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Abstract

Many real-world bandit applications are charac-
terized by sparse rewards, which can significantly
hinder learning efficiency. Leveraging problem-
specific structures for careful distribution model-
ing is recognized as essential for improving esti-
mation efficiency in statistics. However, this ap-
proach remains under-explored in the context of
bandits. To address this gap, we initiate the study
of zero-inflated bandits, where the reward is mod-
eled using a classic semi-parametric distribution
known as the zero-inflated distribution. We de-
velop algorithms based on the Upper Confidence
Bound and Thompson Sampling frameworks for
this specific structure. The superior empirical
performance of these methods is demonstrated
through extensive numerical studies.

1. Introduction
Bandit algorithms have been widely applied in areas such
as clinical trials (Durand et al., 2018), finance (Shen et al.,
2015), recommendation systems (Zhou et al., 2017), among
others. Accurate uncertainty quantification is key to ad-
dressing the exploration-exploitation trade-off and typically
requires on certain reward distribution assumptions. Exist-
ing assumptions can be roughly classified into two groups:

• Parametric: the reward distribution is assumed to be-
long to a parameterized family, such as Gaussian or
Bernoulli distributions (Audibert et al., 2010; Krause
& Ong, 2011; Agrawal & Goyal, 2012). The strong
assumption typically ensures clean algorithmic design
and nice theoretical results. However, when misspeci-
fied, it may lead to over- or under-exploration.
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Figure 1. Results from a real personalized pricing dataset detailed
in Section 5. (a) Histogram of rewards, with zero represented in
orange. (b) Comparison of 1− δ upper confidence bounds across
different methods. We use Monte Carlo to approximate the true
quantile (the tightest valid upper confidence bound). All methods
are validated as their curves lie above the Monte Carlo baseline.
Our proposed method (green) achieves the tightest bound quickly,
demonstrating effective utilization of the zero-inflated structure.
The other bounds correspond to UCB baselines detailed in Ap-
pendix D.1. Notably, applying existing concentration inequalities
directly on the reward (yellow), even when knowing the true size
parameter but without utilizing the ZI structure, results in signifi-
cantly looser bounds.

• Non-parametric: the reward distributions need to
satisfy certain characteristics, such as having sub-
Gaussian tails (Chowdhury & Gopalan, 2017; Jin et al.,
2021; Zhu & Tan, 2020) or being bounded (Kveton
et al., 2019; 2020; Kalvit & Zeevi, 2021). In some
cases, such an approach can achieve regret rates com-
parable to those of parametric methods (Urteaga &
Wiggins, 2018; Kalvit & Zeevi, 2021; Jin et al., 2021).
However, in general, these weaker assumptions sacri-
fice statistical efficiency by ignoring structural informa-
tion. Even when the rates are the same, there may still
be a significant empirical performance gap between
the two approaches when the parametric distribution
is correctly specified (see Chapter 9 in Lattimore &
Szepesvári, 2020).

As in many statistics and machine learning areas, using
problem-specific structures to focus on a more detailed dis-
tribution family, if correctly specified, can improve the ef-
ficiency of estimation or uncertainty quantification. This
leads to lower regrets in bandits. However, as discussed
above, compared to the vast statistical literature on univari-
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Table 1. Summary of the theoretical guarantees for our algorithms.

BANDIT PROBLEM ALGORITHM† REWARD DISTRIBUTION MINIMAX RATIO

MAB† UCB

sub-Gaussian (Algorithm 1)
√
log T

sub-Weibull (Algorithm 1)
√
log T

∗

heavy-tailed (Algorithm B.1)
√
K/T + (K/T )

ϵ−1
2(1+ϵ) log

ϵ
1+ϵ K∗∗

TS sub-Gaussian (Algorithm C.1) 1

GLM
UCB sub-Gaussian (Algorithm C.2) log(d ∨ q) log(T/(d ∧ q))∗∗∗

TS sub-Gaussian (Algorithm C.3) (d ∨ q) log(d ∨ q) log(T/(d ∧ q))
† Our MAB algorithms are designed for a fixed horizon T , but the doubling trick can adapt them into anytime algorithms

with comparable guarantees (Section 6.2 in Lattimore & Szepesvári, 2020), preserving all the problem-dependent regret
bounds (Theorems 7 and 9 in Besson & Kaufmann, 2018);

*, ** Our problem-dependent and problem-independent regrets achieve state-of-the-art performance for both sub-Weibull (Hao
et al., 2019) and heavy-tailed (Bubeck et al., 2013) rewards;

*** Our problem-independent regret matches the minimax lower bound up to a logarithmic factor (Theorem 3 in Dani et al.,
2008) and aligns with the state-of-the-art rate (Li et al., 2017).

ate distribution, this direction is underexplored in bandits.
This paper initiates the study of this direction by focusing
on the sparse reward problem. Specifically, this work is
motivated by the observation that rewards tend to be sparse
in many real-world applications, meaning they are zero (or
a constant) in most instances, called zero-inflated (ZI). For
instance, in online advertising, most customers will not
click the advertisement and hence the reward is zero with
high probability; while for those clicked, the reward will
then follow a certain distribution. Similar structures exist
in broad applications, including mobile health (Ling, 2019)
and freemium games (Yu et al., 2021). While some standard
bandit algorithms can still be applied, they fail to utilize the
distribution property and hence can be less efficient. See
Figure 1a for a real example.

Contributions. Our contributions are threefold. First, we
propose a general bandit algorithm framework for zero-
inflated bandit (ZIB). Both Upper Confidence Bound (UCB)
and Thompson Sampling (TS)-type algorithms are proposed.
Using the problem-specific structure, our algorithm is more
efficient than the existing ones via more accurate uncer-
tainty quantification. We illustrate this with Figure 1b,
which shows that our method leads to tighter concentration
bounds, and this will translate into lower regrets when used
with UCB and TS. Our algorithms are designed for a wide
range of reward distributions, including the sub-Weibull
distribution and even more heavy-tailed distributions (with
moments exceeding one). Second, we theoretically de-
rive the regret bounds for our UCB and TS algorithms in
multi-armed bandits (MAB) under weak reward distribu-
tion assumptions, as well as for contextual linear bandits.
In many cases, our algorithms achieve regret rates that are
either minimax optimal or state-of-the-art. A detailed sum-
mary is provided in Table 1. To our knowledge, this is the

first finite-sample concentration analysis of the general ZI
models in the literature, even outside of bandits. Lastly, we
show the value of our approach through both simulated and
real experiments.

Related work. Besides the bandit literature with paramet-
ric or nonparametric reward distributions discussed above,
our work connects to several related research areas. First,
there is research on semiparametric bandits (Krishnamurthy
et al., 2018; Kim & Paik, 2019; Ou et al., 2019; Peng et al.,
2019; Choi et al., 2023). However, these works focus on
addressing the misspecification of the regression function
within the context of contextual bandits. This focus is or-
thogonal to our objectives. Second, the zero-inflated distri-
bution can also be regarded as a special case of hierarchical
distributions. In recent years, there is growing interest in
leveraging hierarchical models in bandits (Hong et al., 2022;
Wan et al., 2021; 2023a). However, all of them study the
hierarchical structure among bandit instances (with meta-
learning) instead of in the reward distribution as in our
setup. Third, to be agnostic to the distribution assump-
tion, besides relying on nonparametric distribution fami-
lies, one may also consider bootstrap-based methods (Wan
et al., 2023b; Kveton et al., 2019). Nonetheless, on one
hand, these methods still rely on certain restrictive distribu-
tion assumptions to ensure a regret guarantee; on the other
hand, they fail to fully utilize the problem-specific structure,
which may lead to compromised efficiency. Fourth, our
work is related to research on sparse rewards and heavy-
tailed/asymmetric bandits. While traditional sparse bandits
(Kwon et al., 2017; Perrault et al., 2020) focus on arms
with zero mean rewards, our zero-inflated framework ad-
dresses structural sparsity where actions frequently yield
zero rewards. This connects to heavy-tailed bandits (Bubeck
et al., 2013; Zhang & Cutkosky, 2022) and asymmetric ban-
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dits (Zhang & Ong, 2021; Li et al., 2023), as zero-inflated
distributions can exhibit heavy-tailed or asymmetric prop-
erties. However, our approach is specifically tailored to the
zero-inflated structure, allowing the non-zero component
to be either heavy-tailed or asymmetric while maintaining
computational efficiency.

Finally, while zero-inflated structures have been studied
in offline settings (supervised/unsupervised learning, see
Lambert, 1992; Hall, 2000; Cheung, 2002) and there is some
literature focusing on model-specific zero-inflated bandits
(Liu et al., 2023, which only considers two discrete count
rewards: Poisson and negative binomial), to our knowledge,
this work is the first formal study on this topic in bandits
generally, which poses unique challenges such as finite-
sample concentration bounds and regret rate analysis for a
class of distributions.

2. Zero-Inflated Multi-Armed Bandits
In this section, we use the MAB setting to outline our moti-
vation and strategy. We will extend to contextual bandits in
Section 3.

Setup. For any positive integer M , we denote the set
{1, . . . ,M} by [M ]. We start our discussion with the MAB
problem: on each round t ∈ [T ], the agent can choose
an action At ∈ A with the action space A = [K], and
then receive a random reward Rt = rAt

+ εt, where
rk = E[Rt | At = k] is the mean reward of the k-
th arm and εt is the random error. The performance of
a bandit algorithm is measured by the cumulative regret
R(T ) =

∑T
t=1 E

[
maxa∈A ra − rAt

]
. We focus on appli-

cations where the reward is zero for a significant proportion
of time, and propose to characterize the reward distribution
by the following Zero-Inflated (ZI) model:

Xt = µAt
+ εt,

Yt ∼ Bernoulli(pAt
),

and Rt = 0× (1− Yt) +Xt × Yt.

Here, for each arm k, we introduce two unknown parame-
ters, the non-zero probability pk ∈ [0, 1] and the mean of
the non-zero part µk such that rk = µk × pk. Here εt is a
mean-zero random error term. For any arm k, we assume
P(Xt = 0) = 0. We note this assumption can always be
satisfied: given a reward variable Rt, one can always define
Yt = 1(Rt ̸= 0) and Xt = 1(Rt ̸= 0) × Rt. Moreover,
as such, it is natural to regard Yt as observable as well. In
contrast, the value of Xt is only observable when Yt ̸= 0
(equivalently, Rt ̸= 0), and in this case it is equal to Rt.
For simplicity of notations and without loss of generality,
we assume Xt ⊥⊥ Yt: even if Xt ̸⊥⊥ Yt, we can re-define
X̌t | Yt = y to have the same distribution as Xt | Yt = 1
for y = 0, 1. In this case, X̌t ⊥⊥ Yt, and the observable

reward Rt = Xt × Yt = X̌t × Yt; thus, we can simply
replace Xt with X̌t. Finally, the conditional distribution of
Rt is a mixture of two distributions, one of which is a delta
distribution on zero and the other is only required to satisfy
minimal assumptions; while the assignment Yt is Bernoulli.
For simplicity, we will occasionally omit the subscript t
when there is no ambiguity.

To simplify the exposition, we first focus on pulling a single
arm and may omit the subscript k. We begin with con-
sidering scenarios where εt exhibits relatively light tails.
Specifically, we consider the sub-Weibull tail property, i.e.,
there exists θ > 0 for which the moment generating func-
tion (MGF) of |εt|θ is defined within an interval around
zero. This sub-Weibull distribution family is very gen-
eral (Zhang & Chen, 2021; Zhang & Wei, 2022): for ex-
ample, when θ = 1 and θ = 2, it reduces to the sub-
exponential or sub-Gaussian family, respectively. Mathemat-
ically, we denote εt ∼ subW(θ;C) if the noise εt satisfies
E exp(|εt|θ/Cθ) ≤ 2, with θ > 0 and C > 0 representing
the tail and size parameter (Rinne, 2008; Vladimirova et al.,
2020). In the design and analysis of bandit algorithms, it is
commonly assumed that the parameters θ and C are known
(Wu et al., 2016; Lattimore & Szepesvári, 2020; Wu et al.,
2022; Zhou et al., 2025).

We first note that the ZI structure retains the sub-Weibull tail
behavior of the non-zero component Xt − µ, as established
in Lemma 2.1.
Lemma 2.1. Assuming independent Yt ∼ Bernoulli(p) and
Xt−µ ∼ subW(θ;C), letRt = Xt×Yt. Then, there exists
a constant CR > 0 such that Rt − µp ∼ subW(θ;CR).

Naive approaches and their limitations. With Lemma
2.1, once the size parameter for Rt is known (or estimated),
we can construct an upper confidence bound for r = µp
using existing concentration inequalities for sub-Weibull
variables {Rt} (Zhang & Chen, 2021; Zhang & Wei, 2022).
The corresponding UCB algorithms then follows, which we
refer to as naive approaches. While such approaches can
theoretically attain minimax regret rates under appropriate
parameter specifications, the zero-inflated structure intro-
duces unique challenges that lead to two clear limitations.

First, even when the true size parameter is known, with-
out leveraging the zero-inflated structure, such an ap-
proach leads to a loose concentration bound and hence
under-exploration. This can be seen in Figure 1b, our
numerical study in terms of regret, and also our regret
bound (e.g. Lemma 6.1). We can appreciate the intu-
ition from the following fact: var(Rt) = EY (var(Rt|Yt))+
varY (E(Rt|Yt)) = p var(Xt) + µ2p(1− p). Therefore, if
we directly apply a concentration bound with Rt, the width
of the bound will roughly increase linearly with µ. How-
ever, the noise level and the difficulty of estimating either p
or µ (and hence r) should not change only by shifting the
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non-zero distribution.

Second, in practice, estimating a valid size parameter CR
for r (hence having a valid upper confidence bound) is chal-
lenging, as the size parameter has complex dependency on
µ, p, θ and C. In real applications, there are a few com-
mon methods to choose CR: (1) Use the size parameter of
Xt−µ; (2) use the variance of Rt (estimated on the fly); (3)
Use the definition to calculate CR, with µ and p estimated
on the fly. The first two approaches are not valid, while
the third one is also not reliable due to the sensitiveness
induced by the ZI structure. We illustrate the issues with
these methods in Lemma E.1 (in Appendix E) using sub-
Gaussian distributions, which we summarize here: 1) CR
can significantly exceed C, hence approach 1 is not valid;
2) CR can significantly exceed var(Rt), hence approach 2
is not valid; 3) CR is very sensitive to (p, µ, σ2), and hence
prone to be heavily influenced by their estimation errors
- specifically, the partial derivatives of CR with respect to
these parameters can be arbitrary large within some regions.

2.1. Proposed product method and upper confidence
bound approach

To address the shortcomings of the naive approaches, we
introduce the product method, which leverages the product
structure of the true reward Rt = Xt × Yt. Utilizing the
corresponding concentration inequalities, we establish valid
upper confidence bounds for µ using {Xt}nt=1 and for p
using {Yt}nt=1, formulated as P(µ > X + UX) ≤ α/2 and
P(p > Y + UY ) ≤ α/2. Here UX and UY are known func-
tions, and X and Y are the sample averages for {Xt}nt=1

and {Yt}nt=1, respectively. Consequently,

P
(
µp > (X + UX)(Y + UY )

)
≤P(µ−X > UX) + P(p− Y > UY ) = α,

(1)

which suggests (X + UX)(Y + UY ) is a valid upper confi-
dence bound for r = µ× p.

Now, the key of establishing our method lies in determining
sharp concentration bounds for both p and µ. For p, a stan-
dard concentration bound for Bernoulli variables can be ap-
plied, such as: UY =

√
1/(2n)× log (2/α). However, es-

tablishing sharp bounds for µ presents significant challenges:
(i) X is not directly observable since we only observe Xt

when Yt = 1, and (ii) the number of non-zero observations
is random, complicating standard concentration analysis.
We therefore define the average value of the observed Xt as:
X

∗
:= 1

#{t:Yt=1}
∑
t:Yt=1Xt. LetB =

∑n
t=1 Yt represent

the count of Xt observations. While B is a random variable,
given any fixed B, the sub-Weibull concentration inequality
still holds. For example, if Xt is sub-Gaussian (i.e., θ = 2)

with a variance proxy σ2,

P
(
µ−X∗

>
√
2σ2/B log (2/α)

)
=E
[
P
(
µ−X∗

>
√

(2σ2/B) log (2/α) | B
)]
≤ α/2.

With UX =
√
(2σ2/B) log (2/α), based on (1), we can

derive a valid upper confidence bound for rk , and develop
the corresponding UCB algorithm. The algorithm details
are outlined in Algorithm 1.

Algorithm 1 UCB for ZI MAB with light tails
Data: Horizon T , tail parameter θ, and size parameter C.

1 Set Uµk = 1 and Upk = 1,∀k ∈ [K].
2 Set the counters ck = 0, and set µ̂k = 0 and p̂k = 0.
3 for t = 1, . . . ,K do
4 Take action At = t;
5 Observe Rt, set Xt = 1(Rt ̸= 0) × Rt and Yt =

1(Rt ̸= 0).
6 end
7 for t = K + 1, . . . , T do
8 Take action At = arg maxk∈[K] U

µ
k × U

p
k (break tie

randomly);
9 Observe Rt, set Yt = 1(Rt ̸= 0);

10 Update cAt
= cAt

+ 1, p̂At
= p̂At

+
Yt−p̂At

cAt
, and

UpAt
= p̂At +

√
log(2/δ)
2cAt

;

11 if Rt ̸= 0 then
12 Set Xt = Rt;
13 Update µ̂At =

1
#{l≤t:Al=At andRAl

̸=0}
∑
l≤t:Al=At

RAl

and UµAt
= µ̂At

+ 2eD(θ)C
(√

log(4/δ)
np̂At/2

+

E(θ) log
(1/θ)∨1(4/δ)
np̂At/2

)
, where D(θ) and E(θ) are

defined in Lemma 2.2.
14 end

While the above construction provides a valid algorithm, the
theoretical analysis presents additional complexities. The
concentration bound

√
(2σ2/B) log (2/α) is random and

depends on {Yt}nt=1, which significantly complicates regret
analysis. Fortunately, Lemma 2.2 demonstrates that we
can have a similar concentration bound with rate

√
npk,

which is much easier to analyze. It also verifies that the
observed average of i.i.d. sub-Weibull variables behave with
a combination of a Gaussian and a Weibull tail.

Lemma 2.2. Suppose Xt − µ
i.i.d.∼ subW(θ;C) and Yt

i.i.d.∼
Bernoulli(p). Let X

∗
= 1

#{t∈[n]:Rt ̸=0}
∑n
t=1Rt be the

observed sample mean for X and

UX∗ = 2eD(θ)C

(√
2 log(4/δ)

pn
+

2E(θ) log(1/θ)∨1(4/δ)

pn

)
,

then P
{∣∣µ − X∗∣∣ ≥ UX∗

}
≤ δ for any δ > 0 and n ≥
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4 log(2/δ)/p2. The constants D(θ) and E(θ) are defined
in Lemma F.2.

More importantly, UX∗ is not only independent of µ but also
enables a tighter product method-based concentration for
r = µ×p compared to standard sub-Weibull concentrations
for Rt = Xt × Yt. Our numerical results in Figure 1b
demonstrate this advantage.

In addition, some applications exhibit zero-inflated rewards
where the non-zero part is heavy-tailed, possessing only
finite moments of order 1+ ϵ for some ϵ ∈ (0, 1]. To handle
such cases, we construct an upper bound for the trimmed
mean (Bickel, 1965; Bubeck et al., 2013), enabling the
corresponding UCB algorithm. Further details are provided
in Appendix B.

2.2. Thompson sampling approach

We also extend our discussion to another widely adopted
approach, Thompson Sampling (TS, Thompson, 1933). Sim-
ilarly to our approach with the UCB algorithms above, we
consider the non-zero part Xt and the binary variable Yt
separately. For ease of exposition, we consider the sub-
Gaussian case for Xt. This can be easily extended to sub-
Weibull cases by introducing an extra sampling step, known
as Chambers-Mallows-Stuck (CMS) Generation, to rescale
Xt to a sub-Gaussian tail (Weron, 1996; Dubey & Pentland,
2019; Shi et al., 2023).

Following the standard TS framework, we sample µk and
pk from their respective posteriors and multiply them. We
prove this is equal to posterior sampling in Appendix C.1.
To achieve a minimax optimal TS algorithm for general sub-
Gaussian distributions, we follow Jin et al. (2021); Karbasi
et al. (2021) to use a clipped Gaussian distribution, denoted
as clN (µ, σ2;ϑ) := max{N (µ, σ2), ϑ}, which curtails
overestimation of suboptimal arms and ensures optimality.
We adapt this idea to use the clipped Gaussian distribution
for sampling the non-zero part Xt and a clipped Beta distri-
bution for the binary part Yt. Our decision to use a clipped
Beta distribution over a standard Beta distribution stems
from our analysis, which shows it is critical for managing
the risk of overestimating suboptimal arms inRt = Xt×Yt.
Further details are outlined in Appendix C.1.

3. Zero-Inflated Contextual Bandits
In this section, we extend our discussion to the Contex-
tual Bandits problem. For concreteness, we consider the
following setup of contextual bandits, although other se-
tups can be similarly formulated and addressed: on each
round t, the agent observes a context vector xt and a set
of feasible actions At, choose an action At ∈ At, and
receive a random reward Rt = r(xt, At) + εt, where
r is the mean-reward function and εt is the random er-

ror. The cumulative regret in this setup is defined as
R(T ) =

∑T
t=1 E

[
maxa∈At r(xt, a)− r(xt, At)

]
.

To utilize the ZI structure, we propose to consider the fol-
lowing model: Rt = 0× (1− Yt) +Xt × Yt with

Xt = g
(
xt, At;β

)
+ εt,

Yt ∼ Bernoulli
(
h(xt, At;θ)

)
,

where εt is a mean-zero error term, h is a function with
codomain [0, 1] and parameterized by θ ∈ Rq, and g is a
function parameterized by β ∈ Rd. We remark the relation-
ship that r(x, a) = h(x, a;θ)× g(x, a;β).

Here, we present a general UCB template for our method in
Algorithm 2, which extends the MAB version in Section 2.2.
Specifically, based on the functional forms of h(·, ·;θ) and
g(·, ·;β), we construct confidence bounds for exploration,
denoted as Uall,t(x, a) for h and Uall,t(x, a) for g, respec-
tively. At each step, we estimate θ and β, then structure
the UCB algorithm by maximizing the UCB score for each
action. Similarly, the TS algorithm follows by designing
appropriate sampling rules with suitable priors for θ and
β. As a concrete example, Appendix C.2 provides detailed
update formulas for both the UCB and TS algorithms when
h and g are modeled as generalized linear functions.

Algorithm 2 General template of UCB for ZI contextual
bandits
Data: Confidence bound exploration terms Uall,t(·, ·) and

Unon-zero,t(·, ·), random selection period τ , and other
algorithm-specific parameters.

15 SetHall = {} andHnon-zero = {}.
16 Randomly choose action at ∈ At for t ∈ [τ ];
17 for t = τ + 1, . . . , T do
18 Estimate θ̂t from the binary outcomes, usingHall;
19 Estimate β̂t from the non-zero outcomes, using

Hnon-zero;
20 Take action At = arg maxa∈At

[
h(xt, a; θ̂t) +

Uall,t(xt, a)
]
×
[
g(xt, a; β̂t) + Unon-zero,t(xt, a)

]
.

21 Observe reward Rt, set Xt = 1(Rt ̸= 0) × Rt and
Yt = 1(Rt ̸= 0).

22 Update the dataset asHall ← Hall ∪ {(xt, At, Yt)}.
23 if Rt ̸= 0 then
24 Update the dataset as Hnon-zero ← Hnon-zero ∪

{(xt, At, Rt)};
25 end

4. Theory
4.1. Regret bounds for ZI MAB

Although concentration bounds for both components (e.g.
van de Geer & Lederer, 2013; Kuchibhotla & Chakrabortty,
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2022; Zhang & Wei, 2022, for sub-Weibull) and Y (e.g. Ben-
tkus, 2004; Mattner & Roos, 2007; Zhang & Chen, 2021, for
Bernoulli) have been extensively studied, there present non-
trivial challenges to analyze our algorithm with the product
of them. These challenges, as discussed above, arise be-
cause the reward, and consequently the action selection, is
jointly determined by both X and Y . Unlike standard ban-
dits where the observability of X depends solely on arm
selection, here it also depends on Y ’s value. Consequently,
the number of times X is observed becomes a random vari-
able. The lack of a precise distribution for sub-Weibull X
also complicates analytical analysis. Fortunately, our Lem-
mas 2.2 and B.1 help address these challenges to support
the regret analysis of our algorithms.

Without loss of generality, we assume rk ∈ (0, 1), and
r1 = maxk∈[K] rk, i.e., the first arm is the optimal arm. To
demonstrate the prior properties of considering the ZI struc-
ture from a theoretical perspective, we present the regret
bound for our light-tailed ZI UCB algorithm for MAB.
Theorem 4.1. Consider a K-armed zero-inflated bandit
with sub-Weibull noise subW(θ;C). We have an upper
bound for the problem-dependent regret of Algorithm 1 with
δ = 4/T 2 asR(T ) ≲
K∑

k=2

p−2
k log T/∆k +

K∑
k=2

p−1
k log(1/θ)∨1 T + p−2

1 log T

K∑
k=2

∆k,

where ∆k = r1 − rk for k = 2, . . . ,K.

In Theorem 4.1, the notation “≲” indicates inequality
up to constants independent of bandit-specific parameters.
Since pk is bounded in (0, 1] and ∆k ≤ 1, the problem-
independent regret simplifies toR(T ) ≲

√
KT log T +K.

This matches the minimax lower bound up to a factor
of O(

√
log T ) as given in Theorem 15.2 of Lattimore &

Szepesvári (2020).

Similarly, we establish both problem-dependent and
problem-independent regret bounds for our heavy-tailed
UCB algorithm (Algorithm B.1 in Appendix C.1), which
matches the sharpness upper bounds rates in the current liter-
ature (Bubeck et al., 2013; Dubey et al., 2020; Chatterjee &
Sen, 2021) and hence achieves state-of-the-art performance.
The detailed regret analysis is provided in Appendix B.

We also provide the regret analysis for our TS algorithm,
Algorithm C.1 in Appendix C.1, when the non-zero part
is sub-Gaussian. In contrast to the proofs of UCB algo-
rithms, we require the anti-concentration properties of the
distributions to control the probability of underestimating
the optimal arm (Agrawal & Goyal, 2013; Jin et al., 2021;
2022). Fortunately, we prove that the clipped Gaussian and
clipped Beta distributions, as well as their products, exhibit
anti-concentration with optimal decay rates (Lemma F.3
and Lemma F.4). This finding allows us to establish the
problem-dependent regret bound for our TS algorithm.

Theorem 4.2. Consider a K-armed ZIB with sub-Gaussian
rewards. Let the tuning parameters satisfy γ ≥ 4, ρ ∈
(1/2, 1), and αk, βk, vk ∈ [0, 1]. Then Algorithm C.1 has

R(T ) ≲
√
KT +

K∑
k=2

(
p−1
k ∆k + p−1

1

√
T/(pkK)

)
.

Given that pk are bounded within (0, 1], the problem-
independent regret is R(T ) ≲

√
KT + K. Compared

to UCB (Theorem 4.1), Algorithm C.1 improves by a fac-
tor of

√
log T . The regret is both minimax optimal (Auer

et al., 2002) for sub-Gaussian MAB. One can extend Theo-
rem 4.2 for sub-Weibull rewards with θ < 2 with the CMS
generation (Dubey & Pentland, 2019). This introduces an
additional regret term scaling as (KT )1/θ (Dubey & Pent-
land, 2019; Shi et al., 2023), which remains state-of-the-art.

4.2. Regret bounds for ZI contextual bandits

Analyzing ZI contextual bandit algorithms requires con-
structing confidence regions for both β and θ. Unlike in
standard contextual linear bandit literature, the ZI structure
means that updates to β only occur when non-zero outcomes
are observed. Fortunately, the concentration analysis we
established for MAB can be similarly applied here. To
illustrate the theoretical advantage of our ZI contextual ban-
dit algorithms, we analyze an instantiation where both the
non-zero part Xt and the binary part Yt follow generalized
linear models (GLMs):

Xt = g
(
β⊤ψX(xt, At)

)
+ εt

and Yt ∼ Bernoulli
{
h
(
θ⊤ψY (xt, At)

)
}.

Here, εt is sub-Gaussian, g(·) and h(·) are strictly increasing
link functions, ψX(·) and ψY are known transformations.
The unknown parameter vectors β ∈ Rd and θ ∈ Rq govern
the models, and the action spaceA = [K] ⊆ N can be large
or even infinite. This GLM setting is widely studied in
bandit literature (Filippi et al., 2010; Li et al., 2017; Wu
et al., 2022; Li et al., 2010; 2012; Lattimore & Szepesvári,
2020).

Denote ∥z∥2A = z⊤Az for any z ∈ Rd and positive definite
matrix A ∈ Rd×d. For the GLM setting, we design explicit
forms for the confidence bound exploration terms Uall,t and
Unon-zero,t, along with the estimation steps in Algorithm 2.
Specifically, at round t, the estimates β̂t and θ̂t are obtained
via ridge regression

β̂t := argmin
β∈Γ

∥∥∥∥ ∑
s∈[t]:Ys=1

[
Rs − g

(
ψX(xs, As)

⊤β
)]∥∥∥∥

V−1
t

and θ̂t := argmin
θ∈Θ

∥∥∥∥ t∑
s=1

[
Ys − h

(
ψY (xs, As)

⊤θ
)]∥∥∥∥

U−1
t

.

6



Zero-Inflated Bandits

The corresponding sample covariance matrices are
Vt = λV Id +

∑
s∈[t]:Ys=1 ψX(xs, As)ψX(xs, As)

⊤ and
Ut = λUIq +

∑
s∈[t] ψY (xs, As)ψY (xs, As)

⊤, where
λV , λU are regularization parameters, and Γ,Θ are compact
parameter spaces. To balance exploitation and exploration,
we select actions that maximize the sum of the estimated
mean and variance, which can be interpreted as an upper
confidence bound. The confidence bound exploration terms
are designed as Unon-zero,t(xt, a) = ρX,t∥ψX(xt, a)∥V−1

t

and Uall,t(xt, a) = ρY,t∥ψY (xt, a)∥U−1
t

, where
{ρX,t, ρY,t}t≥0 are ellipsoidal scaling factor sequences
controlling exploration. This leads to our UCB algorithm
for ZI GLM (Algorithm C.2 in Appendix C).

To derive the regret bounds for our UCB algorithm, we
impose regularity conditions on the link functions, param-
eter spaces, and underlying distributions. Informally, we
assume that the link functions have bounded derivatives,
the parameter spaces are compact, the variance matrices
for both the non-zero and binary components are positive
definite with bounded minimal eigenvalues, and the noise is
sub-Gaussian. These assumptions are standard and mild in
the literature on generalized linear contextual bandits (e.g.,
Li et al., 2010; Deshpande et al., 2018; Wu et al., 2022). The
formal assumptions are detailed in Assumptions C.1 and
C.2 in Appendix C.2. Utilizing results on self-normalized
martingales (Abbasi-Yadkori et al., 2011), we derive the
following regret bounds for Algorithm C.2.
Theorem 4.3. Fix any δ > 0. Suppose Algorithm C.2 is
run with a suitable random selection period τ and tuning
parameters {ρX,t, ρY,t}t≥0, as specified in Assumption C.3
in Appendix C.2. Under the regularity conditions in Assump-
tions C.1 and C.2, the regret is bounded with probability at
least 1− 5δ as

R(T ) ≲ τ +
√

dT log(1 + d−1T )
[
log(1/δ) + d log(1 + d−1T )

]
+

√
qT log(1 + q−1T )

[
log(1/δ) + q log(1 + q−1T )

]
for any λU , λV > 0.

A notable observation is that the regularity conditions, ran-
dom selection period, tuning parameter choices, and regret
bound in Theorem 4.3 are independent of the number of
arms K. This regret rate Õ((d ∨ q)

√
T ) matches the mini-

max lower bound up to a logarithmic factor for contextual
bandit problems with both finite and countably infinite ac-
tion spaces (Theorem 3 in Dani et al., 2008).

While Theorem 4.3 focuses on the UCB approach, the TS
variant can achieve the same regret rate. Specifically, the
TS algorithm samples parameters as

β̃t ∼ N (β̂t, ϱ
2
X,tV

−1
t ) and θ̃t ∼ N (θ̂t, ϱ

2
Y,tU

−1
t ),

using the same estimators β̂t, θ̂t,Vt,Ut as in the UCB
algorithm. With appropriately chosen confidence radii

{ϱX,t, ϱY,t}t≥0, the TS algorithm selects actions as ATS
t =

argmaxa∈[K][ψX(xt, a)
⊤β̃t]×[ψY (xt, a)⊤θ̃t]. The corre-

sponding regret bounds are provided in the following corol-
lary.

Corollary 4.4. Suppose the conditions in Theorem 4.3
hold. If Algorithm C.3 is run with the same random selec-
tion period τ as Algorithm C.2 and the tuning parameters
ϱX,t, ϱY,t specified in (C.3), then the regret is bounded with
probability at least 1− 5δ by Õ((d ∨ q)2

√
T ).

5. Experiment
Simulation with MAB. For MAB problems, we evaluate
our algorithms across three reward distributions: Gaussian,
Gaussian mixture, and exponential. We set up several UCB
baselines using the sub-Weibull concentration (Bogucki,
2015; Hao et al., 2019), with difference in the size parameter
specification: size parameter of the non-zero component,
estimated variances, on-the-fly estimated size parameters,
and the true size parameters (strong baseline). Additionally,
we include the MOTS algorithm from Jin et al. (2021) as a
TS baseline. The details of these baselines and our setting
are presented in Appendix D.1.

For the reward distributions, we consider: (i) Gaussian re-
wards with unit standard deviation and means µk; (ii) Mixed
Gaussian rewards drawn from (1−pk)×N

(
µk

2(1−pk) , σ
2
)
+

pk ×N
(
µk

2pk
, σ2
)

ensuring overall mean µk; and (iii) Ex-
ponential rewards with mean µk. All mean parameters µk
are independently drawn from U(0, 100). Throughout our
experimental evaluation, all plotted lines represent mean
cumulative regret over multiple independent replications.
Error bars around the curves indicate ±1/10 standard devi-
ation, chosen to ensure visual clarity while reflecting vari-
ability. In some cases, error bars may appear negligible or
invisible due to very low variability across replications.

We run simulations with different distributions of p =
maxk∈[K] pk with δ = 4/T 2. Here, we only present the
result with p ∼ U [0.30, 0.35] in Figure 2. Besides, the 1−δ
upper confidence bounds for different UCB algorithms are
shown in Figure 1 (b). Findings from other settings (includ-
ing high and very low values of p, and bounded rewards)
are similar and detailed in Appendix D.1. Our algorithms
demonstrated sub-linear regrets across various distributions.
In contrast, except for the strong baseline, all other methods
exhibited either linear or significantly higher regrets in some
cases, due to the challenge to correctly quantifying uncer-
tainty in ZIB. Consistent with our observations in Figure
1b, our UCB algorithm even exhibits a much lower regret
than the strong baseline in both Gaussian and Gaussian-
mixture cases. This proves our motivation that ignoring the
ZI structure leads to looser concentration bounds and hence
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Figure 2. Zero-inflated MAB with K = 10 and T = 75000 with N = 50 replications for p ∼ U [0.30, 0.35].

higher regret. Similarly, unlike the baseline TS algorithm
(Jin et al., 2021), our TS algorithm outperforms other base-
line algorithms. We present results for TS algorithms only
in Gaussian and Gaussian-mixture cases. For exponential
distributions, the required CMS transformation to rescale
the distribution to sub-Gaussian tails—discussed in Section
2.2—complicates fair comparisons.

Simulation with contextual bandits. We adapt the settings
in Bastani et al. (2021); Wu et al. (2022) to ZIB. We design
K = 100 arms and generate a vector νk ∈ Rd with d = 10
for each arm k ∈ [K]. At each round t the context for
arm k is sampled as xk,t ∼ Nd

(
νk,

1
2K Id

)
. The non-zero

part of the reward, Xt, is generated using a linear model:
β⊤xAt,t + εt, with εt representing white noise. For the bi-
nary part, we model the probability using a generalized lin-
ear function with the link function h(θ⊤ sin(xAt,t)). Both
β and θ are d-dimensional, with θ having s non-zero ele-
ments, where s ∈ [d]. The sparsity level s signifies that the
non-zero elements in θ influence the occurrence of non-zero
rewards. Unlike the MAB problem, the contextual bandits
problem introduces an additional layer of complexity for
fair comparison due to model specification. We evaluate
Algorithm C.2 against two baseline UCB methods: The first
one is a naive method, called misspecified UCB, that over-
looks the ZI structure, treating it as a linear bandit and thus
misspecifying the model. The second, termed integrated
UCB, aligns with the UCB baselines in MAB: it correctly
specifies the model, but directly quantifies the uncertainty
of (β⊤,θ⊤) from the model β⊤xth(θ

⊤ sin(xt)) + εt, by
utilizing generalized contextual linear bandit algorithms (Li
et al., 2017). Similarly, we assess our TS algorithm, Algo-
rithm C.3, against the misspecified TS, which disregards the
ZI structure, and integrated TS, which mirrors the integrated
UCB. Various sparsity levels and link functions h(·) are
considered. Results for s = 7 using the Probit function are
shown in Figure 3, with additional simulation details pro-
vided in Appendix D.2. Again, TS algorithms are excluded
for exponential noise to ensure fair comparison. As shown in
Figure 3, our UCB and TS algorithms consistently achieve
lower sub-linear regrets across all tested distributions. In
contrast, other methods, except for integrated TS, exhibit
linear regrets. While integrated TS also achieve sub-linear
regret, our product TS demonstrates superior performance.

Real Data. We apply our ZI contextual bandit algorithms
to a real dataset of loan records from a U.S. online auto
loan company, a widely studied public dataset (Columbia
Business School, Columbia University, 2024; Phillips
et al., 2015; Ban & Keskin, 2021; Bastani et al., 2022).
We mainly follow the setup in Chen et al. (2023). At each
round t, an applicant arrives with certain covariates (the
context) xt. The company then proposes a loan interest rate,
which can be transformed into the nominal profit At for the
company (the raw action). This raw action, along with xt,
determines the actual profit Xt and affects the applicant’s
decision to accept Yt ∈ {0, 1}. The resulting reward for
the company is hence Rt = Xt × Yt. We categorize the
raw action At ∈ R into discrete levels: Ãt ∈ Adiscrete =
{“low”, “medium”, “high”, “very high”, “luxury”}, each
representing a distinct price level. To simulate counter-
factual outcomes, we begin by fitting the entire dataset
using

Xt = (At, 1, b(xt)
⊤)⊤β + εt

and Yt ∼ Bernoulli
(
h
(
(At, 1, b

⊤(xt))
⊤θ
))
,

where h(·) is the logistic function and the transformation
function b(·) applied to the context is detailed in Appendix
C.2.

After deriving initial estimators β̂ and θ̂, we then compare
our method with two baseline approaches discussed in sim-
ulations for contextual bandits at each round t, an action
Ãt is selected from Adiscrete using our algorithm. The profit
At is then sampled from its truncated distribution based on
Ãt. Subsequently, the real profit Xt and the binary decision
Yt based on the offered At, and the corresponding reward
Rt = Xt × Yt are calculated. With the estimated param-
eters, we determine the optimal actions for each round to
compute the regret. Detailed procedures and tuning parame-
ters are in Appendix C.2. The average cumulative regrets
over 5000 rounds are shown in Figure 4. Our UCB and TS
algorithms demonstrate significantly lower regret compared
to the integrated UCB and TS algorithms, highlighting the
importance of leveraging the ZI structure in real-world con-
textual bandit problems. Furthermore, it is worth noting
that while the misspecified UCB and TS algorithms may
appear to perform well on this dataset, we should approach
their performance with caution: As shown in Figure 3, these
algorithms sometimes result in linear regrets. In contrast,
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Figure 3. Zero-inflated contextual bandits with T = 20000 and s = 7 under N = 25 replications.
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Figure 4. Results with the real dataset.

our UCB and TS algorithms consistently outperform the
competition, achieving the lowest overall regret.

6. Discussion
In this paper, we introduce a new bandit model and the
corresponding algorithmic framework tailored to the com-
mon ZI distribution structure. The primary advantage lies in
lower regrets from more accurate uncertainty quantification
by utilizing the ZI structure. We establish theoretical regret
bounds for UCB and TS algorithms in MABs under various
reward distributions, as well as for contextual linear bandits.

Time and Space Complexity. Computational efficiency is
crucial for practical applications. An important advantage
of our approach is that our ZI-based methods retain the same
big-O time and space complexity as standard baselines for
both MAB and GLM settings. The only difference is a small
constant overhead from maintaining two estimators: one for
the zero indicator Yt and one for the nonzero magnitude Xt,
instead of a single reward estimator. Thus, our methods pre-
serve the same computational order as existing approaches
without adding extra computational cost.

Asymptotic Order-Optimality. A natural theoretical ques-
tion is whether our algorithms achieve asymptotic order-
optimality. The following lemma establishes a problem-
dependent lower bound for ZIB with a Gaussian non-zero
component.

Lemma 6.1. Consider a K-armed zero-inflated bandit with
the non-zero components belong to Gaussian distributions
with variance σ2. For any consistent algorithm (see Defini-
tion 16.1 in Lattimore & Szepesvári, 2020), the following

lower bound holds:

lim inf
T→+∞

R(T )
log T

≥
K∑
k=2

[
[0 ∨ (µk − p−1

k r1)]
2

2σ2
+

pk log

(
pk

pk ∧ µ−1
k r1

)
+ (1− pk) log

(
1− pk

1− pk ∧ µ−1
k r1

)]
.

Specifically, a necessary condition for an algo-
rithm to achieve asymptotic order-optimality for
sub-Gaussian ZI MABs is that its regret satisfies
lim infT→+∞R(T )/log T ≲

∑K
k=2 p

−1
k ∆−1

k .

We call an algorithm as asymptotic order-optimal, also
known as finite-time instance near-optimality (Lai & Rob-
bins, 1985; Lattimore, 2015; Ménard & Garivier, 2017;
Lattimore & Szepesvári, 2020), if its regret satisfies
lim infT→+∞R(T )/log T and achieves the lower bound
in Lemma 6.1, up to universal constants independent of
both the horizon T and problem-specific parameters rk (and
thus ∆k, pk). While we do not explicitly prove that our
UCB and TS algorithms for MABs achieve asymptotic
order-optimality, they satisfy the necessary condition by
accounting for the ZI structure parameter pk. However, de-
signing an algorithm that attains this optimality may require
additional refinements. For example, in (1), we allocate
equal probability α/2 for the two concentration bounds,
P(µ > X + UX) ≤ α/2 and P(p > Y + UY ) ≤ α/2.
To attain asymptotic order-optimality, these probability al-
locations should potentially be adapted based on the zero-
inflation parameters {pk}Kk=1. We leave this as an open
problem for future research.

Broader Implications. The ZI structure studied in this pa-
per can be viewed as a special case of a broader class of
problems where the reward distribution follows a hierarchi-
cal structure. This framework is particularly useful when
the reward distribution is multimodal or when the reward
generation mechanism follows a hierarchical process. For
instance, in product recommendations, a customer’s initial
reaction (e.g., “highly interested”, “somewhat interested”,
“not interested”) could determine the subsequent reward dis-
tribution. Exploring these broader applications remains an
interesting direction for future research.

9



Zero-Inflated Bandits

Impact Statement
This paper presents an improved algorithm framework for
multi-armed bandits and contextual bandits, both are ma-
ture area with many applications. We are not aware of any
particular negative social impacts of this work.
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algorithms for linear stochastic bandits. Advances in
neural information processing systems, 24, 2011.

Abramowitz, M., Stegun, I. A., and Romer, R. H. Handbook
of mathematical functions with formulas, graphs, and
mathematical tables, 1988.

Adamczak, R., Litvak, A. E., Pajor, A., and Tomczak-
Jaegermann, N. Restricted isometry property of matrices
with independent columns and neighborly polytopes by
random sampling. Constructive Approximation, 34:61–
88, 2011.

Agrawal, S. and Goyal, N. Analysis of thompson sampling
for the multi-armed bandit problem. In Conference on
learning theory, pp. 39–1. JMLR Workshop and Confer-
ence Proceedings, 2012.

Agrawal, S. and Goyal, N. Thompson sampling for contex-
tual bandits with linear payoffs. In International Confer-
ence on Machine Learning, pp. 127–135. PMLR, 2013.

Ahle, T. D. Asymptotic tail bound and applications. 2017.

Audibert, J.-Y., Bubeck, S., and Munos, R. Best arm iden-
tification in multi-armed bandits. In COLT, pp. 41–53,
2010.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
journal on computing, 32(1):48–77, 2002.

Ban, G.-Y. and Keskin, N. B. Personalized dynamic pricing
with machine learning: High-dimensional features and
heterogeneous elasticity. Management Science, 67(9):
5549–5568, 2021.

Bastani, H., Bayati, M., and Khosravi, K. Mostly
exploration-free algorithms for contextual bandits. Man-
agement Science, 67(3):1329–1349, 2021.

Bastani, H., Simchi-Levi, D., and Zhu, R. Meta dynamic
pricing: Transfer learning across experiments. Manage-
ment Science, 68(3):1865–1881, 2022.

Bentkus, V. On hoeffding’s inequalities. Annals of proba-
bility: An official journal of the Institute of Mathematical
Statistics, 32(2):1650–1673, 2004.

Besson, L. and Kaufmann, E. What doubling tricks can
and can’t do for multi-armed bandits. arXiv preprint
arXiv:1803.06971, 2018.

Bickel, P. J. On some robust estimates of location. The
Annals of Mathematical Statistics, pp. 847–858, 1965.

Bogucki, R. Suprema of canonical weibull processes. Statis-
tics & Probability Letters, 107:253–263, 2015.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
inequalities: A nonasymptotic theory of independence.
univ. press, 2013.

Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. Bandits with
heavy tail. IEEE Transactions on Information Theory, 59
(11):7711–7717, 2013.

Chatterjee, S. and Sen, S. Regret minimization in isotonic,
heavy-tailed contextual bandits via adaptive confidence
bands. arXiv preprint arXiv:2110.10245, 2021.

Chen, X., Wang, Y., and Zhou, Y. Dynamic assortment
optimization with changing contextual information. The
Journal of Machine Learning Research, 21(1):8918–8961,
2020.

Chen, X., Qi, Z., and Wan, R. Steel: Singularity-aware
reinforcement learning. arXiv e-prints, pp. arXiv–2301,
2023.

Cheung, Y. B. Zero-inflated models for regression analy-
sis of count data: a study of growth and development.
Statistics in medicine, 21(10):1461–1469, 2002.

Choi, Y.-G., Kim, G.-S., Paik, S., and Paik, M. C. Semi-
parametric contextual bandits with graph-laplacian regu-
larization. Information Sciences, 645:119367, 2023.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In International Conference on Machine
Learning, pp. 844–853. PMLR, 2017.

Columbia Business School, Columbia University. Center
for pricing and revenue management, 2024. available at
https://business.columbia.edu/cprm upon request.

Dai, C., Lin, B., Xing, X., and Liu, J. S. False discovery
rate control via data splitting. Journal of the American
Statistical Association, 118(544):2503–2520, 2023.

Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear
optimization under bandit feedback. In COLT, volume 2,
pp. 3, 2008.

Deshpande, Y., Mackey, L., Syrgkanis, V., and Taddy, M.
Accurate inference for adaptive linear models. In Interna-
tional Conference on Machine Learning, pp. 1194–1203.
PMLR, 2018.

10



Zero-Inflated Bandits

Dubey, A. and Pentland, A. S. Thompson sampling on
symmetric alpha-stable bandits. In Proceedings of the
Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, pp. 5715–5721. International
Joint Conferences on Artificial Intelligence Organization,
7 2019.

Dubey, A. et al. Cooperative multi-agent bandits with heavy
tails. In International conference on machine learning,
pp. 2730–2739. PMLR, 2020.

Durand, A., Achilleos, C., Iacovides, D., Strati, K., Mitsis,
G. D., and Pineau, J. Contextual bandits for adapting
treatment in a mouse model of de novo carcinogenesis. In
Machine learning for healthcare conference, pp. 67–82.
PMLR, 2018.

Filippi, S., Cappe, O., Garivier, A., and Szepesvári, C. Para-
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Phillips, R., Şimşek, A. S., and Van Ryzin, G. The effective-
ness of field price discretion: Empirical evidence from
auto lending. Management Science, 61(8):1741–1759,
2015.

Ren, Z. and Barber, R. F. Derandomised knockoffs: lever-
aging e-values for false discovery rate control. Journal of
the Royal Statistical Society Series B: Statistical Method-
ology, 86(1):122–154, 2024.

Rinne, H. The Weibull distribution: a handbook. CRC press,
2008.

Shao, H., Yu, X., King, I., and Lyu, M. R. Almost optimal
algorithms for linear stochastic bandits with heavy-tailed
payoffs. Advances in Neural Information Processing
Systems, 31, 2018.

Shen, W., Wang, J., Jiang, Y.-G., and Zha, H. Portfolio
choices with orthogonal bandit learning. In Twenty-fourth
international joint conference on artificial intelligence,
2015.

Shi, Z., Kuruoglu, E. E., and Wei, X. Thompson sampling
on asymmetric a-stable bandits. In International Confer-
ence on Agents and Artificial Intelligence, 2023.

Skorski, M. Bernstein-type bounds for beta distribution.
Modern Stochastics: Theory and Applications, 10(2):211–
228, 2023.

Sun, Q., Zhou, W.-X., and Fan, J. Adaptive huber regression.
Journal of the American Statistical Association, 115(529):
254–265, 2020.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3-4):285–294, 1933.

Urteaga, I. and Wiggins, C. H. Nonparametric gaussian
mixture models for the multi-armed contextual bandit.
stat, 1050:8, 2018.

Vaart, A. v. d. and Wellner, J. A. Empirical processes.
In Weak Convergence and Empirical Processes: With
Applications to Statistics, pp. 127–384. Springer, 2023.

van de Geer, S. and Lederer, J. The bernstein–orlicz norm
and deviation inequalities. Probability theory and related
fields, 157(1-2):225–250, 2013.

Vladimirova, M., Girard, S., Nguyen, H., and Arbel, J.
Sub-weibull distributions: Generalizing sub-gaussian and
sub-exponential properties to heavier tailed distributions.
Stat, 9(1):e318, 2020.

Wan, R., Ge, L., and Song, R. Metadata-based multi-task
bandits with bayesian hierarchical models. Advances
in Neural Information Processing Systems, 34:29655–
29668, 2021.

Wan, R., Ge, L., and Song, R. Towards scalable and ro-
bust structured bandits: A meta-learning framework. In
International Conference on Artificial Intelligence and
Statistics, pp. 1144–1173. PMLR, 2023a.

Wan, R., Wei, H., Kveton, B., and Song, R. Multiplier
bootstrap-based exploration. In International Conference
on Machine Learning, pp. 35444–35490. PMLR, 2023b.

12



Zero-Inflated Bandits

Wei, H., Lei, X., Han, Y., and Zhang, H. High-dimensional
inference and fdr control for simulated markov random
fields. arXiv preprint arXiv:2202.05612, 2024.

Weron, R. On the chambers-mallows-stuck method for
simulating skewed stable random variables. Statistics &
probability letters, 28(2):165–171, 1996.

Wu, S., Wang, C.-H., Li, Y., and Cheng, G. Residual boot-
strap exploration for stochastic linear bandit. In Uncer-
tainty in Artificial Intelligence, pp. 2117–2127. PMLR,
2022.

Wu, Y., Shariff, R., Lattimore, T., and Szepesvári, C. Conser-
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A. Appendix Overview and Roadmap
We provide a roadmap to help readers navigate the supplementary material.

SECTION SUBSECTION CONTENT DESCRIPTION

Appendix B – Heavy-tailed ZI MAB setup, concentration inequalities, UCB algorithm, and regret
analysis

Appendix C

C.1 Thompson Sampling algorithm for ZI MAB with sub-Gaussian rewards

C.2.1 GLM UCB algorithm setup, tuning parameters, and regularity conditions

C.2.2 GLM Thompson Sampling algorithm and tuning parameters

C.2.3 Extension to GLM ZI bandits with heavy-tailed noise

Appendix D
D.1

MAB simulation details: baselines, parameters, computational resources, and extended
results (small/large p, bounded rewards). Includes confidence bounds of different
concentration inequalities for Figure 1b

D.2 GLM bandit simulation details: algorithms, parameters, computational setup, and ex-
tended results (different sparsity levels, other baselines)

D.3 US loan dataset setup and modeling as ZI GLM contextual bandits

Appendix E – Supporting lemmas for naive approaches discussion (Section 2)

Appendix F – Proofs of all lemmas

Appendix G – Regret bound proofs for UCB MAB algorithms

Appendix H – Regret bound proofs for Thompson Sampling MAB algorithms

Appendix I – Regret bound proofs for ZI GLM contextual bandit algorithms

Table 2. Appendix overview. Click on section names to navigate directly to the content.

B. Heavy-tailed MAB
In many applications with zero-inflated rewards, the non-zero part can be heavy-tailed (with only finite moments of order
1 + ϵ for some ϵ ∈ (0, 1]). To accommodate these scenarios, we adopt the trimmed mean (Bubeck et al., 2013) as a solution.
The truncation follows a Hoeffding-type upper bound under the condition |Xt|1+ϵ ≤M . Specifically, for fully observable
data {Xt}nt=1, we can construct a 1− δ upper confidence bound for µ with the trimmed mean

X
trimmed

:=
1

n

n∑
t=1

Xt1
(
|Xt| ≤

(
log−1(δ−1)Mt

)1/(1+ϵ) )
.

The resulting upper confidence bound (Bickel, 1965; Bubeck et al., 2013; Dubey et al., 2020) is given by

X
trimmed

+ 4M
1

1+ϵ
(
n−1log

(
δ−1
))1/(1+ϵ)

.

In ZIB, we similarly define

X
∗∗

:=
1

#{t ∈ [n] : Yt = 1}
∑
t:Yt=1

Xt1
(
|Xt| ≤

(
log−1(2/δ)j(t)M

)1/(1+ϵ))
with j(t) =

∑
ℓ≤t

1(Yℓ = 1).

Then we can construct a valid upper bound for µ as UX∗∗ = X
∗∗

+M1/(1+ϵ)
(
32 logS(n)/n

)ϵ/(1+ϵ)
, where S(n) is

the round index when the arm that we focus on has been pulled for n times. The corresponding UCB algorithm is then
constructed using UX∗∗ × UY , with UY as previously defined. This approach is further detailed in Algorithm B.1.

Similar to Lemma 2.2, Lemma B.1 below confirms that this upper bound maintains a deterministic rate, simplifying the
analysis.
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Algorithm B.1 UCB for zero-inflated bandits with heavy tails
Data: Horizon T , parameters ϵ and M .

26 Set Uµk = 1 and Upk = 1,∀k ∈ [K].
27 Set the counters ck = 0, set the mean estimator p̂k = 0 and µ̂k = 0,∀k ∈ [K].
28 for t = 1, . . . ,K do
29 Take action At = t, set Xt = 1(Rt ̸= 0)×Rt and Yt = 1(Rt ̸= 0).
30 end
31 for t = K + 1, . . . , T do
32 Take action At = arg maxk∈[K] U

µ
k × U

p
k (break tie randomly);

33 Observe Rt, and set Yt = 1(Rt ̸= 0).

34 Update cAt
= cAt

+ 1, p̂At
= p̂At

+
Yt−p̂At

cAt
, and Upk = p̂At

+
√

2 log t2

cAt
;

35 if Rt ̸= 0 then
36 Set Xt = Rt;
37 Update

µ̂At
=

1

#{l ≤ t : Al = At and RAl
̸= 0}

∑
l≤t:Al=At

RAl
1

{
|RAl
| ≤ g(p̂Al

, ϵ)M
1

1+ϵ

(
log l2

cAl

) ϵ
1+ϵ

}

where the function g(·, ϵ) is defined in Lemma B.1, and Uµk = µ̂At
+M1/(1+ϵ)

(
32 log t/ck(t)

)ϵ/(1+ϵ)
;

38 end

Lemma B.1. Suppose Yt
i.i.d.∼ Bernoulli(p) and Xt satisfy E|Xt − µ|1+ϵ ≤ M for some ϵ ∈ (0, 1] with positive M > 0.

Then
P
(
µ−X∗∗ ≥ g(p, ϵ)M

1
1+ϵ
(
n−1log(2/δ)

) ϵ
1+ϵ

)
≤ δ

for any δ > 0 and n ≥ 4 log(2/δ)/p2, where g(p, ϵ) := p−
ϵ

1+ϵ (1 + ϵ)2
ϵ

1+ϵ + p−14/3 + 2/
√
p.

Similarly, using Lemma B.1, we can establish the problem-dependent regret bound for our heavy-tailed UCB algorithm in
Algorithm B.1.
Theorem B.2. For a K-armed ZIB with noise satisfying maxk∈[K] E|εk|1+ϵ <∞ for some ϵ ∈ (0, 1], Algorithm B.1 has a
problem-dependent regret bound as

R(T ) ≤ 2

K∑
k=2

(
3∆k + 4p−2

1 ∆k + 9p−2
k ∆−1

k

)
+

K∑
k=2

(
2pkg(pk, ϵ)

) 1+ϵ
ϵ M1/ϵ∆

−1/ϵ
k log T.

When treating the number of arms as finite and assuming that pk are fixed, comparing our results with those in the heavy-
tailed bandit literature (Bubeck et al., 2013; Dubey et al., 2020; Chatterjee & Sen, 2021) and we know that our algorithm
achieves state-of-the-art regret rate. Moreover, from Theorem B.2, the problem-independent regret for Algorithm B.1 is
given by

R(T ) ≲ p−2
1 K +

K∑
k=2

p−1
k

√
T + (MT )

1
1+ϵ (K log T )

ϵ
1+ϵ

≲ K
√
T + T

1
1+ϵ (K log T )

ϵ
1+ϵ

(B.1)

where the last “≲” is due to p1, pk ∈ (0, 1]. This finalizes the minimax ratio in Table 1 for MAB.

C. Additional Algorithms Details
C.1. TS Algorithms for MAB

As outlined in Section 2, we have developed a light-tailed TS algorithm for MAB. The light-tailed TS-type algorithm
achieves the minimax optimal rate when applied under the clipped distributions. The comprehensive procedure of the is
presented in Algorithm C.1.
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Algorithm C.1 TS for zero-inflated MAB with light tails
Data: Prior parameters {αk, βk, vk}Kk=1 and ρ, γ.

39 Set the counter ck = 0,∀k ∈ [K];
40 for t = 1, . . . ,K do
41 Take action At = t, set Xt = 1(Rt ̸= 0)×Rt and Yt = 1(Rt ̸= 0).
42 end
43 for t = K + 1, . . . , T do
44 Sample p̃k ∼ clBeta(αk, βk;ϑk(p)) and µ̃k ∼ clN

(
vk,

2σ2

ρckp̂k
;ϑk(µ)

)
45 Take action At = arg maxk∈A p̃k × µ̃k;
46 Observe reward Rt, and set Yt = 1(Rt ̸= 0).
47 Update αAt

= αAt
+ Yt and βAt

= βAt
+ 1−Yt;

48 Update p̂At
= p̂At

+
Yt−p̂At

cAt
and cAt

= cAt
+ 1;

49 Update

ϑAt
(p) = p̂At

+

√
γ

4cAt

log+
(

T

4cAt
K

)
.

50 if Rt ̸= 0 then
51 Calculate:

µ̂At =
1

#{l ≤ t : Al = At and RAl
̸= 0}

∑
l≤t:Al=At

RAt ;

52 Update
vAt = µ̂At

and

ϑAt(µ) = µ̂At +

√
4γ
[
1 + log−1(1 + 1/

√
cAt

T )
]
σ2

p̂2At
cAt

√√√√log+

(
4
[
1 + log−1(1 + 1/

√
cAt

T )
]
σ2T

p̂2At
cAt

K

)
.

53 end

The equivalence of directly sampling rk and the procedure of sampling µk and pk from their respective posteriors and then
multiplying them in Algorithm C.1, which can be mathematically expressed as follows:

P(rk|{Rt}t:At=k)

∝P(rk)× P({Rt}t:At=k | rk)

=

∫
µkpk=rk

P(µkpk)× P({Rt}t:At=k,Rt=0|uk, pk)P({Rt}t:At=k,Rt ̸=0|uk, pk)dµkdpk

=

∫
µkpk=rk

[
P(pk)P({Rt}t:At=k,Rt=0|pk)

][
P(µk)P({Rt}t:At=k,Rt ̸=0|uk)

]
dµkdpk,

(C.1)

where the last equality results from two assumptions: 1) independent priors for µk and pk, and 2) non-zero rewards depend
solely on µk, while zero rewards depend only on pk.

An important aspect of the TS-algorithm is our use of clipped distributions for both the sub-Gaussian non-zero part X and
the precisely Bernoulli distributed part Y . As explained in Section 2.2, the reason for using a clipped Gaussian distribution
for X is due to its deviation from an exact Gaussian distribution. The rationale behind employing a clipped Beta distribution
for the exactly Bernoulli distributed Y is as follows: the objective is to establish concentration for the product random
variable R = X × Y . The product of the original Beta distribution and the clipped Gaussian does not adequately control the
overestimation probability of sub-optimal Rk in our proofs. This is primarily due to the proof techniques employed. For
more details, refer to the proofs of Theorem 4.2 in Appendix H.
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C.2. Algorithms for Generalized Linear Contextual Bandits

C.2.1. UCB ALGORITHMS AND REGULARITY CONDITIONS

As a concrete example, we consider the widely-used generalized linear contextual bandits with finite action set A = [K],
where both functions h and g are structured as generalized linear functions here.

This setup is characterized by the known transformation functions ψX(·), ψY (·), and the known link functions g(·) and
h(·), such that g(xt, At;β) = g

(
ψX(xt, At)

⊤β
)

and h(xt, At;θ) = h
(
ψY (xt, At)

⊤θ
)
. When the εt is sub-Gaussian,

confidence radii for the ridge estimations θ̂t (or β̂t) in a compact parameter space can be fully determined by ψY (xt, At) (or
ψX(xt, At)) and the sub-Gaussian variance proxy of εt. Specifically, ρY,t is chosen such that (Lemma 17.8 in Zhang, 2023)

P

∀0 ≤ t ≤ T : ρY,t ≥
√
λU + sup

a∈[K],x1:t∈X

∥∥∥∥∥
t∑

s=1

εsψY (xs, a)

∥∥∥∥∥
U−1

t

 ≥ 1− δ.

Thus, the ellipsoidal ratio ρY,t in Algorithm C.2 is constructed accordingly. A similar approach applies to ρX,t for the
non-zero component, though additional randomness fromXs = g

(
ψX(xs, As)

⊤β∗)must be carefully handled, as discussed
in Section 2.1. The proof of Theorem 4.3 provides further details, which we omit here for brevity.

Algorithm C.2 General template of UCB for zero-inflated generalized linear bandits
Data: Link functions ψX(·), ψY (·), g(·), and h(·). Ellipsoidal ratio sequences {ρX,t, ρY,t}. Rridge parameters λU and λV .

54 SetHall = {} andHnon-zero = {}. Set Ut = λUIq and Vt = λV Id.
55 Randomly choose action at ∈ [K] for t ∈ [τ ];
56 for t = τ + 1, . . . , T do
57 for a ∈ [K] do
58 Set

UCBt(a) =
[
ψX(xt, a)

⊤β̂t + ρX,t∥ψX(xt, a)∥V−1
t

][
ψY (xt, a)

⊤θ̂t + ρY,t∥ψY (xt, a)∥U−1
t

]
.

59 end
60 Take action At = arg maxa∈[K] UCBt(a).
61 Observe reward Rt, and set Yt = 1(Rt ̸= 0).
62 Update the dataset asHall ← Hall ∪ {(xt, At, Yt)} and Ut = Ut + ψY (xt, At)ψY (xt, At)

⊤.
63 Solve the equation

θ̂t ∈
{
θ ∈ Θ :

t∑
s=1

[
Ys − h

(
ψY (xs, As)

⊤θ
)]
ψY (xs, As) = 0

}
64 if Rt ̸= 0 then
65 Update the dataset asHnon-zero ← Hnon-zero ∪ {(xt, At, Rt)};
66 Update Vt = Vt + ψX(xt, At)ψX(xt, At)

⊤;
67 Solve

β̂t ∈
{
β ∈ Γ :

∑
s∈[t]:Ys=1

[
Rs − g

(
ψX(xs, As)

⊤β
)]
ψX(xs, As) = 0

}
;

68 end

Next, we present the regularity conditions and selections of tuning parameters for Theorem 4.3. Let the true parameters be
β∗ and θ∗, and Zt,a = ψX(xt, a) ∈ Rd and Wt,a = ψY (xt, a) ∈ Rq for a ∈ [K]. These assumptions are quite standard in
generalized linear contextual bandits (see, for example, Li et al., 2010; Deshpande et al., 2018; Wu et al., 2022).

Assumption C.1 (Link Functions and Parameters). (i) The parameter space Γ and Θ for β and θ satisfies
supβ∈Γ ∥β∥2 ≤ 1 and supβ∈Θ ∥θ∥2 ≤ 1;

(ii) The link function g(·) and h(·) is twice differentiable. Its first and second order derivatives are upper-bounded by Lg
and Mg , and Lh and Mh, respectively;
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(iii) κg := inf∥z∥2≤1,∥β−β∗∥2≤1 ġ(z
⊤β) > 0 and κh := inf∥w∥2≤1,∥θ−θ∗∥2≤1 ḣ(w

⊤θ) > 0;

(iv) p∗ := inf∥w∥2≤1,θ∈Θ h(w
⊤θ) > 0.

Assumption C.2 (Distributions). (i) ∥Zt,a∥2 ≤ 1 and ∥Wt,a∥2 ≤ 1 for all a ∈ [K];

(ii) The minimal eigenvalues for E[Zt,aZ⊤
t,a] and E[Wt,aW

⊤
t,a] satisfy λmin

(
E[Zt,aZ⊤

t,a]
)
≥ σ2

z and
λmin

(
E[Wt,aW

⊤
t,a]
)
≥ σ2

w for all a ∈ [K] with some positive σz and σw.

(iii) The noise εt is sub-Gaussian distributed, satisfying E[εt | Ft−1] = 0 and E[esεt | Ft−1] ≤ es
2σ2/2 for any s ∈ R,

where Ft := σ⟨{(x1, R1), . . . , (xt, Rt)}⟩ is an increasing sequence of sigma field.

Assumption C.3 (Tuning Parameters). For any δ ∈ (0, 4/T ),

(i) the random selection period τ is chosen as

τ = max


[(

C1

√
d/p∗ + C2

√
log(1/δ)/p∗

σ2
z

)2

+
2

p∗σ2
z

]
,
4 log(1/δ)

p2∗
,

(
C3
√
q + C4

√
log(1/δ)

σ2
w

)2

+
2

σ2
w

 ;

(ii) the ellipsoidal ratio sequences are chosen as

ρX,t = κ−1
g σ

√
4 log(1/δ) + d log(1 + λ−1

V t/d) and ρY,t = κ−1
h

√
4 log(1/δ) + q log(1 + λ−1

U t/q),

where Cℓ, ℓ = 1, 2, 3, 4 are some universal positive constants detailed in Appendix I.

A quick remark here is that all regularity conditions in Assumption C.1, C.2, and tuning parameter selections inAssumptionn
C.3 are independent of the number of arms K.

C.2.2. THOMPSON SAMPLING FOR GLM

Just like in the standard TS algorithm for linear contextual bandits (Agrawal & Goyal, 2013), we employ Gaussian priors
for the sub-Gaussian noise. At each round t ∈ [T ], we sample parameters {β̃t, θ̃t} from Gaussian posterior distributions
centered at the estimates {β̂t, θ̂t} with covariance matrices

{
ϱ2X,tV

−1
t , ϱ2Y,tU

−1
t

}
, where these estimates and covariance

matrices are obtained from the UCB algorithm. The arm At is then selected by maximizing the Thompson Sampling
objective function ψX(xt, a)

⊤β̃t × ψY (xt, a)⊤θ̃t leveraging the fact that both link functions are strictly increasing.

Let A∗
t denote the optimal action at round t, and define W∗

t := ψX(Wt, A
∗
t ). To ensure an appropriate choice of confidence

radius sequences {ϱY,t}t≥0 (or {ϱX,t}t≥0, both of which can be variance-dependent), it suffices to find ϱY,t > 0 such that
(Lemma 2 in Agrawal & Goyal, 2013)

P
(
W∗

t θ̃t >W∗
t θ

∗ +
√
ϱ2Y,t log

3 T∥Wt∥U−1
t
| Ft−1 ∩ Gt

)
≳ T−ϵ/2 (C.2)

for some ϵ ∈ (0, 1), where Gt is a high-probability good event defined as

Gt :=
{
∀ a ∈ [K] : W⊤

t,a

(
θ̂t − θ∗) ≤ ϱY,t∥Wt,a∥U−1

t

}
.

From the proof of Theorem 4.3, we can set ϱY,t ≳ ρY,t to ensure that Gt holds with probability at least 1− δ for t > τ . To
validate the anti-concentration property in (C.2), we use the inequality

1

2
√
πx

exp
(
−x2/2

)
≤ P(|N (µ, σ2)− µ| > xσ) ≤ 1√

πx
exp

(
−x2/2

)
.

Thus, choosing ϱY,t =
√
ϵ−1q log(1/δ) with ϵ ≍ log T ensures that

P
(
W∗

t θ̃t >W∗
t θ

∗ +
√
ϱ2Y,t log

3 T∥Wt∥U−1
t
| Ft−1 ∩ Gt

)
≥ 1

4e
√
πT ϵ

.
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Algorithm C.3 General template of TS for ZI GLM bandits
Data: Link functions ψX(·), ψY (·), g(·), and h(·). Confidence radio sequences {ϱX,t, ϱY,t}. Rridge parameters λU and

λV .
69 SetHall = {} andHnon-zero = {}. Set Ut = λUIq and Vt = λV Id.
70 Randomly choose action at ∈ [K] for t ∈ [τ ];
71 for t = τ + 1, . . . , T do
72 for a ∈ [K] do
73 Set

TSt(a) =
[
ψX(xt, a)

⊤β̃t

][
ψY (xt, a)

⊤θ̃t

]
.

74 end
75 Take action At = arg maxa∈[K] TSt(a).
76 Observe reward Rt, and set Yt = 1(Rt ̸= 0).
77 Update the dataset asHall ← Hall ∪ {(xt, At, Yt)} and Ut = Ut + ψY (xt, At)ψY (xt, At)

⊤.
78 Solve the equation

θ̂t ∈
{
θ ∈ Θ :

t∑
s=1

[
Ys − h

(
ψY (xs, As)

⊤θ
)]
ψY (xs, As) = 0

}
.

79 Sample θ̃t from distribution N (θ̂t, ϱ
2
Y,tU

−1
t ).

80 if Rt ̸= 0 then
81 Update the dataset asHnon-zero ← Hnon-zero ∪ {(xt, At, Rt)};
82 Update Vt = Vt + ψX(xt, At)ψX(xt, At)

⊤;
83 Solve

β̂t ∈
{
β ∈ Γ :

∑
s∈[t]:Ys=1

[
Rs − g

(
ψX(xs, As)

⊤β
)]
ψX(xs, As) = 0

}
;

84 Sample β̃t from distribution N (β̂t, ϱ
2
X,tV

−1
t ).

85 end

Moreover, for any t ∈ [T ],

ϱY,t ≍
√
q log(1/δ) log(T ) ≳

√
log(1/δ) + q log(1 + t/q) ≍ ρY,t.

Similarly, we select ϱX,t correspondingly, leading to the following choices:

ϱX,t ≍
√
d log(1/δ) log(T ) and ϱY,t ≍

√
q log(1/δ) log(T ). (C.3)

C.2.3. EXTENSION FOR HEAVY-TAILED NOISE

Similarly, one can also devise the UCB-type algorithm for sub-Gaussian εt, as detailed in Algorithm C.2 in Appendix C. In
cases where εt follows a general sub-Weibull distribution or only has finite moments of order 1 + ϵ with ϵ ∈ (0, 1], specific
adjustments are necessary, such as applying the median of means (MoM) estimator for linear bandits (Medina & Yang,
2016; Shao et al., 2018) or Huber regression (Sun et al., 2020; Kang & Kim, 2023).

D. Supplement to Simulation
D.1. Detailed Simulation Setting for Multi-Armed Bandits

Our simulations were performed on a Mac mini (2020) with an M1 chip and 8GB of RAM. We first detail the UCB baselines
and TS baselines as follows:

UCB baselines:

We consider following UCB-type algorithms for comparison. At round t, the agent takes action At = maxk∈[K] Uk(t) with
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the k-th arm’s upper bounds Uk(t) = Rk(t) +
√

2τ2
k log(2/δ)

ck(t)
for sub-Gaussian rewards Uk(t) = Rk(t) + α2

k

√
2 log(2/δ)
ck(t)

+

αk
log(2/δ)
ck(t)

for sub-Exponential rewards. Here, the size parameters τ2 and α for the true rewards are determined using the
following methods:

• Using the original size parameters for the non-zero part Xk, assuming they are known, as the size parameter for
constructing Uk(t);

• Using the estimated variance of the rewards from k-th arm as the size parameter τ2k and αk for constructing Uk(t);

• Using the estimated size parameter for k-th arm as follows:

– For sub-Gaussian Xk with sub-Gaussian variance proxy σ2
k, the sub-Gaussian variance proxy for Rk is solved by

τ2k = max
s∈R

2

s2

[
−sµ̂kp̂k + log(1− p̂k + p̂ke

sµ̂k+s
2σ2

k/2)
]
.

where p̂k is taken as the average of observations Yk;
– For sub-Exponential Xk with the single sub-Exponential parameter λk, the sub-Exponential parameter αk for the

rewards from the k-th arm is solved by

α2
k = λ2

k ∨max
s∈R

2

s2

[
−sµ̂kp̂k + log(1− p̂k + pke

sµ̂k+s2λ2
k/2)

]
.

Here µ̂k and p̂k are taken as the averages of observations Xk and Yk, respectively.

• (Strong baseline) Using the true size parameter for the reward of each arm {Rk}Kk=1.

TS baselines:

Here we exclusively consider the TS-type algorithm suitable for general sub-Gaussian distributions, namely the MOTS
algorithm (Jin et al., 2021). For Gaussian and mixed-Gaussian rewards, we can directly apply both Algorithm C.1 and the
MOTS algorithm. But, when applying with Exponential rewards, we adopt Algorithm 1 from Shi et al. (2023). In doing
so, we integrate their step 5 with our algorithm and the MOTS algorithm. This ensures that both our method and the one
proposed in Jin et al. (2021) are correctly adapted for use with sub-Gaussian distributions after the GMS generation.

Simulation settings and extended results:

For UCB-type algorithms, we set the confidence level δ = 4/T 2 consistently across all experiments. Prior parameters
and tuning parameters for TS-type algorithms follow the recommendations in (Jin et al., 2021; Shi et al., 2023) for the
MOTS algorithm and GMS generation. Beyond Figure 2, we provide additional simulations across different parameter
ranges: Figure 5 shows results for alternative p settings, while Figures 6 and 7 examine extremely small and relatively large
zero-inflation probabilities, respectively. We also extend our analysis to bounded rewards in Figure 8.

Our methods consistently outperform existing approaches across most settings. However, occasional underperformance
against certain proxy-based UCB methods can occur, particularly with exponential rewards under specific parameter ranges
(e.g., pk ∼ U [0.1, 0.3]). As demonstrated in Lemma E.1, such proxy methods can become unreliable under high variance or
strong zero-inflation, whereas our approach demonstrates greater robustness by directly modeling the zero-inflated structure.

For bounded rewards, our UCB method shows clear advantages in most cases. The only exception occurs when the
zero-inflation level is low (i.e., pk is large), in which case the true Hoeffding-based UCB (with access to the exact bound)
performs slightly better. Nonetheless, this case represents a rare (as the exact bound baseline is not available in practice). In
all other cases, especially when skewness or sparsity increases, our method shows clear advantages.

All simulations for each parameter setting and distribution were completed within 24 hours.

D.2. Detailed Simulation Setting for Contextual Bandits

In our contextual bandits scenario, we employ two UCB baseline methods for comparison of our method:
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Figure 5. Simulation for zero-inflated MAB with K = 10 and T = 75000 with N = 50 replications. The four rows represent
p ∼ U [0.10, 0.15], p ∼ U [0.15, 0.20], p ∼ U [0.20, 0.25], and p ∼ U [0.25, 0.30], respectively.

• (Naive Method) We ignore the zero-inflated structure. The upper bound for any action a ∈ At is defined as:

UCBt(a) := ψX(xt, a)
⊤β̂naive +

√
ρX,t∥ψX(xt, a)∥Unaive

with Unaive and β̂naive are computed by Unaive = λUId +
∑t
s=1 ψX(xs, As)ψX(xs, As)

⊤ and β̂naive =

U−1
naive

∑t
s=1RsψX(xs, As).

• (Integrated Component Method) We correctly account for the zero-inflated structure. The upper bound for any action
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Figure 6. Simulation for zero-inflated MAB under p ∈ U [0.0005, 0.01] with K = 10 and T = 10000 with N = 50 replications.
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Figure 7. Simulation for zero-inflated MAB under p ∈ U [0.75, 0.95] with K = 10 and T = 25000 with N = 50 replications.
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Figure 8. Simulation for zero-inflated MAB under the scaled Beta distribution of the form Xk ∼ 2µk ·Beta(pk, pk) such that E[Xk] = µk

with K = 10 and T = 10000 with N = 50 replications.

a ∈ At is:

UCBt(a) := ψX(xt, a)
⊤β̂integrated × h

(
ψY (xt, a)

⊤θ̂integrated
)
+
√
ρX,t ∨ ρY,t

∥∥∥∥[ ψX(xt, a)
ψY (xt, a)

]∥∥∥∥
Wintegrated

with [
β̂integrated

θ̂integrated

]
= arg min

θ,β∈Θ×B

∥∥∥∥∥
t∑

s=1

[
Rs − ψX(xs, As)

⊤β × h
(
ψY (xs, As)

⊤θ
)]∥∥∥∥∥
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and Wintegrated = λV I2d +
∑t
s=1

[
ψX(xs, As)
ψY (xs, As)

] [
ψX(xs, As)

⊤ ψY (xs, As)
⊤ ]

.

The first baseline Naive Method results in model misspecification. We design this baseline because this issue will
arise when researchers fail to correctly specify the zero-inflation structure. In contrast, the second baseline Integrated
Component Method, appropriately specifies the model. The second method estimates two unknown vector β and θ as
a single vector (β⊤,θ⊤)⊤ from the model ψX(xt, a)

⊤β × h
(
ψY (xt, a)

⊤θ
)
+ εt, which originates from a range of

generalized linear contextual bandit literature (Li et al., 2017; Chen et al., 2020; Zhao et al., 2020). Similarly, for
the naive TS and integrated TS algorithm, we sample β̃naive from N (β̂native, ϕ

2
βU

−1
naive) and (β̃⊤

integrated, θ̃
⊤
integrated)

⊤ from

N
(
(β̂⊤

integrated, θ̂
⊤
integrated)

⊤, (ϕ2β ∨ ϕ2θ)×W
−1
naive

)
respectively.

Our experimental setup aligns with that described in Section D.2 of (Wu et al., 2022): the dimension d is set to 10, and there
are K = 100 arms in this context. The true parameter for the non-zero part, β, has a norm of 1 and is uniformly distributed,
with each entry βi ∼ U [0, 1] for i ∈ [d]. The zero-inflation structure θ exhibits sparsity s, meaning only s elements in θ are
derived from a uniform distribution, while the rest are zeros. Similarly, for each arm k ∈ [K], we generate νk exactly the
same as θ. At each round t, the context of each arm k is sampled as xk,t ∼ Nd

(
νk,

1
2K Id

)
. Thus, in this setting, we have

ψX(xt, At) = N
(
νAt

, 1
2K Id

)
and ψY (xt, At) = φY

(
N
(
νAt

, 1
2K Id

))
with element-wised mapping φY : x 7→ sin(x).

Lastly, the noise term ϵt follows the distribution F (0, σ2) with a mean-zero distribution F and a standard deviation of
σ = 1.

In detailing the tuning parameters for UCB algorithms, we initially adopt the configurations in Appendix C.2. For TS
algorithms, we follow the original setting in Agrawal & Goyal (2013) while adding hyper-tuning parameters ϵX and ϵY
such that ϵX ≍ ϵY ≍ log−1 T suggested by Zhong et al. (2021) as ϕ2β = 24σ2d

K2ϵX
log(1/δ) and ϕ2θ = 24σ2d

K2ϵY
log(1/δ). For

simplicity, in our implementation, we fix ϵX and ϵY to log−1 T . Additionally, for both UCB and TS algorithms, we set the
parameter δ to 1/T .

Further details are provided in Section 5 of Kang & Kim (2023). In addition to Figure 3, we present simulation results with
different sparsity levels s in Figure 9 and comparisons with another semiparametric contextual bandit algorithm in Figure 10.
We choose SPUCB from Peng et al. (2019) as the representative baseline, as other semiparametric algorithms exhibit similar
performance. The results for various link functions h(·) are quite similar, and therefore, have been omitted for brevity. Like
in MAB, simulations were conducted on a Mac mini (2020) with an M1 chip and 8GB of RAM, with all runs completed
within 48 hours.

D.3. Detailed Simulation Setting for Real Data Application

The loan records data, collected by Columbia Business School, encompasses all auto loan records (totaling 208,085) from a
major online auto loan lending company, spanning from July 2002 to November 2004. This dataset can be accessed upon
request at “https://business.columbia.edu/cprm”. In our analysis, we treat the monthly payment and loan term as the raw
action At ∈ R+. We then compute the price as:

price = Monthly payment ×
Term∑
t=1

(1 + Prime rate )−t − amount of loan requested,

which accounts for the net present value of future payments, following the approach used in (Phillips et al., 2015; Bastani
et al., 2022; Chen et al., 2023). Similarly, we exclude outlier records, as done in (Chen et al., 2023). In this dataset, the
binary decision of the applicant is denoted as Yt ∈ {0, 1}. Following the approach in (Chen et al., 2023), we define the
synthetic observed reward as Rt = At × Yt. The context vector xt ∈ R5 represents a set of features identified as significant
in (Ban & Keskin, 2021; Chen et al., 2023). This includes the FICO credit score, the approved loan amount, the prime rate,
the competitor’s rate, and the loan term.

The range of the raw action At spans from 0.0004 to 28.5725. To simplify the online decision process, we introduce a
discretization of At into categorized actions, denoted as Ãt. This discretization follows a specific transformation, ℓ(At),
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Figure 9. Simulation for zero-inflated contextual bandits and T = 20000 with N = 25 replications with the different sparsity levels. The
three rows represent s = 1, 3, 5, respectively.
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Figure 10. Comparison with SPUCB algorithm for zero-inflated contextual bandits with T = 10, 000 rounds over N = 25 independent
replications across different sparsity levels.

defined as follows:

Ãt = ℓ(At) :=


“low”, if At ≤ 1.5400,
“medium”, if 1.5400 < At ≤ 3.6390,
“high”, if 3.6390 < At ≤ 5.4164,
“very high”, if 5.4164 < At ≤ 8.5466,
“luxury”, if At > 8.5466

.
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Figure 11. The density of the raw actions and the corresponding discretization.

This discretization is derived from specific quantiles of the offered price: the 25% and 75% quantiles, the 66% quantile of
the remaining offer beyond the 75% quantile, and the 95% quantile of the remaining offer. We have accordingly plotted the
density f(a) of the raw action set {At}Tt=1, as shown in Figure 11.

Again, the decision of applicants mainly depends on the nominal profitAt offered, but it will also depend on the environment.
Thus, we first model the binary selection Yt ∈ {0, 1}, whether accept the offer, of the applicant as a binary regression as

P(Yt = 1) = h
(
(At, 1, b

⊤(xt))θ
)
= h

(
Atθ1 + θ2 + b⊤(xt)θ−1,−2

)
with some different functions h(·) and suitable context transformation b(·). Intuitively, the raw action At, the nominal profit
that company offer, is the most relevant factor. The offline estimation and the performance of θ via estimated FDR (Dai
et al., 2023) using the whole dataset is shown in Table 3.

Table 3. Estimated FDR under data splitting. The function b(·) is chosen as the best degree in the bracket.

b(·)
h(·)

logit probit cauchit log cloglog

linear 0.1831 0.1912 0.1699 0.0983 0.1835

polynomial 0.1682 (3) 0.1705 (3) 0.1610 (3) 0.3483 (1) 0.1707 (3)

spline 0.1743 (5) 0.1755 (5) 0.1692 (3) 0.3483 (1) 0.1790 (5)

kernel (Epanechnikov) 0.2052

kernel (Triangale) 0.2050

kernel (Gaussian) 0.2049

As shown in Table 3, when we choose b(·) : x 7→ x , the estimated FDR for the whole dataset is no more than 0.1, a quite
small value, which means this model characterize the dataset quite good (Dai et al., 2023; Ren & Barber, 2024; Wei et al.,
2024).

Next, for to simulate the counterfactual outcomes in the online setting, recognizing that rewards are deterministic when
based on non-zero rewards, we introduce noise to better simulate real-world scenarios, such as deviations in payment plans
or additional service purchases. Two important points here are: (1) Conditional on the raw action the noise is mean-zero;
(2) that the noise should be related to the context. This indicates the true reward in the online procedure at each round
Xt = g(At,xt;β) + εt the company will obtain satisfies

E[Xt | At] = E[g(At,xt;β) + εt | At] = At.
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Figure 12. The estimation of β under different λ, the red line is the estimated coefficient for the raw action At and the blue line is the
ℓ1-norm plus one for the estimated coefficients of the environment b(xt).

For simplifying the procedure, here we just let

g(At,xt;β) =
(
At, 1, b

⊤(xt)
)
β = β1At + β2 + β⊤

−1,−2b(xt)

with the same context transformation function b(·). Note that we do not have Xt for the real data (the observed reward is
Rt = At × Yt instead of Rt = Xt × Yt), so we manually create Xt = At + Exp(λ)− λ, which satisfy E[Xt | At] = At
and use the whole dataset to estimate β̂. The result of offline estimation β̂ with different λ is shown in Figure 12. From the
Figure 12, we know that any λ ∈ (0, 2] is reasonable as we have β̂1 ≈ 1 and ∥β̂−1,−2∥1 ≈ 0, which means the nominal
profit the company proposed, At, by the company plays a major role, but the context xt does have some influence.

Then we implemented our method and the different baselines described in Section 5 in an online setting to compare
their performance. Specially, at each round t, the company selects an discrete action Ãt from the discrete set Adiscrete =
{“low”, “medium”, “high”, “very high”, “luxury”}. Then a company to have a potential nominal profit At with randomly
sampled from the truncated original density for the profit

f(a)1{a ∈ ℓ−1(Ãt)},

Next, the potential real profit the company would receive with the current context xt is X̃t =
(
At, 1, b

⊤(xt)
)
β̂. Besides,

the applicant accordingly makes a binary decision Ỹt ∈ {0, 1} with probability P(Ỹt = 1) = h
(
(At, 1, b

⊤(xt))θ̂
)
. Next,

the company receives the real reward calculated as R̃t = X̃t × Ỹt.

The regret for each round is calculated as E[Ỹ ∗
t X̃

∗
t ]− E[ỸtX̃t], where Ỹ ∗

t and X̃∗
t represent the decision of the company

and the random true profit according to the optimal action Ã∗
t defined as

Ã∗
t ∈ arg max

ã∈Adiscrete

∫
(a, 1, b⊤(xt))β̂h

(
(a, 1, b⊤(xt))θ̂

)
f(a)1{ℓ−1(ã)}da.

These online process mirrors that in Appendix D.2, with the same tuning parameters. We treat this dataset as a heavy-tailed
contextual bandit, and thus use the Huber regression technique as described in (Kang & Kim, 2023). Once again, the
simulations were conducted on a Mac mini (2020) with an M1 chip and 8GB of RAM, with results obtained within 6 hours.

E. Supporting Lemma and Figures for Motivations
Lemma E.1. Assume Xt − µ ∼ subG(σ2) and Yt ∼ Bernoulli(p), independent of Yt. Let Rt = Xt × Yt. Then Rt − µp
is sub-Gaussian, with its sub-Gaussian variance proxy denoted by τ2, satisfying:
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(i) Given any p ∈ (0, 1), σ2 > 0, and arbitrarily large M > 0, there exists µ∗ > 0 such that τ2 > Mσ2 for any µ > µ∗;

(ii) For any arbitrarily large M > 0, there exist σ2
∗, p∗, µ∗ such that τ2 > M var(Rt) for any µ > µ∗, σ2 < σ2

∗, and
p ∈ [p∗, 1);

(iii) (a) For any σ2 > 0 and arbitrarily large M > 0, there exists µ∗ > 0 and p∗ ∈ (0, 1) such that

∂τ2

∂p

∣∣∣∣
µ=µ′,p=p′

> M

for any µ′ ∈ (0, µ∗] and p′ ∈ [p∗, 1);

(b) For any µ > 0 and arbitrarily large M > 0, there exists σ2
∗ > 0 and p∗ ∈ (0, 1) such that

∂τ2

∂p

∣∣∣∣
σ2=σ′2,p=p′

> M

for any σ′2 ∈ (0, σ2
∗] and p′ ∈ [p∗, 1);

(c) For any µ ∈ R and arbitrarily large M > 0, there exists σ2
∗ > 0 and p∗ ∈ (0, 1) such that

∂τ2

∂µ

∣∣∣∣
σ2=σ′2,p=p′

> M

for any σ′2 ∈ (0, σ2
∗] and p′ ∈ [p∗, 1).

Analogous results apply for Xt − µ ∼ subE(λ), with σ2 replaced by λ2 and τ2 by α2.

We provide visual clarification for Lemma E.1 in Figure 13, which illustrates the lemma in the context whereXt ∼ N (µ, σ2).
Figure 13 (a) and (b) show the values of τ2 under different µ and p values when σ2 = 1, and the ratio of τ2/ var(Rt) under
varying p values when µ = 100, respectively. Figure 13 (c) presents the numerical derivative ∂τ2

∂p under different µ and p

values when σ2 = 1. Figures 13(d) and (e) display the numerical derivatives ∂τ2

∂p and ∂τ2

∂µ across a range of µ and σ2 values
when µ = 100 and µ = 0.5, respectively.
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(a) Illustration for Lemma E.1 (i) (b) Illustration for Lemma E.1 (ii)

(c) Illustration for Lemma E.1 (iii, a) (d) Illustration for Lemma E.1 (iii, b) (e) Illustration for Lemma E.1 (iii, c)

Figure 13. The illustration Lemma E.1 when Xt is exactly Gaussian distributed.

F. Proof of Lemmas
In this section, we will provide the proofs for the concentration results presented in Section 2. We will also include relevant
theoretical background and discussions.

Notations: Let Pξ(A) =
∫
A

dFξ(x) denote the probability of the event A, where Fξ(x) is the distribution function of the
random variable ξ. Similarly, let Eξf(ξ) =

∫
f(x)dFξ(x) represent the expectation. We define a ∨ b = max{a, b} and

a ∧ b = min{a, b} for any real numbers a and b.

We first define the Revised-Generalized Bernstein-Orlicz (RGBO) transformation function Ψθ,L(·) based on the inverse
function

Ψ−1
θ,L(s) :=

√
log(1 + s) + L(log(1 + s))(1/θ)∨1

for any t ≥ 0. It is worthy to note that we replace (log(1 + s))1/θ with (log(1 + s))(1/θ)∨1 in the Generalized Bernstein-
Orlicz function defined in van de Geer & Lederer (2013); Kuchibhotla & Chakrabortty (2022). It is easy to verify
that is monotone increasing and Ψθ,L(0) = 0, and we can define the RGBO norm of a variable random X such that
∥X∥Ψθ,L

= inf{η > 0 : EΨθ,L(|X|/η) ≤ 1}. In contrast to the existent literature only care about heavy tail case θ < 1,
Lemma F.2 provides the uniform optimal concentration in sense of rate for any θ > 0 with explicit constants. Before stating
this lemma, we first give the equivalence of RGBO norm and concentration inequality stated as follows.

Lemma F.1. For any zero-mean variable X and L > 0, we have

∥X∥Ψ
θ,31/θ−1/2L

≤
√
3τ ⇐⇒ P

{
|X| > τ

(√
s+ Ls(1/θ)∨1

)}
≤ 2e−s, for any s ≥ 0.

Proof. The proof is exactly the same as the proof of Lemma 1 and Lemma 2 in (van de Geer & Lederer, 2013). It is worthy
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to note that the probability here can be rewritten as

P
{
|X| > ∥X∥Ψ

θ,31/θ−1/2L
Ψ−1
θ,L(e

s − 1)/
√
3
}
≤ 2e−s

for any s ≥ 0 and hence

P {|X| ≥ ℓ∥X∥θ,K} ≤
2

1 + Ψθ,31/2−1/θK(
√
3ℓ)

(F.1)

for any ℓ ≥ 0.

Under this lemma, another way to state Lemma 2.2 is using Bernstein-Orlicz norm (van de Geer & Lederer, 2013). As
delineated in Lemma F.1, Lemma 2.2 can be reformulated as:∥∥µ−X∗∥∥

Ψ
θ,

pE(θ)
2
√

n

≤ 4eD(θ)C

p
√
n

with probability 1− δ/2 for any n ≥ 4 log(2/δ)/p2.

Lemma F.2 (Sharper Sub-Weibull Concentrations). Suppose Xi − µ
i.i.d.∼ subW(θ;C), then for any s ≥ 0,∥∥µ−X∥∥

Ψ
θ,n−1/2E(θ)

≤ 2n−1/2e−1D(θ)C,

and

P
{∣∣µ−X∣∣ > 2eD(θ)C

(√
s

n
+ E(θ)

s(1/θ)∨1

n

)}
≤ 2e−s,

where D(θ) and E(θ) are defined as

D(θ) =


(
√
2 ∨ 21/θ)

√
8e3(2π)1/4e1/24

(
e2/e/θ

)1/θ
, if θ < 1,√

3/(2e2)
(
C−1 ∨ Cθ−1

)
, if 1 ≤ θ < 2,√

17/(6e2)
(
C−1 ∨ Cθ/2−1

)
, if θ ≥ 2,

and

E(θ) =


22/θ−1/2, if θ < 1,

1/
√
6, if 1 ≤ θ < 2,

0, if θ ≥ 2.

Proof. We consider the case θ < 1, 1 ≤ θ < 2, and θ ≥ 2 separately.

• If θ ≥ 2. From E exp
{
|X − µ|θ/Cθ

}
≤ 2, we know that

E
∞∑
j=1

(
|X − µ|θ/Cθ

)j
j!

=

∞∑
j=1

E|X − µ|jθ

j!Cjθ
≤ 1. (F.2)

This implies for any k ∈ N, by θ ≥ 2,

E|X − µ|2k ≤ 1 + E|X − µ|kθ

by (F.2)
≤ 1 + k!Ckθ

= 1 + k!(1 ∨ Cθ/2)2k

by kk×k!≤(2k)!

≤ 1 + (1 ∨ Cθ/2)2k × (2k − 1)!!
(2k)!!

kk

by Bohr–Mollerup theorem
≤ 1 + (1 ∨ Cθ/2)2k × (2k − 1)!!× 2kk!

kk

≤ 1 + (2k − 1)!!×
(√

2 ∨
√
2Cθ/2

)2k
≤ (2k − 1)!!×

(
2 ∨ 2Cθ/2

)2k
.
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Therefore, the sub-Gaussian intrinsic moment norm for X − µ satisfies ∥X − µ∥G ≤ 2 ∨ 2Cθ/2, and thus

P

(∣∣µ−X∣∣ > (2 ∨ 2Cθ/2
)√17s

6n

)
≤ P

(∣∣µ−X∣∣ > ∥X − µ∥G√17s

6n

)
≤ 2e−s

for any s ≥ 0 by Theorem 2(b) in Zhang et al. (2023).

• If 1 ≤ θ < 2, (F.2) still holds for θ ∈ [1, 2). We claim there exist positive ν and κ such that

E|X − µ|k ≤ 1

2
ν2κk−2k!, k = 2, 3, . . . . (F.3)

Indeed, (F.2) together with θ ≥ 1 implies

E|X − µ|k ≤ 1 + E|X − µ|kθ ≤ 1 + k!Ckθ

Hence, a sufficient condition for (F.3) is 1 + k!Ckθ ≤ 1
2ν

2κk−2k! for any k = 2, 3, . . .. We rewrite this as

ν2

κ2
κk ≥ 2

k!
+ 2Ckθ, k = 2, 3, . . . .

Therefore, we can take κ = 1 ∨ Cθ and ν =
√
3κ, and then Xi − µ

i.i.d.∼ subΓ(ν, κ) by Lemma 2.2.11 in Vaart & Wellner
(2023). We can then apply concentration for sub-Gamma distributions in Corollary 5.2 of Zhang & Chen (2021); Boucheron
et al. (2013) and obtain that

P
(∣∣µ−X∣∣ > √6(1 ∨ Cθ)√ s

n
+
(
1 ∨ Cθ

) s
n

)
= P

(∣∣µ−X∣∣ > √2ν√ s

n
+ κ

s

n

)
≤ 2e−s.

• If θ < 1. Denote β is the conjugate of θ, i.e., β =∞. Then from Theorem 1 in Zhang & Wei (2022), we know that

P

(∣∣∣∣ n∑
i=1

ai(µ−Xi)

∣∣∣∣ ≥ 2eD(θ)∥b∥2
√
s+ 2eL∗

n(θ)s
1/θ∥b∥β

)
≤ 2e−s

where b = n−1C1n ∈ Rn with ∥b∥2 = Cn−1/2, ∥b∥β = Cn−1, and D(θ) = (
√
2 ∨ 21/θ)

√
8e3(2π)1/4e1/24

(
e2/e/θ

)1/θ
,

and L∗
n(θ) = Ln(θ)D(θ)∥b∥2/∥b∥β with Ln(θ) :=

41/θ∥b∥β√
2∥b∥2

. Then we have

2eD(θ)∥b∥2
√
s+ 2eL∗

n(θ)s
1/θ∥b∥β = 2eD(θ)C

(√
s

n
+ E(θ)

s1/θ

n

)
where E(θ) = 41/θ√

2
= 2

4−θ
2θ . Combining these results, we obtain the concentration inequality in the lemma. For the result of

the RGBO norm, we just use the lemma F.1.

Lemma F.2 establishes a uniform result for the sample mean of i.i.d. sub-Weibull random variables. It is important to note
that our result here is sharper than those in Kuchibhotla & Chakrabortty (2022) and Zhang & Wei (2022), especially for
the case when θ ≥ 1, as they focus on general weighted summations. Another notable difference is in comparison to the
sub-Weibull concentration results for sample means in Adamczak et al. (2011); Bogucki (2015); Hao et al. (2019), which
require symmetry, while our approach does not. Consequently, we present a novel concentration result for the sample mean
of i.i.d. sub-Weibull random variables.

Next, we will show some anti-concentrations for the posterior distributions in Algorithm C.1, which are essential for the
proof of TS-type algorithms.

Lemma F.3. For any 0 ≤ x ≤ β
α+β , we have

P
(
Beta(α, β) >

α

α+ β
+ x

)
≥ Γ(β + α)

βΓ(β)Γ(α)

(
β

α+ β
− x
)β (

α

α+ β
+ x

)α(
β + 2

β + 1
− α+ β

β + 1
x

)
.
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Proof. First, we note that Beta(α, β) = 1− Beta(β, α). Then we can rewrite the probability as

P
(
Beta(α, β) >

α

α+ β
+ x

)
=P
(
1− Beta(β, α) >

α

α+ β
+ x

)
=P
(
Beta(β, α) ≤ 1− α

α+ β
− x
)

by Theorem 1 in (Henzi & Dümbgen, 2023)
≥ Γ(β + α)

βΓ(β)Γ(α)

(
1− α

α+ β
− x
)β (

α

α+ β
+ x

)α [
1 +

β + α

β + 1

(
1− α

α+ β
− x
)]

=
Γ(β + α)

βΓ(β)Γ(α)

(
β

α+ β
− x
)β (

α

α+ β
+ x

)α(
β + 2

β + 1
− α+ β

β + 1
x

)
.

Lemma F.4. Suppose ξ ∼ N (µ, σ2) and ζ ∼ Beta(α, β), then

P
(
ξ × ζ ≥ αµ

α+ β
+ x

)

≥


1
2c(α, β), if x ≤ µβ

2(α+β) ,

(2α+β)σ√
2π

2(α+β)x−µβ
[2(α+β)x−µβ]2+(2α+β)2σ2 exp

{
− 1

2

(
2(α+β)x−µβ

(2α+β)σ

)2}
, if x > µβ

2(α+β) ,

where

c(α, β) =
Γ(β + α)

βΓ(β)Γ(α)

[
β

2(α+ β)

]β [
2α+ β

2(α+ β)

]α [
β + 4

2(β + 1)

]
.

Proof. First, we note that

P
(
ξ × ζ ≥ αµ

α+ β
+ x

)
= P

(
ξ × ζ ≥ (µ+ y)

(
α

α+ β
+ z

))
≥ P (ξ ≥ µ+ y)× P

(
ζ ≥ α

α+ β
+ z

)
with y, z defined as

y =
2(α+ β)x− µβ

2α+ β
, z =

β

2(α+ β)
.

From Lemma F.3, we obtain

P
(
ζ ≥ α

α+ β
+ z

)
≥ Γ(β + α)

βΓ(β)Γ(α)

(
β

α+ β
− z
)β (

α

α+ β
+ z

)α(
β + 2

β + 1
− α+ β

β + 1
z

)
=

Γ(β + α)

βΓ(β)Γ(α)

[
β

2(α+ β)

]β [
2α+ β

2(α+ β)

]α [
β + 4

2(β + 1)

]
= c(α, β)

with c(α, β) is a constant only depending on α and β. If y ≤ 0, i.e., x ≤ µβ
2(α+β) , then P (ξ ≥ µ+ y) ≥ 1

2 , and thus

P
(
ξ × ζ ≥ αµ

α+ β
+ x

)
≥ c(α, β)

2
.
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If y > 0, i.e., x > µβ
2(α+β) , then by Abramowitz et al. (1988),

P (ξ ≥ µ+ y) = P
(
ξ ≥ µ+ σ

2(α+ β)x− µβ
(2α+ β)σ

)

≥ 1√
2π

2(α+β)x−µβ
(2α+β)σ(

2(α+β)x−µβ
(2α+β)σ

)2
+ 1

exp

{
−1

2

(
2(α+ β)x− µβ

(2α+ β)σ

)2
}

=
(2α+ β)σ√

2π

2(α+ β)x− µβ
[2(α+ β)x− µβ]2 + (2α+ β)2σ2

exp

{
−1

2

(
2(α+ β)x− µβ

(2α+ β)σ

)2
}
,

which leads to the final result.

The remaining part of this section will consist of the proofs of the lemmas presented in the main content.

Proof of Lemma 2.1:

Proof. From the definition of sub-Weibull distribution, we know that E exp{|X −µ|θ/CθX} ≤ 2. Note that for any a, b ≥ 0:
if 0 ≤ θ ≤ 1, (a+ b)θ ≤ aθ + bθ; if θ > 1, (a+ b)θ ≤ 2θ−1(aθ + bθ). Hence,

(a+ b)θ ≤
(
2θ−1 ∨ 1

)
(aθ + bθ).

Thus, for any C > 0, we have

E exp{|R− µp|θ/Cθ}

= E exp
{∣∣(X − µ)Y + µ(Y − p)

∣∣θ/Cθ}
≤ E exp

{(
|X − µ|Y + µ|Y − p|

)θ
/Cθ

}
≤ E exp

{(
2θ−1 ∨ 1

)(
|X − µ|θY θ + µθ|Y − p|θ

)
/Cθ

}
≤ E exp

{(
2θ−1 ∨ 1

)(
|X − µ|θ + µθ(pθ + (1− p)θ)

)
/Cθ

}
= exp

{(
2θ−1 ∨ 1

)
µθ(pθ + (1− p)θ)

)
/Cθ

}
E exp

{(
2θ−1 ∨ 1

)
|X − µ|θ/Cθ

}
.

Since E exp{|X − µ|θ/CθX} ≤ 2, we have

0 ≤ lim
C ↑+∞

E exp{|R− µp|θ/Cθ}

≤ lim
C ↑+∞

exp
{(

2θ−1 ∨ 1
)
µθ(pθ + (1− p)θ)

)
/Cθ

}
lim

CX≤C ↑+∞
E exp

{(
2θ−1 ∨ 1

)
|X − µ|θ/Cθ

}
= 0.

This implies there exists CR ≥ CX such that E exp{|R− µp|θ/CθR} ≤ 2.

Proof of Lemma E.1:

Proof. The result that R− µp is sub-Gaussian or sub-Exponential in the lemma directly comes from Lemma 2.1 by setting
θ = 2 and θ = 1. For the second result, we first prove the results for sub-Gaussian case. Denote that τ2 as the minimal
value which satisfies

E exp{s(R− µp)} ≤ exp{s2τ2/2}

for any s ∈ R. By the definition, we have

E exp{s(R− µp)} = E exp{s(XY − µp)}
= E exp{s(0− µp)}P(Y = 0) + E exp{s(X − µp)}P(Y = 1)

= e−sµp(1− p+ pEesX).
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Since σ2 is the minimal value such that E exp{s(X − µ)} ≤ exp{s2σ2/2} for all s ∈ R, it also is the minimal value such
that EesX ≤ esµ+s

2σ2/2. This indicates τ2 satisfies

e−sµp(1− p+ pesµ+s
2σ2/2) ≤ exp{s2τ2/2},

i.e.,

τ2 = max
s∈R

2

s2

[
−sµp+ log(1− p+ pesµ+s

2σ2/2)
]
.

Denote

f(s, µ, p, σ2) :=
2

s2

[
−sµp+ log(1− p+ pesµ+s

2σ2/2)
]

with τ2 = maxs∈R f(s, µ, p, σ
2) = f(s∗, µ, p, σ

2). We will first show that

∀µ > 0, lim
p ↓ 0

s∗ = +∞ and lim
|µ|∨σ2 ↓ 0

lim
p ↑ 1

s∗ = 0 + .

Indeed, s∗ satisfies ∂
∂sf(s, µ, p, σ

2) = 0, i.e.,

2µp

s2∗
− 4

s3∗
log(1− p+ pes∗µ+s

2
∗σ

2/2) +
2

s2∗

p(µ+ σ2s∗)

p+ (1− p)e−s∗µ−s2∗σ2/2
= 0,

or say,
2

p
log(1− p+ pes∗µ+s

2
∗σ

2/2) = s∗

[
(µ+ σ2s∗)

p+ (1− p)e−s∗µ−s2∗σ2/2
+ µ

]
. (F.4)

As we can see whenever s∗ is finite, we have limp ↓ 0
2
p log(1− p+ pes∗µ+s

2
∗σ

2/2) = +∞, then there must be limp ↓ 0 s∗ =
+∞ since µ > 0. On the other hand, by letting p = 1, the above equation becomes

log(1 + es∗µ+s
2
∗σ

2/2) = s∗µ+ s2∗σ
2/2.

Since limx→−∞ log(1 + ex) − x = +∞, limx→0 log(1 + ex) − x = log 2, we must have lim|µ|∨σ2 ↓ 0 limp ↑ 1 s∗ = 0+.
Now, consider

τ2

σ2
=

2

s2∗σ
2

[
−s∗µp+ log(1− p+ pes∗µ+s

2
∗σ

2/2)
]

=
p

p+ (1− p)e−s∗µ−s2∗σ2/2
+
µ(1− p)p
sσ2

es∗µ+s
2
∗σ

2/2 + 1

pes∗µ+s
2
∗σ

2/2 + 1− p

Then consider µ > 0, by taking a fixed p ∈ (0, 1), and denote s = s∗(p = p, µ, σ2) we get that

τ2

σ2

∣∣∣∣
p=p

=
p

p+ (1− p)e−sµ−s2σ2/2
+
µ(1− p)p
sσ2

esµ+s
2σ2/2 + 1

pesµ+s
2σ2/2 + 1− p

≥ µ(1− p)p
sσ2

esµ+s
2σ2/2 + 1

pesµ+s
2σ2/2 + 1− p

Since for any x ≥ 0 and p ∈ (0, 1)

x = log ex ≥ log(1− p+ pex) = log(1− p) + log

(
1 +

p

1− p
ex
)
≥ log(1− p) + log

(
p

1− p
ex
)

= x− log p,

and note that s satisfies (F.4), we have

s

[
(µ+ σ2s)

p+ (1− p)e−sµ−s2σ2/2
+ µ

]
=

2

p
log(1− p+ pesµ+s

2σ2/2)

by the inequality above
∈ 2

p

[
sµ+ s2σ2/2 + log p, sµ+ s2σ2/2

]
.
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Note that the left hand above is less than

s

[
(µ+ σ2s)

p+ (1− p)e−sµ−s2σ2/2
+ µ

]
≤ s
[
(µ+ σ2s)

p
+ µ

]
= (1 + p−1)sµ+ p−1s2σ2,

while the right hand above is larger than

2

p
log(1− p+ pesµ+s

2σ2/2) ≥ 2(sµ+ s2σ2/2 + log p)

p
= 2p−1sµ+ 2p−1 log p+ p−1s2σ2.

Since for any fixed p ∈ (0, 1), we have p−1 > 1. Thus, we must have limµ→+∞ s = 0, or

lim
µ→+∞

{
2

p
log(1− p+ pesµ+s

2σ2/2)− s
[

(µ+ σ2s)

p+ (1− p)e−sµ−s2σ2/2
+ µ

]}
≥ lim
µ→+∞

(
p−1 − 1

)
sµ+ 2p−1 log p > 0,

which leads to a contradiction on the equation (F.4). Therefore, we must have

lim
µ→+∞

τ2

σ2

∣∣∣∣
p=p

≥ lim
µ→+∞

µ(1− p)p
sσ2

esµ+s
2σ2/2 + 1

pesµ+s
2σ2/2 + 1− p

= lim
µ→+∞

2µ(1− p)p
sσ2

= +∞,

which concludes the results in (i). Then we will prove the results in (iii). By envelope theorem,

∂τ2

∂p
=

∂

∂p
f(s, µ, p, σ2)

∣∣∣∣
s=s∗

=
2

s2∗

[
−s∗µ+

es∗µ+s
2
∗σ

2/2 − 1

1 + p
(
es∗µ+s

2
∗σ

2/2 − 1
)] .

The fact that ex

1+ex is bounded on x ∈ [0,∞) and the fact lim|µ|∨σ2 ↓ 0 limp ↑ 1 s∗ = 0+ ensure that

lim
|µ|∨σ2 ↓ 0

lim
p ↑ 1

∂τ2

∂p
= lim

|µ|∨σ2 ↓ 0
lim
p ↑ 1

2

s2∗
[−s∗µ+ 1] = +∞.

By the continuity of f(s∗, ·, ·, ·) on µ, p, and σ2, we get the first two results in (iii). Similarly, we can show that

∂τ2

∂µ
=

2

s∗

[
−p+ pes∗µ+s

2
∗σ

2/2

1 + p
(
es∗µ+s

2
∗σ

2/2 − 1
)] ,

which ensures limσ2 ↓ 0 limp ↑ 1
∂τ2

∂µ = +∞ the last result in (iii). Finally, for the result in (ii), we note that

var(R) = E
[
(XY − µp)2

]
= p var(X) + p(1− p)µ2.

Then by σ2 ≥ var(X), we have

τ2

var(R)
=

τ2

p var(X) + p(1− p)µ2
≥ τ2

pσ2 + p(1− p)µ2
.

Take µ = cµ∗ with arbitrary c > 1, by letting σ2 ↓ 0 and p ↑ 1, we have

τ2

var(R)

∣∣∣∣
µ=cµ∗

≥ τ2

pσ2 + p(1− p)µ2

∣∣∣∣
µ=cµ∗

τ2|µ=µ∗>0

≥
minµ′∈[µ∗,cµ∗]

∂τ2

∂µ

∣∣∣
µ=µ′

(cµ∗ − µ∗)

pσ2 + p(1− p)c2µ2
∗

by the result in (iii) (c)
≥ (c− 1)Mµ∗

pσ2 + p(1− p)c2µ2
∗
↑ +∞
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which gives the result in (ii). For the case that X − µ ∼ subE(λ), one only need to note that the sub-Exponential parameter
α for R− µp satisfies

e−sµp(1− p+ pesµ+s
2λ2/2) ≤ exp{s2α2/2}

for any s ≤ 1
λ , which implies

α2 = λ2 ∨max
s∈R

2

s2

[
−sµp+ log(1− p+ pesµ+s

2λ2/2)
]
.

Since λ2 ∨ g(λ, µ, p) with differential g(·, ·, ·) is also differential on its domain except the points that λ2 = g(λ, µ, p), the
above results regarding large values will still hold. Thus, we finish the proof.

Proof of Lemma 2.2:

Proof. Denote B ∼ binomial(n; p) independent with {Xt}nt=1, we consider the positive p/2 > 0, by concentration for
Bernoulli, we have

P(B ≥ pn/2) = 1− P(p−B ≥ p/2)
≥ 1− exp

[
− np2/4

]
.

Given any δ > 0, the above inequality ensures

B ≥ pn/2

with probability at least 1− δ/2 for any n ≥ 4
p2 log(2/δ). Now, denote Xk as the k-th observed Xt. Consider s > 0 which

will be determined later,

P
{∣∣µ−X∗∣∣ > 2eD(θ)CX

(√
s

np/2
+ E(θ)

s(1/θ)∨1

np/2

)}
=EB

[
PX

{∣∣∣∣µ− 1

B

B∑
k=1

Xk

∣∣∣∣ > 2eD(θ)CX

(√
s

np/2
+ E(θ)

s(1/θ)∨1

np/2

)}]

≤EB

[
PX

{∣∣∣∣µ− 1

B

B∑
k=1

Xk

∣∣∣∣ > 2eD(θ)CX

(√
s

np/2
+ E(θ)

s(1/θ)∨1

np/2

)
, B ≥ np/2

}]
+
δ

2

≤EB

[
PX

{∣∣∣∣µ− 1

B

B∑
k=1

Xk

∣∣∣∣ > 2eD(θ)CX

(√
s

B
+ E(θ)

s(1/θ)∨1

B

)}]
+
δ

2

≤2e−s + δ

2
,

where the last step is by Lemma F.2. Finally, by letting 2e−s = δ/2, i.e., s = log(4/δ), we conclude the inequality in the
lemma.

Proof of Lemma B.1:

Proof. Denote

Mk =

(
kM

log z

) 1
1+ϵ

with z will be determined later. The proof idea comes from Lemma 1 in Bubeck et al. (2013). Denote Xk as the k-th
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observed Xt. Consider some positive s,

P
(
µ−X∗∗

> s
)

=EB

[
PX

(
µ− 1

B

B∑
k=1

Xk1(|Xk| ≤Mk) > t

)]

≤EB

[
PX
(

1

B

B∑
k=1

EX1(|X| > Mk) +
1

B

B∑
k=1

[
EX1(|X| ≤Mk)−Xk1(|Xk| ≤Mk)

]
> s

)]

≤EB

[
PX
(

1

B

B∑
k=1

M

M ϵ
k

+
1

B

B∑
k=1

[
EX1(|X| ≤Mk)−Xk1(|Xk| ≤Mk)

]
> s

)]

≤EB

[
PX
(
(1 + ϵ)M

1
1+ϵ log

ϵ
1+ϵ z

B
ϵ

1+ϵ
+

1

B

B∑
k=1

[
EX1(|X| ≤Mk)−Xk1(|Xk| ≤Mk)

]
> s

)]

where B =
∑n
i=1 Yi ∼ binomial(n; p) is independent with {Xi}ni=1. The last inequality is using

1

B

B∑
k=1

M

M ϵ
k

=M
1

1+ϵ log
ϵ

1+ϵ z
1

B

B∑
k=1

s−
ϵ

1+ϵ

≤M
1

1+ϵ log
ϵ

1+ϵ z
1

B

∫ B

0

s−
ϵ

1+ϵ ds

= (1 + ϵ)M
1

1+ϵ log
ϵ

1+ϵ z ×B− ϵ
1+ϵ .

Next, we consider the positive p/2 > 0, by concentration for Bernoulli, we have

P(B ≥ pn/2) = 1− P(p−B ≥ p/2)
≥ 1− exp

[
− np2/4

]
.

Given any δ, the above inequality ensures
B ≥ pn/2

with probability at least 1− δ/2 for any n ≥ 4
p2 log(2/δ). Then by Bernstein’s inequality

P
(
µ−X∗∗

> s
)

≤EB

[
PX
(

1

B

B∑
k=1

[
EX1(|X| ≤Mk)−Xk1(|Xk| ≤Mk)

]
> s− (1 + ϵ)M

1
1+ϵ log

ϵ
1+ϵ z

B
ϵ

1+ϵ

)]

≤EB

[
PX
(

1

B

B∑
k=1

[
EX1(|X| ≤Mk)−Xk1(|Xk| ≤Mk)

]
> s− (1 + ϵ)M

1
1+ϵ log

ϵ
1+ϵ z

B
ϵ

1+ϵ
, B ≥ pn/2

)]
+
δ

2

≤EB

[
PX
(

1

B

B∑
k=1

[
EX1(|X| ≤Mk)−Xk1(|Xk| ≤Mk)

]
> s− (1 + ϵ)M

1
1+ϵ log

ϵ
1+ϵ z

(pn/2)
ϵ

1+ϵ
, B ≥ pn/2

)]
+
δ

2

≤EB

[
exp

−
B

(
s− (1+ϵ)M

1
1+ϵ log

ϵ
1+ϵ z

(pn/2)
ϵ

1+ϵ

)2

/2

MM1−ϵ
k +Mk

(
s− (1+ϵ)M

1
1+ϵ log

ϵ
1+ϵ z

(pn/2)
ϵ

1+ϵ

)
/3

1(B ≥ pn/2)

]
+
δ

2

≤ exp

−
pn

(
s− (1+ϵ)M

1
1+ϵ log

ϵ
1+ϵ z

(pn/2)
ϵ

1+ϵ

)2

/4

MM1−ϵ
n +Mn

(
s− (1+ϵ)M

1
1+ϵ log

ϵ
1+ϵ z

(pn/2)
ϵ

1+ϵ

)
/3

+
δ

2
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By letting

s− (1 + ϵ)M
1

1+ϵ log
ϵ

1+ϵ z

(pn/2)
ϵ

1+ϵ
=

4 log(2/δ)

3pn
Mn +

√
4MM1−ϵ

n log(2/δ)

pn
,

by s2/2
σ2+Ms/3 = A

n ⇐⇒ s = AM
3n ±

√
A2M2

9n2 + 2Aσ2

n ≤ 2AM
3n +

√
2Aσ2

n . Let z = log(2/δ), we have

s =
(1 + ϵ)M

1
1+ϵ log

ϵ
1+ϵ (2/δ)

(pn/2)
ϵ

1+ϵ
+

4 log(2/δ)

3pn
Mn +

√
4MM1−ϵ

n log(2/δ)

pn

=
(1 + ϵ)2

ϵ
1+ϵM

1
1+ϵ

p
ϵ

1+ϵ

(
log(2/δ)

n

) ϵ
1+ϵ

+
4M

1
1+ϵ

3p

(
log(2/δ)

n

) ϵ
1+ϵ

+
2M

1
1+ϵ

√
p

(
log(2/δ)

n

) ϵ
1+ϵ

=

[
(1 + ϵ)2

ϵ
1+ϵ

p
ϵ

1+ϵ
+

4

3p
+

2
√
p

]
M

1
1+ϵ

(
log(2/δ)

n

) ϵ
1+ϵ

,

which leads to the result.

Proof of Lemma 6.1:

Proof. From Theorem 16.2 in Lattimore & Szepesvári (2020), an algorithm is deemed asymptotically optimal for problem-
dependent regret if it satisfies:

lim inf
T→+∞

R(T )
log T

=

K∑
k=2

∆k

dinf(Pk, r1,Mk)
.

where dinf(P, r,M) = infP ′∈M {KL (P, P ′) : ER∼P ′R > r}. Here the model classMk = Xk × Yk is ZI structure such
that

Xk = {X − µk ∼ subG(σ2) : P(X = 0) = 0} and Yk = {Y ∼ Bernoulli(pk) : pk ∈ (0, 1)}, where X ⊥⊥ Y.

To prove the first part of the theorem, let us choose a subclass X ∗
k ⊂ Xk such that X ∗

k = {X ∼ N (µk, σ
2) : µk ∈ R}.

Denote Pk := N (µk, σ
2)× Ber(pk) ∈M∗

k := X ∗
k × Yk. The remaining task is to calculate

dinf(Pk, r1,M∗
k) = inf

µk,pk:µkpk>r1
KL(P1, Pk).

Here we first note that the independence between X ∗
k and Yk implies

KL(P1, Pk) = KL
{
N (µ1, σ

2),N (µk, σ
2)
}
+KL

{
Ber(p1),Ber(pk)

}
=

(µ1 − µk)2

2σ2
+ pk log(pk/p1) + (1− pk) log

(
1− pk
1− p1

)
.

Then consider the restriction µ1p1 > µkpk, there are two cases:

• If µ1 ≤ r1/pk. Then we can let pk = p1 and then µk < r1/p1 = r1/pk suffices to satisfy the constraint. In this case,
KL
{
Ber(p1),Ber(pk)

}
= 0, and thus

inf
µk,pk:µkpk>r1

KL(P1, Pk) = inf
µk<r1/pk=µ1

(µ1 − µk)2

2σ2
=

(µk − r1/pk)2

2σ2
.

• If µ1 > r1/pk, we let µk = µ1 and then pk < r1/µ1 = r1/µk satisfies the constraint. Similarly, in this case

inf
µk,pk:µkpk>r1

KL(P1, Pk) = inf
pk<r1/µ1=r1/µk=p1

(
pk log(pk/p1) + (1− pk) log

(
1− pk
1− p1

))
= pk log

(
pk

r1/µk

)
+ (1− pk) log

(
1− pk

1− r1/µk

)
.

37



Zero-Inflated Bandits

By combining the two cases, we complete the proof for the first part in Lemma 6.1.

For proving the second argument in the lemma, we note that Pk := N (µk, σ
2)× Ber(pk) ∈Mk. which implies

dinf(Pk, r1,Mk) ≤ inf
µk,pk:µkpk>r1

KL(P1, Pk).

Thus, it suffices to bound the infimum derived in the first part. For the Gaussian part, it is straightforward to see that

inf
µk<r1/pk

(µk − r1/pk)2

2σ2
=

(µk − r1/pk)2

4σ2
=

∆2
k

4p2kσ
2
.

For the Bernoulli part, applying the Pinsker’s inequality, we get

inf
pk<r1/µk:µk=µ1

KL
{
Ber(p1),Ber(pk)

}
= inf
pk<r1/µk:µk=µ1

pk log

(
pk

r1/µk

)
+ (1− pk) log

(
1− pk

1− r1/µk

)
≤ inf
pk<r1/µk:µk=µ1

(pk − r1/µk)2

(r1/µk) ∧ (1− r1/µk)

≤ inf
pk<r1/µk:µk=µ1

(rk − r1)2

µ2
k(r1/µk)

+ inf
pk<r1/µk:µk=µ1

(rk − r1)2

µ2
k(1− r1/µk)

.

Next, we bound the above two terms by

inf
pk<r1/µk:µk=µ1

(rk − r1)2

µ2
k(r1/µk)

≤ inf
pk<r1/µk:µk=µ1

∆2
k

µ2
1(r1/µ1)

= inf
pk<r1/µk:µk=µ1

∆2
k

r1µk

≤ inf
pk<r1/µk:µk=µ1

∆2
kpk

r1µk(r1/µk)
=

∆2
kpk
r21

and

inf
pk<r1/µk:µk=µ1

(rk − r1)2

µ2
k(1− r1/µk)

≤ inf
pk<r1/µk:µk=µ1

∆2
k

µk(µk − r1)

= inf
pk<r1/µk:µk=µ1

∆2
k

µk(µ1 − r1)

≤ inf
pk<r1/µk:µk=µ1

∆2
kp

2
k

µk(µ1 − r1)(r1/µk)(r1/µ1)

=
∆2
kp

2
k

r21(1− p1)
.

Finally, combining these bounds for both the Gaussian and Bernoulli components, we observe that the dominant terms
depend on pk,∆k ∈ (0, 1). The asymptotic regret bound is confirmed as

K∑
k=2

∆k

dinf(Pk, r1,Mk)
≳

K∑
k=2

∆k

∆2
k

4p2k

+
∆k

∆2
kpk
2r21

+
∆k

∆2
kp

2
k

2r21(1−p1)


=

K∑
k=2

(
p2k
∆k

+
1

pk∆k
+

1

p2k∆k

)

≳
K∑
k=2

(
p2k
∆k

+
1

pk∆k

)
,

which concludes the proof for the second part of the lemma.
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G. Proof of the regrets for UCB-type algorithms
The proofs for our UCB-type algorithms also follow the standard approach used in UCB algorithms, which involves
controlling two probabilities. The first probability relates to the underestimation of the optimal arm, characterized by
P(Uµ1 (t)× U

p
1 (t) < r1), and this can be easily managed using the concentration results presented in Section 2. The second

probability concerns the overestimation of suboptimal arms, characterized by P(Uµk (t)×U
p
k (t) > r1) = P(Uµk (t)×U

p
k (t) >

rk + ∆k). Since ∆k > 0, the sharp properties of our concentration results in Section 2 also controls this probability,
ensuring an exponential decay rate over rounds.

G.1. Proof of Theorem 4.1

Proof. For any δ > 0, denote the upper confidence bound for pk until round t as Upk (t, δ) := p̂k(t) +
√

log(2/δ)
2ck(t)

, with p̂k(t)
be the point estimate at round t. Based on the estimated p̂k(t) , define the upper confidence bound for µk as

Uµk (t, δ) := µ̂k(t) + 2eD(θ)C

(√
log(4/δ)

ck(t)p̂k(t)/2
+ E(θ)

log(1/θ)∨1(4/δ)

ck(t)p̂k(t)/2

)
with µ̂k(t) be the point estimate again. For simplicity, we also denote p̂k(t) as p̂k,m when ck(t) = m, and similarly define
µ̂k,m. Similarly, we denote Upk (t, δ) as Upk,m(δ) when ck(t) = m, and similarly define Uµk,m(δ).

Now we can define good events as follows

G0 := {r1 < min
t∈{m1,m1+1...,T}

Uµ1,m1
(δ)× Up1,m1

(δ)}

and
Grk = {Uµk,mk

(δ)× Upk,mk
(δ) < r1}.

Furthermore, define Gpk = {p̂k,mk
> pk − ϵk} for k ∈ [K] and Gk = G0 ∩ Grk ∩ G

p
1 ∩ G

p
k for k ̸= 1, where ϵk will be

determined later.

Step 1: For bounding P(Gck), we use the inequality that

P(A ∪ B) = P(A) + P(B)− P(A ∩ B) = P(A ∩Bc) + P(B).

Then we can decompose

P(Gck) ≤ P(G0c ∪ Gpc1 ) + P(Grck ∪ G
pc
k )

= P
(
(G0)c ∩ Gp1

)
+ P

(
(Gp1 )c

)
+ P

((
Grk)c ∩ G

p
k

)
+ P

(
(Gpk)

c
)
.

with P
(
(Gp1 )c

)
and P

(
(Gpk)c

)
bounding easily. Indeed, denote d(p1, p2) as the KL-divergence between two Bernoulli

distributions of probability p1 and p2, then

P
(
(Gp1 )c

)
= P(p̂1,m1

≤ p1 − ϵ1) ≤ exp (−m1d(p1, p1 − ϵ1))

and similarly P
(
(Gpk)c

)
≤ exp (−mkd(pk, pk − ϵk)). For another two terms, we first consider to decompose the sample

space as
Ω = {p̂1,m1

≥ p1 + ϵ′1} ∪ {p̂1,m1
< p1 + ϵ′1}

with ϵ′1 > 0 will be determined later. Then

P
(
(G0)c ∩ Gp1

)
≤P
(
Ω ∩ (G0)c ∩ Gp1

)
≤P(p̂1,m1 ≥ p1 + ϵ′1) + P

(
p̂1,m1 ≤ p1 + ϵ′1, r1 ≥ U

µ
1,m1

(δ)× Up1,m1
(δ), p̂1,m1 > p1 − ϵ1

)
≤ exp(−m1d(p1 + ϵ′1, p1)) + P

(
r1 ≥ Uµ1,m1

(δ)× Up1,m1
(δ), p1 − ϵ1 < p̂1,m1 ≤ p1 + ϵ′1

)
.

Note that for any real numbers a, b and any random variable X,Y with b, Y ≥ 0,

P(ab ≥ XY ) ≤ P
(
{a ≥ X} or {b ≥ Y }

)
≤ P(a ≥ X) + P(b ≥ Y ).
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By the above inequality, we can next bound the second term in the above bound,

P
(
r1 ≥ Uµ1,m1

(δ)× Up1,m1
(δ), p1 − ϵ1 < p̂1,m1 ≤ p1 + ϵ′1

)
=P

{
µ1p1 ≥

[
µ̂1,m1

+ 2eD(θ)C

(√
log(4/δ)

m1p̂1,m1
/2

+ E(θ)
log(1/θ)∨1(4/δ)

m1p̂1,m1
/2

)]

×

p̂1,m1
+

√
log(2/δ)

2m1

 , p1 − ϵ1 < p̂1,m1
≤ p1 + ϵ′1

}

≤P

{
µ1p1 ≥

[
µ̂1,m1 + 2eD(θ)C

(√
log(4/δ)

m1(p1 + ϵ′1)/2
+ E(θ)

log(1/θ)∨1(4/δ)

m1(p1 + ϵ′1)/2

)]

×

p̂1,m1 +

√
log(2/δ)

2m1

 , p1 − ϵ1 < p̂1,m1 ≤ p1 + ϵ′1

}

≤P

{
µ1p1 ≥

[
µ̂1,m1

+ 2eD(θ)C

(√
log(4/δ)

m1(p1 + ϵ′1)/2
+ E(θ)

log(1/θ)∨1(4/δ)

m1(p1 + ϵ′1)/2

)]

×

p̂1,m1
+

√
log(2/δ)

2m1

}

≤P

{
µ1 ≥ µ̂1,m1

+ 2eD(θ)C

(√
log(4/δ)

m1(p1 + ϵ′1)/2
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we can obtain
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where the last step is by the fact that for any real numbers a, b and any random variable X,Y with b, Y ≥ 0,
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Similarly,
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By the increasing property of Ψθ,L(·), we obtain that
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and a sufficient condition for this is

2

(
1 +

1
√
pk

)
eD(θ)C

√
log(4/δ)

mk(pk − ϵk)/2
≤ ∆k

4pk

and

2

(
1 +

1
√
pk

)
eD(θ)CE(θ)

log(1/θ)∨1(4/δ)

mk(pk − ϵk)/2
≤ ∆k

4pk
.

Thus, we can take

mk ≥
128e2D2(θ)C2pk(1 +

√
pk)

2

(pk − ϵk)∆2
k

log

(
4

δ

)
+

16eD(θ)CE(θ)
√
pk(1 +

√
pk)

(pk − ϵk)∆k
log(1/θ)∨1

(
4

δ

)
. (G.4)

Therefore, we can furthermore upper-bound Pk,µ as
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Thus, we obtain that
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under condition (G.2) and (G.4). To summarize these results, we have

P(Gck) ≤ P
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whenever m1 satisfies (G.1) and mk satisfies (G.2) and (G.4).

Step 2: Now, we deal with E[ck(T ) ∩ 1(Gk)]. If ck(T ) > max{m1,mk}, then arm k was pulled more than mk times over
the first T rounds, and so there must exist a round t ∈ [m1, . . . , T ] such that At = k. However, on the good event Gk, we
have
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This means the agent will choose arm 1 instead of arm k at time point t, which leads to a contradiction. Thus, we must have

ck(T ) ≤ max{m1,mk}.

Step 3: Combining the inequality in Step 1 and Step 2, we obtain
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with ϵk = ϵ′k = pk/2 for k ∈ [K] satisfies (G.1), (G.2), and (G.4) by rk ∈ (0, 1]. Under these choice, we obtain
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Aggregating these results, Eck(T ) can be furthermore upper bounded by
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Now, choose δ = 4/T 2,
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Finally, we obtain the cumulative regret is bounded by
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which gives the regret in the theorem.

G.2. Proof of Theorem B.2

Before proving the heavy tailed bandit results. We first state some basic properties of g(p, ϵ) in the concentration of Lemma
B.1. Define h(p, ϵ) := pg(p, ϵ) = (1 + ϵ)2

ϵ
1+ϵ p

1
1+ϵ + 2

√
p+ 4

3 , then g is monotonically decreasing and h is monotonically
increasing with respect to p. Specially, they satisfy

h(p, ϵ) ≤ (1 + ϵ)× 2× 1 + 2× 1 +
4

3
=

2

3
(8 + 2ϵ)

for any p ∈ (0, 1), and

g(p1, ϵ) =
(1 + ϵ)2

ϵ
1+ϵ

p
ϵ

1+ϵ

1

+
4

3p1
+

2
√
p1
≥ (1 + ϵ)2

ϵ
1+ϵ p

1
1+ϵ

2 +
4

3
+ 2
√
p2 = h(p2, ϵ)

for any p1, p2 ∈ (0, 1).

Proof. The proof is similar to the proof of Theorem 4.1. The essential change is we use the concentration of trimming
observable sample mean in Lemma B.1 instead of sub-Weibull concentrations. We will borrow some techniques in (Bubeck
et al., 2013). For fixed ϵ, we will write g(p) = g(p, ϵ) and h(p) = h(p, ϵ).

Step 1:

Similar as the technique in Bubeck et al. (2013), suppose At = k, we define the following bad events

B0(t) := {r1 ≥ Uµ1,c1(t),t × U
p
1,c1(t)

}, Bµk (t) :=

{
µ̂k,ck(t),t ≥ µk + g(p̂k,t)M

1
1+ϵ

(
log t2

ck(t)

) ϵ
1+ϵ

}
and

Bcount
k (t) :=

{
ck(t) ≤

[
2(pk + εk)g(pk + εk)

] 1+ϵ
ϵ

M
1
ϵ

(∆k − εkµk)
1+ϵ
ϵ

log T

}

=

{
ck(t) ≤

[
2h(pk + εk)

] 1+ϵ
ϵ

M
1
ϵ

(∆k − εkµk)
1+ϵ
ϵ

log T

}
with εk ∈ (0,∆k/µk) determined later. Similarly, define

Bpk(t) = {p̂k,t > pk + εk}
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On the event B0c ∩ Bµck ∩ B
count, c
k ∩ Bpck , we have

Uµ1,c1(t),t × U
p
1,c1(t),t

> r1

= rk +∆k

= µkpk +∆k

≥ µkpk + 2h(pk + εk)

(
log t2

ck(t)

)ϵ/(1+ϵ)
+ µkεk

h is increasing
≥ µkpk + 2h(p̂k,t)M

1/(1+ϵ)

(
log t2

ck(t)

)ϵ/(1+ϵ)
+ µkεk

≥ µk(p̂k,t − εk) + 2h(p̂k,t)M
1/(1+ϵ)

(
log t2

ck(t)

)ϵ/(1+ϵ)
+ µkεk

= µkp̂k,t + 2h(p̂k,t)M
1/(1+ϵ)

(
log t2

ck(t)

)ϵ/(1+ϵ)
≥
[
µ̂k,ck(t),t − g(p̂k,t)M

1
1+ϵ

(
log t2

ck(t)

) ϵ
1+ϵ
]
p̂k,t + 2h(p̂k,t)M

1/(1+ϵ)

(
log t2

ck(t)

)ϵ/(1+ϵ)
=

[
µ̂k,ck(t),t + p̂k,tM

1/(1+ϵ)

(
log t2

ck(t)

)ϵ/(1+ϵ)]
p̂k,t

= Uµk,ck(t),t × U
p
k,ck(t),t

.

This implies At = 1, which leads to a contradiction.

Step 2:

Consider the probability:

P(B0 ∪ Bµk ∪ B
p
k) = P((B0 ∪ Bµk ) ∩ (Bpk)

c) + P(Bpk)
≤ P(B0 ∩ (Bpk)

c) + P(Bµk ∩ (Bpk)
c) + P(Bpk)

with P(Bpk) and P(Bµk ∩ (Bpk)c) can be bounded easily. Indeed, if we consider them, then

P
(
Bpk(t)

)
= P

(
p̂k,t > pk + εk

)
≤ exp

(
−tε2k/2

)
.

Next,

P
(
Bµk (t) ∩ (Bpk(t))

c
)

=P

({
µ̂k,ck(t),t ≥ µk + g(p̂k,t)M

1
1+ϵ

(
log t2

ck(t)

) ϵ
1+ϵ

}
∩
{
p̂k,t ≤ pk + εk

})
≤P
(
pk − εk > p̂k,t

)
+ P

({
µ̂k,ck(t),t ≥ µk + g(p̂k,t)M

1
1+ϵ

(
log t2

ck(t)

) ϵ
1+ϵ

}
∩
{
pk − εk ≤ p̂k,t ≤ pk + εk

})
by g is decreasing

≤ P
(
pk − εk > p̂k,t

)
+ P

(
µ̂k,ck(t),t ≥ µk + g(pk + εk)M

1
1+ϵ

(
log t2

ck(t)

) ϵ
1+ϵ

)
,

with

P
(
pk − εk > p̂k,t

)
≤ exp

(
−tε2k/2

)
.
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and

P

(
µ̂k,ck(t),t ≥ µk + g(pk + εk)M

1
1+ϵ

(
log t2

ck(t)

) ϵ
1+ϵ

)

≤2 exp

−
n

(
g(pk + εk)M

1
1+ϵ

(
log t2

ck(t)

) ϵ
1+ϵ

) 1+ϵ
ϵ

M
1
ϵ g

1+ϵ
ϵ (pk)


=2 exp

(
−g

1+ϵ
ϵ (pk + εk)

g
1+ϵ
ϵ (pk)

log t2

ck(t)

)
we need pk+εk≤1

≤ 2 exp

(
−h

1+ϵ
ϵ (pk)

g
1+ϵ
ϵ (pk)

log t2

ck(t)

)

=2 exp

(
−p

1+ϵ
ϵ

k

log t2

ck(t)

)
Proof in Proposition 1 of (Bubeck et al., 2013)

≤ 2

t∑
ck(t)=1

1

ck(t)4
≤ 2

t3
.

Thus, we obtain

P
(
Bµk (t) ∩ (Bpk(t))

c
)
≤ exp

(
−tε2k/2

)
+ 2/t3.

Similarly, we can show that

P(B0 ∩ (Bpk)
c) = P{r1 ≥ Uµ1,c1(t−1),t × U

p
1,c1(t−1), p̂k,t < pk + εk}

≤ exp
(
−tε21/2

)
+ 2/t3.

for any ε1 ∈ (0, p1).

Step 3: Denote

Vk :=
[
2pkg(pk)

] 1+ϵ
ϵ

M
1
ϵ

∆
1+ϵ
ϵ

k

log T

Take ε1 = p1/2 and εk = ∆k

2µk
satisfy ε1 ∈ (0, p1) and εk ∈ (0,∆k/µk) for k = 2, . . . ,K. From Step 2, we know that

P(B0(t) ∪ Bµk (t) ∪ B
p
k)

≤ exp
(
−tε2k/2

)
+
[
exp

(
−tε2k/2

)
+ 2/t2

]
+
[
exp

(
−tε21/2

)
+ 2/t2

]
=2 exp

(
− t∆

2
k

8µ2
k

)
+ exp

(
− tp

2
1

8

)
+

4

t3
,
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thus

Eck(T ) = E
T∑
t=1

1(At = k)

≤
T∑
t=1

E
(
1{At = k} ∩ Bcount

k (t)
)
+

T∑
t=1

E
(
1{At = k} ∩ Bcount, c

k (t)
)

≤ Vk +
T∑
t=1

E
(
1{At = k} ∩ Bcount, c

k (t)
)

= Vk +

T∑
t>Vk

E
(
1{At = k} ∩ Bcount, c

k (t)
)

≤ Vk +
T∑

t>Vk

P
(
Bcount, c
k (t)

)
≤ Vk +

T∑
t>Vk

P(B0(t) ∪ Bµk (t) ∪ B
p
k)

≤ Vk +
T∑

t>Vk

[
2 exp

(
− t∆

2
k

8µ2
k

)
+ exp

(
− tp

2
1

8

)
+

4

t3

]

≤ Vk + 2

∫ +∞

0

exp

(
− t∆

2
k

8µ2
k

)
dt+

∫ +∞

0

exp

(
− tp

2
1

8

)
dt+ 4

+∞∑
t=1

1

t3

≤ Vk + 2× 8µ2
k

p2k∆
2
k

+
8

p21
+ 4× 1.5 ≤ Vk +

16

p2k∆
2
k

+
8

p21
+ 6.

Finally, by plugging the above into the decompositionR(T ) =
∑K
k=2 ∆kEck(T ), we obtain the result in the theorem.

Proof of problem-independent regret in heavy-tailed UCB:

Proof. Still plug the bound for Eck(T ),

R(T ) =
K∑
k=2

∆kEck(T ) ≤
K∑
k=2

∆kVk +

K∑
k=2

∆k

(
16

p2k∆
2
k

+
8

p21
+ 6

)
.

For the second part, still apply Cauchy’s inequality, we obtain

K∑
k=2

∆k

(
16

p2k∆
2
k

+
8

p21
+ 6

)
=

 ∑
∆k<∆

+
∑

∆k≥∆

∆k

(
16

p2k∆
2
k

+
8

p21
+ 6

)

≤ T∆+
∑

∆k≥∆

(
8

p21
+ 6

)
∆k +

1

∆

K∑
k=2

16

p2k

by Cauchy’s inequality with ∆=
√

16
T

∑K
k=2

1

p2
k

≤ 2K

(
4

p21
+ 3

)
+ 8

√√√√T

K∑
k=2

p−2
k .
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For the first part, we use Hölder’s inequality instead as follows:

K∑
k=2

∆kVk =

K∑
k=2

∆kV
1

1+ϵ

k V
ϵ

1+ϵ

k

≤
K∑
k=2

∆kV
1

1+ϵ

k

(2pkg(pk, ϵ)) 1+ϵ
ϵ

M
1
ϵ

∆
1+ϵ
ϵ

k

log T

 ϵ
1+ϵ

by Hölder’s inequality
≤ K

ϵ
1+ϵ

(
K∑
k=2

Vk

) 1
1+ϵ

× max
k∈[K]

2pkg(pk, ϵ)M
1

1+ϵ log
ϵ

1+ϵ T

≤ 2
(
(1 + ϵ)2

ϵ
1+ϵ + 10/3

)
(MT )

1
1+ϵ (K log T )

ϵ
1+ϵ .

Thus, we complete the proof of the problem-independent bound.

H. Proof of the regrets for TS-type algorithms
H.1. Proof of Theorem 4.2

The primary proof idea behind our TS-type algorithm can be divided into two parts: first, controlling the overestimation
of suboptimal arms is achieved through truncation in the clipped distribution, a technique we have already used in the
proof of UCB-type algorithms with some modifications. Second, restricting the underestimation of the optimal arm can be
accomplished through the anti-concentrations for the posterior distributions detailed in Appendix F.

Proof. Denote µ̃k(t) and p̃k(t) is the posterior sample for the non-zero part in k-th arm at round t, and others use the same
notations in the proof of Theorem 4.1. Define

Ξµ = µ1 − min
s∈[T ]

µ̂1,s +

√√√√√4γ
[
1 + log−1(1 + 1/

√
sT )
]
σ2

p̂21,ss
log+

4
[
1 + log−1(1 + 1/

√
sT )
]
σ2T

p̂21,ssK




and

Ξp = p1 − min
s∈[T ]

{
p̂1,s +

√
γ

4s
log+

(
T

4sK

)}
.

Let Ξ = Ξµ × Ξp, then we can decompose the regret as

R(T ) =
K∑
k=2

∆kEck(T )

≤ E[2TΞ] + E

 ∑
k:∆k≥2Ξ

∆kck(T )


≤ E[2TΞ] + 2e

√
2KT + E

 ∑
k:∆k≥(2Ξ)∨(2e

√
2pkK/T )

∆kck(T )

 .
(H.1)

For any x ≥ 0, we have
P (Ξ ≥ x) = P (Ξµ × Ξp ≥ x)

≤ P (Ξµ ≥ x/2) + P (Ξp ≥ x/2) .

By Lemma 2.2, we know that the Orlicz norm for µ̂1,s − µ1 satisfies∥∥µ̂1,s − µ1

∥∥
ψ2
≤ 2σ

p1
√
s

(H.2)
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with probability 1− δ/2 whenever s ≥ 4p−2
1 log(2/δ). Thus, by the same decomposition technique in proof of Theorem

4.1, and let δx be the Dirac delta function, we have

P (Ξµ ≥ x/2)

=P

(
∃ s ∈ [T ] : µ1−

min
1≤s≤T

µ̂1,s +

√√√√√4γ
[
1 + log−1(1 + 1/

√
sT )
]
σ2

p̂21,ss
log+

4
[
1 + log−1(1 + 1/

√
sT )
]
σ2T

p̂21,ssK


− x

2
≥ 0

)

=P

(
∃ s ∈ [T ] : µ1 − min

1≤s≤T

{
µ̂1,s +

√
4σ2γ

p21s
log+

(
4σ2T

p21sK

)}
− x

2
≥ 0

)

+ P
(
∃ s ∈ [T ] : p̂1,s − p1 ≥

p1

log(1 + 1/
√
sT )

)
δx.

By Lemma 9.3 in (Lattimore & Szepesvári, 2020), we have

P

(
∃ s ∈ [T ] : µ1 − min

1≤s≤T

{
µ̂1,s +

√
4σ2γ

p21s
log+

(
4σ2T

p21sK

)}
− x

2
≥ 0

)
≤ 15K

T (x/2)2
=

60K

x2T
,

and by Hoeffding inequality, we have

P
(
∃ s ∈ [T ] : p̂1,s − p1 ≥

p1

log(1 + 1/
√
sT )

)
≤

T∑
s=1

exp

{
− 2sp21
log2(1 + 1/

√
sT )

}

≤
T∑
s=1

exp

{
− 2sp21
s−1T−1

}
ds

≤ 1

p1
√
T

∫ ∞

0

exp
{
−2u2

}
du =

1

p1

√
π

2T
.

Similarly, one can obtain

P (Ξp ≥ x/2) = P

(
∃s ∈ [T ] : p1 − min

s∈[T ]

{
p̂1,s +

√
γ

4s
log+

(
T

4sK

)}
− x

2
≥ 0

)
≤ 60K

x2T

by p̂1,s is sub-Gaussian with variance proxy at most 1
4s . Thus, for the first term in (H.1), we have

E[2TΞ] ≤ 2T

∫ +∞

0

P (Ξ ≥ x) dx

≤ 2T

∫ +∞

0

1 ∧ 120K

x2T
dx+

2T

p1

√
π

2T
= 8
√
30KT +

√
2πT

p1
.

(H.3)

Now, consider the collection of the ‘good’ sets defined as

K :=
{
k ∈ [K] : ∆k ≥ (2Ξ) ∨ (2e

√
2pkK/T )

}
,

then by Theorem 36.2 in Lattimore & Szepesvári (2020) with ϵ = ∆k/2 in K, we have

∆kEck(T ) ≤ ∆k +∆kE

[
T∑

t=K+1

1
(
At = k,Eck(t)

)]
+∆kE

[
T−1∑
s=1

(
1

G1,s(∆k/2)
− 1

)]
(H.4)
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where

Eck(t) =

{
µ̃k(t)× p̃k(t) > r1 −

∆k

2

}

and Gk,s(ϵ) = 1− Fk,s(µ1 − ϵ) with Fk,s is the non-clipped full posterior of the k-th arm1. Note that µ̃k(t) comes from

clN
(
µ̂k,

2
ρkckp̂k

; τk(t)
)

Eck(t) ⊆
{
τk(t)× ζk(t) > r1 −

∆k

2

}
=

{
τk(t)× ζk(t) > rk +

∆k

2

}
.

Denote

κk(µ) =

T∑
s=1

1

{
τk(s) > µk +

∆k

4pk

}

=

T∑
s=1

1

µ̂k,s +
√√√√√4γ

[
1 + log−1(1 + 1/

√
sT )
]
σ2

p̂2k,ss
log+

4
[
1 + log−1(1 + 1/

√
sT )
]
σ2T

p̂2k,ssK

 > µk +
∆k

4pk


=

T∑
s=1

1 {Gk,s(µ)} ,

and

κk(p) =

T∑
s=1

1

{
ζk(s) > pk +

pk∆k

4rk +∆k

}

=

T∑
s=1

1

{
p̂k,s +

√
γ

4s
log+

(
T

4sK

)
> pk +

pk∆k

4rk +∆k

}

=

T∑
s=1

1 {Gk,s(p)} ,

then

∆kE

[
T∑

t=K+1

1
(
At = k,Eck(t)

)]
≤ ∆kE

[
T∑

t=K+1

1
(
At = k

)
1

(
τk(t)× ζk(t) > rk +

∆k

2

)]

≤ ∆kE

[
T∑
s=1

1

(
τk(s)× ζk(s) > rk +

∆k

2

)]

≤ ∆kE

[
T∑
s=1

1
{
Gk,s(µ) ∪ Gk,s(p)

}]

≤ ∆k

[
T∑
s=1

P
(
Gk,s(µ)

)
+

T∑
s=1

P
(
Gk,s(p)

)]
1There is a trick for converting the clipped distribution to the non-truncated full posterior distribution. We omit here, and the details

can be seen in Jin et al. (2022).
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Similar as we are dealing with the first part in (H.1), we have

T∑
s=1

P
(
Gk,s(µ)

)
≤

T∑
s=1

P

(
µ̂k,s +

√
4σ2γ

p2ks
log+

(
4σ2T

p2ksK

)
> µk +

∆k

4pk

)
+

T∑
s=1

P
(
p̂k,s − pk ≥

pk

log(1 + 1/
√
sT )

)

≤
T∑
s=1

P

(
µ̂k,s +

√
4σ2γ

p2ks
log+

(
4σ2T

p2ksK

)
> µk +

∆k

4pk

)
+

1

pk

√
π

2T

by Lemma 2 in Jin et al. (2021)
≤ ∆k

2pk
+

24pk
∆k

+
8γpk
∆k

[
log+

(
T∆2

k

8p2kK

)
+

√
2γπ log+

(
T∆2

k

8p2kK

)]
+

1

pk

√
π

2T
,

and
T∑
s=1

P
(
Gk,s(p)

)
≤

T∑
s=1

P

(
p̂k,s +

√
γ

4s
log+

(
T

4sK

)
> pk +

pk∆k

4rk +∆k

)

≤
T∑
s=1

P

(
p̂k,s − pk +

√
γ

4s
log+

(
T

4sK

)
> pk

)
by Lemma 2 in Jin et al. (2021)

≤ pk +
12

pk
+

4γ

pk

[
log+

(
Tp2k
4K

)
+

√
2γπ log+

(
Tp2k
4K

)]
.

Note that x−1 log+(ax2) is decreasing for x ≥ e/
√
a, we have

1

∆k
log+

(
T∆2

k

8p2kK

)
≤ 1

e

√
T

2pkK

for any ∆k ≥ 2e
√

2pkK/T and
1

pk
log+

(
Tp2k
4K

)
≤ 1

pk
log+ e =

1

pk

for any T ≥ 4eK. Thus, we have the bounds on k ∈ K such that

T∑
s=1

P
(
Gk,s(µ)

)
≤ ∆k

2pk
+

24pk
∆k

+
8γpk
∆k
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log+

(
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k

8p2kK

)
+

√
2γπ log+
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T∆2

k
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+

1
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√
π

2T

≤ ∆k
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+

24pk
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√
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+ 8γpk

1
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√
T

2pkK
+

√√√√ 2γπ
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√
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1

e

√
T

2pkK

+
1

pk

√
π

2T

≲
∆k

pk
+

√
pkT

K
+

1

pk
√
T

and
T∑
s=1

P
(
Gk,s(p)

)
≤ pk +

12

pk
+

4γ

pk

[
log+

(
Tp2k
4K

)
+

√
2γπ log+

(
Tp2k
4K

)]

≤ pk +
12

pk
+ 4γ

[
1

pk
+

√
2γπ

p2k

]

≲ pk +
1

pk
.
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Therefore, we have

∆kE

[
T∑

t=K+1

1
(
At = k,Eck(t)

)]
≤ ∆k

T∑
s=1

[
P
(
Gk,s(µ)

)
+ P

(
Gk,s(p)

)]
≲

√
pkT

K
+

∆k

pk
√
T

+
∆k

pk
.

It remains to deal with the last term in (H.4). For doing this, we will first prove the following result: for any ϵ > 0, there
exists a universal constant c > 0 such that

E

[
T−1∑
s=1

(
1

G1,s(ϵ)
− 1

)]
≤ c

p21ϵ
2
. (H.5)

Indeed, let Zk,s be the random variable denoting the number of consecutive independent trails until a sample of the

distribution Pk,s := N
(
µ̂k,s,

2σ2

ρksp̂2k,s

)
× Beta(αk,s, βk,s) becomes greater than r1 − ϵ, then E

[
1

G1,s(ϵ)
− 1
]
= EΥ1,s.

Consider an integer q ≥ 1 and z ≍
√
ρ′ with some ρ′ ∈ (ρ, 1) determined later. Let Mk,q be the maximum of q independent

samples from Pk,s and Fk,s be the filtration consisting the history of plays of Algorithm C.1 up to the s-th pull of arm 1.
Then

P(Υ1,s ≤ q)
≥P (M1,q > r1 − ϵ)

≥E

[
E
[
M1,q >

α1,sµ̂1,s

α1,s + β1,s
+

z

p̂1,s
√
ρs
,

α1,sµ̂1,s

α1,s + β1,s
+

z

p̂1,s
√
ρs
≥ r1 − ϵ | F1,s

]]

=E

[
1

{
α1,sµ̂1,s

α1,s + β1,s
+

z

p̂1,s
√
ρs
≥ r1 − ϵ

}
P
(
M1,q >

α1,sµ̂1,s

α1,s + β1,s
+

z

p̂1,s
√
ρs
| F1,s

)]
.

(H.6)

Then by Lemma F.4,

P
(
M1,q >

α1,sµ̂1,s

α1,s + β1,s
+

z√
ρsp̂1,s

| F1,s

)
= P

(
M1,q >

α1 +B1,s

α1 + β1 + s
µ̂1,s +

z

p̂1,s
√
ρs
| F1,s

)
by the choice of z

≥ 1−

[
1− c(α1 +B1,s, β1 + s−B1,s)

q−ρ
′

√
2π

√
8ρ′ log q

8ρ′ log q + 1
+e

− 2s

p21

]q
by fact (H.8)
≥ 1−

[
1 + e

− 2s

p21 −
√
1− p1

23+2α1+2β1πe
× e−s(2−p1) log 2 q

−ρ′

√
2π

√
8ρ′ log q

8ρ′ log q + 1

]q
by fact (H.10)
≥ 1−

[
1−

√
1− p1

24+2α1+2β1πe
× e−s(2−p1) log 2 q

−ρ′

√
2π

√
8ρ′ log q

8ρ′ log q + 1

]q
by (1−x)q≤e−qx

≥ 1− exp

[
−

√
1− p1

24+2α1+2β1πe
× e−s(2−p1) log 2 q1−ρ

′

√
128π log q

]

≥ 1− exp

[
− q1−ρ

′

√
128π log q

]

(H.7)

for some q ≥ e2 and ρ′ > 1/2 when we take

z =
2σ(2α1,s + β1,s)

√
2ρ′ log q

2(α1,s + β1,s)

by fact (H.9)
≥ σ(2α1,s + β1,s)

√
2ρ′ log q + µ̂1,sβ1,s

2(α1,s + β1,s)
.
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In the above, we use the the following three facts are

c(α1 +B1,s, β1 + s−B1,s) =
B−1(α1 +B1,s, β1 + s−B1,s)

(β1 + s−B1,s)

[
β1 + s−B1,s

2(α1 + β1 + s)

]β1+s−B1,s

×
[
2α1 + β1 + s+B1,s

2(α1 + β1 + s)

]α1+B1,s
[
β1 + s−B1,s + 4

2(β1 + s−B1,s + 1)

]
by Stirling’s formula

≥ 1

2πe(β1 + (1− p1)s)
(α1 + β1 + s)α1+β1+s−1/2

(α1 + p1s)α1+p1s−1/2(β1 + (1− p1)s)β1+(1−p1)s−1/2

×
[
β1 + (1− p1)s
2(α1 + β1 + s)

]β1+(1−p1)s [2α1 + β1 + (1 + p1)s

2(α1 + β1 + s)

]α1+p1s

× 1

2

=
4−s

41+α1+β1eπ(β1 + (1− p1)s)
(α1 + β1 + s)−1/2

(β1 + (1− p1)s)−1/2
×
(
2α1 + β1 + (1 + p1)s

α1 + p1s

)α1+p1s

≥
√
1− p1

23+2α1+2β1eπ
× 4−s × 2α1+p1s =

√
1− p1

23+2α1+2β1eπ
× e−s(2−p1) log 2.

(H.8)

for any s ≥ 1,

σ(2α1,s + β1,s)
√

2ρ′ log q ≥ µ̂1,sβ1,s

⇐⇒
√
2ρ′ log q ≥ µ̂1,s(β1 + s−B1,s)

σ(2α1 + β1 + s+B1,s)

⇐=
√
2ρ′ log q ≥ µ1 + 2σµ1

σ
with probability at least 1− e−

(2σµ1)2s

2σ2

⇐= q ≥ exp

[
(2σ + 1)2r21
2ρ′p21σ

2

]
with probability at least 1− e

− 2r21s

p21

⇐= q ≥ exp

[
(2σ + 1)2

2ρ′p21σ
2

]
with probability at least 1− e

− 2s

p21 ,

(H.9)

and

e
− 2s

p21 ≤
√
1− p1

24+2α1+2β1eπ
× e−s(2−p1) log 2 q1−ρ

′

√
128π log q

(2−p1) log 2≤ 2

p21⇐= 1 ≤
√
1− p1

24+2α1+2β1eπ
× q1−ρ

′

√
128π log q

let dα:=maxx≥1 x
−α log x

⇐= 1 ≤
√
1− p1

24+2α1+2β1π

q1−ρ
′√

128πd1−ρ′q1−ρ
′

⇐⇒ q ≥

[
27+2α1+2β1+1/2π3/2e√

(1− p1)d1−ρ′

] 2
1−ρ′

(H.10)

with dα <∞ for any α > 0. Now, take

q ≥ e2 ∨ exp

[
(2σ + 1)2

2ρ′p21σ
2

]
∨

[
27+2α1+2β1+1/2π3/2e√

(1− p1)d1−ρ′

] 2
1−ρ′

∨ exp

[
160

(1− ρ′)2

]
(H.11)

in (H.7), we obtain that

P
(
M1,q >

α1,sµ̂1,s

α1,s + β1,s
+

z

p̂1,s
√
ρs
| F1,s

)
≥ 1− 1

q2
.
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On the other hand,

P
(

α1,sµ̂1,s

α1,s + β1,s
+

z

p̂1,s
√
ρs
≥ r1 − ϵ

)
≥P
(

α1,sµ̂1,s

α1,s + β1,s
+

2σ(2α1,s + β1,s)
√
2ρ′ log q

2(α1,s + β1,s)p̂1,s
√
ρs

≥ µ1p1

)

=P

(
µ̂1,s − µ1 +

σ(2α1,s + β1,s)

α1,sp̂1,s

√
2ρ′ log q

ρs
≥ µ1

[
α1,s + β1,s

α1,s
p1 − 1

])

=P

(
µ̂1,s − µ1 +

sσ [2α1 + β1 +B1,s]

(α1 +B1,s)B1,s

√
2ρ′ log q

ρs
≥ µ1

−(1− p1)α1 + p1β1 − (B1,s − p1s)
α1 +B1,s︸ ︷︷ ︸

event U1,s

)

=P (U1,s | B1,s ≥ p1s)P(B1,s ≥ p1s)

+

+∞∑
v=1

P
(
U1,s | −

s

v
< B1,s − p1s < −

s

v + 1

)
P
(
− s
v
< B1,s − p1s < −

s

v + 1

)

≥P

(
µ̂1,s − µ1 +

σ

s−1B1,s

√
2ρ′ log q

ρs
≥ 0 | B1,s ≥ p1s

)
P(B1,s ≥ p1s)

+

+∞∑
v=1

P

(
µ̂1,s − µ1,s +A1(s, v)

√
2ρ′ log q

ρs
≥ µ1A2(s, v) | −

s

v
< B1,s − p1s < −

s

v + 1

)

× P
(
− s
v
< B1,s − p1s < −

s

v + 1

)
by (H.12) and (H.13)

≥
(
1− q−ρ

′/ρ
)
P(B1,s ≥ p1s) +

+∞∑
v=1

(
1− e2p

−4
1 q−2p−1

1 ρ′/ρ
)
P
(
− s
v
< B1,s − p1s < −

s

v + 1

)
≥ 1− q−ρ

′/ρ − e2p
−4
1 q−2p−1

1 ρ′/ρ,

where we define

A1(s, v) :=
σ[s−1(2α1 + β1) + s−1B1,s]

s−1B1,s[s−1α1 + s−1B1,s]
, A2(s, v) :=

s−1[−(1− p1)α1 + p1β1]− (s−1B1,s − p1)
s−1α1 + s−1B1,s

.

We also use the facts that

P

(
µ̂1,s − µ1 +

σ

s−1B1,s

√
2ρ′ log q

ρs
≥ 0 | B1,s ≥ p1s

)

=1− P

(
µ1 − µ̂1,s ≥

σ

s−1B1,s

√
2ρ′ log q

ρs
| B1,s ≥ p1s

)
by the fact thatB1,s(µ̂1,s − µ1) ∼ subG(B1,sσ

2) for anyB1,s ≥ 1

≥ 1− exp

[
− ρ′ log q

ρs−1B1,s

]
by s−1B1,s≤1

≥ 1− q−ρ
′/ρ,

(H.12)
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and similarly

P

(
µ̂1,s − µ1 +A1(s, v)

√
2ρ′ log q

ρs
≥ µ1A2(s, v) | −

s

v
< B1,s − p1s < −

s

v + 1

)
by (1−p1)α1≤p1β1

≥ P

(
µ̂1,s − µ1 +A1(s, v)

√
2ρ′ log q

ρs
≥ µ1(p1 − s−1B1,s)

s−1α1 + s−1B1,s
| − s

v
< B1,s − p1s < −

s

v + 1

)
by similar trick in (H.12)

≥ 1− sup
s−1B1,s∈[p1−v−1,p1−(v+1)−1]

exp

−B1,s

2σ2

[
µ1(p1 − s−1B1,s)

s−1α1 + s−1B1,s
−A1(s, v)

√
2ρ′ log q

ρs

]2
by the fact (H.14)

≥ 1− sup
s−1B1,s∈[p1−v−1,p1−(v+1)−1]

exp

[
v−2µ2

1

[p1 + (v + 1)−1]
2 −

B1,s

2σ2
A2

1(s, v)
2ρ′ log q

ρs

]
by the fact (H.15)

≥ 1− exp

[
v−2µ2

1

[p1 + (v + 1)−1]
2 −

1

p1 − 1
v+1

ρ′ log q

ρs

]
by the fact (H.16)

≥ 1− e2p
−4
1 q−2p−1

1 ρ′/ρ

(H.13)
where the fact we used is

[
µ1(p1 − s−1B1,s)

s−1α1 + s−1B1,s

]2
− 2A1(s, v)

µ1(p1 − s−1B1,s)

s−1α1 + s−1B1,s

√
2ρ′ log q

ρs

=
µ1(p1 − s−1B1,s)

[s−1α1 + s−1B1,s]
2

[
µ1(p1 − s−1B1,s)−

2σ[s−1(2α1 + β1) + s−1B1,s]

s−1B1,s

√
2ρ′ log q

ρs

]

≤
µ1

1
v[

p1 +
1
v+1

]2 µ1

v
=

v−2µ2
1

[p1 + (v + 1)−1]
2 ,

(H.14)

B1,s

2σ2
A2

1(s, v)
2ρ′ log q

ρs
=

[s−1(2α1 + β1) + s−1B1,s]
2

s−1B1,s [s−1α1 + s−1B1,s]
2

ρ′ log q

ρs

≥ 1

s−1B1,s

ρ′ log q

ρs

by s−1B1,s≤p1− 1
v+1

≥ 1

p1 − 1
v+1

ρ′ log q

ρs
,

(H.15)

and

v−2µ2
1

[p1 + (v + 1)−1]
2 −

1

p1 − 1
v+1

ρ′ log q

ρs
≤ 2µ2

1

p21
− 2

p1

ρ′ log q

ρs
(H.16)

uniformly on v, s ≥ 1 and s−1B1,s ∈
[
p1 − v−1, p1 − (v + 1)−1

]
. Therefore, by plugging these inequalities into (H.6),

we conclude that

P(Υ1,s < q) ≤ 1− q−2 − q−ρ
′/ρ − e2p

−4
1 q−2p−1

1 ρ′/ρ
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for any q satisfied (H.11), and then

EΥ1,s =

+∞∑
q=0

P(Υ1,s ≥ q)

≤ e2 + exp

[
(2σ + 1)2

2ρ′p21σ
2

]
+

[
27+2α1+2β1+1/2π3/2e√

(1− p1)d1−ρ′

] 2
1−ρ′

+ exp

[
160

(1− ρ′)2

]

+

+∞∑
q=1

[
q−2 + q−ρ

′/ρ + e2p
−4
1 q−2p−1

1 ρ′/ρ
]

≤ e2 + exp

[
(2σ + 1)2

2ρ′p21σ
2

]
+

[
27+2α1+2β1+1/2π3/2e√

(1− p1)d1−ρ′

] 2
1−ρ′

+ exp

[
160

(1− ρ′)2

]

+ 1 +
1

1− ρ′/ρ
+

e2p
−4
1

1− 2p−1
1 ρ′/ρ

.

for any s ∈ N. Let 2p−1
1 ρ′/ρ = 1/2, we immediately conclude that

E
[

1

G1,s(ϵ)
− 1

]
= EΥ1,s ≤ c (H.17)

with c = c(p1, ρ, σ
2) is fully determined by p1, ρ, σ2 and free of s. Now, let E1,s = {µ̂1,s × p̂1,s > r1 − ϵ/2}, then

P
(
Υ1,s > r1 − ϵ | E1,s

)
≥P
(
Υ1,s > µ̂1,s × p̂1,s − ϵ/2 | E1,s

)
=1− P

(
µ̂1,s × p̂1,s > N

(
µ̂1,s, 2σ

2/(ρksp̂
2
1,s)
)
× Beta(α1,s, β1,s) + ϵ/2 | E1,s

)
≥1−

[
P
(
µ̂1,s > N

(
µ̂1,s, 2σ

2/(ρsp̂21,s)
)
+ ϵ/(2p1) | E1,s

)
+ P

(
p̂1,s > Beta(α1,s, β1,s) + p1ϵ/(4r1 + ϵ)

)]
.

(H.18)
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Note that we have

P
(
µ̂1,s > N

(
µ̂1,s, 2σ

2/(ρsp̂21,s)
)
+ ϵ/(2p1) | E1,s

)
= P

(
B1,sµ̂1,s −N

(
B1,sµ̂1,s,

2sσ2

ρ

)
>
ϵB1,s

2p1
| E1,s

)
by the inequality does not rely anything on E1,s

≤ 1

2
E exp

[
−
ϵ2B2

1,s

4p21
× ρ

4sσ2

]

=
1

2

[
E
[
exp

(
− sρϵ2

16p1σ2

(
s−1B1,s

)2) | s−1B1,s > p1/2

]
P
(
s−1B1,s > p1/2

)
+ E

[
exp

(
− sρϵ2

16p1σ2

(
s−1B1,s

)2) | s−1B1,s ≤ p1/2
]
P
(
s−1B1,s ≤ p1/2

)]

≤ 1

2

[
exp

(
− sρϵ2

64p1σ2

)
+ P

(
0 < s−1B1,s ≤ p1/2

)]
by Theorem 2 in (Ahle, 2017)

≤ 1

2

[
exp

(
− sρϵ2

64p1σ2

)
+ exp

(
− sd(p1/2, p1)

)]

=
1

2

[
exp

(
− sρϵ2

64p1σ2

)
+ exp

(
− s
(p1
2

log
1− p1
2− p1

+ log
2− p1
2− 2p1

))]
by x

1+x≤log x

≤ 1

2

[
exp

(
− sρϵ2

64p1σ2

)
+ exp

(
− sp1(1− p1/2)

)]
,

and

P
(
p̂1,s > Beta(α1,s, β1,s) + p1ϵ/(4r1 + ϵ)

)
= P

(
Beta(α1,s, β1,s)− EBeta(α1,s, β1,s) <

(α1 + β1)B1,s − α1s

(α1 + β1 + s)s
− p1ϵ

4r1 + ϵ

)
when s≥ 2(4+ϵ)

p1ϵ

≤ P
(
Beta(α1,s, β1,s)− EBeta(α1,s, β1,s) < −

p1ϵ

2(4 + ϵ)

)
≤ 2 exp

[
− p21ϵ

2

18(4 + ϵ) [(4 + ϵ) + 4p1ϵ]
s

]
,

where we use the result in Theorem 1 of Skorski (2023): if α1,s ≥ β1,s, we have

P
(
Beta(α1,s, β1,s)− EBeta(α1,s, β1,s) < −

p1ϵ

2(4 + ϵ)

)
≤ exp

[
−
(

p1ϵ

2(4 + ϵ)

)2
(α1,s + β1,s)

2(α1,s + β1,s + 1)

2α1,sβ1,s

]

= exp

[
−
(

p1ϵ

2(4 + ϵ)

)2
(α1 + β1 + s)2(1 + α1 + β1 + s)

2(α1 +B1,s)(β1 + s−B1,s)

]

≤ exp

[
−
(

p1ϵ

2(4 + ϵ)

)2
s3

2(α1 + s/2)(β1 + s/2)

]
by α1,β1≤1

≤ exp

[
− p21ϵ

2

18(4 + ϵ)2
s

]
;
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and if α1,s < β1,s, we have

P
(
Beta(α1,s, β1,s)− EBeta(α1,s, β1,s) < −

p1ϵ

2(4 + ϵ)

)
≤ exp

[
− p21ϵ

2

8(4 + ϵ)2

[
α1,sβ1,s

(α1,s + β1,s)2(α1,s + β1,s + 1)
+

2(β1,s − α1,s)

3(α1,s + β1,s)(α1,s + β1,s + 2)

p1ϵ

2(4 + ϵ)

]−1
]

= exp

[
− p21ϵ

2

8(4 + ϵ)2

[
(α1 +B1,s)(β1 + s−B1,s)

(α1 + β1 + s)2(1 + α1 + β1 + s)
+

2(β1 − α1 + s−B1,s)

3(α1 + β1 + s)(2 + α1 + β1 + s)

p1ϵ

2(4 + ϵ)

]−1
]

≤ exp

[
− p21ϵ

2

8(4 + ϵ)2

[
(α1 + s/2)(β1 + s/2)

s3
+
p1ϵ(β1 − α1)

3(4 + ϵ)s2

]−1
]

≤ exp

[
− p21ϵ

2

8(4 + ϵ)2

[
9s2

4s3
+

p1ϵ

3(4 + ϵ)s2

]−1
]

≤ exp

[
− p21ϵ

2

18(4 + ϵ) [(4 + ϵ) + 4p1ϵ]
s

]
.

By plugging these inequalities into (H.18), we obtain

P
(
Υ1,s > r1 − ϵ | E1,s

)
≥1− 1

2

[
exp

(
− sρϵ2

64p1σ2

)
+ exp

(
− sp1(1− p1/2)

)]
− 2 exp

[
− p21ϵ

2

18(4 + ϵ) [(4 + ϵ) + 4p1ϵ]
s

]
.

On the other hand, the probability of E1,s can be directly bounded through the concentrations for Gaussian and Binomial
distribution as

P(E1,s) = P
(
µ̂1,s × p̂1,s > r1 − ϵ/2

)
≥ 1−

[
P
(
µ1 > µ̂1,s + ϵ/(2p1)

)
+ P

(
p1 > p̂1,s + p1ϵ/(4r1 + ϵ)

)]
≥ 1− exp

[
− sϵ2

8p21σ
2

]
− exp

[
− 2sp21ϵ

2

(4 + ϵ)2

]
by the facts that

P
(
µ1 > µ̂1,s + ϵ/(2p1)

)
= P

(
µ1 − µ̂1,s > ϵ/(2p1)

)
≤ exp

(
− sϵ2

8p21σ
2

)
and

P
(
p1 > p̂1,s + p1ϵ/(4r1 + ϵ)

)
= P

(
p1 − p̂1,s > p1ϵ/(4r1 + ϵ)

)
≤ exp

(
− 2sp21ϵ

2

(4r1 + ϵ)2

)
.

Note that ρ ∈ (1/2, 1), we have exp
(
− sρϵ2

64p1σ2

)
, exp (−sp1(1− p1/2)), exp

(
− sp21ϵ

2

18(4+ϵ)[(4+ϵ)+4p1ϵ]

)
, exp

(
− sϵ2

8p21σ
2

)
, and

exp
(
− 2sp21ϵ

2

(4r1+ϵ)2

)
are all less than exp

(
− sp21ϵ

2

(4+ϵ)2(1∨σ2)

)
. Then, by combining the inequalities for P

(
Υ1,s > r1 − ϵ | E1,s

)
and P(E1,s), we have

P
(
Υ1,s > r1 − ϵ | E1,s

)
P(E1,s)

≥

[
1− exp

(
− sp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)
− 2 exp

(
− sp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)][
1− 2 exp

(
− sp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)]

≥

[
1− 3 exp

(
− sp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)]2
.

60



Zero-Inflated Bandits

Thus, if we take L ≥ (4+ϵ)2(1∨σ2)
p21ϵ

2 log(3(1− 1/
√
2)−1), it will yield

E
[ T∑
s=L

(
1

G1,s(ϵ)
− 1

)]
≤ E

[ T∑
s=L

(
1

P
(
Υ1,s > r1 − ϵ | E1,s

)
P(E1,s)

− 1

)]

≤
T∑
s=L

[ [
1− 3 exp

(
− sp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)]−2

− 1

]
by (1−3x)−2−1≤12x for any x<1/3−1/(3

√
2) and the condition for L

≤ 12

T∑
s=L

exp

(
− sp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)
≤ 12

∫ +∞

L

exp

(
− sp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)
ds+ 12 exp

(
− Lp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)
= 12 exp

(
− Lp21ϵ

2

(4 + ϵ)2(1 ∨ σ2)

)[
1 +

(4 + ϵ)2(1 ∨ σ2)

p21ϵ
2

]
by the condition for L

≤ 4
(
1− 1/

√
2
) [

1 +
(4 + ϵ)2(1 ∨ σ2)

p21ϵ
2

]
.

The above inequality together inequality (H.17) implies (H.5) immediately. Therefore, we obtain the last term in (H.4) is
bounded by

∆kE

[
T−1∑
s=1

(
1

G1,s(∆k/2)
− 1

)]
≲ ∆k

4

p21∆
2
k

by ∆k≥(2Ξ)∨(2e
√

2pkK/T )

≲
1

p1
√
pk

√
T

K
,

and therefore,

∆kEck(T ) ≤ ∆k +∆kE

[
T∑

t=K+1

1
(
At = k,Eck(t)

)]
+∆kE

[
T−1∑
s=1

(
1

G1,s(∆k/2)
− 1

)]

≲ ∆k +

√
pkT

K
+

∆k

pk
√
T

+
∆k

pk
+

1

p1
√
pk

√
T

K

≍ ∆k

pk
+

1

p1
√
pk

√
T

K
.

By substituting the above inequality and (H.3) back into (H.1), we obtain the result stated in the theorem.

I. Proof of Regret Bounds for Contextual Bandit Algorithms
Let Vt :=

∑t
ℓ=1:Yℓ=1 ZℓZ

⊤
ℓ and Ut :=

∑t
ℓ=1 WℓW

⊤
ℓ be the sample variance for the non-zero part and binary part at

round t, respectively. The proof for contextual bandits is divided into three main steps after decomposing the regret into two
periods.

The first step is to find the minimal round τ such that the minimal eigenvalue of Vt and Ut satisfies
min{λmin(Vt), λmin(Ut)} ≥ 1 for any t ≥ τ with a high probability, which bounds the regret in the first τ periods.
The second step uses the self-normalized martingale result to bound the regret from τ to T rounds. The final step combines
the regret over both periods.

Proof. Step 0: We start with decomposing the regret. Assume A∗
t is the optimal action at round t, and let Z∗

t := ψX(xt, A
∗
t )

61



Zero-Inflated Bandits

and pAt
:= h

(
ψY (xt, At)

⊤θ
)
, then

R(T ) =
T∑
t=1

[
pA∗

t
g(β∗⊤Z∗

t )− pAt
g(β∗⊤Zt)

]
=

τ∑
t=1

[
pA∗

t
g(β∗⊤Zt)− pAtg(β

∗⊤Z∗
t )
]
+

T∑
t=τ+1

[
pA∗

t
g(β∗⊤Z∗

t )− pAtg(β̂
⊤
t Zt)

]

≤
[
2Lg + g(0)

]
τ +

T∑
t=τ+1

[
pA∗

t
g(β∗⊤Z∗

t )− p̂Atg(β̂
⊤
t Zt)

]
(I.1)

where the last inequality is by

τ∑
t=1

[
pA∗

t
g(β∗⊤Z∗

t )− pAt
g(β∗⊤Zt)

]
=

τ∑
t=1

{[
pA∗

t
g(β∗⊤Z∗

t )− pA∗
t
g(β∗⊤Zt)

]
+
[
pA∗

t
g(β∗⊤Zt)− pAtg(β

∗⊤Zt)
]}

by Assumption C.1 (ii)
≤

τ∑
t=1

{
Lg
∣∣β∗⊤Z∗

t − β∗⊤Zt
∣∣+ [Lg∣∣β∗⊤Zt − 0

∣∣+ g(0)
]
(pA∗

t
− pAt

)
}

≤
τ∑
t=1

{
Lg

√
∥β∗∥22∥Z∗

t − Zt∥22 +
[
Lg

√
∥β∗∥22∥Zt∥22 + g(0)

]
(pA∗

t
− p̂A∗

t
)
}

by Assumption C.1 (i)
≤

[
2Lg + g(0)

]
τ

and τ ∈ N will be determined later.

For each arm k ∈ [K], let Vk(m) :=
∑m
t=1:Yt,k=1 Zt,kZ

⊤
t,k is the sample variance for the non-zero part and Bk(m) :=

{t ∈ [m] : Yt,k = 1} of the arm k with pulling it m times.

Step 1: Let Σk := E[Zt,kZ⊤
t,k] and Ωk := E[Wt,kW

⊤
t,k] be the variance matrices for the i.i.d sample ψX(xt, Ak) and

ψY (xt, Ak), respectively. Note Vk(m) has the same distribution with

Bk(m)∑
i=1

Zi,kZ
⊤
i,k,

due to Xt is independent with Yt for any fixed t ∈ [m]. Then by applying Proposition 1 in Li et al. (2017), for any δ ∈ (0, 1)
there exist positive, universal constants C1 and C2 such that

λmin

(
Vk(m)

)
≥ 1

with probability at least 1− δ, as long as

Bk(m) ≥

(
C1

√
d+ C2

√
log(1/δ)

λmin(Σk)

)2

+
2

λmin(Σk)
.

Note that Bk(m) is the summation of independent Bernoulli(pk,t) variables with pk,t ≥ p∗ we have Bk(m) ≥ mp∗/2 with
probability at least 1− δ whenever m ≥ 4p−2

∗ by Hoeffding’s inequality.

Similarly, we also apply Proposition 1 in Li et al. (2017) for Uk(m) =
∑m
t=1 Wt,kW

⊤
t,k, and know that there exist some

universal C3, C4 constants such that λmin

(
Uk(m)

)
≥ 1 whenever

m ≥

(
C3
√
q + C4

√
log(1/δ)

λmin(Ωk)

)2

+
2

λmin(Ωk)
.
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Now, by noticing Assumption C.2 (ii), we let

τk = max

 2

p2∗

[(
C1

√
d+ C2

√
log(1/δ)

λmin(Σk)

)2

+
2

λmin(Σk)

]
,
4 log(1/δ)

p2∗
,

(
C3
√
q + C4

√
log(1/δ)

λmin(Ωk)

)2

+
2

λmin(Ωk)

 .

then we have
min

{
λmin(Vk(τk)), λmin(Uk(τk))

}
≥ 1

with probability at least 1− 3δ.

Step 2.1 Define
Vn =

∑
k∈[K]

Vk(mk) + λV Id

with n is the round such that for arm k pulledmk times. Then from Step 1 and the fact that τ = maxk∈[K] τk by Assumption
C.2 (ii), we know that for any n ≥ τ + 1, the minimal eigenvalue of Vn and Un satisfies

λmin(Vn) ≥ 1 + λV , and λmin(Un) ≥ 1 + λU

with probability at least 1− 3δ. Next, since Vt+1 = Vt + Yt · ZtZ⊤
t ,

detVt+1 = detVt × det
(
Id + Yt ·V−1/2

t ZtZ
⊤
t V

−1/2
t

)
which furthermore implies

log detVT = log

(
detVτ

T∏
t=τ+1:Yt=1

(1 + ∥Zt∥2V−1
t
)

)

= log detVτ +

T∑
t=τ+1:Yt=1

log
(
1 + ∥Zt∥2V−1

t

)

≥ log detVτ +
1

2

T∑
t=τ+1:Yt=1

(
1 ∧ ∥Zt∥2V−1

t

)

= log detVτ +
1

2

T∑
t=τ+1:Yt=1

∥Zt∥2V−1
t
,

where the last step is due to ∥Zt∥2 ≤ 1 and λmin(Vt) > 1 for t ≥ τ + 1. Therefore, we conclude that

T∑
t=τ+1:Yt=1

∥Zt∥V−1
t

by Cauchy
≤

√√√√T

T∑
t=τ+1:Yt=1

∥Zt∥2V−1
t

≤
√
2T log

detVT

detVτ
. (I.2)

Note that by the inequality of arithmetic and geometric means,

detVT ≤
(
tr(VT )

d

)d
≤
(
tr(Vτ ) + T − τ

d

)d
,

and the fact that
tr(Vτ ) ≤ λV + τ and detVτ ≥ (1 + λV )

d.

Our inequality (I.2) can be furthermore bounded by

T∑
t=τ+1:Yt=1

∥Zt∥V−1
t
≤
√
2T log

detVT

detVτ
≤

√
2Td log

(
λV + T

d(1 + λV )

)
. (I.3)
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Similarly, we have
T∑

t=τ+1

∥Wt∥U−1
t
≤

√
2Tq log

(
λU + T

q(1 + λU )

)
, (I.4)

as Yt would always be observed, which is a specific case above.

Step 2.2 Let ΨX,t(β) :=
∑t
ℓ=1:Yℓ=1

[
g(Z⊤

ℓ β)− g(Z⊤
ℓ β

∗)
]
Zℓ. By Assumption C.1 (iii), we have

∥ΨX,t(β)∥2V−1
t
≥ κ2g∥β − β∗∥22 (I.5)

for any β ∈ Γ ⊆ {β : ∥β−β∗∥2 ≤ 1}. Next, note that β̂t directly comes solving
∑t
ℓ=1:Yℓ=1

[
Xℓ− g(Z⊤

ℓ β)
]
Zℓ = 0, then

ΨX,t(β̂t) =
∑

ℓ∈[t]:Yℓ=1

[
g(Z⊤

ℓ β̂t)− g(Z⊤
ℓ β

∗)
]
Zℓ

=
∑

ℓ∈[t]:Yℓ=1

[
g(Z⊤

ℓ β̂t)− g(Z⊤
ℓ β

∗)
]
Zℓ +

∑
ℓ∈[t]:Yℓ=1

[
Xℓ − g(Z⊤

ℓ β̂t)
]
Zℓ

=
∑

ℓ∈[t]:Yℓ=1

[
Xℓ − g(Z⊤

ℓ β
∗)
]
Zℓ =

∑
ℓ∈[t]:Yℓ=1

εℓZℓ.

Note that εℓ | Fℓ−1 ∼ subG(σ2) directly implies εℓ | σ⟨Ys = 1 : s ∈ [ℓ]⟩ ∩ Fℓ−1 ∼ subG(σ2). Let

1

2σ2

∥∥ΨX,t(β̂t)∥∥2V−1
t

= max
v∈Rd

(
v⊤

∑
ℓ∈[t]:Yℓ=1

σ−1εℓZℓ −
1

2
∥v∥2Vt

)
:= max

v∈Rd
MX,t(v),

then MX,t(v) :=
∫
MX,t(v) dµ(v) is also an F-adapted non-negative super-martingale with initial value = 1 for any

probability measure µ(v) on Rd. Thus, by Theorem 3.9 in Lattimore & Szepesvári (2020), we have

P
(
sup
t∈N

MX,t(v) ≥ 1/δ
)
≤ EMX,0(v)

1/δ
= δ

for the probability measure µ = N (0, λ−1
U Id). Plugging in the explicit formula for MX,t(v), we obtain that

P
(
∃ t ∈ N :

1

2σ2

∥∥ΨX,t(β̂t)∥∥2V−1
t
≥ 2 log(1/δ) + log

(
detVt

λdV

))
≤ δ (I.6)

for any λU > 0 and δ ∈ (0, 1). Combining inequality (I.5) and (I.6), we conclude that

∥β̂t − β∗∥2 ≤ κ−1
g

√
2σ

√
2 log(1/δ) + log

(
detVt

λdV

)
≤ κ−1

g σ
√
4 log(1/δ) + d log(1 + λ−1

V t/d) = ρX,t

holds with probability at least 1− δ for any t ≥ τ + 1, where the last inequality is due to

detVt

λdV
≤
(
tr

(
Vt

λV d

))d
≤
(
1 +
{ℓ ∈ [t] : Yℓ = 1}

λV d

)d
≤
(
1 +

t

λV d

)d
.

By using the similar argument, we can also show that

∥θ̂t − θ∗∥2 ≤ κ−1
h

√
4 log(1/δ) + q log(1 + λ−1

U t/q) = ρY,t

holds with probability at least 1− δ for any t ≥ τ + 1.

Step 2.3 The design of Algorithm C.2 for choosing At ∈ [K] ensures

β̂⊤
t Z

∗
t + ρX,t∥Z∗

t ∥V−1
t
≤ β̂⊤

t Zt + ρX,t∥Zt∥V−1
t
,
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i.e.,
β̂⊤
t (Z

∗
t − Zt) ≤ ρX,t

(
∥Zt∥V−1

t
− ∥Z∗

t ∥V−1
t

)
and

θ̂⊤
t W

∗
t + ρY,t∥W∗

t ∥U−1
t
≤ θ̂⊤

t Wt + ρY,t∥Wt∥U−1
t
,

i.e.,
θ̂⊤
t (W

∗
t −Wt) ≤ ρY,t

(
∥Wt∥U−1

t
− ∥W∗

t ∥U−1
t

)
.

Apply the last two inequalities in Step 2.2, we obtain

(Z∗
t − Zt)

⊤β∗ = (Z∗
t − Zt)

⊤β̂t − (Z∗
t − Zt)

⊤(β̂t − β∗)

≤ ρX,t
(
∥Zt∥V−1

t
− ∥Z∗

t ∥V−1
t

)
+ ∥Z∗

t − Zt∥V−1
t
∥β̂t − β∗∥2

by the choose of ρX,t and t > τ

≤ ρX,t
(
∥Zt∥V−1

t
− ∥Z∗

t ∥V−1
t

+ ∥Z∗
t − Zt∥V−1

t

)
≤ 2ρX,t∥Zt∥V−1

t
.

with probability at least 1− 4δ for any t ≥ τ + 1. Similarly, by applying the same technique for (W∗
t −Wt)

⊤θ∗, we can
obtain that

(Z∗
t − Zt)

⊤β∗ ≤ 2ρX,t∥Zt∥V−1
t

and (W∗
t −Wt)

⊤θ∗ ≤ 2ρY,t∥Wt∥U−1
t
, (I.7)

both hold with probability at least 1− 5δ for any t ≥ τ + 1.

Step 3: Now, with the inequality (I.7), we could deal with the remaining part in (I.1) in Step 0. By following the same
technique for proving

∑τ
t=1[pA∗

t
g(β∗⊤Zt)− p̂At

g(β̂⊤
t Z

∗
t )] ≤ [2Lg + g(0)]τ , we have

T∑
t=τ+1

[
pA∗

t
g(β⊤Z∗

t )− pAt
g(β⊤Zt)

]
by Assumption C.1 (ii)

≤
T∑

t=τ+1

{
Lg
(
β∗⊤Z∗

t − β∗⊤Zt
)
+
[
Lg
∣∣β∗⊤Zt − 0

∣∣+ g(0)
]
Lh
(
θ∗⊤W∗

t − θ∗⊤Wt

)}
by (I.7)
≤ 2Lg

T∑
t=τ+1

ρX,t∥Zt∥V−1
t

+ 2(Lg + g(0))Lh

T∑
t=τ+1

ρY,t∥Wt∥U−1
t

≤2LgρX,T
T∑

t=τ+1

∥Zt∥V−1
t

+ 2(Lg + g(0))LhρY,T

T∑
t=τ+1

∥Wt∥U−1
t

by (I.3) and (I.4)
≤ 2κ−1

g σLg

√
4 log(1/δ) + d log(1 + λ−1

V T/d)

√
2Td log

(
λV + T

d(1 + λV )

)

+ 2κ−1
h (Lg + g(0))Lh

√
4 log(1/δ) + q log(1 + λ−1

U t/q)

√
2Tq log

(
λU + T

q(1 + λU )

)
,

which completes the regret bound for our UCB algorithm. The regret bound for the TS algorithm follows similarly,
leveraging the anti-concentration result in (C.2) along with the proof techniques in Theorem 1 of Agrawal & Goyal (2013).
Specifically, it incorporates anti-concentration results for (β̃t − β̂t)(Z

∗
t − Zt) and (θ̃t − θ̂t)(W

∗
t −Wt).
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