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ABSTRACT

Existing methods for detecting and correcting spurious correlations in image
recognition models often fail to identify biasing features due to incoherent group-
ings of biased images. There is also little exploration of targeted removal of spu-
rious correlations in a low-dimensional feature space. To address these gaps, we
propose Performance-Based Feature Sampling (PBFS), a systematic method for
producing image recognition models that are debiased w.r.t. a given feature space.
We introduce a method for producing coherent bias group proposals (i.e., semanti-
cally related images potentially sharing biasing feature(s)) and decorrelating bias-
ing features from the target label using adaptive resampling. We demonstrate that
our framework is able to correct for known spurious correlations, and through both
established and our proposed metrics, we show that our method is able to de-bias
image recognition models both w.r.t a high-dimensional feature space capturing
complex representations and w.r.t. low-dimensional feature spaces representing
simple physical properties.

1 INTRODUCTION

Image recognition models can develop biases due to training data. Biases in image recognition
models typically refer to the learning of spurious correlations (Zhao et al., 2021; Peng et al., 2022;
Adeli et al., 2021; Stock & Cisse, 2018; Kim et al., 2024b) between features unrelated to the classi-
fication task (e.g., woman) and the target class (e.g., blond). These biases can be a consequence of
representation bias (Wang et al., 2019; Shahbazi et al., 2023; Mitchell, 2017) in the training data.

Models trained on biased data exhibit many kinds of undesirable performance. They can reflect
gender (Bhargava & Forsyth, 2019; Mandal et al., 2023; Wang et al., 2019) or racial biases (Zhao
et al., 2021; Huang et al., 2022) that are present in the dataset. Further, models trained on biased
data are particularly vulnerable to degrading performance from perturbations or distribution shifts
(Hendrycks & Dietterich, 2019), due to spurious correlations learned between distribution-specific
features (such as contrast, texture, and size of the object (Hendrycks & Dietterich, 2019; Geirhos
et al., 2018)) and the target label.

Approaches to mitigating spurious correlations typically start with identifying bias groups (i.e.,
training examples that contain feature(s) spuriously correlated with the target label) in the train-
ing data. Formally, given an image classifier f and a target class C, the aim is to identify features
a1,a2, . . .ak unrelated to the target label C such that P [f(x) = C | a1,a2, . . .ak] ̸= P [f(x) =
C]. Then, steps can be taken to decorrelate these extra-class features from the target class, such
that P [f(x) = C] is independent of a1,a2, . . .ak. In practice, with an n-dimensional input feature
space F , the images sharing biasing extra-class features occupy a slice S ≤ F ≤ Rn.

Identifying the slices of the input space that are spuriously correlated with target label(s) is a difficult
task. Often, the biasing features are not labeled, and they can be highly arbitrary depending on class
representation in the training data. Existing works generally attempt to identify underperforming
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slices in a feature space (Jain et al., 2022; Eyuboglu et al., 2022; Kim et al., 2024b; Krishnakumar
et al., 2021). However, these slices may be large and incoherent, i.e., their contents are not strongly
semantically related. Prior work attempted to promote coherence in identified slices by considering
classifier (task-specific) embeddings and class labels alongside classifier performance (Eyuboglu
et al., 2022), or by using captioning and keyword extraction to form interpretable coherent slices
(Kim et al., 2024b). However, the first approach did not outperform naive approaches to identifying
spurious correlations in slices, while the second limited the complexity of biasing features that can
be leveraged for decorrelation. Further, while several works propose methods for slice discovery
that are agnostic to the feature space, to the best of our knowledge, none test their methods with
low-dimensional feature spaces for targeted bias detection and correction.

In our work, we present Performance-Based Feature Sampling, a novel method for identifying and
correcting spurious correlations. We propose the use of bias group proposals, where training ex-
amples of a class are first grouped only by extra-class features using sparse clustering in a task-
independent feature space F , in order to identify candidate coherent slices that may represent bias-
ing features. ”Task-independent” means we do not use the embedding space of a model trained on
the classification task. To decorrelate extra-class features from the target label, we then propose a
resampling strategy for training a new classifier f ′ based on the performance of a prior classifier f
on these group proposals . We further introduce a novel metric for testing how well a bias correcting
framework decorrelates extra-class features in a given feature space F from the target label. We test
the generalizability of our framework on both high and low-dimensional feature spaces.

2 RELATED WORK

Bias Group Identification: Bias groups contain features that are spuriously correlated with the class
label. Some previous work manually identified bias groups in the training data (Calmon et al., 2017;
Kamiran & Calders, 2012; Adeli et al., 2021; Alvi et al., 2018; Jain et al., 2022), which typically
limits the number and nature of bias groups that can be identified. Other works identify potential
bias groups by slicing and interpreting the training data in a latent feature space (Jain et al., 2022;
Eyuboglu et al., 2022; Kim et al., 2024b; Krishnakumar et al., 2021). Within this category, various
methods are used to identify slices with biasing features, including training linear classifiers on the
feature space of a class to separate correct and incorrect classifications via a hyperplane (Jain et al.,
2022), producing keyword descriptions of underperforming slices (Kim et al., 2024b), and using an
error mixture model to produce coherent slices (Eyuboglu et al., 2022).

Bias Mitigation Following the identification of bias groups, bias mitigation attempts to decorrelate
the predicted label from the biasing feature(s). Some existing methods mitigate spurious correlations
by altering gradients or the loss function (Calmon et al., 2017; Adeli et al., 2021; Alvi et al., 2018;
Bahng et al., 2020) to penalize statistical dependence of the predicted label on the biasing feature.
Other works have altered the data exposed to the image classifier during training, either by adaptively
resampling training data (Qraitem et al., 2023; Li & Vasconcelos, 2019; Curi et al., 2020) or by
generating new training samples (Chen et al., 2024; Chawla et al., 2002).

3 PERFORMANCE-BASED FEATURE SAMPLING

3.1 BIAS GROUP PROPOSAL

We form bias group proposals using sparse clustering in the task-independent feature space F with
training examples of a particular class C. By clustering only on task-independent input embeddings,
we prioritize semantic coherence in the resulting proposals, unlike previous work that used the
classifier’s embedding space and formed clusters based on model accuracy. The regions occupied by
the proposals b1, b2, . . . , bk form k non-overlapping slices of the feature space F ≥

⊔
i∈k

bi. Since all

instances of a class share class features (e.g., all instances of ’dog’ have ’ears’), we expect instances
of the class to be grouped by extra-class features (e.g., orientation) that should not be relevant to
classification. Each bias group proposal thus may contain a shared extra-class feature that could
form spurious correlations to the target class. See Appendix A for more information supporting this
claim. For forming bias group proposals, we use sparse soft clustering based on non-negative kernel
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regression (NNK), NNK-Means (Shekkizhar & Ortega, 2021); soft assignments achieve better input
space representation than classic methods such as K-Means, promoting semantic coherence in the
identified bias group proposals. See Appendix C.4 for NNK-Means configurations.

We use the CLIP embedding space (Radford et al., 2021) as the feature space for bias group proposal
identification in general spurious correlation identification tasks. We also test targeted identification
and correction of spurious correlations using low-dimensional feature spaces that contain a few
summarizing features: the contrast value and the image % composition of white, black, gray, red,
orange, yellow, green, blue, purple, pink, and brown. This is the Low-Level (LL) feature space.

3.2 ADAPTIVE RESAMPLING

For k bias group proposals b1, b2, . . . , bk formed from class C, the average accuracy aavg of the

prior classifier f on class C is used to compute the sampling ratio Si = clip(e
aavg−ai

0.7 , 1, 2.5) of
bias group bi. The prior classifier is a ResNet-50 base trained from scratch on the train set.

The cluster sampling ratio Si is the expected number of times each instance of the cluster appears
per epoch in fine-tuning a new classifier f ′ that has been pre-trained on Imagenet-1k. See Appendix
B for more details on deriving the sampling ratio. The sampling ratio resamples extra-class features
in low-performing bias groups, thus decorrelating these low-performing features from the class pre-
diction. For bias group proposals that perform near the mean (i.e., no biasing w.r.t label prediction),
the sampling ratio is unchanged. We thus expect debiasing of f ′ w.r.t the feature space F .

4 EXPERIMENTS

We test on the Tiny-ImageNet (Le & Yang, 2015), CIFAR-100 (Krizhevsky et al., 2009), and CelebA
(Liu et al., 2015) datasets for the CLIP feature space, and on CIFAR-100 for the LL feature space.
For our classifiers, we use a ResNet-50 (He et al., 2015) base, and we benchmark against a baseline
that has been fine-tuned without resampling. To verify our method against known biases, we test
against a known spurious correlation in CelebA. See Appendices C.1 & C.2 for details.

4.1 VALIDATION ACCURACY

We use this metric to test general de-biasing using the CLIP feature space. We expect our de-biasing
method to promote robust representation learning with fewer spurious correlations, thus improving
out-of-sample (test) accuracy. For CelebA, we use hair color as the target (CelebA-blond), and we
report the validation accuracy of the worst-performing group. We expect our method to improve
on the accuracy of the worst-group due to decorrelation between the spurious feature (gender) and
target. Table 1 highlights improvements in validation accuracy across all datasets. On CelebA-blond,
worst-group accuracy jumped from 56% to 76%. See Appendix D for CelebA-blond benchmarks.

Table 1: Comparison of accuracy on validation set with and without adaptive resampling

Dataset Feature Space Baseline With Adaptive Resampling

Tiny-ImageNet CLIP 70.67% 71.99%
CIFAR-100 CLIP 80.25% 81.46%

CelebA CLIP 91.96% 93.38%

4.2 PERFORMANCE UNDER PERTURBATIONS

We use this metric to test both general de-biasing using the CLIP feature space and targeted de-
biasing using the Low-Level (LL) feature space. We expect our de-biasing method to promote
robust representation learning, thus preventing the correlation of distribution-specific features with
the target label and improving performance on perturbed samples. In particular, we test perturba-
tions relevant to the Low-Level (LL) feature space, since this represents targeted debiasing w.r.t a
selected set of features. See Appendix C.3 for details on perturbation types and degree. Table 2
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shows consistent improvements in performance for all perturbation settings on CIFAR-100 using
the CLIP feature space, with the most notable relative improvements being 1.6% for the ”Bright-
ness” perturbation and 0.9% for the ”Contrast” perturbation. For Tiny-ImageNet using the CLIP
feature space, results were not consistent across different types of perturbations. For the LL feature
space, we observed a more significant consistent improvement in performance across perturbations
of CIFAR-100, with an average relative improvement of 3.0% across perturbations.

Table 2: Comparison of test set accuracy on perturbed data with and without adaptive resampling

Dataset Feature Space Perturbation Baseline With Adaptive Resampling

Tiny-ImageNet CLIP Brightness 55.90% 56.48%
Tiny-ImageNet CLIP Fog 53.34% 52.95%
Tiny-ImageNet CLIP Contrast 41.84% 39.97%
Tiny-ImageNet CLIP Snow 46.87% 48.02%

CIFAR-100 CLIP Brightness 76.61% 77.87%
CIFAR-100 CLIP Fog 69.23% 69.67%
CIFAR-100 CLIP Contrast 62.76% 63.34%
CIFAR-100 CLIP Gaussian Blur 57.66% 57.80%
CIFAR-100 Low-Level Brightness 76.61% 77.63%
CIFAR-100 Low-Level Fog 69.23% 71.18%
CIFAR-100 Low-Level Contrast 62.76% 64.93%
CIFAR-100 Low-Level Gaussian Blur 57.66% 60.28%

4.3 TEST SET CLUSTER ACCURACY VARIANCE

We use this metric to test general de-biasing using the CLIP feature space. As with the training set,
we form clusters c1, c2, . . . , ck in the same feature space F of the test set using NNK-Means. Since
these clusters represent groupings based on extra-class features, we expect that our de-biased classi-
fier f ′ would have a lower variance in performance across these clusters than the baseline classifier.
This signifies reduced dependence of classifier performance on features irrelevant to classification.
We propose this metric in order to measure de-biasing w.r.t the feature space F . For the CLIP feature
space, Table 3 shows significant relative decrease in test set cluster accuracy variance of 35%, 28%,
and 33% for Tiny-ImageNet, CIFAR-100, and CelebA respectively.

Table 3: Comparison of accuracy variance of test set clusters with and without adaptive resampling

Dataset Feature Space Baseline With Adaptive Resampling

Tiny-ImageNet CLIP 0.0040 0.0026
CIFAR-100 CLIP 0.0025 0.0018

CelebA CLIP 0.0172 0.0129

5 CONCLUSION

In this work, we propose Performance-Based Feature Sampling, a novel method for mitigating spu-
rious correlations in image classifiers w.r.t a task-independent feature space F . We produce coherent
bias group proposals and leverage adaptive resampling of training images. Our framework demon-
strates success in addressing spurious correlations, with steep reduction in model performance vari-
ance across extra-class features in the high-level (CLIP) feature space, suggesting reduced depen-
dence of model performance on features not relevant to classification. We also observed consistent
improvement in validation accuracy and performance on perturbed samples, with particularly no-
table improvement using a low-level feature space, demonstrating the utility of our method in both
unsupervised and targeted robustification to spurious correlations in image recognition models.
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A EXTRA-CLASS FEATURE GROUPING

By clustering in a feature space of a class, we expect training examples to be grouped by extra-class
features that should not be relevant to classification, since class features are shared by all training
examples. Figures 1 and 2 show examples of a high-performing and low-performing cluster of the
King Penguin class in Tiny-ImageNet, respectively. In both cases, it seems that orientation of the
head may be a feature that is spuriously correlated with the ”King Penguin” label. In Figure 1, most
penguins have their head turned to the side, which may be a feature spuriously correlated with the
”King Penguin” label. In Figure 2, most penguins have their head turned up, which may negatively
impact classification performance. Orientation of the head appears to be one of the extra-class
features used to group these examples.

Figure 1: High-performing cluster in King Penguin class.

Figure 2: Low-performing cluster in King Penguin class.

To test our assumption that our clustering method does indeed group by extra-class features, we
make the following observation: features are represented by directions in the latent feature space.
Within a class, we expect cluster centroids to share some features (class features), but differ in extra-
class features. Between a cluster centroid of one class and another, we expect more features to be
different.

Consider cluster i in class C with centroid ci. We compute the distance vector dc, which is the mean
distance between ci and all other centroids of class C:

dc =
1

Nc

∑
i ̸=j

(ci − cj)
2

Let A contain all cluster centroids in the train dataset X . We then compute da, which is the mean
distance between ci and cluster centroids of all classes excluding class C.

dall =
1

Nall\C

∑
a∈A,a/∈C

(ci − a)2
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We sort the values of dc, each representing a direction in the latent feature space, and we plot a linear
trendline. For the corresponding directions of dall, we plot a linear trendline on the same graph.

If we do cluster on extra-class features, we would expect directions in the feature space representing
class features to be common for all centroids in class C, thus giving low distances in dc in these
dimensions. In dall, however, these dimensions of the feature space would be significantly more
different between centroid ci of class C and centroids of other classes. Thus, in the trendline plot
for dimensions of dc and dall sorted by value in dc, smaller values of dc resulting from shared class
features should result in a steeper trendline shifted down w.r.t that of dall.

Figures 3, 4, and 5 represent this observation with ci as cluster 0 of class 0, cluster 0 of class 49,
and cluster 0 of class 99 in CIFAR-100, respectively, with the 512-dimensional CLIP feature space.
While the degree to which the expected observation holds varies, all 3 figures reflect the expected
characteristics that would suggest that class features are shared between clusters of the same class
and, thus, that clustering is based on extra-class features.

Figure 3: Average difference in CLIP dimensions for centroid 0 of class 0 w.r.t all other centroids of
class 0 and w.r.t centroids of all other classes.

Figure 4: Average difference in CLIP dimensions for centroid 0 of class 49 w.r.t all other centroids
of class 49 and w.r.t centroids of all other classes.
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Figure 5: Average difference in CLIP dimensions for centroid 0 of class 99 w.r.t all other centroids
of class 99 and w.r.t centroids of all other classes.
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B SAMPLING RATIO

For k bias group proposals b1, b2, . . . , bk formed from class C, the average accuracy aavg of the

prior classifier f on class C is used to compute the sampling ratio Si = clip(e
aavg−ai

0.7 , 1, 2.5) of
instances in bias group bi.

The accuracy of the classifier f on class C, E[accuracy(f(x))|x ∈ C] = 1
k

∑k
i=1 niai, where ni is

the number of instances in cluster i. We further have Var(accuracy(f(x))|x ∈ C) =
1

k

k∑
i=1

ni(ai−

aavg)
2. To minimize the variance of the accuracy across clusters (i.e., to minimize the dependence

of the performance of the classifier f ′ on extra-class features used for clustering), we must minimize
(ai − aavg) across clusters. This is the basis for the sampling ratio we use.

To derive our sampling ratio, we assume log-scaling of accuracy with increasing cluster size, since
our clusters are relatively small (20-40 instances on average). For a cluster with accuracy ai < aavg,
we want to push the accuracy towards aavg by increasing the size of the cluster through resampling
of instances of that cluster. We thus express ak = ai + α ∗ logSi, where Si is the sampling ratio
of cluster i (i.e., the expected number of times an instance of the cluster will be seen per epoch in
fine-tuning) and α is a hyperparameter. Rearranging gives Si = e

ak−ai
α , which is the formula we

use to compute the sampling ratio. For stability and to prevent loss in accuracy via undersampling,
we clip the sampling ratio between 1 and 2.5. We use α = 0.7 to scale down the sampling ratio and
prevent overcorrection of spurious correlations.
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C CONFIGURATIONS

C.1 DATA DIVISIONS

For all datasets, we use the train and held-out validation set. Clustering is performed on the train
set, while our metrics for debiasing are computed on the validation set. For CelebA specifically, we
choose the ”hair color” label as the classification target (CelebA-blond).

C.2 CLASSIFIER FINE-TUNING

The fine-tuned classifier is a ResNet-50 base that has been pre-trained on ImageNet-1k. Fine-tuning
is conducted for exactly 5 epochs, with no adaptive sampling for the baseline and with adaptive
sampling for the debiased classifier.

C.3 PERTURBATIONS

For perturbation testing, we use the perturbed CIFAR-100 test sets provided in (Hendrycks & Di-
etterich, 2019). We test on perturbations relevant to the Low-Level (LL) feature space we use in
order to validate targeted correction of spurious correlations. Specifically, we test the ”Brightness”,
”Fog”, ”Contrast”, and ”Gaussian Blur” perturbations for CIFAR-100, which affect the low level
features we consider (color composition and contrast). Similarly, for Tiny-ImageNet, we test the
”Brightness”, ”Fog”, ”Contrast”, and ”Snow” perturbations. The degree of perturbation varies from
1-5, and the data we test on is an even mix of these degrees.

C.4 NNK-MEANS CONFIGURATIONS

To select NNK-Means configurations, we run a grid-search on CIFAR-100 with the CLIP feature
space over 2 hyperparameters that affect the clustering: the sparsity (i.e., number of atoms an in-
stance can be assigned to) and initial number of atoms. We fix the entropy parameter at 0.001, and
we run clustering for 15 epochs. After the NNK-Means run is complete, we assign each instance to
its closest atom to generate non-overlapping clusters, and we compute the mean size and distance
from centroid over all clusters. We use the mean distance from the centroid as a measure of co-
herence, with smaller mean distances suggesting tighter clusters that are more similar in the feature
space. The results of the grid search are in Table 4.

In general, we prefer configurations that produce larger clusters and thus capture more prevalent
biasing features, as well as configurations that produce more coherent clusters. To select the best
configuration, we compute the ratio between the average size of clusters and the average distance
to cluster centroids. We select the configuration with the highest ratio (emboldened row in Table
4), providing a balance between the prevalence and coherence of potential biasing features. From
Table 4, it seems clear that reducing the initial number of atoms increases the mean size to mean
distance from centroid ratio, producing a more favorable balance; however, we found that for initial
atom settings smaller than 25, the variance in cluster sizes increased rapidly. This suggests more
meaningless clusters with too many/few instances to have coherent or prevalent biasing features,
respectively. As such, we do not consider these configurations.

To translate the selected configuration across dataset sizes, we maintain the ratio between the number
of instances, the number of initial atoms, and the sparsity. As such, for both train and test clustering,
the initial number of atoms and sparsity are set to 5% and 2% of the dataset size respectively.
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Table 4: NNK-Means configuration grid search on CIFAR-100 with CLIP feature space

Initial Atoms Sparsity Avg Distance to Centroid Avg Cluster Size Avg Size/Avg Distance

25 10 3.96 20.2 5.10
25 15 3.97 20.2 5.08
25 20 3.98 20.2 5.08
40 10 3.80 12.6 3.32
40 15 3.81 12.6 3.31
40 20 3.82 12.6 3.30
60 10 3.61 8.4 2.32
60 15 3.63 8.4 2.31
60 20 3.63 8.4 2.31
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D WORST-GROUP PERFORMANCE ON CELEBA

Table 5 compares our results on CelebA compared to other debiasing methods that also do not
use pre-defined group labels. While PBFS worst-group performance shows significant improve-
ment compared to our baseline, compared to methods like DRO-B2T, JTT, and CNC, our worst-
group performance is not as strong. However, it is important to note that the aforementioned meth-
ods leverage training schemes specifically designed to improve worst-group accuracy, whereas our
method focuses on general robustification of representation learning to spurious correlations, for
which worst-group accuracy is one metric. This is reflected in Table 6, which demonstrates that we
improve performance on all groups in CelebA-blond and maintain a high average accuracy. Com-
pared to prior methods that produce significant gains in worst-group accuracy, we achieve the best
average test accuracy despite only 5 epochs of training, which reinforces that our method is strong
in promoting generalization through better representation learning.

Table 5: Comparison of accuracy on validation set with and without adaptive resampling

Method Average Accuracy Worst-Group Accuracy

ERM 94.9% 47.7%
GEORGE (Sohoni et al., 2020) 94.6% 54.9%

JTT (Liu et al., 2021) 88.1% 81.5%
CNC (Zhang et al., 2022) 89.9% 88.8%
GIC (Han & Zou, 2024) 92.1% 89.5%

DRO-B2T (Kim et al., 2024a) 93.2% 90.4%
Resnet-50 Baseline 92.0% 56.0%
PBFS on Resnet-50 93.8% 76.0%

Table 6: Comparison of PBFS accuracy of hair-color classification of subgroups in CelebA.

Subgroup Baseline With Adaptive Resampling

Dark-haired Female 89.98% 92.27%
Dark-haired Male 93.86% 95.12%

Blonde Female 97.62% 97.84%
Blonde Male 56.00% 76.00%

Our method can be adapted specifically for improving the worst-group accuracy using Distribu-
tionally Robust Optimization (Sagawa et al., 2019), a training scheme designed to minimize the
worst-case loss over pre-defined groups, which would be the soft clusters produced by NNK-Means
for PBFS. Using a more flexible training scheme rather than a fixed 5 epochs, considering alternate
model architectures for classification, and using more benchmarks for worst-group accuracy (e.g.
the WaterBirds dataset (Sagawa et al., 2019)) would also provide a more definite understanding of
how PBFS can improve robustness to spurious correlations in state-of-the art models. We are un-
able to address these limitations in this paper due to resource and time constraints. This remains a
promising direction for future research in addressing shortcut learning.
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