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ABSTRACT

Coreset selection aims to select a small high-quality subset from a large-scale
dataset to support DNN downstream tasks. k-Center is a solid coreset selection
approach with a theoretical guarantee. It considers coresets from the covering
theory: In the feature space, a coreset can cover all data with a sphere centered on
each sample in the coreset. Smaller covering radii indicate better quality. However,
the performance of k-center degrades and lags behind other methods on noisy
datasets. To the best of our knowledge, there is still a lack of explanation for this
phenomenon. We propose a theory for this phenomenon. Our theory indicates
that the noise rate of the coreset constrains the generalization performance of the
selected subset. With this theory, we propose a coreset selection method under
label noise, named Shaker, whose core idea is to jointly optimize the set cover
and reliability of the coreset. Shaker first generates a batch of candidates with a
small covering radius and then swaps in their reliable neighbors while maintaining
a good set cover. Extensive results demonstrate that Shaker outperforms baseline
methods by up to 14.3%.

1 INTRODUCTION

Coreset selection is an important supporting technology for DNN models. It reduces the original
large-scale dataset to a small high-quality subset (Guo et al., 2022) to serve downstream tasks such
as accelerating neural architecture search (C et al., 2022), constructing memory for continuous
learning (Yoon et al., 2022), and active learning (Killamsetty et al., 2021c). For example, neural
architecture search and hyperparameter fine-tuning are key steps towards high-performance models.
They require training hundreds to thousands of models using the same dataset, showing a major
development bottleneck. Coreset alleviates this issue by reducing the training iterations with a
high-quality subset. Coreset technology speeds up this process by more than 8x while sacrificing
accuracy within 1% (C et al., 2022).

k-Center is a theoretically guaranteed coreset selection approach (Sener & Savarese, 2018). Its
core idea is that in the feature space, a coreset can cover all samples of the full dataset with a
sphere centered in each sample of the coreset. Smaller covering radii of the sphere imply better
representations for the original full dataset. Optimizing the covering radii of k-center demonstrates
solid performance across many tasks (Guo et al., 2022).

Constructing a noise-robust coreset is a crucial task. The training labels are often unreliable. For
instance, Wei et al. relabeled the CIFAR-10 dataset on the Amazon Mechanical Turk platform. The
noise rate of the new labels is as high as 18% (Wei et al., 2022)! However, if we place k-center under
label noise, we observe that the performance of k-center degrades and lags behind the compared
methods by a large margin. To the best of our knowledge, there is still a gap in explaining the
performance degradation of k-center under label noise.

We propose a theory to explain this phenomenon. Specifically, we introduce noisy labels in the set
cover theory (Sener & Savarese, 2018). It leads to an interesting upper bound, which suggests that
the training error of the noisy coresets is upper bounded by the noise loss of the original dataset, the
coreset selection approximation loss from the ideal clean dataset, and the noise loss of the selected
coreset. Our complete theory demonstrates that the noisy coreset selection loss is dominated by
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the covering radius and the coreset noise rate. Empirical experiments support our theory. However,
incorporating two factors in coreset selection is challenging due to the potential seesaw effect.

We propose Shaker for robust coreset selection under label noise. Its core idea is similar to shaking
k-center: it optimizes the noise rate of k-center by swapping in reliable neighbors of the k-center
while maintaining a small covering radius. First, we generate a batch of candidates by optimizing the
covering radii in the feature space. Second, we swap in their reliable neighbors with small losses (Han
et al., 2018) into the coreset. We formalize this swapping as a bipartite graph matching problem,
where one side is the candidates, the other side is the remaining samples (including themselves so
that they can also be retained), and the connection edges between both sides are weighted by the
neighbors’ reliability improvement with the consideration of the distance to its nearest sample center.

We implement Shaker using PyTorch. Under the same software and hardware configurations,
we compare Shaker with other baselines on manually relabeled CIFAR-10N, CIFAR-100N, and
large-scale WebVision dataset. Extensive experimental results show that Shaker leads to better
generalization performance. Improving the efficiency of Shaker is future work.

2 BACKGROUND & MOTIVATION

Problem Statement. We consider the coreset selection problem under label noise. Suppose a dataset
D = {(xi, yi)}ni=1 contains C classes. Coreset selection aims to extract a high-quality subset S
of size m from D to serve downstream tasks such as neural architecture search acceleration and
continuous learning. However, due to the imperfection of annotators in the real world, sample xi is
labeled as wrong ỹi with a certain noise rate, which degrades the model performance trained with it.
How to enable the coreset to shield label noise is crucial.

2.1 REVIEW OF k-CENTER

k-Center selects coreset based on set cover. It views coreset S to be a δS cover of the entire dataset
D, which means that the balls of radius δS centered at each sample in S can cover the entire D.

Previous work demonstrated that the quality of k-center depends on decreasing covering radius over
the size of the coreset. Denote the trainable model weights as w and the loss function as l(x, y;w).
If the loss function l(w, y;w) is λl-Lipschitz continuous and bound by L. For each class c, its
regression function ηc(x) = p(y = c|x) is λη-Lipschitz continuous. With the assumptions in (Sener
& Savarese, 2018), k-center’s upper bound holds at least 1− γ:∣∣∣∣∣∣ 1n

∑
i∈D

l(xi, yi;w)− 1

m

∑
j∈S

l(xj , yj ;w)

∣∣∣∣∣∣ ≤ δS(λ
l + ληLC) +

√
log(1/γ)L2

2n
. (1)

2.2 THE PERFORMANCE GAP BETWEEN k-CENTER AND SOTA UNDER LABEL NOISE
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Figure 1: k-Center lags behind
SOTA on three noisy datasets.

However, the solid k-center can not extend to datasets with noisy
labels. Figure 1 reports this phenomenon (abbreviated as P1 in the
following paper). Specifically, this task is to select 20% subsets from
the datasets and evaluate its test accuracy with a variant of ResNet-
18. The experiments include two CIFAR-10 datasets with different
noise rates and one noisy CIFAR-100 dataset. The results show that
k-center lags behind SOTA by 2.2%, 3%, and 8.1%, respectively1.
It highlights a key limitation of the k-center method. To the best of
our knowledge, understanding why this phenomenon happens is still
a gap.

1The set of data are from (Park et al., 2023)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 WHY DOES k-CENTER LAG IN THE PRESENCE OF LABEL NOISE?

3.1 THEORETICAL EXPLANATION

We consider the effect of label noise in Eq. 1. By applying the triangle inequality, we decompose the
total selection error into:∣∣∣∣∣∣ 1n

∑
i∈D

l(xi, ỹi;w)− 1

m

∑
j∈S

l(xj , ỹj ;w)

∣∣∣∣∣∣ ≤
∣∣∣∣∣ 1n ∑

i∈D
l(xi, ỹi;w)− 1

n

∑
i∈D

l(xi, yi;w)

∣∣∣∣∣︸ ︷︷ ︸
(I) Noisy Full Dataset Loss

+

∣∣∣∣∣∣ 1n
∑
i∈D

l(xi, yi;w)− 1

m

∑
j∈S

l(xj , yj ;w)

∣∣∣∣∣∣︸ ︷︷ ︸
(II) Coreset Selection Loss

+

∣∣∣∣∣∣ 1m
∑
i∈S

l(xi, yi;w)− 1

m

∑
j∈S

l(xj , ỹj ;w)

∣∣∣∣∣∣︸ ︷︷ ︸
(III) Noisy Coreset Loss

. (2)

This step outlines that the loss of coreset selection from noisy datasets is bounded by three terms. (I)
is controlled by the intrinsic noise of the original datasets. (II) is the loss of clean coreset selection.
(III) represents the noise effect in the extracted coresets. With this observation, We state the following
theorem:
Theorem 1. Suppose the label noise of selected coresets is bounded by ϵ. Under the same assumptions
as in k-center (Sener & Savarese, 2018), the following holds at least 1− γ:∣∣∣∣∣∣ 1n

∑
i∈D

l(xi, ỹi;w)− 1

m

∑
j∈S

l(xj , ỹj ;w)

∣∣∣∣∣∣ ≤ δS(λ
l + ληLC) + ϵL+

√
log(1/γ)L2

2n
. (3)

Proof. Eq. 2 indicates that (I) is a constant in coreset selection, and (II) is the exact Eq. 1. For (III),
its upper bound ≤ L

m

∑
j∈S 1ỹj=yj

= ϵL. Combining the above results, we can get Eq. 3.

This theorem suggests that we can bound the coreset loss with covering radius, noise rate, and a term
close to zero with increasing n. Therefore, one explanation for P1 is that k-center does not take the
sample noise into account in coreset selection.

3.2 HOW TO APPLY THEOREM 1 TO CORESET SELECTION? A PRIMARY CHALLENGE
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Figure 2: Impact of covering radius and noise rate
on test accuracy.

Before applying Theorem 1 to coreset selection,
we are interested in two questions. (Q1): Is The-
orem 1 supported by empirical evidence? (Q2):
What are the challenges in applying Theorem 1
to coreset selection?

To answer both questions, we design a careful
experiment. Our design principle is to gener-
ate a series of coresets by linearly controlling a
factor (covering radius or noise rate). We then
check whether the suggestion of Theorem 1 is
aligned with the results. The experiment uses
CIFAR-10N dataset with a 40% noise rate and
a deep model from ResNet-18 family. Consider-
ing the effectiveness of the small loss criterion
in identifying clean labels, we construct a series
of subsets of 10% size in descending order of
sample loss. We calculate their noise rate, covering radius, and the corresponding accuracy. Figure 2
shows the effect of the two factors. The larger and darker circles indicate better accuracy.

First, the experimental results firmly support Theorem 1. Along the noise rate or the covering radius
dimension, increasing values consistently lead to decreased accuracy (Answer to Q1). Second,
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moving the coreset toward the lower-left corner of the plot is challenging. Because the covering
radius and noise rate are orthogonal, improving one could degrade the other. As shown in Figure 2,
although coresets along the reverse direction of main diagonal achieve smaller covering radii, they
exhibit higher noise rates, resulting in lower accuracies. Hence, how to shift coresets toward the
lower-left corner is challenging (Answer to Q2).

4 OUR METHOD: SHAKER

𝛿𝑠

𝛿𝑠

𝛿𝑠
𝛿𝑠

shaking-center

𝑘-center

covered samples

Figure 3: The diagram of Shaker.

A Bird’s Eye View. We propose Shaker to move towards generating coresets with small covering
radius and noise rate under label noise. Its core idea is to optimize the noise rate of k-center by
swapping out unreliable sample points and swapping in their reliable neighbors based on the small-
loss criterion as in Figure 3. To be specific, it consists of the following three steps. First, Shaker
identifies k-center by reducing the covering radius. Second, Shaker shakes these points through an
efficient bipartite graph matching to exchange some sample points and their reliable neighbors so as
to reduce the noise rate while maintaining a small covering radius. Finally, Shaker generates the final
coreset by making up for the mistakes in the previous step by alternating the above two steps.

4.1 LEFT FOOT: OPTIMIZE THE COVERING RADIUS OF THE CORESET

This step aims at generating a batch of coreset candidates by minimizing the covering radii. Formally,
for a batch coreset candidates S ′

of size B, their selection is

min
|S′ |≤B

max
i∈D̃\(S∪S′ )

min
j∈S∪S′

△(e(xi), e(xj)), (4)

where e(·) is the features of samples. Eq. 4 is a minimax facility location problem (Wolf, 2011).
Solving it is NP-Hard (Cook et al., 1998). We adopt a naive greedy selection solution following (Sener
& Savarese, 2018). Specifically, we first assign a center for all unselected samples with the nearest
sample in the current S. Then we select the farthest sample to its corresponding center into the
batch candidate S ′

. This process is executed incrementally until B candidates are acquired. It is
theoretically guaranteed that the resulting covering radii is upper bound by two times of the optimal
radii (Sener & Savarese, 2018).

4.2 RIGHT FOOT: REDUCE THE NOISE RATE OF THE CORESET BY SWAPPING IN RELIABLE
NEIGHBORS

This step aims to refine the candidates to be more reliable. Our refinement method leverages the
concept of bipartite graph matching in graph theory. A bipartite graph is a special type of undirected
graph. Its vertex set can be divided into two disjoint subsets such that each edge connects vertices
in two vertex sets. The goal of bipartite graph matching is to minimize the sum of the connection
weights between two point sets.

We formalize the swapping between the candidates and their reliable neighbors with the bipartite
graph matching. Specifically, we treat the coreset candidate S ′

as one vertex set. We treat the
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remaining unselected samples D̃\S as the other vertex set. Both sets are considered as independent
and disjoint so that samples in S ′

can connect with themselves and stay in coreset. We design the
edge weight Ck,i between sample k and i from two sets with the reliability improvement

Ck,i = −(1 + exp(−li/τ))exp(−△(e(xk),e(xi))), (5)

where τ is a coefficient that controls the swapping strength. Eq. 5 incorporates two considerations: (1)
Closer neighbors are preferred during swapping. In Eq. 5, such neighbors lead to a larger exponent of
the exponential formula so that Ck,i is smaller (because of the minimization objective below). (2)
Neighbors with small losses are preferred during swapping. The small-loss criterion demonstrates
that samples with small training loss are more likely to be correctly labeled and reliable. In Eq. 5,
such neighbors lead to a larger base of the exponential formula so that Ck,i is smaller. The final
optimization goal is

min
∑
k∈S′

∑
i∈D̃\S

Ck,iZk,i ,

s.t.
∑

i∈D̃\S

Zk,i = 1 , ∀k ∈ S
′
,

∑
k∈S′

Zk,i ≤ 1 , ∀i ∈ D̃\S ,

Zk,i ∈ {0, 1} , (6)

where Zk,i is the decision assignment variable indicating whether k and i are connected and should
swap in the i-th sample. Eq. 6 can be solved efficiently in polynomial time using the augmenting
path algorithm, i.e., LAPJVsp (Jonker & Volgenant, 1987).

4.3 GENERATE A CORESET BY ALTERNATING THE TWO STEPS

We repeat the above two steps to generate the next batch of samples until the complete coreset is
generated. On the one hand, the right foot may swap out samples with significant impacts on the
covering properties, hurting the representativeness of the coreset. Our alternating running could
correct the potential swapping errors. On the other hand, It can save computing resource. The size
of a full dataset is often tens of thousands, limiting the scalability of coreset selection. Alternating
running in batches allows Shaker to be applied to large datasets. Algorithm 1 concludes Shaker. For
brevity, we omit the remainder processing in batch splitting, which uses the same code.

Algorithm 1 Shaker algorithm.

Input: ∀(xi, ỹi) ∈ D̃ and the coreset budget m.
Parameter: Batch size B. Swapping coefficient τ .
Output: Coreset S.

1: Let S = ∅.
2: for batch 1,2, · · · , m//B do
3: Let S ′

= ∅.
4: repeat
5: if S is ∅ then
6: Init S ′

using the sample with the smallest loss.
7: end if
8: k = argmaxi∈D̃\(S∪S′ ) minj∈S∪S′ △(e(xi), e(xj)).

9: S ′ ← S ′ ∪ {k}.
10: until |S ′ | = B.
11: Compute cost matrix C according to Eq. 5.
12: Solve Eq. 6 with LAPJVsp algorithm.
13: Add the solved points into S.
14: end for
15: return S.
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5 EXPERIMENT

5.1 SETTING

Datasets. We use three datasets with real-world noisy labels. (1) CIFAR-10N (Wei et al., 2022).
It contains 10 classes. Each sample pairs with human-annotated labels collected from Amazon
Mechanical Turk. It contains two noisy versions: one with 18% and one with 40%. (2) CIFAR-
100N (Wei et al., 2022). It provides 100 classes. Each image has been re-labeled by humans like
CIFAR-10N. (3) WebVision. It is built by crawling from the Web using 1,000 concepts. We use
Google version by following (Chen et al., 2019; Park et al., 2023).

Baselines. We compare the following eight baselines: Uniform, k-center (Sener & Savarese, 2018),
SmallLoss (Jiang et al., 2018), Margin (Coleman et al., 2020), Forgetting (Toneva et al., 2019),
GraNd (Paul et al., 2021), Moderate (Xia et al., 2023b), and Prune4ReL (Park et al., 2023).

Evaluation Details. For CIFAR-10N, we train PreAct Resnet-18 (He et al., 2016) for 300 epochs with
a batch size of 128. The used optimizer is an SGD with a weight decay of 0.0005. Its initial learning
rate is 0.02 and decayed with a cosine annealing scheduler. We use SOP+ (Liu et al., 2022) to enhance
the noise-robust training. For CIFAR-100N, we adopt similar settings except that the noise-robust
training uses DivideMix (Li et al., 2020). For WebVision, we train InceptionResNetV2 (Szegedy
et al., 2017) with an SGD optimizer. Its initial learning rate is 0.02 and dropped by a factor of 10
at the 50th epoch. The training process consists of 100 epochs. The batch size used is 32. We use
SL (Wang et al., 2019) as noise-robust training. In coreset selection, we generate coresets based on
pre-warmed CIFAR-10N of 10 epochs, CIFAR-100N of 30 epochs, and WebVision (Guo et al., 2022;
Park et al., 2023) of 10 epochs. Considering that downstream tasks such as NAS prefer to use small
coresets to achieve better acceleration, we primarily evaluate three coreset sizes: 0.05, 0.15, and 0.25.
For Shaker, the batch size B is set to 2500. The τ of CIFAR-10N and CIFAR-100N are configured to
0.1, 0.2, and 0.3 for three coreset sizes. For WebVision, we set τ with 0.1, 0.5, and 0.9. We run each
experiment three times and report the statistics of final accuracy.

5.2 END-TO-END COMPARISON

Performance on Varying Noise Rates. Table 1 shows the comparison results of test accuracy
on CIFAR-10N. Shaker consistently achieves the best performance across both noise levels. To be
specific, Shaker outperforms the compared methods by margins of up to 14.3% on CIFAR-10N.
Prune4ReL performs well in most tasks but is still weaker than our proposed Shaker. On the CIFAR-
10N (≈ 40%) task, Shaker outperforms Prune4ReL by up to 14.3%. Although Uniform achieves high
performance in some cases due to its purposeless mediocrity in noise ratio and geometric distribution,
its effect diminishes if it is applied to high noise ratio or complex classification tasks. For example,
Uniform falls behind Shaker by 15.1% on the CIFAR-10N. The performance of Moderate is also
weaker than our method. To some extent, Margin, Forget, and GraNd all favor hard samples since
they are fascinated by their rich information, which are unreliable under noisy conditions. This also
results in suboptimal performance. For example, the best performance of GraNd on CIFAR-10N
(≈ 40%) is 13.7%, 72.7% behind our Shaker. Relying solely on covering radius or training loss is

Table 1: Test accuracy (%) comparisons on CIFAR-10N with SOP+.

Selection
Methods

Noise Rate≈18% Noise Rate≈40%
0.05 0.15 0.25 0.05 0.15 0.25

Uniform 72.4±0.5 85.5±0.5 88.9±0.2 61.9±0.6 78.7±0.3 83.8±0.2

SmallL 42.0±5.5 63.2±1.2 76.1±3.0 49.2±3.0 70.4±2.6 80.9±0.6

Margin 32.8±4.5 43.4±5.1 54.8±3.5 28.6±0.8 35.8±2.1 44.5±1.3

kCenter 59.9±2.5 83.7±0.6 89.1±0.2 47.4±1.8 71.3±1.2 82.1±0.8

Forget 55.9±1.5 74.3±0.9 86.4±0.5 53.3±0.4 67.3±0.4 77.4±0.3

GraNd 10.4±0.1 17.4±2.7 26.7±6.4 8.5±4.0 11.7±1.4 15.6±1.5

Moderate 74.7±0.6 87.2±0.1 90.3±0.3 59.3±1.6 74.5±0.6 77.9±1.4

Pr4ReL 75.8±1.2 85.6±0.9 89.2±0.5 62.7±5.9 79.1±1.9 83.8±0.8

Shaker 78.5±0.2 87.5±0.6 90.7±0.1 77.0±1.2 84.5±0.5 86.9±0.1

6
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insufficient, particularly when the coreset size is constrained. For instance, k-center and SmallLoss
lag behind Shaker by 29.6% and 27.8%. This highlights the necessary combination of reducing the
noise rates and covering radius.

Table 2: Test accuracy (%) comparisons on CIFAR-100N on DivMix.

Coreset
Size

Selection Methods
Uniform SmallL Margin kCenter Forget GraNd Moderate Pr4ReL Shaker

0.05 12.6±2.0 11.5±1.0 6.3±0.3 12.8±0.9 14.4±7.6 6.9±0.8 13.3±2.1 16.0±0.9 16.1±0.4

0.15 27.1±0.8 26.9±2.9 13.1±0.5 29.3±1.4 29.3±1.8 12.5±1.0 25.1±1.8 27.1±4.4 34.3±2.7

0.25 36.7±3.6 32.8±2.4 19.3±2.1 37.8±1.5 38.9±2.8 15.9±0.4 36.1±3.3 40.2±4.1 40.3±2.6

Table 3: Test accuracy (%) comparisons on WebVision with SL.

Coreset
Size

Selection Methods
SmallL kCenter Pr4ReL Shaker

0.05 23.3±0.9 30.6±0.9 33.5±1.5 36.6±0.6

0.15 37.5±1.0 45.7±0.7 46.1±0.8 48.0±0.8

0.25 44.5±1.3 51.5±1.9 52.6±0.4 53.0±0.3

Performance on Varying Datasets and Training Methods. We further evaluate the transferability
of Shaker with CIFAR-100N and WebVision. Table 2 and 3 compares the performance of Shaker with
baselines. The results show that Shaker consistently achieves the best performance. In CIFAR-100N,
Shaker outperforms baselines by 5%. In WebVision, Shaker outperforms SmallLoss, kCenterGreedy
and the Prune4Rel by 3.1%. These results demonstrate that effectively optimizing noise rate and
covering radius could lead to more robust performance.

5.3 IN-DEPTH ANALYSIS
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Figure 4: Relationship between swapping step and swapping rate.

Swapping Rate. Figure 4 depicts the relationship of the swapping rate of Shaker along the swapping
steps. The results are from coresets of 0.25 size on CIFAR-10N. We obtain two significant obser-
vations: (1) The higher the noise rate, the higher the swapping rate. This underscores the effect of
Shaker on reducing the noise rate of coresets. (2) The swapping rate increases with the number of
swapping steps. This may be because the noise rate of the remaining unselected datasets gradually
increases during the selection. The neighbor swapping mechanism responsively increases swapping
rates to maintain a low noise rate.

Noise Rate. Table 4 shows the noise rates of the selected subsets. As we can see, the noise rates of
Shaker are lower than that of other methods but higher than that of SmallLoss. This can be attributed
to the consideration for covering radius. SmallLoss simply considers the noise rates of coresets. Due
to the uneven distribution, the generalization performance is limited. Other coreset methods do not
take the noise rate into account. High label noise results in suboptimal generalization performance.

5.4 ABLATION STUDIES

The Effect of Swapping Coefficient. The swapping coefficient τ controls the swapping strength
between sample loss and covering radius. Large τ prefers clean samples to optimize the label noise,

7
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Table 4: Noise rates (%) of the selected subsets (CIFAR-10N).

Selection
Methods

Noise Rate≈18% Noise Rate≈40%
0.05 0.15 0.25 0.05 0.15 0.25

Uniform 18.3 ±0.2 17.9 ±0.6 17.9 ±0.5 41.8 ±0.8 40.8 ±0.3 40.5 ±0.2

SmallL 0.0 ±0.0 0.0 ±0.0 0.1 ±0.0 0.1 ±0.1 0.4 ±0.1 1.0 ±0.3

Margin 32.3 ±1.5 31.1 ±1.4 29.2 ±1.0 56.4 ±0.6 56.0 ±0.1 54.7 ±0.0

kCenter 18.9 ±0.6 19.2 ±0.5 19.3 ±0.4 41.9 ±1.1 42.9 ±0.6 42.7 ±0.5

Forget 20.1 ±1.0 18.0 ±0.1 17.3 ±0.1 39.2 ±0.3 36.6 ±0.4 35.8 ±0.2

GraNd 94.2 ±2.2 78.2 ±3.8 61.8 ±2.3 99.1 ±0.2 95.3 ±0.7 89.6 ±0.7

Moderate 6.2 ±0.4 6.3 ±0.2 6.5 ±0.1 31.2 ±0.6 31.4 ±0.4 31.8 ±0.3

Pr4ReL 9.9 ±0.1 13.3 ±0.2 15.3 ±0.2 26.3 ±0.7 32.7 ±0.4 35.7 ±0.6

Shaker 2.5 ±0.4 4.4 ±0.2 6.1 ±0.2 2.1 ±0.3 8.5 ±0.3 13.8 ±0.4
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Figure 5: The effect of swapping coefficient. (The horizontal lines indicate error bars.)

Table 5: The impact of batch size.

Coreset
Size

Batch Size
100 250 500 2500

0.05 76.1±0.3 76.0±0.6 76.6±0.2 76.6±0.9

0.15 83.4±0.7 83.9±0.6 83.9±0.3 84.5±0.5

0.25 85.4±0.3 86.0±0.4 86.1±0.2 86.2±0.3

and a small τ tends to reduce the swapping rates to maintain the geometric covering advantage of the
batch candidates. We evaluate Shaker on CIFAR-10N (40%) with eleven different τ . We run each
setting three times to compute its mean value and corresponding error bar. Figure 5 visualizes the
statistical impact of τ . We conclude with three key observations: (1) When the budget is limited,
the effect of covering radius dominates the coreset selection. For example, when the coreset size
is 0.05, Eq. 5 indicates that Shaker will swap in more clean samples with a large τ . However, its
performance is suboptimal than the small τ . (2) Low-loss samples should be prioritized over these
samples with small covering radius if the budget is sufficient. For example, the test accuracy first
reaches the highest point at τ = 0.3 and then remains almost unchanged when the selection ratio is
0.25. (3) As the coreset budget increases, the optimal τ also increases. When the coreset size is 0.05,
the optimal τ is 0.1. Then when the coreset size increases to 0.25, the optimal τ moves to 0.3. It
demonstrates the importance of clean samples in a large subset.

The Effect of Batch Size. Batch size B controls the number of samples participating in the alternating
step, enabling Shaker to scale to large datasets with a small constant amount of resources. Large
batch size approaches global optimal swapping results, while small size allows the alternating
next step to correct the swapping errors more timely. Table 5 illustrates the impact of batch sizes
B ∈ {100, 250, 500, 2500} on the test accuracy of CIFAR-10N (40%) with varying coreset sizes.
The performance of large batch size is 0.5%, 1.1%, and 0.8% higher than that of small batch size
respectively. These results demonstrate that Shaker is weakly positively correlated with batch sizes.
It suggests that a larger batch might be better within the available computing resources. In addition, a
small batch can also achieve good performance.
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6 RELATED WORK

Coreset Selection. From the perspective of the used information, coreset selection methods can
be grouped into three categories: (1) Methods based on the geometric feature space. This branch
methods assume that samples close to each other in the feature space tend to have similar properties so
that they can be considered redundant and removed. k-Center is representative in this direction (Sener
& Savarese, 2018). By optimizing the covering radius, it selects samples that can maximize the
coverage of the entire dataset. Similarly, FDMat matches the feature distribution of the dataset by
optimal transport (Xiao et al., 2024). In addition, some methods try to select samples near the decision
boundary in the feature space as coresets (Margatina et al., 2021). (2) Methods based on the prediction
outputs. They assume that the samples with low confidence during warm-up training have high
training utility and should be selected into the coreset. In this direction, Margin selects samples by
picking the samples with high difference between the top two highest softmax values (Coleman et al.,
2020). Moderate selects the samples of moderate difficulty by evaluating their distances from the
median (Xia et al., 2023b). Forgetting selects samples by counting misclassification after they have
been classified correctly in warm-up training (Toneva et al., 2019). (3) Methods based on the updating
model gradients. GraNd reduces datasets based on the average norm of the gradient vector of the
samples (Paul et al., 2021). GradMatch seeks to make the gradient generated by the coreset as close
as possible to the full dataset (Killamsetty et al., 2021a). Furthermore, some methods model coreset
selection as a bilevel optimization problem (Killamsetty et al., 2021b) or a submodular optimization
problem (Park et al., 2023). However, these typical coreset methods focus on one type of selection
information and show limitations in complex data characteristics. For example, sample labels may be
mislabeled, or sample classes could exhibit a long-tail distribution. Single-type information is not
sufficient to handle such pathological data well. Our method combines the geometric feature space
and the prediction outputs. We believe that coreset methods that combine two or more information
will play a more important role in dealing with complex real-world data.

Noise-Robust Training. Plenty of works have been proposed to enhance the noise robustness
of DNNs. For a comprehensive research progress, please refer to (Song et al., 2023). Among
these works, we discuss three closely related branches: (1) Sample-selection-based methods (Kim
et al., 2021; Patel & Sastry, 2023; Xia et al., 2023a; 2022) sound similar to coreset selection under
label noise. In this regard, Jiang et al. select clean samples with the small-loss criterion (Han
et al., 2018). Mirzasoleiman et al. identify clean data through the properties of the neural network
Jacobian matrix (Mirzasoleiman et al., 2020). However, the primary goal of these methods is to
achieve noise-robust performance, while coreset selection aims at noise-robust datasets for various
downstream tasks. The unpaired goals could result in suboptimal dataset compactness and efficiency.
(2) Re-labeling methods aim to correct noisy labels and incorporate them into training using heuristic
strategies. DivideMix enhances this process via a co-training framework, which improves re-labeling
accuracy through mutual supervision. SOP+ introduces learnable auxiliary variables and enforces a
self-consistency loss to further refine label correction. (3) Noise-robust loss functions enhance the
generalization performance of models by overcoming the limitations of existing loss functions. SL is
a representative one. It designs noise-robust symmetric cross entropy learning with a noise-robust
reverse cross entropy. The experiments in Section 5 show that Shaker performs good transferability
to re-labeling and noise-robust loss functions.

Another direction is to co-design coreset selection and noise-robust learning. Prune4ReL uses the
neighbor consistency of re-labeling to design coreset selection (Park et al., 2023). However, such
methods are tightly coupled with downstream model training and therefore cannot be transferred to
more applications. Its performance is also proven to be weaker than that of the general Shaker.

7 CONCLUSION

We capture the phenomenon that the performance of coresets generated with k-center lag in the
presence of label noise. We explain this phenomenon by introducing the noise rate into the set cover
theory. Empirical experimental results support our theorem. We propose a coreset selection method
based on shaking k-center, which swaps in reliable neighbors of k-center while maintaining good set
cover properties. Experiments on CIFAR-10N, CIFAR-100N, and large-scale WebVision show that
Shaker achieves better generalization performance than baselines.
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