clients’ performance on the auxiliary data. We
illustrate the full pipeline in Figure 2 and introduce details in this subsection.

To start, we denote the utility of client j as θj ∈ [0, 1]. θj parameterizes a Bernoulli distribution that
generates the selection decision sj of client j:

sj ∼ Ber(θj). (2)

Weight-based Utility Estimation. The auxiliary dataset allows us to simulate a few clients with
the known utility using the auxiliary data and based on that, train an additional machine learning
model to discriminate clients with low utility by their weight parameters from the rest. To this end,
we build a secondary machine learning model, denoted as fWd , and client utility θj is conditioned
on the parameters of local updates, through the weight-based discriminator fWd :

θj = fWd(xj), (3)

where the xj refers to the top-layer of local modelW∗
i,j in i-th round. We specifically consider the

weights of the topmost layer of the models from clients, since those weights are most relevant for
the given task (Li & Zhan, 2021) and hence most discriminative for utility inference. Note that any
DL model for the discriminator can generate θi ∈ [0, 1] with a sigmoid function.

To train the discriminator, we utilize the auxiliary data Da to generate the synthetic clean and cor-
rupted weight parameters, which provides discriminator labeled training samples. Given a set of
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clean, well-labeled, and balanced samples Da, we first construct a clean dataset D+ = Da and
a corrupted dataset D− where all the labels are manually flipped to incorrect classes. FedTrans
then assigns D+/D− to K pairs of synthetic positive/negative clients {D+

k /D
−
k }k={1,··· ,K}, re-

spectively, where each pair possessed ⌊ |Da|
K ⌋ auxiliary samples. For each synthetic client, we obtain

synthetic weight parameters by initializing it with the global model from the last round, and then
train the model as we would do for normal clients. Training discriminator benefits from such a set
of top-layer weight parameters {x+

k /x
−
k }k={1,··· ,K} with known labels.

Weight-based discrimination, however, is intrinsically limited by the size of the auxiliary data, which
may only cover a small fraction of the weight patterns of clean and corrupted clients. This is espe-
cially a concern given we only consider synthetic clients with all correct or all incorrect labels – in
reality, clients may hold labels with a different mixture of correct and incorrect labels.

Performance-based Utility Estimation. To address the issue, we also leverage the auxiliary data
with correct labels for evaluating the performance of clients and use such performance as an indicator
of client utility. To this end, we propose to create a round-reputation matrix R that keeps track of the
local model performance of clients involved in different rounds. In such a matrix, the entry Ri,j in
the i-th row and j-th column records the performance of client j in round i. We devise the following
way for determining values in the matrix: Ri,j = 1 if the performance of the local model from
client j exceeds an empirical threshold, and Ri,j = 0 otherwise. Note that the threshold should
be dynamic with the FL progress, thus we take the performance of the local models (i.e., average
accuracy) in i-th round on the auxiliary dataset as the threshold.

The round-reputation matrix R constructed above is a sparse matrix because only a relatively small
proportion of candidate clients could be activated in each round. The value assignment for the round-
reputation matrix in a certain round is severely affected by the randomness of client involvement,
which means that for those Ri,j’s that are not blank, the entries cannot be directly treated as the
selection decision sj . A more sophisticated way would be to consider the consistency of client
performance across different rounds and only consider the clients whose performance consistently
exceeds a threshold in multiple rounds as high-utility ones. A further consideration is to account
also for the informativeness of different rounds, e.g., client performance in the first few rounds of
FL might be less informative due to the randomness of weight initialization in the local models.
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Figure 3: Graphical model of FedTrans.
Nodes denoted with circles represent
random variables where single circled
nodes correspond to hidden variables
and doubly circled nodes correspond to
observed variables. Nodes denoted with
squares refer to the parameters of the
model. Edges represent conditional re-
lationships when generating the round-
reputation matrix.

We denote round informativeness as ri ∈ [0, 1]; ri = 1
means the i-th round provides sufficient information for
inferring client utility, ri = 0 otherwise. To account for
the uncertainty in estimating ri and hence to make Fed-
Trans more robust, we take a Bayesian view and model
the prior probability distribution as a Beta distribution:

ri ∼ Beta(αi, βi), (4)

where αi and βi are the parameters of the distribution.

Overall Framework. Combining these two ways of
leveraging auxiliary data, we now define the likelihood of
observed client performance in different rounds, i.e., the
round-reputation matrix, as the probability conditioned
on the informativeness of the round ri and the client se-
lection decision sj (determined by the client utility θj):

p(Ri,j |ri, sj) = ri
1(sj=Ri,j) + (1− ri)

1(sj ̸=Ri,j), (5)

where 1(·) is the indicator function. The informativeness
of the round is higher if there are more tags {Ri,j}j∈J i satisfying the actual client utility. The
overall framework is depicted in Figure 3. Model updating constitutes parameter learning for Wd

and posterior inference for latent variables sj and ri.

2.2 CLIENT-TRANSPARENT UTILITY ESTIMATION

Parameters of the Bayesian framework are learned by maximizing the likelihood function:

p(R) =

∫
p(R, r, s|X;Wd)dr, s, (6)
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where r and s are the latent true informativeness of all rounds and the selection decision for all
clients, respectively; X is the set of topmost layer xj of all local models.

We train the discriminator fWd by maximizing the likelihood function in Equation 6. To solve this
optimization problem, we transform Equation 6 to the log-likelihood function as

log p(R) =

∫
q(r, s) log(

q(r, s)

p(r, s|R,X;Wd)
)dr, s︸ ︷︷ ︸ +

∫
q(r, s) log(

p(R, r, s|X;Wd)

q(r, s)
)dr, s︸ ︷︷ ︸ ,

KL(q||pWd) Q(Wd, q)

(7)

where q(r, s) is any probability density function and KL(·) is the Kullback-Leibler (KL) divergence
between two distributions.

Maximizing the above function is computationally unfeasible due to the two latent variables in
the integral (Tzikas et al., 2008). We solve this problem by Variational Expectation Maximization
(variational EM) that iterates between two steps: 1) the E-step where we approximate the distribution
of latent variables p(r, s|R,X;Wd) with the variational distribution q(r, s); 2) M-step where we
update the estimate for the parameters of the discriminatorWd by maximizing the evidence lower
bound (ELBO) (Blei et al., 2017) of the Equation 6 given the updated latent variables.

E-Step. We use the mean-field variational inference approach by assuming that q(r, s) factorizes
over the latent variables:

q(r, s) =
∏
i

q(ri)
∏
j

q(sj). (8)

We further assume each factor function as:

q(ri) = Beta(αi, βi), (9)

q(sj) = Ber(θj), (10)
where θj , αi, and βi are the variational parameters that can be tuned to minimize the KL-divergence.
We use the coordinate ascent to search the optimal parameters, that is, iterating θj (αi, and βi) until
convergence while keeping αi, and βi (θj) fixed.

To update q(sj), we first keep only the terms that depend on sj to simplify the KL(q||pWd) as

q(sj) ∝ p(sj |xj ;Wd)
∏
i∈Ij

exp{gq(ri)p(Ri,j |ri, sj)}, (11)

where p(sj |xj ;Wd) is the variational distribution of sj from last iteration, Ij is the set of rounds
containing j-th client, and gx(·) refers to the expectation term Ex[log(·)] with x being a variational
distribution. Based on Equation 11, we can derive the update rule for q(sj) in Equations 13 and 14.

Following the same idea, we keep only the terms depending on ri in KL(q||pWd) to update the
variational distribution q(ri), and the KL-divergence is simplified as

q(ri) ∝ p(ri)
∏
j∈J i

exp{gθ′p(Ri,j |ri, sj)}, (12)

where p(ri) is the variational distribution of ri from the last iteration, and θ
′

is the estimation of true
label distribution in the current iteration. We can derive the update rule for q(ri) in Equation 15.

The updating rules for q(r, s) in E-step are given by the following theorems.

Theorem 2.1 (Incremental Client Utility) q(sj) can be updated based on the output of discrimi-
nator θj and the parameters of round informativeness from the rounds containing the j-th client αi

and βi (i ∈ Ij) in the previous iteration. We can derive the update rule

q(sj = 1) ∝
{
θj
∏

i∈Ij exp{Ψ(βi)−Ψ(αi + βi)} (Ri,j = 0)

θj
∏

i∈Ij exp{Ψ(αi)−Ψ(αi + βi)} (Ri,j = 1),
(13)

q(sj = 0) ∝
{
(1− θj)

∏
i∈Ij exp{Ψ(αi)−Ψ(αi + βi)} (Ri,j = 0)

(1− θj)
∏

i∈Ij exp{Ψ(βi)−Ψ(αi + βi)} (Ri,j = 1),
(14)

where Ψ(·) is the Digamma function.
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Algorithm 1 Variational Utility Inference
Require: Local updates {W∗

i,j}j∈J i , global model W̄∗
i−1, Round-Reputation Matrix R, Server aux-

iliary dataset Da

1: initializeWd

2: {xj}j∈J i ← top-layer of {W∗
i,j}j∈J i

3: {x+, x−} ← top-layer of weight parameters of synthetic clients initialized by W̄∗
i−1 trained on

D+
a and D−

a
4: while Equation 6 has not converged do ▷ Variational EM
5: while not converged do ▷ E-Step
6: for j ∈ J i do
7: update q(sj) following Equations 13 and 14
8: end for
9: for each round = 1, 2, · · · , i do

10: update q(ri) following Equation 15
11: end for
12: end while
13: while not converged do ▷ M-Step
14: Wd ← training on {xj}j∈J i with label q(sj) and {x+, x−} with known labels
15: end while
16: end while
17: return Parameter of the discriminatorWd

Theorem 2.2 (Incremental Round Informativeness) The informativeness distribution of i-th
round q(ri) can be updated based on parameters αi and βi from the last E-M iteration and true
distribution of client utility in current iteration θ

′
:

q(ri) ∝

{
Beta(αi +

∑
j∈J i(1− θ

′
), βi +

∑
j∈J i θ

′
) (Ri,j = 0)

Beta(αi +
∑

j∈J i θ
′
, βi +

∑
j∈J i(1− θ

′
)) (Ri,j = 1).

(15)

Detailed proof of Theorem 2.1 and Theorem 2.2 can be found in Appendix A.

M-Step. Based on the utility of selected clients and rounds quality inferred by the E-step, the target
of the M-step is the maximization of the first term in Equation 7:

Q(Wd, q) =

∫
q(ri, sj) log p(Ri,j , ri, sj |X;Wd)dri, sj + const

=

∑
sj

∫
q(ri, sj) log p(Ri,j |ri, sj)dri︸ ︷︷ ︸

+
∑
sj

q(sj) log p(sj |X;Wd)︸ ︷︷ ︸
+ const,

M1 M2

(16)
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Figure 4: A case study on CIFAR10:
utility inference of 30% noisy clients
with random local corrupted samples in
a proportion from (0.1, 1].

where const = Eq(ri,sj)[log
1

q(ri,sj)
] is a constant. From

the derived equation, only M2 depends on the parame-
ters Wd that M-step aims at learning. Obviously, M2

is the inverse of the cross-entropy between q(sj) and
p(sj |X;Wd), which is used as the loss function for our
discriminator.M2 can, thus, be optimized using standard
back-propagation in the case of training the discriminator.

Algorithm 1 describes the entire process of clients’ util-
ity inference and Appendix B provides the convergence
analysis. In each round, the server receives updates from
participating clients as in normal FL settings, as well as
simulates the local training on the auxiliary dataset Da (row 2-3). It then goes through multiple
iterations until convergence (row 4); in each iteration, it incrementally updates the latent variables
sj and ri in the E-step (row 5-10) and updates Wd in the M-step (row 11-13). Figure 4 shows an
example result of client utility inference where 30% of clients are corrupted by random label flipping
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with local noise rates ranging from 0.1 to 1. We observe that FedTrans can effectively estimate the
utility of clients, inversely proportional to the actual local noise ratios.

3 EXPERIMENTAL RESULTS

3.1 EXPERIMENTAL SETUP

Datasets and Models. We use two widely-used image datasets: CIFAR10 (Krizhevsky et al., 2009)
and Fashion-MNIST (FMNIST) (Xiao et al., 2017). We implement the commonly used neural model
for each dataset: LeNet-5 (LeCun et al., 1998) for FMNIST; MobileNetV2 (Sandler et al., 2018) for
CIFAR10. We construct the auxiliary dataset by randomly selecting |Da| samples from the test set.

Heterogeneous Data Distribution and Noise Construction. Inline with recent studies (Kairouz
et al., 2019; Li et al., 2022b; Hsu et al., 2019), we create the non-IID data distributions by as-
signing to the i-th client local data that follows the distribution qi ∈ Rc, where c is the number
of classes and qi is sampled from a Dirichlet distribution Dir(αp). The concentration parame-
ter α controls the divergence of qi with respect to a prior distribution p that we set to a uniform
distribution. We add noise to local data in both label and feature spaces, as shown in Figure 5.

Clean
Label: ship

Random Flipping
Label: automobile

Pair Flipping
Label: airplane

Open-set Noise
Label: ship

Corruption Gaussian Resolution

Figure 5: Illustration of data noise in both label
and feature space.

The first row illustrates three types of label
noises constructed in different ways: Random
Flipping constructs random noise by flipping
a label to other classes with equal probabil-
ities (Han et al., 2018; Patrini et al., 2017);
Pair Flipping constructs structural label noise
by assigning labels to the most often confused
classes (Rolnick et al., 2017), as determined by
a confusion matrix from a centralized training
on CIFAR10; Open-set constructs label noise by
introducing data (features) from another source
while keeping the labels unchanged, for in-
stance, a ship image in CIFAR10 is replaced by a bicycle image in CIFAR100 (Tuor et al., 2021;
Wang et al., 2018). Feature noises are shown in the bottom row of Figure 5. These include Gaussian
random noise (with mean 0.2 and variance 1.0), Corruption noise where 50% of an image is set to
black, and Resolution distortion where images are resized to 4×4 and then dilated back to 32×32.
We set the above parameters following (Wang et al., 2018).

Baselines and Metric We compare FedTrans with SOTA baselines that: 1) selectively aggregate
clients, i.e., FLDebugger (Li et al., 2021), FedCorr (Xu et al., 2022), Oort (Lai et al., 2021) and
DivFL (Balakrishnan et al., 2022); 2) adopt robust local objective function, i.e., Robust-FL (Yang
et al., 2022b) and RHFL (Fang & Ye, 2022). Besides, we also compare the commonly used vanilla
FL framework FedAvg (McMahan et al., 2017) in all settings. For fair comparison, we evaluate
FedTrans and baselines on the same test set excluding the auxiliary samples Da, and further intro-
duce new baselines by fine-tuning FedCorr and DivFL on the auxiliary data. We run all the methods
under each setting five times, considering the randomness during model training, and report the aver-
age Top-1 accuracy within 500 communication rounds. For further evaluation of training efficiency,
we also calculate the wall-clock training time and energy-to-accuracy in the Appendix E and F.

3.2 PERFORMANCE EVALUATION

Resilience to Data Noise. To evaluate the resilience of FedTrans to data noise, we compare the
FedTrans and baselines on the non-iid of Dirichlet distribution with concentration parameter α = 0.5
and inject noise to ϵ = 30% clients by applying the six label and feature noise creation strategies on
the random fraction (from 10% to 100%) of local samples. In each communication round, the server
randomly selects 20 participating clients from 100 active ones. We construct the auxiliary dataset
Da by randomly selecting 200 samples from the test set while keeping a balanced data distribution.

Table 1 reports the results of the compared methods in different noise configurations. We observe
that FedTrans consistently outperforms other baselines in all noise configurations on both two tasks.
This signifies the ability of FedTrans to deal with noisy clients by providing the server with pre-
cise utility inference for client selection. Among the baseline methods, Oort and FLDebugger are
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Table 1: Global model accuracy under six types of noise configurations. Label noise integrates
three label corruptions, Image noise integrates three image corruptions, and Hybrid noise covers
both label and image corruptions, each of which includes two settings: across- refers to noisy clients
only preserving one of the specified noises, while intra- refers to a mix of specified noises in all of
the noisy clients. The size of auxiliary data |Da|= 200. Distribution of the local data is followed
by Dir (0.5), and ϵ = 30% of active 100 clients are corrupted. We report the average and standard
derivation on five trials under each experimental setup.

CIFAR-10, MobileNetV2, Dir(0.5)
Hybrid (across-) Hybrid (intra-) Label (across-) Label (intra-) Image (across-) Image (intra-)

FedAvg (McMahan et al., 2017) 69.3% ± 0.6% 68.3% ± 0.6% 66.4% ± 0.8% 66.4% ± 0.3% 71.0% ± 0.4% 69.2% ± 2.4%
FLDebugger (Li et al., 2021) 65.0% ± 0.5% 64.3% ± 0.3% 66.3% ± 0.2% 61.2% ± 0.4% 67.2% ± 0.6% 66.1% ± 0.5%
Oort (Lai et al., 2021) 63.1% ± 0.5% 56.2% ± 0.3% 61.0% ± 1.4% 56.8% ± 0.8% 67.6% ± 0.5% 65.8% ± 0.0%
Robust-FL (Yang et al., 2022b) 73.1% ± 0.3% 70.6% ± 0.8% 62.3% ± 0.1% 73.4% ± 0.4% 72.5% ± 0.1% 70.8% ± 0.1%
RHFL (Fang & Ye, 2022) 71.5% ± 0.2% 70.1% ± 0.1% 69.4% ± 0.1% 68.8% ± 0.4% 72.9% ± 0.5% 73.0% ± 0.1%
DivFL (Balakrishnan et al., 2022) 73.4% ± 0.2% 70.1% ± 1.0% 71.4% ± 0.2% 70.7% ± 0.3% 72.7% ± 1.4% 72.7% ± 0.6%
FedCorr (Xu et al., 2022) 77.0% ± 0.3% 73.7% ± 0.4% 72.8% ± 0.1% 75.7% ± 0.1% 73.4% ± 0.3% 73.7% ± 0.6%
Fine-tuned DivFL 70.6% ± 0.3% 70.6% ± 0.4% 69.7% ± 0.3% 68.7% ± 0.2% 71.8% ± 0.3% 70.0% ± 0.4%
Fine-tuned FedCorr 71.1% ± 0.3% 68.2% ± 0.2% 70.2% ± 0.3% 69.2% ± 0.3% 68.0% ± 0.1% 67.0% ± 0.2%
FedTrans 77.1% ± 0.3% 76.9% ± 0.3% 76.3% ± 0.2% 75.7% ± 0.4% 77.3% ± 0.1% 77.0% ± 0.2%

FMNIST, LeNet-5, Dir(0.5)

FedAvg (McMahan et al., 2017) 84.9% ± 0.3% 84.4% ± 0.2% 83.9% ± 0.2% 83.6% ± 0.1% 85.3% ± 0.3% 85.1% ± 0.3%
FLDebugger (Li et al., 2021) 85.1% ± 0.1% 85.3% ± 0.1% 84.9% ± 0.2% 84.8% ± 0.1% 84.8% ± 0.2% 85.1% ± 0.1%
Oort (Lai et al., 2021) 82.6% ± 0.4% 80.0% ± 0.4% 80.9% ± 0.9% 77.0% ± 0.2% 85.1% ± 0.2% 85.5% ± 0.0%
Robust-FL (Yang et al., 2022b) 85.0% ± 0.4% 85.3% ± 0.2% 84.9% ± 0.1% 84.8% ± 0.2% 85.1% ± 0.3% 85.3% ± 0.1%
RHFL (Fang & Ye, 2022) 84.5% ± 0.0% 84.6% ± 0.1% 83.6% ± 0.1% 84.1% ± 0.1% 84.5% ± 0.0% 84.2% ± 0.5%
DivFL (Balakrishnan et al., 2022) 86.1% ± 0.4% 85.0% ± 0.0% 85.0% ± 0.0% 84.8% ± 0.3% 86.2% ± 0.1% 86.2% ± 0.0%
FedCorr (Xu et al., 2022) 87.3% ± 0.2% 87.6% ± 0.1% 87.3% ± 0.1% 87.4% ± 0.1% 86.8% ± 0.8% 86.1% ± 0.9%
Fine-tuned DivFL 84.3% ± 0.2% 83.9% ± 0.1% 83.8% ± 0.1% 83.5% ± 0.2% 84.9% ± 0.0% 84.7% ± 0.1%
Fine-tuned FedCorr 84.9% ± 0.1% 84.4% ± 0.1% 83.9% ± 0.0% 84.6% ± 0.2% 83.9% ± 0.1% 84.8% ± 0.1%
FedTrans 88.7% ± 0.3% 88.0% ± 0.3% 88.2% ± 0.2% 88.2% ± 0.5% 88.6% ± 0.3% 88.6% ± 0.5%

outperformed by vanilla FedAvG. Their relatively low performance shows that neither the training
loss of local models used in Oort nor the difference between the local model weights and global
model weights (i.e., |W∗

i,j − W̄∗
i |) used in FLDebugger can approximate utility. In comparison,

DivFL shows an improvement by encouraging diverse and representative clients for aggregation
(via submodularity-based client selection); FedCorr achieves also a relatively better performance
by measuring the local intrinsic data manifold dimensionality (LID) for utility approximation and
further clustering data into two subsets (i.e., clean set and noisy set). Most importantly, FedTrans
outperforms all comparison methods, including all the above methods and Robust-FL and RHFL
whose local objectives are designed to be resilient to the local noise. Furthermore, unlike FedCorr
which requires all clients to calculate and report their LID score before FL, FedTrans is flexible
to take in new clients during the FL process without extra operations on the client. FedTrans is
therefore more favorable in terms of both its transparency and flexibility.

To investigate the ability of FedTrans to exploit auxiliary data, we compare it to the fine-tuned ver-
sions of FedCorr and DivFL global models using auxiliary data and report the result also in the
table. We conduct multiple trials, considering several epochs of the auxiliary data for fine-tuning
the global models in all rounds, and report the best results of the new baselines. We observe that the
performance after fine-tuning is notably weaker than before fine-tuning. This highlights the impor-
tance of effective strategies to leverage a limited amount of auxiliary data for model improvement.
We report further results under different local data distributions in Appendix G.

Ablation Study. We conduct it on CIFAR10 with Dir(0.5) and hybrid noises across clients, to
evaluate each component of FedTrans in client utility estimation. We compare FedTrans’s variants
with 1) using entries in the i-th row of round-reputation matrix R for client selection, and 2) using
outputs of the discriminator, in each round trained on topmost layers of synthetic clients with known
labels, for selection. Figure 6 shows the results. We observe FedTrans as a whole, outperforms both
variants, verifying the effectiveness of integrating both components for clients’ utility estimation.

Impact of Auxiliary Data Size. Figure 7 shows the performance of FedTrans given increasing
sizes of auxiliary data |Da|, corresponding to different data partition of K pair(s) of synthetic pos-
itive/negative clients (see Section 2.1). We observe no significant accuracy drop until the size of
data on the synthetic client becomes too small (i.e., |Da|= 50 and K = 3). The result signifies the
cost-efficiency of FedTrans in making use of auxiliary data. We also experiment with a Misaligned
situation where the noise type in the local data (hybrid noise) is different from that in the manually
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corrupted D− (kept random flipping noise), and observe similar results: no significant performance
drop even when the local noise is agnostic.

Clients Inclusion. Figure 8 shows the evolution of FedTrans performance under a varying number
of clients included in the aggregation (ϵ = 60% clients having noise). The global model performance
first increases and then decreases with an increasing number of noisy clients involved, which is in
line with our previous observations on the effect of noisy clients. This reveals the interesting fact
that the global model may benefit from selecting appropriately low-utility updates for aggregation.
This phenomenon can be attributed to the benefit of including more training data even with a certain
level of noise (e.g., in countering biases of the learning) and can be leveraged for better design of
aggregation strategies in the future. In addition to the performance evolution, we also observe a
similar trend of the effect of including more noisy clients on the convergence speed.

4 RELATED WORK

Learning from noisy data is a critical issue in deep learning (Khetan et al., 2017; Han et al., 2018;
Li et al., 2019; 2020), especially for cross-device FL with restricted access to the local data. In the
following, we provide a succinct overview of existing literature addressing data noise in FL.

The majority of the work focuses on selecting clean clients. (Lai et al., 2021; Li et al., 2022a) mea-
sure the client data utility by the training loss and select clients with large loss. DivFL (Balakrishnan
et al., 2022) dynamically clusters clients at each communication round according to the modular
score and selects the representative client from each cluster for aggregation. (Cho et al., 2022) pro-
vides a theoretical convergence analysis of biased client selection in FL and proposes a selection
strategy for trade-off between convergence speed, solution bias, and communication/computation
overhead. Our work is close to (Li et al., 2021; Xu et al., 2022) that propose two-step strategies
where the server first identifies the corrupted clients, and then guides the clients to rectify the local
noisy samples. Note that our FedTrans provides a precise identification of defective clients in a
client-transparent way and shows compatibility with the existing sample-level rectification methods.

A few papers propose to design robust local objective functions. Robust-FL (Yang et al., 2022b)
introduces into the local loss function a local centroids term to represent and reduce the effect of
noisy data on model training. (Fang & Ye, 2022) combines the cross-entropy loss with a reverse term
to prevent overfitting to noisy labels. In our experiments, we have shown the better performance of
FedTrans over the above methods; note though, that FedTrans can further benefit from the calibration
of local objective functions. Finally, our work is related to adversarial attacks (Fung et al., 2020;
Tolpegin et al., 2020; Nguyen et al., 2022). The scenarios considered in this work are, however, FL
with the presence of natural issues with the local data, instead of those caused by adversarial attacks.

5 CONCLUSION

In this paper, we observed that FL clients with noise data slow the learning of global model and
reduce its accuracy. To help the server select the most suitable clients for global model aggregation,
we proposed a unified Bayesian framework FedTrans to estimate the utility of clients. Our FedTrans
is transparent to clients and thus does not require any modifications to clients. Extensive evaluations
validate the effectiveness of FedTrans. Our client utility estimation strategy could be leveraged to
design better aggregations at the server, to make FL more robust in practical deployments.
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A PROOFS OF THEOREM 2.1 AND THEOREM 2.2

A.1 PRELIMINARIES

FedTrans integrates two client utility estimation strategies: weight-based estimation and
performance-based estimation. We formulate a Bayesian framework shown in Figure 3, wherein
the parameters are estimated by employing the maximum likelihood estimate (MLE) approach. We
first briefly introduce MLE under latent variables settings, and from that derive the parameter esti-
mate rules for our framework. The general MLE problem is formulated as follows:

ϕ∗
MLE = argmax

ϕ∈Φ
p(O;ϕ), (17)

where ϕ are the parameters of the probabilistic model and O are a set of observations.

When it is infeasible to directly model the likelihood function p(O;ϕ) (as in our problem), we
introduce latent variables L to connect the observations to unknown parameters. In this way, the
likelihood function is transformed into

p(O;ϕ) =

∫
p(O,L;ϕ)dL. (18)

The expectation maximization (EM) algorithm is employed for MLE with latent variables. The algo-
rithm iteratively updates the elements in the likelihood function. Specifically, the E-step iteratively
optimizes the latent variables L, and the M-step iteratively optimizes the parameters ϕ.

For the problem in this paper, the observations refer to the round reputation matrix R conditioned
on the weight parameters of top-layer X; the latent variables are r and s; and the parameters are
{Wd, A,B}, hereafter denoted as P . A detailed expression of the likelihood function is as follows:

p(R|X;P) =
∏
i

∏
j

p(Ri,j |xj ;P)

=
∏
i

∏
j

∫
ri,sj

p(Ri,j , ri, sj |xj ;P)dri, sj

=

∫
p(R, r, s|X;Wd)dr, s.

(19)

We first decompose the likelihood function in Equation 6 into two terms as shown in Equation 7
of Section 2.2. We then employ variational EM to optimize variables in the Bayesian framework,
wherein the E-step and M-step are designed to iteratively update the variables related to both the
two modules. The reason for choosing the variational EM instead of the closed-form EM will also
be discussed in the following section.

After applying the logarithm on Equation 19, we get

log p(R|X;P) = log

∏
i

∏
j

∫
ri,sj

p(Ri,j , ri, sj |xj ;P)dri, sj


=
∑
i

∑
j

log

(∫
ri,sj

p(Ri,j , ri, sj |xj ;P)dri, sj

)

=
∑
i

∑
j

log

(∫
ri,sj

q(ri, sj)
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)
dri, sj

)
,

(20)

where the approximation term q(ri, sj) can be any probability density function.
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According to Jensen’s Inequality, we have described the entire process of

log

(∫
ri,sj

q(ri, sj)
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)
dri, sj

)

= log

(
E
[
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

])
≥ E

[
log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)]
=

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj .

(21)

Therefore, we have

log p(R|X;P) ≥
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj . (22)

The difference between the two sides of the inequality is

∆ = log p(R|X;P)−
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj

= log(
∏
i

∏
j

p(Ri,j |xj ;P))−
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj

=
∑
i

∑
j

log(p(Ri,j |xj ;P))−
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj

=
∑
i

∑
j

∫
ri,sj

[
q(ri, sj) log (p(Ri,j |xj ;P))− q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)]
dri, sj

=
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j |xj ;P)q(ri, sj)
p(Ri,j , ri, sj |xj ;P)

)
dri, sj

=
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j |xj ;P)q(ri, sj)

p(ri, sj |Ri,j , xj ;P)p(Ri,j |xj ;P))

)
dri, sj

=
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
q(ri, sj)

p(ri, sj |Ri,j , xj ;P))

)
dri, sj

=
∑
i

∑
j

KL(q||p(ri, sj |Ri,j , xj ;P)). (23)

The gap ∆ refers to the first term in Equation 7, which we need to minimize in the E-step. However,
the closed-form EM updates do not work in the case of discrete-continuous variables. We develop
a mean field variational inference, following the idea of approximating the posterior distribution of
latent variables p(ri, sj |Ri,j , xj ;P) with the variational distribution q(r, s) =

∏
i

∏
j q(ri, sj).

In the mean-field approach, we assume that

q(r, s) = q(r)q(s) =
∏
i

q(ri)
∏
j

q(si), (24)

where q(ri) = Beta(αi, βi) (i.e., Equation 9) and q(sj) = Ber(θj) (i.e., Equation 10).

Next, we will derive the update rule of q(s) and q(r) corresponding to Theorem 2.1 and Theorem 2.2

A.2 PROOF OF THEOREM 2.1

For q(s), we have
q(s) ∝ exp{Eq(ri)[log(p(r, s,R,X;P))]}. (25)
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For the j-th client, there is a set of rounds Ij involving the j-th client. In other words, Ri,j is not
blank for i ∈ Ij . Equation 25 is formulated as

q(sj) ∝ exp{Eq(ri)[log(
∏
i∈Ij

p(ri, sj ,Ri,j , xj ;P))]}

∝ exp{Eq(ri)[
∑
i∈Ij

log(p(ri, sj ,Ri,j , xj ;P))]}

∝ exp{
∑
i∈Ij

Eq(ri)[log(p(ri, sj ,Ri,j , xj ;P))]}

∝
∏
i∈Ij

exp{Eq(ri)[log(p(ri, sj ,Ri,j , xj ;P))]}.

(26)

After applying the chain rule on p(ri, sj ,Ri,j , xj ;P), we can get

p(ri, sj ,Ri,j , xj ;P) = p(ri|xj ;P)× p(sj |ri, xj ;P)× p(Ri,j |sj , ri, xj ;P)
= p(ri)× p(sj |xj ;P)× p(Ri,j |ri, sj).

(27)

This is because sj only depends on xj and P , and Ri,j does not depend on xj and P given sj and
ri.

Substituting Equation 27 into Equation 26, we have

q(sj) ∝
∏
i∈Ij

exp{Eq(ri)[log(p(ri)× p(sj |xj ;P)× p(Ri,j |ri, sj))]}

∝
∏
i∈Ij

exp{Eq(ri)[log(p(ri)] + Eq(ri)[log(p(sj |xj ;P))] + Eq(ri)[log(p(Ri,j |ri, sj))]}.

(28)

We remove the irrelevant term related to q(sj), i.e., Eq(ri)[log(p(ri)], then we get

q(sj) ∝
∏
i∈Ij

exp{Eq(ri)[log(p(sj |xj ;P))] + Eq(ri)[log(p(Ri,j |ri, sj))]}

∝
∏
i∈Ij

exp{Eq(ri)[log(p(sj |xj ;P))]} × exp{Eq(ri)[log(p(Ri,j |ri, sj))]}.
(29)

Since log(p(sj |xj ;P)) dose not contain the variable q(ri), we have

exp{Eq(ri)[log(p(sj |xj ;P))]} = exp{log(p(sj |xj ;P))} = p(sj |xj ;P). (30)

Substituting Equation 30 into Equation 29, we have

q(sj) ∝
∏
i∈Ij

p(sj |xj ;P)× exp{Eq(ri)[log(p(Ri,j |ri, sj))]}

∝ p(sj |xj ;P)
∏
i∈Ij

exp{Eq(ri)[log(p(Ri,j |ri, sj))]}.
(31)

Equation 31 is equivalent to Equation 11 of Section 2.2 when we define Eq(ri)[log(·)] = gq(ri)(·).

Based on Equation 31, we now derive the update rule of q(sj) given the variational parameters θj ,
αi, and βi from last iteration. We first show the proof for sj = 1; the proof for sj = 0 follows
similarly.

Equations 2 and 3 of Section 2.1 parameterize the latent variable sj with the utility θj : the selection
sj of j-th client follows a Bernoulli distribution parameterized by client utility θj that is the output
of a machine learning model fWd(·) with input topmost layer xj in the j-th local model. We have

p(sj = 1|xj ;P) = θj . (32)
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In Equation 5, we connect the round informativeness ri and client selection sj under the assumption
that rounds with higher informativeness have more entries Ri,j satisfying actual client utility, which
can be formulated to

p(Ri,j |ri, sj) = ri
(1−|sj−Ri,j |) × (1− ri)

|sj−Ri,j |. (33)

In the case when sj = 1, Equation 33 is equivalent to

p(Ri,j |ri, sj) =
{
1− ri (Ri,j = 0)

ri (Ri,j = 1).
(34)

After substituting the probabilities p(sj |xj ;P) and p(Ri,j |ri, sj) into Equation 31, we get

q(sj = 1) ∝
{
θj
∏

i∈Ij exp{gq(ri)(1− ri)} (Ri,j = 0)

θj
∏

i∈Ij exp{gq(ri)ri} (Ri,j = 1).
(35)

By computing the geometric mean of the beta distribution, we can evaluate the expectations gx(·) as
follows:

gq(ri)(1− ri) = Ψ(βi)−Ψ(αi + βi), (36)

gq(ri)ri = Ψ(αi)−Ψ(αi + βi). (37)

Substituting Equations 36 and 37 into Equation 35, we can obtain the update rule of q(sj = 1), as
given in Equation 13 of Section 2.2 as well as shown below:

q(sj = 1) ∝
{
θj
∏

i∈Ij exp{Ψ(βi)−Ψ(αi + βi)} (Ri,j = 0)

θj
∏

i∈Ij exp{Ψ(αi)−Ψ(αi + βi)} (Ri,j = 1).

Similarly, for sj = 0, we have
p(sj = 0|xj ;P) = 1− θj , (38)

and

p(Ri,j |ri, sj) =
{
ri (Ri,j = 0)

1− ri (Ri,j = 1).
(39)

Equation 31 is then equivalent to

q(sj = 0) ∝
{
(1− θj)

∏
i∈Ij exp{gq(ri)ri} (Ri,j = 0)

(1− θj)
∏

i∈Ij exp{gq(ri)(1− ri)} (Ri,j = 1).
(40)

Again, substituting Equation 36 and 37 into Equation 40, we can obtain the update rule of q(sj = 0)
as Equation 14 of Section 2.2:

q(sj = 0) ∝
{
(1− θj)

∏
i∈Ij exp{Ψ(αi)−Ψ(αi + βi)} (Ri,j = 0)

(1− θj)
∏

i∈Ij exp{Ψ(βi)−Ψ(αi + βi)} (Ri,j = 1).

We now conclude the proof of Theorem 2.1.

A.3 PROOF OF THEOREM 2.2

For q(r), we have
q(r) ∝ exp{Eq(sj)[log (p(r, s,R,X;P))]}. (41)

In the i-th round, there is a set of participating clients J i corresponding to entries in the i-th row of
matrix R. Equation 41 is formulated as

q(ri) ∝ exp{Eq(sj)[log(
∏
j∈J i

p(ri, sj ,Ri,j , xj ;P))]}. (42)
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Following the transformation of q(sj), we can also get a simplified version of Equation 42, similar
to Equation 31:

q(ri) ∝ p(ri)
∏
j∈J i

exp{Eq(sj)[log(p(Ri,j |ri, sj))]} (43)

Since q(sj) = Ber(θj), we have

Eq(sj)[log(p(Ri,j |ri, sj))] =
∑
sj

q(sj) log(p(Ri,j |ri, sj))

= q(sj = 0)× log(p(Ri,j |ri, sj)) + q(sj = 1)× log(p(Ri,j |ri, sj))
= (1− θj)× log(p(Ri,j |ri, sj)) + θj × log(p(Ri,j |ri, sj))
def
= Eθj [log(p(Ri,j |ri, sj))].

(44)

Therefore, Equation 43 is finally transformed into

q(ri) ∝ p(ri)
∏
j∈J i

exp{Eθj [log(p(Ri,j |ri, sj))]}. (45)

Equation 45 is equivalent to Equation 12 of Section 2.2 when we define Eθj [log(·)] = gθ′ (·).
Based on Equation 45, we now derive the update rule of q(ri) given the variational parameters θj ,
αi, and βi from last iteration.

We replace the probability p(ri) in Equation 45 by the Beta distribution with parameters αi and βi

from the previous iteration:

q(ri) ∝ Beta(αi, βi)
∏
j∈J i

exp{Eθj [log(p(Ri,j |ri, sj))]}. (46)

According to Equation 33, the exp{Eθj [log(p(Ri,j |ri, sj))]} in Equation 46 can be reformulated to

exp{Eθj [log(p(Ri,j |ri, sj))]}
= exp{Eθj [log(ri

(1−|sj−Ri,j |) × (1− ri)
|sj−Ri,j |)]}

= exp{(1− θj)× log(ri
(1−|Ri,j |) × (1− ri)

|Ri,j |) + θj × log(ri
(1−|1−Ri,j |) × (1− ri)

|1−Ri,j |)}
= exp{(1− θj)× log(ri

(1−Ri,j) × (1− ri)
Ri,j ) + θj × log(ri

(Ri,j) × (1− ri)
(1−Ri,j))}

= exp{(1− θj)× log(ri
(1−Ri,j) × (1− ri)

Ri,j )} × exp{θj × log(ri
(Ri,j) × (1− ri)

(1−Ri,j))}
= (ri

(1−Ri,j) × (1− ri)
Ri,j )(1−θj) × (ri

Ri,j × (1− ri)
(1−Ri,j))θj

= ri
(1+2Ri,jθj−θj−Ri,j)(1− ri)

(Ri,j−2Ri,jθj+θj).
(47)

Therefore, the expectation term in Equation 46 can be evaluated as follows:

exp{Eθj [log(p(Ri,j |ri, sj))]} =

{
ri

(1−θj)(1− ri)
θj (Ri,j = 0)

ri
θj (1− ri)

(1−θj) (Ri,j = 1).
(48)

In the case when Ri,j = 1, Equation 46 is equivalent to :

q(ri) ∝ Beta(αi, βi)
∏
j∈J i

ri
θj(1−ri)

(1−θj)

. (49)

The probability density function of ri’s distribution is given by:

Beta(αi, βi) ∝ ri
(αi−1)(1− ri)

(βi−1)
. (50)
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Substituting Equation 50 into Equation 49, we get

q(ri) ∝ ri
(αi−1)(1− ri)

(βi−1)
∏
j∈J i

ri
θj (1− ri)

(1−θj)

∝
∏
j∈J i

ri
(αi−1)(1− ri)

(βi−1)
ri

θj (1− ri)
(1−θj)

∝
∏
j∈J i

ri
(αi+θj−1)(1− ri)

(βi+(1−θj)−1)

∝ ri
(αi+

∑
j∈J i θj−1)(1− ri)

(βi+
∑

j∈J i (1−θj)−1)

∝ Beta

αi +
∑
j∈J i

θj , βi +
∑
j∈J i

(1− θj)

 .

(51)

Similarly, for Ri,j = 0, we have

q(ri) ∝ Beta(αi, βi)
∏
j∈J i

ri
(1−θj)(1− ri)

θj . (52)

Again, substituting Equation 50 into Equation 52, we complete the proof of Theorem 2.2 as follows:

q(ri) ∝ ri
(αi−1)(1− ri)

(βi−1)
∏
j∈J i

ri
(1−θj)(1− ri)

θj

∝
∏
j∈J i

ri
(αi−1)(1− ri)

(βi−1)
ri

(1−θj)(1− ri)
θj

∝
∏
j∈J i

ri
(αi+(1−θj)−1)(1− ri)

(βi+θj−1)

∝ ri
(αi+

∑
j∈J i (1−θj)−1)(1− ri)

(βi+
∑

j∈J i θj−1)

∝ Beta

αi +
∑
j∈J i

(1− θj), βi +
∑
j∈J i

θj

 .

(53)

B CONVERGENCE ANALYSIS

B.1 PRELIMINARIES

Before the convergence analysis on FedTrans, we first provide a detailed formulation of the local
training and global aggregation in FedTrans with selective client participation.

In the i-th communication round, the cloud server randomly selects a set of participating clients J i.
Each client j ∈ J i performs the stochastic gradient descent (SGD) on the local data instances:

L(fWτ,j

j , ξjτ ) =
1

|ξjτ |

∑
x∈ξjτ

l(f
Wτ,j

j ;x), (54)

Ŵτ+1,j =Wτ,j − ητ∇L(f
Wτ,j

j , ξjτ ), (55)

where τ indexes the local SGD step on the objective L(·) regarding the loss function l(·) (e.g.,
cross-entropy loss). ξjτ is a batch of samples randomly selected from local data Dj at step τ . Client

updates local model to f
Ŵτ+1,j

j after one-step gradient descent with the learning rate ητ . Suppose
that client reports the model updates every E ∈ Z+ steps, and we have the update rule

Wτ+1,j =

{
Ŵτ+1,j , τ + 1 ̸= iE∑

j∈J i pjŴτ+1,j , τ + 1 = iE.
(56)
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We define the local updates of client j offloading to the cloud server in round i as

W∗
i,j ≜ ŴiE,j . (57)

Under the guidance of client utility estimated by FedTrans, the server aggregates a subset of updates
from clients Ĵ i ⊆ J i for the global model

W̄∗
i ≜

∑
j∈Ĵ i

p̂jW∗
i,j =

∑
j∈Ĵ i

p̂jŴiE,j . (58)

In the following section, we simplify the objective function as Lj(W, ξ) = L(fW
j , ξ) and gradients

as gj(W, ξ) = ∇Lj(W, ξ) for a more concise expression. Specifically, Lj(W) = L(fW
j ,Dj) and

gj(W) = ∇Lj(W).

B.2 CONVERGENCE GUARANTEE

A rigorous convergence analysis of FedTrans is non-trivial since the tendentious selection of clients
with high utility compared with random client selection (e.g., FedAvg). Borrowing from the theo-
retical analysis in (Cho et al., 2022) that considers the effect of biased client participation on con-
vergence, we can provide the convergence guarantee of FedTrans under assumptions

Assumption 1 L1, · · · ,L|J | are all L-smooth, i.e., for allW andW ′,

Lj(W) ≤ Lj(W ′) + ⟨∇Lj(W ′),W −W ′⟩+ L

2
∥W −W ′∥22. (59)

Assumption 2 LD1
, · · · ,LD|J | are all µ-strongly convex, i.e., for allW andW ′,

Lj(W) ≥ Lj(W ′) + ⟨∇Lj(W ′),W −W ′⟩+ µ

2
∥W −W ′∥22. (60)

Assumption 3 For mini-batch ξjτ uniformly sampled at random from local data of j-th clientDj , the
resulting stochastic gradient is unbiased, that is, E[gj(Wτ,j , ξ

j
τ )] = gj(Wτ,j). Also, the variance of

the stochastic gradient is bounded, i.e., for all j = 1, · · · , |J | and ∀τ ,

E[∥gj(Wτ,j , ξ
j
τ )− gj(Wτ,j)∥2] ≤ σ2. (61)

Assumption 4 The stochastic gradient’s expected squared norm is uniformly bounded, i.e., for all
j = 1, · · · , |J | and ∀τ ,

E[∥gj(Wτ,j , ξ
j
τ )∥2] ≤ G2. (62)

In line with (Cho et al., 2022), we then define two metrics: local-global objective gap and selection
skew. The local-global objective gap is formulated as

Γ ≜
|J |∑
j

pj(Lj(W̄∗)− Lj(W∗
j )), (63)

where pj refers to the fraction of data at j-th client to the overall data volume. The W̄∗ andW∗
j are

the optimal weight parameters of the global objective L(·) and local objective Lj(·) respectively. To
be more specific,

W∗
j = argmin

W
Lj(W), (64)

W̄∗ = argmin
W

L(W) = argmin
W

|J |∑
j

pjLj(W). (65)

Further, we denote L∗
j = Lj(W∗

j ) and L∗ = L(W̄∗).
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The selection skew is formulated as

ρ(S(π,W),W ′) =
ES(π,W)[

1
m

∑
j∈S(π,W)(Lj(W ′)− L∗

j )]

L(W ′)−
∑|J |

j pjL∗
j

(66)

where S(π,W) is a set of selected m clients given selection strategy π according to weight param-
eters W , and W ′ is the observing point where we evaluate the local objective Lj(W ′) and global
objective L(W ′).

We then define two related metrics

ρ̄ ≜ min
W,W′

ρ(S(π,W),W ′), (67)

ρ̃ ≜ max
W

ρ(S(π,W),W∗). (68)

Under the above-mentioned three assumptions, for learning rate ηt =
1

µ(t+γ) and γ = 4L
µ , we have

the convergence with any selection strategy π after T local steps as

E[L(W̄∗
T )]−L∗ ⩽

1

T + Γ
[
4L(32τ2G2 + σ2/m)

3µ2ρ̄
+
8L2Γ

µ2
+
Lγ∥W̄∗

0 − W̄∗∥2

2
]+

8LΓ

3µ
(
ρ̃

ρ̄
−1) (69)

where T is the local SGD interactions, and G is the upper bound of the stochastic gradient’s expected
squared norm in assumption (3).

Similarly, for a fixed learning rate η ⩽ min{ 1
2µB , 1

4L} where is B = 1 + 3ρ̄
8 , we have the conver-

gence with any selection strategy π as

E[L(W̄∗
T )]− L∗ ⩽

4Lη(32τ2G2 + σ2

m ) + 6ρ̄LΓ)

µ(8 + 3ρ̄)
+

8LΓ(ρ̃− ρ̄)

µ(8 + 3ρ̄)

+
L

µ

(
1− ηµ(1 +

3ρ̄

8
)

)T
L(W̄∗

0 )− L∗ −
4
(
η(32τ2G2 + σ2

m + 6ρ̄LΓ) + 2Γ(ρ̃− ρ̄)
)

8 + 3ρ̄

 .

(70)

For a small η, both fixed-learning rate case and decaying-learning rate case have the same upper
bound by 8LΓ

3µ ( ρ̃ρ̄ − 1).

In FedTrans, the selection strategy πutil chooses clients Ĵ i ⊆ J i from the participating clients
based on the estimated utilities. Therefore, in Equation 66, S(π,W) = Ĵ i and m = |Ĵ i|,∀i ∈ I.
According to the analysis in (Cho et al., 2022), a larger selection skew ρ results in faster convergence.
We provide the lower bound of convergence rate at O( 1

T ρ̄ ) where T denotes the accumulated local
SGD steps, since ρ̄ calculates the minimum of the selection skew, as shown in Equation 67. In
practice, the varying weights parameters of the global model W̄∗

i and the local modelW∗
i,j cause the

selection skew ρ(S(π, W̄∗
i ),W∗

i,j) to change with the FL proceeding while maintaining convergence
rate of at least of ρ̄.

C MORE EXPERIMENTAL DETAILS

Implementation Details. The parameters of variational utility inference and those for discriminator
fWd training are empirically set. We adopt fWd with Multi-Layer Perception (MLP) having 2
hidden layers of 128 and 64 dimensions respectively. In discriminator training, we select the learning
rate as 1e− 3, and we set the priors A and B by sampling from a uniform distribution ∼ [0, 10] and
update them in E-step according to Theorem 2.1 and Theorem 2.2.
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Comparison Methods. We implement all the comparison methods in Python and the neural net-
works with PyTorch, running on an NVIDIA 2080Ti GPU. In local training, local epochs are set to
5 and the learning rate is 1e− 2. We use SGD with momentum factor = 0.9 as the local optimizer.

To evaluate the resilience of FedTrans to data noise, we compare it with SOTA baselines.
RHFL (Fang & Ye, 2022) considers symmetrically using cross-entropy loss and reverse cross-
entropy loss to ameliorate the negative effect of internal local model noise. Robust-FL (Yang et al.,
2022b) copes with the noisy federated setting by interchanging additional information called class-
wise centroids. FLDebugger (Li et al., 2021) utilizes the 2-norm distance between local weight
parameters and global weight parameters to distinguish noisy clients. FedCorr (Xu et al., 2022)
calculates the average Local Intrinsic Dimension (LID) of local prediction vectors for each client.
The server applies a Gaussian Mixture Model on received LID scores to partition involved clients
into two subsets: noisy clients and clean clients. As a client selection method, Oort (Lai et al., 2021)
achieves enhanced time-to-accuracy by constructing both statistical utility and system utility for
clients. DivFL (Balakrishnan et al., 2022) selects a subset of clients whose weight updates closely
mimic the information gained from aggregating updates across all clients, to improve learning ef-
ficiency. Note that FLDebugger and FedCorr are sample-wise noisy correction methods where we
partially compare two baselines with regard to the identification of noisy clients. We implement the
component about data utility in Oort for comparison.

Observation details. Figure 1 illustrates the negative impact of noisy clients under two different
local data distributions, emphasizing more severe degradation in global model performance when
local data is non-IID across clients. For the completeness of experiments, we also explore the per-
formance of the global model varying with learning rates other than 10−2 in Figure 1. Compared
with results in Figure 9, under both IID and non-IID settings, the global model achieves the best
performance when the learning rate is 10−2 as used in Figure 1. Furthermore, we observe a more
pronounced degradation of the model performance introduced by data noise in non-IID data com-
pared to IID data across all learning rates ranging from 10−1 to 10−4, which necessitates inferring
client utility in more realistic non-IID scenarios.
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Figure 9: Global model performance of FL with noisy clients (in Hybrid (across-) local noise). We
consider two data distributions and three different learning rates.
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Figure 10: The client selection performance in the presence of ϵ = 30% noisy clients.

Client selection performance. In the experiments, we adopt a threshold-based selection strategy,
excluding the updates of the clients with the utility θ below 0.5 from the global model aggregation.
As shown in Figure 10, we evaluate the client selection performance in the setting where ϵ = 30%
clients corrupted by Hybrid (across-) noise. We observe the high recall performance, stabilizing at
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approximately 99% after 50 communication rounds. It indicates FedTrans’s effective recognition of
clean (positive) clients on the server side. The success rate of detecting noisy clients (true negative
rate) reaches an average of 85% as the rounds progress. Furthermore, the overall accuracy of client
selection according to the utilities estimated by FedTrans is around 95%, given that the clean clients
are the majority participants (at approximately 70%) in each communication round.
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Figure 11: The correlation be-
tween estimated client utility and
its actual local noise rate varies
with the communication rounds.

Correlation between utility and noise rate. As inferring
client utility is the main focus of this paper, we investigate the
performance of utility estimation by FedTrans across commu-
nication rounds. In contrast to evaluating the success rate of
detecting noisy clients, our assessment measures the strength
of the monotonic relationship between estimated utility and
actual local noise. Disregarding the specific selection strat-
egy (e.g., the threshold-based method) according to client util-
ities, we employ Spearman’s rank-order correlation coefficient
(PROCC) to quantify the statistical dependence between two
variables (i.e., θj and local noise rate). As shown in Figure 11,
the utility exhibits a negative relationship with local noise,
and this relationship becomes more significant along with FL
progress. This observation indicates that utility estimation be-
comes more accurate and aligned with the client noise degree,
primarily attributed to the incremental updates on the discriminator fWd across communication
rounds.

D TRANSPARENT CLIENT UTILITY ESTIMATION IN FEDERATED LEARNING

Here, we provide the pseudo-code of the overall FL process with FedTrans as a general algorithmic
framework (see Algorithm 2). In each round, local models in participating clients are first updated as
in standard FL settings (rows 3-6). The server then updates the round-reputation matrix and infers
client utility (row 8-11) by calling the variational utility inference algorithm (see Algorithm 1). After
that, it can perform an arbitrary client selection strategy guided by estimated client utility (row 12-
14). It finally obtains the global model by aggregating the weight parameters from selected clients
(row 15). FedTrans, as a module that does not require any additional information from the client,
can be coupled to any existing aggregation and local training schemes.

Algorithm 2 Federated Learning with FedTrans
1: Require: A set of clients with self-contained data: C; Server auxiliary dataset: Da; Client

selection rate: γ.
2: for each round i = 1, 2, · · · , N do
3: J i ← randomly select max(|C| × γ, 1) clients from C
4: for j ∈ J i in parallel do ▷ Local Training
5: W∗

i,j ←ClientUpdate (Cj , W̄∗
i−1)

6: end for
7: Server Executes FedTrans:
8: Ri ←MatrixUpdate ({W∗

i,j}j∈J i ,Ri−1,Da)
9: Wd ←VariationalInference ({W∗

i,j}j∈J i , W̄∗
i−1,Ri) ▷ Utility Estimation

10: {xj}j∈J i ← top-layer of {W∗
i,j}j∈J i

11: {θj}j∈J i ← fWd({xj}j∈J i)

12: for j ∈ J i do
13: sj ← client selection guided by θj ▷ Client Selection
14: end for
15: W̄∗

i ←Aggregation ({W∗
i,j}j∈J i , {sj}j∈J i ) ▷ Server Aggregation

16: end for
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E TIME CONSUMPTION

Although the FedTrans is running on the server with relatively rich computing resources, this in-
evitably incurs extra training time overheads. We present a detailed time consumption analysis un-
der noisy clients (i.e., Hybrid (cross-)) on the CIFAR10 dataset with distribution Dir(0.5), as shown
in Table 2. Note that FedCorr Xu et al. (2022) requires involving all clients to estimate a set of
noisy clients before Federated Learning (FL) training starts. Therefore, we do not investigate the
per-round time consumption of FedCorr in this context.

Table 2: Time consumption per round or when achieving the target accuracy for each method.

CIFAR-10, MobileNetV2, Dir(0.5)
FedAvg FLDebugger Oort Robust-FL RHFL DivFL FedTrans

Per round (seconds) 113 ± 3 115 ± 2 114 ± 3 129 ± 8 115 ± 3 114 ± 3 173 ± 5
Target accuracy (minutes) 118.7 ± 3.2 280.8 ± 4.9 385.8 ± 10.2 60.9 ± 3.3 63.3 ± 1.7 49.4 ± 0.9 21.7 ± 0.4

In Table 2, we provide the maximum time consumption for a single round of FedTrans and other
baselines across 300 communication rounds of Federated Learning (FL) communication. Addition-
ally, it includes cumulative time consumption when reaching the target accuracy of 63% (i.e., the
maximum accuracy achievable by all methods). The results reveal that, although FedTrans requires
more time for each round compared to the baselines, the overall time consumption to reach the target
accuracy with our proposed FedTrans is the shortest, showing an impressive speedup of more than
56%. This is primarily because FedTrans requires fewer rounds to attain the targeted accuracy.
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Figure 12: The varying optimization overhead in FedTrans across communication round. From left
to right: total optimization time, total EM iterations, and the Discriminator iteration required in
variational inference.

Furthermore, we also explore the optimization overhead of the variational EM algorithm that
changes as FL proceeds. Figure 12 shows the EM optimization time, EM iterations, and Discrim-
inator (i.e., M-step) iterations varying with communication rounds. The overall optimization time
significantly decreases as FL progresses, attributed to the diminishing trend observed in both EM
iterations and discriminator iterations. Moreover, the time cost of training the discriminator takes
a larger proportion of the total optimization time. As a result, the overall optimization time across
communication rounds exhibits a similar trend as the discriminator iterations.

F EVALUATION ON PRACTICAL RESOURCE-CONSTRAINED TESTBED

We also build a testbed consisting of 21 Raspberry Pi 4B embedded devices, as shown in Fig-
ure 13(a), to evaluate the performance of FedTrans in practical resource-constrained scenarios.

HAR Dataset. We conduct the experiments on the Human Activity Recognition (HAR) dataset col-
lected from onboard inertial sensors (accelerometer and gyroscope) for distinguishing six activities
of daily living: walking, walking upstairs/downstairs, sitting, standing, and laying. HAR dataset
shows inherent suitability for the FL scenarios since the data is naturally split by different partici-
pants. To be more specific, HAR contains data collected from 30 different users, and we take 21
users as the training data and augment the number of clients from 21 to 42 by assigning the data
of each user to two clients. We run the FedTrans on a testbed and each Raspberry Pi simulates
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WiFi Router

Raspberry Pi Array (𝟑×𝟕)
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Figure 13: Evaluation of FedTrans on the HAR dataset implemented on resource-constrained de-
vices, across three settings of client flip rate (ϵc = 0.2, 0.3, 0.5). Our built testbed: 21 Raspberry
Pi 4B embedded devices connect to an FL server wirelessly via a TP-Link WiFi Router.

two clients and connects to the laptop wirelessly through a TP-Link WiFi Router. Here, we em-
ploy a shallow CNN with two convolutional layers for the HAR task and only consider the Random
Flipping noise with three different proportions of corrupted clients ranging from 30% to 50%.

Results in Figure 13 show FedTrans can already outperform FedAvg by a margin from the beginning.
We notice that the gap becomes larger when the number of corrupted clients increases. While
FedAvg performance increases when the training proceeds to later rounds, it remains lower than
FedTrans. This shows the advantage of selecting clean clients even though the number of much
fewer than the clients selected by FedAvg.

Energy-to-accuracy. We report the energy consumption (measured by the power meter) when
the global model achieves the same performance (i.e., the best accuracy of FedAvg) utilizing the
CIFAR10 dataset on our testbed shown in Figure 9(a). FedTrans is more energy-efficient even
with the extra overhead at the server: it reduces the energy consumption by up to 66.1%. This is
mainly due to the fewer training rounds required when FL is training with FedTrans: it requires only
52.2%, 79.2%, and 74.1% rounds to reach FedAvg’s best performance for three client noise ratios,
respectively.

G PERFORMANCE ON OTHER DATA DISTRIBUTIONS

IID setting. We conduct experiments under the IID setting using the CIFAR10 and FMNIST dataset,
evaluating the performance of baselines in mixed noise scenarios, The results are presented in Ta-
ble 3 and Table 4. The data reported in the tables is based on five trials.

Table 3: Global model accuracy under six types of noise configurations using CIFAR10 dataset.
Distribution of the local data is followed by IID setting, and ϵ = 30% of participating 100 clients
are corrupted.

CIFAR-10, MobileNetV2, IID
Hybrid (across-) Hybrid (intra-) Label (across-) Label (intra-) Image (across-) Image (intra-)

FedAvg (McMahan et al., 2017) 82.2% ± 0.1% 80.2% ± 0.2% 81.6% ± 0.1% 81.3% ± 0.0% 82.5% ± 0.0% 81.6% ± 0.1%
FLDebugger (Li et al., 2021) 82.1% ± 0.0% 81.5% ± 0.3% 82.0% ± 0.2% 81.4% ± 0.4% 81.9% ± 0.1% 82.2% ± 0.2%
Oort (Lai et al., 2021) 66.7% ± 0.4% 63.4% ± 0.5% 64.7% ± 0.7% 64.8% ± 0.0% 70.2% ± 0.3% 69.2% ± 0.5%
Robust-FL (Yang et al., 2022b) 78.4% ± 0.0% 77.5% ± 0.6% 77.9% ± 0.1% 78.2% ± 0.4% 78.0% ± 0.0% 76.9% ± 0.2%
RHFL (Fang & Ye, 2022) 83.1% ± 0.2% 82.3% ± 0.1% 83.4% ± 0.1% 83.4% ± 0.2% 82.9% ± 0.5% 82.1% ± 0.1%
DivFL (Balakrishnan et al., 2022) 79.4% ± 0.1% 78.4% ± 0.2% 77.5% ± 0.2% 77.6% ± 0.0% 80.1% ± 0.0% 78.7% ± 0.2%
FedCorr (Xu et al., 2022) 79.1% ± 0.0% 79.6% ± 0.1% 78.7% ± 0.1% 78.3% ± 0.1% 79.8% ± 0.3% 78.9% ± 0.2%
FedTrans 83.9% ± 0.3% 83.8% ± 0.1% 84.2% ± 0.2% 84.0% ± 0.0% 84.1% ± 0.1% 83.8% ± 0.2%

Table 4: Global model accuracy under IID setting with varying ratios of the corrupted clients using
FMNIST dataset.

The Ratio of Corrupted Clients
30% 40% 50% 60% 70%

FedAvg w/o noise (McMahan et al., 2017) 91.2% ± 0.0% 91.2% ± 0.0% 91.2% ± 0.0% 91.2% ± 0.0% 91.2% ± 0.0%
FedAvg w/ noise (McMahan et al., 2017) 90.4% ± 0.2% 90.3% ± 0.1% 90.0% ± 0.1% 89.7% ± 0.1% 87.6% ± 0.0%
FedTrans 90.5% ± 0.0% 90.9% ± 0.1% 90.3% ± 0.1% 90.4% ± 0.7% 90.2% ± 0.0%
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Results in these two tables demonstrate that the negative of unreliable clients could be exacerbated
by the complexity of the task. Even with mixed noise, a significant accuracy drop only becomes dis-
cernible when the ratio of corrupted clients surpasses 60% in the relatively straightforward task (i.e.,
FMNIST dataset). FedAvg suffers from significant performance degradation under mixed noise on
the complex task (i.e., CIFAR10 dataset), while FedTrans outperforms other baselines in effectively
mitigating the effects of such complex noise.

H2C setting. We also explored a more severe non-IID experimental setting where each client holds
only two classes of data, denoted as H2C. Table 5 reports the results of the compared methods in
different noise configurations under 30% corrupted clients.

Table 5: Global model accuracy under six types of noise configurations. Distribution of the local
data is followed by H2C setting, and ϵ = 30% of participating 100 clients are corrupted.

CIFAR-10, MobileNetV2, H2C
Hybrid (across-) Hybrid (intra-) Label (across-) Label (intra-) Image (across-) Image (intra-)

FedAvg (McMahan et al., 2017) 43.6% ± 0.1% 37.9% ± 0.3% 43.1% ± 0.3% 40.3% ± 0.5% 43.5% ± 0.2% 44.9% ± 0.5%
FLDebugger (Li et al., 2021) 37.7% ± 0.1% 40.7% ± 0.7% 37.1% ± 0.7% 37.7% ± 0.2% 38.2% ± 0.9% 40.2% ± 1.0%
Oort (Lai et al., 2021) 33.2% ± 0.2% 18.7% ± 0.7% 34.9% ± 0.4% 28.3% ± 0.7% 44.6% ± 0.8% 41.1% ± 0.1%
Robust-FL (Yang et al., 2022b) 44.4% ± 0.4% 36.1% ± 0.3% 44.3% ± 0.3% 43.1% ± 0.4% 46.3% ± 0.5% 43.9% ± 1.0%
RHFL (Fang & Ye, 2022) 43.8% ± 0.5% 36.0% ± 0.8% 46.6% ± 1.1% 43.7% ± 0.8% 44.9% ± 0.8% 43.2% ± 0.3%
DivFL (Balakrishnan et al., 2022) 45.1% ± 0.9% 40.4% ± 0.4% 42.64% ± 0.2% 41.3% ± 0.0% 44.1% ± 0.1% 45.4% ± 0.2%
FedCorr (Xu et al., 2022) 48.0% ± 0.5% 32.1% ± 0.1% 47.7% ± 0.3% 45.0% ± 0.3% 40.1% ± 1.1% 40.4% ± 0.3%
FedTrans 50.0% ± 0.7% 48.4% ± 0.6% 45.3% ± 0.9% 48.8% ± 0.7% 46.6% ± 0.6% 46.4% ± 0.8%

FMNIST, LeNet-5, H2C

FedAvg (McMahan et al., 2017) 76.1% ± 0.1% 75.7% ± 0.1% 76.0% ± 0.5% 75.7% ± 0.6% 76.7% ± 0.2% 76.9% ± 0.2%
FLDebugger (Li et al., 2021) 68.2% ± 0.2% 69.3% ± 0.2% 72.1% ± 0.1% 69.0% ± 0.3% 57.9% ± 0.2% 56.8% ± 0.2%
Oort (Lai et al., 2021) 72.3% ± 0.3% 48.0% ± 0.7% 66.2% ± 0.9% 45.7% ± 0.8% 78.9% ± 0.1% 78.1% ± 0.8%
Robust-FL (Yang et al., 2022b) 79.8% ± 0.2% 79.9% ± 0.0% 79.8% ± 0.8% 78.3% ± 0.2% 79.3% ± 0.3% 80.3% ± 0.4%
RHFL (Fang & Ye, 2022) 80.7% ± 0.1% 81.2% ± 0.2% 80.6% ± 0.2% 80.0% ± 0.3% 80.8% ± 0.2% 80.9% ± 0.2%
DivFL (Balakrishnan et al., 2022) 76.8% ± 0.7% 76.4% ± 0.9% 75.1% ± 0.4% 75.2% ± 0.2% 76.0% ± 0.3% 77.3% ± 0.5%
FedCorr (Xu et al., 2022) 82.1% ± 0.1% 81.7% ± 0.1% 82.2% ± 0.4% 81.3% ± 0.1% 79.3% ± 0.2% 79.3% ± 0.2%
FedTrans 82.4% ± 0.2% 84.2% ± 0.6% 84.3% ± 0.1% 84.7% ± 0.3% 83.5% ± 0.2% 83.2% ± 0.2%
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