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Abstract
We propose using a coordinate network as a decoder for MRI super-resolution. The continu-
ous signal representation of coordinate networks enables this approach to be scale-agnostic,
i.e. training over a continuous range of scales and querying at arbitrary resolutions. We
evaluate the benefits of denoising for coordinate networks and also compare our method to
a convolutional decoder using image quality metrics and a radiologist study.
Keywords: Coordinate networks, super-resolution, MRI.

1. Introduction

High resolution (HR) magnetic resonance imaging (MRI) scans are crucial for many
diagnostic imaging tasks. However, tradeo↵s with scan time and signal-to-noise ratios
(SNR) motivate improved MRI resolution for higher downstream clinical utility. While
deep learning (DL) can learn data-driven priors for encoding high-frequency information in
super-resolution (SR) tasks, state-of-the-art methods such as EDSR (Lim et al., 2017) are
limited to upsampling at fixed, discrete scales due to their convolutional structure. Discrete
scales are undesirable for clinical interpretation (Chaudhari et al., 2021); further, training
such fixed networks places strict limits on acquiring homogeneous training data.

Here we propose a scale-agnostic framework for MRI SR using a coordinate network as a
decoder. The continuous nature of this decoder enables (1) querying at arbitrary resolutions
(2) decoupling between training and querying scales, e.g. one can train on a continuous range
of 1-2⇥ and query at 3⇥. Throughout the optimization we employ a denoiser to mitigate
the network from outputting noise as high-frequency detail. We compare the proposed
framework’s coordinate decoder against a standard convolutional decoder (EDSR), using
image quality metrics and a clinical reader study.

Related Work: Coordinate networks are recent powerful tools for representing signals
such as images with fully-connected multi-layer perceptrons (MLPs) by mapping image
coordinates to their corresponding pixel values. In contrast to standard pixel-based repre-
sentations, this representation is continuous w.r.t. network weights, allowing it to model fine
detail which is limited by network capacity instead of grid resolution. Coordinate networks
are commonly employed for unsupervised representation of a single signal (Lindell et al.,
2022; Wu et al., 2021) but cannot incorporate novel high-frequency information for SR. In
contrast, supervised methods learn to represent many signals over a shared function space,
often with meta-learning or convolutional structure to encode features (Chen et al., 2021).
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2. Methods

Given a high-resolution image xhr, we create low-resolution network input via bicubic
downsampling, which is mapped to a 2D latent representation with a SR encoder. Subse-
quently, given a coordinate (c⇤, Fig. 1) in the latent space, the coordinate network queries
the neighboring four latent codes (c := [c1, c2, c3, c4]) such that the decoder’s 1D output
predicts the grayscale pixel value at those four locations. The pixel value at c⇤ is estimated
as a linear combination of surrounding pixel values at c based on relative distance, hence
preventing discontinuities in the output image. Querying over many coordinates produces
the predicted image x̂. For training we use a consistency loss Lc and denoising loss Ld,
i.e. Lc + �Ld = kx̂� xhrk1 + �kx̂�D�(xhr)k22, where D� is a denoiser with strength �.

Implementation: This framework allows for many choices of encoders or denoisers;
for simplicity we choose an EDSR encoder and BM3D denoiser (Dabov et al., 2007). We
compare our decoder’s continuous representation (“coord”), to the same framework with a
convolutional decoder, i.e. the original EDSR (“conv”), which is not scale-agnostic. Coord is
similar to conv but modifies the decoder to be a five-layer MLP containing 256 hidden
units and ReLU activations. We also compare against bicubic interpolation, which can be
queried at arbitrary scales but has no prior to incorporate higher frequency information.
We evaluate on 2D sagittal slices of the SKM-TEA dataset (Desai et al., 2021).

Reader study details: We perform a reader study with radiologists comparing co-
ord and conv, both trained on 2⇥ SR. In clinical applications one would want to scale
beyond ground-truth; hence at inference we bypass downsampling and perform 2⇥ SR on
the ground-truth itself. Both readers used a five-point Likert scale to evaluate randomized
side-by-side image pairs on both sharpness and noise.

3. Results and Discussion

Per Table 1, coord performs comparably when trained on a range of scales (1-2⇥, row 2)
vs. a fixed scale (2⇥, row 5). Because coord is scale-agnostic, it can be queried at a resolution
which is both arbitrary and independent of its training scales. Conversely, conv—without
additional interpolation—queries only at fixed integer upsampling according to its training
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Figure 1: Left: System overview. Right: Image comparison given input cropped from the
red box at left. Coord and conv are each trained at 2⇥. Coord can also be queried at 4⇥ without
re-training because it is scale-agnostic (F). Coord benefits from denoising i.e. � 6= 0 (D vs. E), while
conv does not (see Table 1).

2



Scale-Agnostic Super-Resolution in MRI using Coordinate Networks

Table 1: Left: Quantitative scores (VIF/PSNR). Coord obtains similar performance to
conv (slightly better VIF, slightly worse PSNR) and has the benefit of being agnostic with re-
spect to train and query scales. Below the midline we provide ablations at various training scales
and with/without denoising i.e. � (see discussion, Section 3). Right: Reader study scoring criteria
(top) and results (bottom) demonstrating a slight overall preference for coord.

Compared to conv in [noise/sharpness], coord is...
much 
worse

slightly 
worse

no
different

slightly 
better

much
better 

scales. Conv was slightly superior to coord in PSNR but slightly inferior in VIF, which
is more indicative of clinical diagnostic quality (Mason et al., 2019). Unlike coord which
benefited from denoising regularization (Fig. 1, D vs. E), conv did not (row 6), presumably
since the convolutional kernel structure inherently acts as a denoiser.

We note the challenge of evaluating clinical potential using image metrics alone. Con-
sider instances where higher metrics scores seemingly do not pertain to better quality:
compared to coord, � = 10 (Fig. 1, E), bicubic interpolation (B) achieves higher PSNR
while coord, � = 0 (D) achieves higher VIF; however, these are perceptually undesirable
in terms of sharpness and noise, respectively. Furthermore, quantitative metrics require a
ground-truth reference; yet in a clinical setting, the goal is to scale larger than ground-truth
resolution. Hence to gain insight beyond these limitations, we present a reader study in
Table 1 demonstrating that coord is equivalent or slightly preferable to conv in terms of
perceived sharpness and noise.

In the future, we plan to extensively evaluate across di↵erent encoding, decoding, and
denoising methods and also assess impact on pixel-level quantitative MRI metrics.

References

Akshay Chaudhari et al. Prospective deployment of deep learning in MRI: a framework for important
considerations, challenges, and recommendations for best practices. JMRI, 54(2):357–371, 2021.

Yinbo Chen et al. Learning continuous image representation with local implicit image function. In
CVPR, pages 8628–8638, 2021.

Kostadin Dabov et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE
- TIP, 16(8):2080–2095, 2007.

Arjun D Desai et al. SKM-TEA: A dataset for accelerated MRI reconstruction with dense image
labels for quantitative clinical evaluation. In NeurIPS Datasets, 2021.

Bee Lim et al. Enhanced deep residual networks for single image super-resolution. In CVPR
Workshops, pages 136–144, 2017.

David B. Lindell et al. BACON: Band-limited coordinate networks for multiscale scene representa-
tion. In CVPR, 2022.

Allister Mason et al. Comparison of objective image quality metrics to expert radiologists’ scoring
of diagnostic quality of MR images. IEEE - TMI, 39(4):1064–1072, 2019.

Qing Wu et al. IREM: High-resolution MRI reconstruction via implicit neural representation. In
MICCAI, pages 65–74. Springer, 2021.

3


	Introduction
	Methods
	Results and Discussion

