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Abstract

Science progresses by iteratively advancing and correcting humanity’s understand-
ing of the world. In machine learning (ML) research, rapid advancements have led
to an explosion of publications, but have also led to misleading, incorrect, flawed
or perhaps even fraudulent studies being accepted and sometimes highlighted at
ML conferences due to the fallibility of peer review. While such mistakes are
understandable, ML conferences do not offer robust processes to help the field
systematically correct when such errors are made. This position paper argues that
ML conferences should establish a dedicated “Refutations and Critiques” (R&C)
Track. This R&C Track would provide a high-profile, reputable platform to support
vital research that critically challenges prior research, thereby fostering a dynamic
self-correcting research ecosystem. We discuss key considerations including track
design, review principles, potential pitfalls, and provide an illustrative example sub-
mission concerning a recent ICLR 2025 Oral. We conclude that ML conferences
should create official, reputable mechanisms to help ML research self-correct.

1 Introduction

Advancement of scientific knowledge is inherently a cycle of discovery and refinement (Kuhn, 1962).
Within machine learning (ML), the rapid proliferation of research combined with the fallibility of peer
review occasionally results in dissemination and even commendation of research that is misleading,
incorrect, flawed, or potentially fraudulent. While such outcomes are understandable, their occurrence
is undesirable, and a critical gap exists in the current ML conference ecosystem: there is no official
mechanism for critiquing problematic publications and rectifying the scientific record.

This absence of an official corrective mechanism causes problems: inaccuracies can propagate within
the scientific record, fields can putter around under the illusion of progress, or critiques can be
relegated to informal channels lacking rigorous evaluation. Minimizing such problematic publications
by reforming the review process is unlikely to be a solution due to inadequate incentives for reviewers
and institutional comfort with peer review as an efficient and reasonably well-trusted process.
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In light of these challenges, this position paper champions the creation of a “Refutations and
Critiques" (R&C) Track within ML conferences to provide an official mechanism for the field
to self-correct. The objective is to provide the community with a high-profile, reputable platform
dedicated to the critical re-examination of prior research published in ML conferences. Researchers
would be encouraged to submit responses and criticisms of others’ research as well as of their own
research; authors of critiqued papers could play a critical role in the peer review process to ensure
fairness and quality of submitted refutations and promote a structured scholarly exchange.

In this position paper, we elaborate on the critical facets of this proposal, including the reasoning for
the “Refutations and Critiques" designation, the necessity of a distinct track, the suitability of ML
conferences as hosting venues, and the foundational principles for its peer review rubric. We also
explore potential pitfalls and advise how they can be preempted. To provide a concrete understanding
of envisioned submissions, we conclude by presenting an illustrative manuscript examining a recent
ICLR 2025 Oral. While we fully stand behind the analysis of the example manuscript, we specifically
ask readers to evaluate it as an example of what submissions to the R&C could look like. Our hope is
that this proposed track will supercharge ML research to rectify itself and continuously improve.

As an important disclaimer, certain observations in this work draw on community anecdotes and
personal experience because peer-reviewed evidence on post-publication critiques is scarce. These
valuable yet undocumented insights are precisely the type of scholarship our proposed R&C Track
seeks to legitimize and disseminate.

2 The Case For a Corrective Mechanism at Machine Learning Conferences

We begin by establishing existing problems in the machine learning (ML) research status quo:

• The fallibility of peer review means that ML conferences sometimes accept and even
highlight misleading, incorrect, flawed, or sometimes fraudulent research, causing false
information to proliferate (Sec. 2.1).

• ML conferences currently lack official processes for rectifying such errors once they are
part of the scientific record (Sec. 2.2).

• Reforming the peer review process to minimize or prevent problematic research is likely
impractical due to reviewer incentives and institutional trust in the status quo (Sec. 2.3).

• Lack of formal recourse harms the field, imposes costs, and relegates disputes to non-
scientific venues without impartial adjudication (Sec. 2.4).

2.1 Machine Learning Conferences Accept and Highlight Flawed Research

While the peer review process is central to research, nearly every machine learning (ML) researcher
has stories of personal challenges they’ve encountered with peer review; we compile some common
complaints in Appendix D. However, we are most concerned with a specific shortfall: failures in
the review process lead to research that is misleading, incorrect, flawed, or perhaps even fraudulent.
These papers are of special concern because when they receive acceptance and at times prestigious
recognition, they impose significant costs on research. Specifically, such papers:

• incentivize others to produce less rigorous and overly hyped research,
• divert attention and resources from more rigorous work,
• waste future researchers’ time and energy building on flawed foundations,
• pollute the scientific record and misdirect future work,
• generally undermine public trust in ML research.

Over the years, there have been multiple instances of top ML papers being publicly contested by
reputable researchers:

• In privacy, the ICML 2022 Outstanding Paper “Privacy for Free: How does Dataset Con-
densation Help Privacy?” claimed that a technique called data condensation could be used
to train performant and private models (Dong et al., 2022). Carlini et al. (2022) responded
that statistical tests show the method does not improve the privacy over a naive baseline

2



and the technique is dominated by a standard and widely used baseline (Abadi et al., 2016).
Moreover, Carlini et al. (2022) showed that the theoretical results are meaningless because
one of the proof assumptions is stronger than the result (Feldman, 2022).

• In post-training of language models, a foundational OpenAI publication “Learning to
Summarize from Human Feedback” introduced an analytically-derived equality for the KL
Divergence between a probability distribution and its corresponding “Best-of-n” distribution
(Stiennon et al., 2020), which allowed for studying many interesting effects such as reward
model overoptimization (Hilton & Gao, 2022; Gao et al., 2023; Coste et al., 2024) and others
(Bai et al., 2022). However, the equation for the KL divergence was actually a loose upper
bound (Beirami et al., 2025; Mroueh, 2024). To the best of our knowledge, the original
studies have not been re-examined to see how correct calculation of the KL Divergence
changes the original results (if at all).

• In parameter-free optimization, the ICML 2023 Outstanding Paper “Learning-Rate-Free
Learning by D-Adaptation” (Defazio & Mishchenko, 2023) exhibited a “new method” for
parameter-free optimization of Lipschitz functions, and offered provable guarantees of
convergence. Orabona (2023) claimed that the core contribution of the paper was established
eight years prior, and stronger guarantees for similar algorithms already existed in the
literature. Therefore, Orabona (2023) asserted that, when viewed in light of prior work,
Defazio & Mishchenko (2023) exhibited no added novelty.

• In neuroscience-inspired AI, a Nature publication (Banino et al., 2018) and two NeurIPS
Spotlights (Sorscher et al., 2019; Nayebi et al., 2021) claimed that neural representations
matching those found in the mammalian brain emerge naturally in artificial neural networks
trained on a task called path integration (wik, n.d.). However, Schaeffer et al. (2022, 2023b)
showed that such neural representations did not emerge due to the task or other relevant
constraints, but were instead inserted into the artificial networks by the researchers in subtle
ways. Moreover, the way in which the neural representations were inserted contradicted key
properties of the relevant biological neural circuits (Schaeffer et al., 2023a).

• Not all refutations grow out of mistakes or misconduct; some involve differences in scientific
assumptions and experimental methodologies that vastly change projected outcomes. In
model-data feedback loops, a Nature publication Shumailov et al. (2024) and an assortment
of well-cited conference papers (Alemohammad et al., 2023; Dohmatob et al., 2024) pro-
moted the viewpoint that future deep generative models models will swiftly and drastically
degrade as they are trained on data generated by earlier generative models. However, Gerst-
grasser et al. (2024); Kazdan et al. (2025); Dey & Donoho (2024) showed that these papers
unrealistically trained new models primarily on data from the most recent generative model,
which is tantamount to throwing away the majority of the internet and training GPT-5 on the
outputs of GPT-4; when models are instead trained on a more realistic mixture of real and
synthetic data, models demonstrate little-to-no degradation over time.

There are, of course, many additional examples that could be mentioned, e.g., (Maini & Suri, 2025;
Rando, 2025; Chandak et al., 2025; Golechha et al., 2025; Ivanova et al., 2025). In cases like these,
where a refutation is written, community members can more easily track the scientific conversation.
In other cases, it is more difficult. To give a prominent example, Le & Mikolov (2014)’s “Doc2Vec”
has been cited nearly 14.000 times, but the second author has publicly stated that the results by
the other author were not reproducible (User, 2015); however, finding this out requires laboriously
stitching together comments scattered across the internet (User, 2024, 2014) to gain a comprehensive
understanding; such effort was done by Raff & Farris (2023).

At this point, one could reasonably criticize the above points for being non-academic un-scientific
hearsay from the internet. Some of the above responses to existing papers are blog posts, Twitter
threads, or preprints, which limits the authority of their findings due to lack of scrutiny by independent
experts. At the same time, there is no clear place for such contributions in ML conferences.

2.2 Machine Learning Conferences Lack Mechanisms for Rectifying the Scientific Record

When published papers are later identified as misleading, incorrect, flawed or fraudulent, the largest
ML conferences generally lack processes to address such situations. ML conferences lack editorial
boards with the prerogative to remove clearly flawed papers post-acceptance, and they also lack
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mechanisms for authors or trusted parties to attach corrigenda or errata. For egregiously flawed papers
where retraction is appropriate, nothing can compel authors to withdraw their work, and voluntary
withdrawal after acceptance is culturally abnormal in ML, even when mistakes are acknowledged.2
Lastly, most ML conferences offer no official mechanism for reputable researchers to publicize dis-
covered mistakes or problems alongside publications; the closest example is ICLR permitting public
comments via OpenReview, but as we argue in Sec 2.4, public comments have low visibility, carry
little weight, and again lack verification by independent experts. The structure of ML conferences, as
well as their transience, produces these problems: unlike journals that can force retraction or post
errata, ML conferences leave the decision to correct flawed work up to the authors.

2.3 Reforming Peer Review at ML Conferences to Prevent Flawed Research Is Impractical

Like most processes, peer review at ML conferences is fallible, but meaningfully overhauling it to
minimize or prevent publication of flawed research faces obstacles on at least three fronts:

Inadequate Incentives to Improve Review Quality Peer review at ML conferences often lacks
incentives since reviewers are uncompensated volunteers or conscripts fulfilling reciprocal reviewing
requirements. To the best of our knowledge, there are only two incentives to encourage high-
quality reviews, which come in the form of a carrot and a stick. The carrot is the “Best Reviewer
Award", which recognizes outstanding reviewers with free conference registration. The stick is the
“Responsible Reviewing Initiative," which desk-rejects authors’ papers if their reciprocal reviews
are low quality (Lee, 2024). This consequence is infrequently enforced, and whether it can make a
meaningful difference at scale remains to be seen (Koniusz et al., 2025).

Inadequate Time for Rigorous Scrutiny The fast-paced timeline for peer review at ML confer-
ences means that even the most meticulous and motivated reviewers would still only have several
weeks to scrutinize submissions. In our experience, discovering deep flaws and conclusively demon-
strating their existence and significance properly takes much longer than several weeks. A refutations
track would allow invested researchers to scrutinize existing published work over a longer time-frame
before publishing a critique in a future conference.

Insufficient Number of Qualified Reviewers This year, NeurIPS received over 27 000 submissions
(CTOL Digital Solutions, 2025), a number that has multiplied ten times in less than ten years. The
number of submissions has increased far faster than the population of qualified PhD students,
professors, and industry researchers who can provide trustworthy reviews of these papers. Area chairs
(ACs) have noted the growing difficulty of assigning papers to qualified reviewers (Reddit, 2024);
inevitable failures to do so have led to the acceptance of more faulty research.

Lack of a Better System Despite complaints, ML conference peer review is a time-tested process,
and we are unaware of more reliable alternatives for vetting large volumes of papers on a tight
timeline. Consequently, we will argue that post-hoc mechanisms for rectifying the scientific record
present a more practical solution than overhauling the imperfect-but-time-tested reviewing system
(Sec. 3).

2.4 Lack of Mechanisms for Refuting or Correcting Flawed Publications Hinders the Field

Without appropriate channels to challenge published research, researchers are left with several
suboptimal options. We enumerate each option below with corresponding anecdotes. We acknowledge
that there are likely two sides to each anecdote, but without undergoing scrutiny by independent
experts, where the truth lies may be unclear.

Silence → Persistence and Propagation of Errors Without an avenue to express valid criticisms,
they go unvoiced or unpublished, thereby propagating incorrect knowledge that can misdirect subse-
quent research. For one recent example, Liu et al. (2024) proposed a novel optimizer claiming to
improve over a widely-used baseline optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2019), but
the baseline was improperly tuned (Jordan, 2024). The researcher who discovered this error publicly

2Authors cannot be compelled to withdraw after acceptance based on the 2025 guides for reviewers, area
chairs, and senior area chairs (NeurIPS Foundation, 2025a,c,b).

4



said that clarifying this detail via a publication would not be valued by the research community and
consequently never documented the finding outside of Twitter (Jordan, 2025).

Speak Only When Harms Can No Longer Be Ignored → Damage Is Already Done If the
consequences of problematic research become too overwhelming to ignore, then some may feel
compelled to speak. One prominent example is Agarwal et al. (2021), which questioned whether the
field of deep reinforcement learning (RL) was actually making progress. The authors evaluated over
16 high profile publications from up to 6 years prior and concluded that many deep RL algorithms
were not improvements, as had been previously claimed. While the contribution was extremely
valuable, the field had lost significant time and resources based on a false illusion of progress.

Formal Public Comments on OpenReview → Low Visibility and Little Weight ICLR permits
researchers to comment publicly during the review process. While valuable, such public comments
carry insufficient weight to formally amend the scientific record and possess inadequate visibility to
alter the scientific record. For a recent example, Schaeffer (2024) demonstrated that an ICLR 2025
submission intentionally suppressed contradictory scientific evidence; the Area Chair then rejected
the submission, but was overruled, and the submission was selected for a Spotlight. For another
example regarding the NeurIPS 2024 Best Paper Runner-Up, see Kirsch (2024b).

Non-Traditional Publication Venues → Insufficient Visibility Researchers can submit articles to
less traditional publication venues such as Distill (Distill, 2016) or to newer, relatively-infrequent and
less well-known venues such as the Machine Learning Reproducibility Conference (MLRC). Though
these are respected and peer-reviewed venues, they are younger and do not yet have the same visibility
as the large ML conferences. As an example, Distill published a critique of the paper “Adversarial
Examples are not Bugs, They are Features” (Ilyas et al., 2019) called “Adversarial Examples are Just
Bugs, Too” (Nakkiran, 2019), which has just 2% the number of citations as the original paper.

Informal Public Comments on Blogs/Social Media → Digital Frontier Justice When robust
mechanisms for scientific correction are absent, researchers may resort to informal channels like
blogs or social media to voice refutations, including some examples shared in Sec. 2.1 as well as
in Kirsch (2022). However, this “digital frontier justice” is fraught with problems that undermine
genuine scientific discourse. Critiques aired on these platforms bypass scrutiny by independent
experts and lack archival permanence crucial for the scientific record. Instead of fostering reasoned
debate, these forums (especially social media) can become popularity contents, where debates are
swayed by an individual author’s personal reach rather than the scientific validity of their argument.
Scientific disagreements often devolve into ad hominem attacks, creating uncertainty as to whether
the criticisms are based on legitimate academic concerns or personal grievances. Additionally, these
informal debates exclude researchers who are not active on these specific platforms, narrowing the
scope of discussion and potentially reinforcing biases.

Such situations create a damaging double-bind for the scientific community: On one hand, unvetted
accusations can unfairly tarnish the reputations of researchers who have produced valid and original
scientific work. On the other, authors who publish flawed research can exploit an inherent asymmetry:
their incorrect work carries the imprimatur of peer review, while the informal critiques against it do
not. This allows them to simply deny or dismiss valid concerns until public attention wanes.

The consequences of this uncertainty are significant. It delays scientific progress as the community
struggles to discern truth from noise. This burden falls disproportionately on early-career researchers.
Lacking the extensive experience to easily differentiate robust findings from flawed ones, they
may waste valuable time and resources trying to build upon an unsound foundation. Speaking
from experience, the inability to reproduce work originating from renowned labs or championed by
prominent scientists can lead to unfair criticism and profound self-doubt among junior researchers.

3 Proposal: Establish a “Refutations and Critiques” (R&C) Track

Rather than seeking to change peer review at ML conferences, we instead aim to leverage peer review
as a familiar and reasonably trusted process to equip the field of ML with an official, reputable, and
equally prestigious mechanism to address, critique and/or rectify flawed prior research.
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3.1 Overview of Proposed “Refutations and Critiques” (R&C) Track

We propose the establishment of a dedicated “Refutations and Critiques” (R&C) track within ML
conferences such as NeurIPS, ICML, and ICLR. The objective of this R&C Track is to provide a
high-profile, reputable, and rigorously peer-reviewed platform for research that identifies, analyzes,
and corrects misleading, incorrect, or potentially fraudulent claims presented in impactful ML
publications. Officially integrating critical scholarship into main conferences would recognize this
work as an indispensable component of the scientific process and would serve to enhance the overall
integrity and reliability of contributions to the field of machine learning. Our vision for the R&C
Track is to cultivate a dynamic and robustly self-correcting research ecosystem for the ML research
community. This track would naturally be integrated with existing conference structures, including
timelines and review processes, and would likely include a pilot to evaluate whether the proposed
track is effective.

3.2 Why the Name “Refutations and Critiques?”

The choice of the name “Refutations and Critiques” over alternatives such as “Reproducibility”
reflects a broader scope and a stronger stance on the nature of critical scientific discourse. While
issues of reproducibility are undeniably important and would fall under the purview of this track, the
title “Refutations and Critiques” is intended to encourage a more diverse level of engagement with
prior work. Situations arise where the original results may be reproducible and technically correct,
but the surrounding narrative may be (even unintentionally) incomplete, misleading or incorrect.
Such situations have appeared across multiple topics, ranging from machine learning security (Carlini
& Wagner, 2017; Athalye et al., 2018; Carlini et al., 2021, 2022; Tramèr et al., 2024) to deep
reinforcement learning (Agarwal et al., 2021) to model collapse (Gerstgrasser et al., 2024; Kazdan
et al., 2025; Dey & Donoho, 2024; Schaeffer et al., 2025a) to predictable scaling of language models
(Schaeffer et al., 2023d, 2025b) to biological neural representations for spatial navigation (Schaeffer
et al., 2022, 2023c), to meta-learning (Tian et al., 2020; Raghu et al., 2020; Miranda et al., 2022,
2023; Chen et al., 2020). To use model collapse as a recent example, many previous papers made
a single critical assumption that training on more synthetic data necessarily results in training on
vastly fewer real data in every training iteration. Based on that assumption, these works drew strong
conclusions that future generative models are doomed. While the conclusion indeed follows from the
stated assumption, the assumption itself is arguably highly unrealistic, and subsequent critical work
demonstrated that by adjusting the assumption to be more realistic, the predicted collapse of future
generative models is substantially mitigated or disappears entirely (Gerstgrasser et al., 2024; Kazdan
et al., 2025; Dey & Donoho, 2024). Such research moves beyond a simple reproducibility check to a
substantive critique of the generality of prior works’ conclusions.

A related reason why “refutations and critiques” are appropriate is that if a paper lacks definitions or
concrete claims, then refutations or failed reproductions have no meaning. This point was made by
Carlini (2020), who challenged an ML privacy paper called InstaHide and wrote: “One of the core
tenets of modern science [...] is that claims should be refutable [...] Unfortunately, InstaHide does not
make falsifiable claims. [...] It defines an algorithm, and says it is private, without ever saying what
that means. As a result, it’s impossible to ever write a paper that claims to break it, because defining
an attack necessarily requires a definition to break.”

One may wonder: If prior critical work has been published, why then is a standalone track merited?
We return to answer this question below in Section 3.3.

Thus, while reproducibility assessments are welcome as submissions, this R&C Track aims to
construct a broader aegis to explicitly encourage submissions that seek to rectify the field. We seek
to foster a space for rigorous, evidence-based challenges to prior research, whether they pertain to
inadequate reproducibility, problematic assumptions, flawed experimental methodologies, incorrect
analyses, misleading interpretations, or erroneous conclusions.

3.3 Why Is A Standalone Track Merited?

In the past, critical research has been submitted to and accepted at ML conferences’ Main Tracks.
Why is a dedicated R&C Track merited? There are several reasons:
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Reduce Reviewer Indifference and Opposition Although critical responses can be accepted,
e.g. Santurkar et al. (2018), and even awarded, e.g. Agarwal et al. (2021), such contributions are
oftentimes harder to get through the peer review process. In many cases, reviewers or area chairs are
indifferent to the prior work being criticized, and so are unlikely to find the results compelling and
even less likely to find the results worthy of recognition. As one anecdote, Kirsch (2024a) submitted
to TMLR (instead of ML conferences) because TMLR explicitly invites reproducibility studies. Even
so, he had to push back forcefully against reviewer indifference to be accepted. In less common cases,
reviewers or area chairs are affiliated with the prior work being criticized, meaning the reviewers are
no longer neutral evaluators, and submitting authors can face strong opposition.

Create Bespoke Reviewing Standards Responses and critiques have unique aspects that are best
served via unique standards of evaluation. For instance, additional specific checks may be required
(e.g., whether the criticized paper’s authors are aware of the objections and have been given proper
opportunity to respond) and double-blind review may not be realistic (e.g., if public interactions such
as GitHub issues are referenced for evidence).

Link Accepted Papers to Prior Work A response or a critique is more than a citation; it should be
explicitly linked to the publication being critiqued, similar to how corrigenda and errata are.

For a guiding example, we can look to the NeurIPS Datasets and Benchmarks (D&B) Track (Van-
schoren & Yeung, 2021). Prior to the creation of the D&B track, datasets and benchmarks were
submitted to the NeurIPS Main Track; however, NeurIPS acted to carve out a unique track for
reasons that echo what we have stated here. NeurIPS recognized that datasets and benchmarks play a
fundamental role in ML research, and that inadequate and insufficiently rigorous incorporation of
datasets and benchmarks into the research process was incurring harms. NeurIPS also clearly stated,
“there are currently not enough incentives at NeurIPS to work and publish on data and benchmarks, as
evidenced by the lack of papers on this topic,” and that reviewing criteria for the Main Track may be
inapplicable for the unique considerations applicable to datasets & benchmarks. In our opinion, our
thesis for the creation of the R&C Track closely echoes Vanschoren & Yeung (2021)’s explanation of
the decision process that led to the creation of the D&B Track.

Therefore, the establishment of a dedicated R&C Track is not merely about rectifying past mistakes;
it is a forward-looking initiative designed to foster a culture of accountability and correction that
proactively incentivizes more rigorous and higher-quality research from the outset.

3.4 Why ML Conferences Should Host This Track?

We advocate for ML conferences like NeurIPS to pioneer this R&C Track for several reasons:

Conferring Legitimacy The considerable prestige of NeurIPS can legitimize R&C research as an
essential scientific contribution. Hosting such a track at NeurIPS would offer a respected platform for
this vital work, fostering an accredited self-correcting research ecosystem.

Linking Accepted Papers to Criticized Papers NeurIPS can leverage its unique position to push
to link R&C papers directly with the original publications they address. This integration would help
ensure that critiques are accessible alongside the original research, highlighting their unique role
more akin to errata than subsequent research.

Leadership to Set Precedent As a premier ML conference, NeurIPS is uniquely positioned
to influence other major conferences like ICML and ICLR to adopt similar critical evaluation
frameworks, thereby enhancing the overall scientific process.

Bridge the Gap with Journals ML conferences are preferred by far over ML journals as publication
venues. This is due to a number of advantages, such as faster review and publication, better visibility,
and larger impact. However, journals have standardized ways to submit critical comments on papers
published by the journal; see, for example, Loosli & Canu (2007). Creating an R&C Track at ML
conferences would bridge this gap.
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3.5 What Principles Should Guide the Evaluation of R&C Submissions?

The success of the R&C track will necessitate tailored review criteria, distinct from those for regular
research papers. These criteria will specifically guide reviewers to evaluate submissions based on the
rigor of their critical analysis, the substance of the issues raised, and the constructive nature of the
contribution, ensuring a focus on strengthening the scientific process.

Correct, Rigorous and Meticulous Submissions must demonstrate methodological soundness.
Critiques involving experiments should ensure reproducibility and transparent analysis; theoretical ar-
guments must be logically coherent. All claims require strong, verifiable evidence (e.g., experimental
results, proofs, data re-analysis) allowing for independent assessment by the reviewers.

Substantive Submissions must address substantive aspects of the original work, such as its central
claims, core methodologies, or foundational assumptions. The critique should have meaningful
implications, clearly articulating why the identified issues (e.g., unsupported conclusions, flawed as-
sumptions or results, limited applicability of results) are important to the broader research community.
Submissions that solely challenge attribution errors or nitpick minor details should be rejected.

Constructive Submissions must aim to correct and improve the scientific record and positively
guide future research, rather than being solely dismissive, punitive, or quarrelsome. Submissions
should articulate their contribution to collective understanding, potentially offering corrections,
alternative interpretations, or suggestions for better practices, all while maintaining a professional
tone. Submissions must focus on the research and not on the people who conducted it.

Significant Submissions should be judged based on how influential the criticized work is and
how significantly the submissions change the field’s understanding. Responses or critiques that
substantially shift widespread, deeply held important beliefs represent the most consequential forms
of scientific correction, and the R&C track should recognize and reward such contributions.

4 Alternative Viewpoints

While we advocate strongly for the establishment of an R&C Track, it is crucial to acknowledge and
address alternative perspectives regarding its utility and implementation.

Existing Mechanisms Are Already Sufficient for Addressing Flawed Research As mentioned
earlier, truly significant refutations or corrections can get published in the Main Tracks of ML
conferences, e.g., Agarwal et al. (2021). From this perspective, a dedicated track might be seen as an
unnecessary formalization of what already naturally happens. However, as previously discussed, these
existing mechanisms have notable shortcomings and fail to recognize that any scientific discipline
requires a lively and moderated discussion on the issues and errors present in previous papers.

R&C Track Encourages Frivolous, Adversarial or Otherwise Unconstructive Submissions
Another reasonable concern is the potential for the R&C Track to encourage frivolous submissions or
foster a more adversarial research culture. Critics might fear that such a track could become a venue
for minor nit-picking, ad hominem attacks disguised as scientific critique, or an increase in hostile
interactions between research groups. These concerns could be amplified if authors of highly-cited
papers become targets of coordinated criticism campaigns or if the review process fails to maintain
appropriate standards.

These are serious considerations that must be central to the design and governance of an R&C
Track. The guiding principles outlined in Section 3.5 - demanding that submissions be “Rigorous and
Meticulous,” “Substantive,” “Significant” and “Constructive” - are specifically intended to mitigate
these risks. Additionally, the review process should include mechanisms for authors of critiqued
papers to provide responses, similar to journal comment/response systems.

R&C Track Papers Might Themselves Be Misleading, Incorrect, Flawed or Fraudulent There
is also the risk that refutations themselves could be flawed, leading to the unjust discrediting of sound
research. For example, the refutation (Zhang et al., 2025) of “Ensemble Everything Everywhere"
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initially claimed that Fort & Lakshminarayanan (2024) was not robust. The authors of the refutation
later discovered errors in their own experiments that caused them to revise their claims. To address
this concern, the R&C Track would need rigorous review standards and potentially multiple rounds of
author-reviewer interaction to ensure accuracy. Authors of the original work should likely be invited
to participate in a unique capacity to ensure fairness of the process.

5 Refutations & Critiques Track Is Complementary to Related Efforts

Our proposed R&C Track builds upon and complements existing reproducibility efforts. One of the
earliest and most prominent systematic efforts to encourage reproducibility in ML was Pineau et al.
(2017)’s ICLR 2018 Reproducibility Challenge, which was repeated in ICLR 2019 (Pineau, Joelle
and others, 2019) and has led to poster sessions and workshops as well as the Machine Learning
Reproducibility Challenge (MLRC)’s in-person conference3. Machine Learning Retrospectives
was hosted in 2020 at ICML and NeurIPS, which invited authors to expound upon their own
previous papers, correcting mistakes and inaccuracies (ML Retrospectives Community, 2019). It
also accepted submissions that highlighted poor scientific practice in a particular area, pointed out
conflicting claims in related papers, or documented changes in the consensus over time. Transactions
on Machine Learning Research (TMLR) additionally invites reproducibility submissions that it
awards with a Reproducibility certification. However, these efforts focus primarily on reproducibility
verification, while our proposed R&C Track has a broader scope, such as accepting papers that
refute misleading conclusions drawn from reproducible experiments, challenge assumptions, or
correct mis-interpretations. By integrating with major ML conferences, the R&C Track would bring
additional prestige, visibility, and submission opportunities to these important efforts.

Other fields, such as biological and social sciences, have recognized struggles with reproducibility
and established mechanisms to combat faulty science. For instance, the Journal of Comments and
Replications in Economics (JCRE) exists to examine the reproducibility of past Economics work
and to explores whether published results are correct, robust, and generalizable. Noting that many
highly cited articles in psychology and psychiatry do not publish accompanying data, Hardwicke
& Ioannidis (2018) founded the Data Ark initiative to archive data from seminal studies. Moreover,
many papers examine aggregate statistics on reproducibility and policies to address the reproducibility
crisis (Klein et al., 2018; Hardwicke et al., 2022; Aczel et al., 2021; Errington et al., 2021).

6 An Illustrative Example Submission to Our Proposed R&C Track

To demonstrate what submissions to our proposed Refutations and Critiques (R&C) Track might
look like, we provide an example paper in Section 9 that critically analyzes a recent ICLR 2025
Oral (Nguyen et al., 2024) and concludes, based on evidence presented by the paper and additional
experiments conducted using the paper’s code, that the evidence fails to support the paper’s central
claim. This example paper is under review in the NeurIPS 2025 Main Track and will be posted to
ArXiv as a separate manuscript after Reviewer Author Discussions ends. While we fully stand behind
the analysis of the example manuscript, we specifically ask readers to evaluate it as an example of
what submissions to the R&C Track might look like.

7 Conclusion

The pressure in ML to quickly publish research that achieves new benchmark records can lead
some researchers to take shortcuts or make errors while racing to meet publication deadlines. The
conference peer review process, which occurs on a contracted timeline relative to academic journals,
inevitably admits flawed work to top venues. Due to the difficulty of reforming the peer review
process, we argue that an R&C track would incentivize more honest, higher quality work. Currently,
discussions around academic integrity and reproducibility take place on unmoderated forums like
Twitter, allowing scientific discussions to devolve into personal attacks. Consequently, the public
as well as other scientists remain unsure of the truth, and new work tries to build upon faulty prior
conclusions. Peer-reviewed, high-quality refutations currently receive insufficient attention, making
them easy to miss when researching a topic. Large ML conferences have inadvertently created the

3https://reproml.org/blog/announcing_mlrc2025/
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conditions that breed flimsy experimentation and corner-cutting: we offer a mechanism by which
mistakes can be caught and rectified. An R&C track would add professionalism and visibility to
the process of refuting prior work. It would streamline the scientific process, reducing wasted time
and resources expended reproducing faulty work. Finally, it would incentivize scientists to produce
higher-quality papers, and pave the way to a more open scientific discussion.

In a field like machine learning, where the technologies we build are quickly integrated into day-
to-day life, producing a clean scientific record is of paramount importance. Mistakes can result in
massive waste of finite resources, propagate false impressions of AI safety, and incur broad societal
risks. To limit the growing potential for harm, conferences should act now.
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9 An Example Submission to Our Proposed Refutations & Corrections Track

This example paper is provided as an example of a submission to the R&C Track. To reiterate our key
disclaimer from the main text, while we fully stand behind the analysis, we specifically ask readers to
evaluate it as an example of what submissions to the R&C Track might look like as the example has
not yet been peer reviewed.
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Turning Down the Heat: A Critical Analysis of
Min-p Sampling in Language Models

Abstract

Sampling from language models impacts the quality and diversity of generated
outputs, affecting both research and real-world applications. Recently, Nguyen
et al. (2024)’s “Turning Up the Heat: Min-p Sampling for Creative and Coherent
LLM Outputs” introduced a new sampler called min-p, claiming it achieves su-
perior quality and diversity over established methods such as basic, top-k, and
top-p sampling. The significance of these claims was underscored by the paper’s
recognition as the 18th highest-scoring submission to ICLR 2025 and selection
for an Oral presentation. This paper conducts a comprehensive re-examination
of the evidence supporting min-p and reaches different conclusions across the
original paper’s four main lines of evidence. First, the original paper’s human
evaluations omitted data, conducted statistical tests incorrectly, and described
qualitative feedback inaccurately; our reanalysis demonstrates min-p did not out-
perform baseline samplers in quality, diversity, or trade-off between quality and
diversity. In response to our findings, the authors of the original paper conducted a
new human evaluation using a different sampler implementation, task, and rubric
that nevertheless provides further evidence min-p does not improve over baseline
samplers. Second, comprehensively sweeping the original paper’s NLP benchmark
evaluations reveals min-p does not surpass baseline samplers when controlling
for the number of hyperparameters. Third, the original paper’s LLM-as-a-Judge
evaluations lack methodological clarity and appear inconsistently reported: the
higher of two scores was reported for min-p while the lower of two scores was
reported for top-p. Fourth, community adoption claims (49k GitHub repositories,
1.1M GitHub stars) were found to be unsubstantiated, leading to their removal from
the ICLR 2025 Camera Ready; the revised adoption claim remains misleading. We
conclude that evidence presented in the original paper fails to support claims that
min-p improves quality, diversity, or a trade-off between quality and diversity.

1 Introduction

Large language model (LLM) capabilities have transformed numerous domains, from creative writing
to scientific research. A critical detail of LLM deployment is the sampling method: the algorithm
that determines how tokens are sampled during generation. Sampling strategies directly impact the
quality and diversity of generated outputs, making them important to both research and deployment.

Commonly used samplers include basic (temperature-only) sampling (Ackley et al., 1985), which
samples tokens based on their temperature-scaled softmax-normalized logits; top-k sampling
(Fan et al., 2018), which samples the k most probable tokens; and top-p sampling (Holtzman
et al., 2020), which samples tokens comprising the top p probability mass. Other samplers include
η-sampling, ϵ-sampling (Hewitt et al., 2022) and mirostat sampling (Basu et al., 2020).

Recently, the paper “Turning Up the Heat: Min-P Sampling for Creative and Coherent LLM Outputs"
(Nguyen et al., 2024) introduced a new sampling method called min-p sampling, claiming it
produces higher quality and higher diversity outputs than other samplers. Given the potential impact
of an improved sampling method and the paper’s exposure as the 18th highest-scoring submission
at ICLR 20254, we carefully scrutinized the methodologies, data, analyses, code and conclusions
presented in support of min-p across the authors’ four lines of evidence: (1) human evaluations, (2)
natural language processing (NLP) benchmark evaluations, (3) LLM-As-A-Judge evaluations and (4)

4https://papercopilot.com/statistics/iclr-statistics/iclr-2025-statistics/
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Figure 1: Visualizing Human Evaluators’ Scores from Nguyen et al. (2024)’s Data Demonstrates
Min-p Does Not “Consistently" Outperform Other Samplers. Rather, the original paper’s data
suggest min-p is largely indistinguishable from other samplers based on 95% confidence intervals.

community adoption metrics. Our re-analyses of the evidence lead us to conclude that relative to
commonly used samplers, min-p does not improve quality or diversity or the trade-off between
quality and diversity. Our code is publicly available on GitHub, as are our W&B sweeps of NLP
benchmark evaluations.

2 Re-Analyzing Min-p’s Human Evaluations

We began with re-analyzing the original paper’s human evaluations since human judgments are
widely considered the gold standard for assessing language model outputs (Van Der Lee et al., 2019;
Roller et al., 2020; Howcroft et al., 2020; Clark et al., 2021; Liang et al., 2022; Khashabi et al., 2022;
Chiang et al., 2024; Biderman et al., 2024; Schaeffer et al., 2025c). We identified four key issues.

2.1 Human evaluators’ scores for one of two baseline samplers were omitted

Section 6 of Nguyen et al. (2024) states human participants evaluated min-p against a single sampler:
top-p. Both the Oct 2024 Arxiv manuscript and ICLR OpenReview manuscript repeatedly state
that min-p and top-p were considered, and their Table 4 presents results only for these. However,
when examining the paper’s data, we discovered that scores for a second baseline sampler (basic
sampling) were excluded from the methodology, the analysis and the results without mention or
explanation. We publicly confirmed with the authors. These omitted scores comprised 1/3rd of the
total collected scores. After we raised the issue, the omitted data were added to the Camera Ready’s
Table 4, but the methodology, the results and the conclusions have not been correspondingly updated.

2.2 Visualizations and Statistical Tests Fail to Support Claim That Min-p Outperforms Other
Samplers

Based on the human evaluators’ scores, Section 6 of Nguyen et al. (2024) concluded that min-p
“consistently" outperformed top-p “across all settings":

“Overall, min-p sampling consistently scored higher than top-p sampling across
all settings [...] A paired t-test confirmed that the differences in scores between
min-p and top-p sampling were statistically significant (p < 0.05).”

However, both visualizations and statistical hypothesis tests of the original human evaluation
data suggest min-p is indistinguishable from the baselines in almost all settings.

To briefly explain the human evaluation methodology, three samplers (basic, top-p and min-p)
were compared in six conditions: three temperatures (1.0, 2.0, 3.0) and two diversity settings (“high"
and “low") corresponding to different p hyperparameters. Humans were asked to score the generated
outputs under two metrics: quality and diversity. Participants were excluded if they failed attention
checks. For more information, please see the original manuscript.
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Metric Alt. Hyp. Temperature

τ = 1.0 τ = 2.0 τ = 3.0

t p t p t p

Quality Min-p > Basic 0.33 .370 0.65 .260 3.13∗∗∗† .001
Min-p > Top-p 2.05∗ .023 1.18 .121 2.02∗ .025

Diversity Min-p > Basic 0.31 .378 1.86∗ .034 0.85 .201
Min-p > Top-p 2.64∗∗ .006 1.44 .078 0.87 .195

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, † Significant after Bonferroni correction for 12 comparisons.

Note: All tests were paired t-tests with df = 52, one-sided (alternative = "greater")

Table 1: Hypothesis Testing of Human Evaluators’ Scores Fails to Support Claim that Min-p
Consistently Outperforms Other Samplers. To test whether evidence supports the claim that min-p
“consistently outperforms" other samplers, we conducted one-sided paired t-tests using the authors’
published data. Without correcting for multiple comparisons, evidence exists to support min-p’s
superiority in 5 of 12 comparisons at α = 0.05 and 2 of 12 comparisons at α = 0.01. After applying
a Bonferroni correcting for multiple comparisons, evidence exists to support min-p’s superiority in 1
of 12 comparisons at α = 0.05 and 0 of 12 comparisons at α = 0.01. For details, see Sec. 2.3.

We focused on the “high" diversity setting for three reasons: First, the claimed advantage of min-p
sampling is that it provides both high quality and high diversity, whereas other samplers typically
trade one off against the other. Second, the authors publicly told us to focus on the high diversity
setting, writing that “the low [diversity] settings were quite experimental". Third, we believe that
top-p’s p value in the low diversity setting was poorly chosen; indeed, after we raised these concerns,
the authors ran a new human evaluation that changed the low diversity top-p p from 0.1 to 0.9. We
return to this second new human evaluation in Sec. 2.4.

We began by visualizing the human evaluations’ scores from Nguyen et al. (2024). Using the original
paper’s data, Fig. 1 reveals that the three samplers provide similar quality and similar diversity,
with 95% confidence intervals frequently overlapping.

To more rigorously assess the claim that min-p consistently outperforms other samplers, we con-
ducted 12 one-sided paired t-tests for each metric (quality or diversity), temperature (1.0, 2.0, 3.0)
and baseline sampler (min-p versus basic, min-p versus top-p). In each test, the null hypothesis
is min-p’s score is less than or equal to the other sampler’s score, and the alternative hypothesis is
min-p’s score is greater than the other sampler’s score. Statistical test results are displayed in Table 1.
Without correcting for multiple comparisons, we found evidence to reject the null hypotheses in 5
of 12 tests at α = 0.05 and 2 of 12 tests at α = 0.01. After applying a Bonferroni correction for
multiple comparisons, we found evidence to reject the null hypothesis in 1 of 12 tests at α = 0.05
and 0 of 12 tests at α = 0.01. Based on the original paper’s data, there is insufficient evidence to
support the claim that min-p consistently outperforms baseline samplers across all settings.

Furthermore, given that the original paper claims that min-p “consistently" scores higher, an
Intersection-Union Test (IUT) may be the appropriate statistical test, where the alternative hy-
pothesis is that min-p is better in all 12 comparisons and the null hypothesis is the set complement.
Since the largest p-value of the 12 comparisons is 0.378, under the IUT, we again find insufficient
evidence to reject the null hypothesis at both α = 0.05 and α = 0.01.

The original paper’s statistical analysis reached a different conclusion because for two reasons. First,
despite claiming that min-p “consistently scored higher" “across all settings" (metric, temperature,
and diversity), the paper pooled data across all settings and performed a single t-test, which tests
whether min-p scored higher on average. Second, pooling over all settings is misleading in that
a poor performing hyperparameter p was chosen for top-p in the “low” diversity condition that
pulled top-p down significantly; the authors said publicly to ignore this particular configuration and
subsequently changed it in their new human experiment (Sec. 2.4). Thus, we believe the original
paper’s statistical inferences are misleading or incorrect.
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Figure 2: Manual Annotation of Human Evaluators’ Qualitative Responses Fail to Support
Claim that Min-P Was the Preferred Sampler. We manually annotated responses from human
annotators regarding their preferred sampler(s) at the end of the original paper’s study. The responses
suggest min-p was not the most preferred sampler. We provide example responses in Sec. 2.3.

2.3 Human Evaluators’ Qualitative Responses Fail to Support Claim That Min-p Is
Preferred Over Other Samplers

At the end of the human evaluation study, the original paper asked human participants to qualitatively
describe which sampler(s) they preferred. The paper claimed that human evaluators’ qualitative
responses support min-p over top-p:

“Participants frequently noted that outputs generated with min-p sampling were
more coherent and creative, especially at higher temperatures.”

However, when reading through the paper’s data, we believe that the qualitative responses suggest
a different preference pattern. We manually annotated the qualitative responses and visualized our
annotations of the humans’ expressed preferences (Fig. 2), and publicly posted our annotations in
the same format as the original paper. We found two results: (1) more human evaluators explicitly
preferred basic sampling than preferred min-p sampling, and (2) min-p was only slightly preferred
over top-p. We provide quotations from human evaluators favoring basic sampling in Appendix A.

2.4 New Human Evaluation Study Shows Min-p Does Not Outperform Baselines in Quality,
in Diversity, or in a Tradeoff Between Quality and Diversity

In response to our feedback, the authors conducted and added a new human evaluation study to
Appendix C.2. Their new study made multiple methodological changes:

• Different sampler implementation: switched from applying temperature after truncation to
applying temperature before truncation.

• Different distribution of human participants from Prolific.
• Different sampling hyperparameters for top-p: switched from 0.1 and 0.9 to 0.9 and 0.95.
• Different sampling hyperparameters for min-p: switched from 0.2 and 0.05 to 0.1 and 0.05.
• Different allotted reading time: increased from 30 minutes to 45 minutes.
• Different sampled text: 3 short paragraphs were replaced with a single complete story.
• Different rubric for human participants to evaluate sampled outputs.

Regarding the new human evaluation data and results, we share two discoveries here: First, we
believe one value is incorrectly reported: in Nguyen et al. (2024)’s Table 15, the average score of
min-p at p = 0.05 and temperature T = 2 is reported as 7.80, but based on the authors’ publicly
posted data, we believe the correct numerical value should be 5.80. Second, more generally, the data
show again that Min-p does not outperform baselines in quality, in diversity or in a favorable tradeoff
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Figure 3: New Human Evaluation Study Suggests Min-p Does Not Outperform Baselines in
Quality, in Diversity or in a Pareto-Optimal Tradeoff Between Quality and Diversity. Visu-
alization of scores from Nguyen et al. (2024)’s second human experiment. Min-p’s performance
advantage relative to basic and top-p sampling is observed in conditions (e.g., higher temperatures)
where absolute quality and absolute diversity scores across all samplers are lower compared to other
regimes (e.g., T = 1). For practitioners optimizing for maximal quality and maximal diversity, these
results suggest that min-p offers no apparent advantage over basic or top-p sampling.

between quality and diversity. In this new study, whenever min-p outperforms other samplers, it
does so under conditions that yield lower absolute scores than other conditions (Fig. 3). For instance,
min-p shows an advantage over the baselines in the “high" diversity setting at T = 2 and in the “low"
diversity setting at T = 3. However, in both of these conditions, min-p receives lower quality and
diversity scores than it does in the “high" diversity setting at T = 1 and the “low" diversity setting
at T = 2. This shows min-p’s advantage is observed primarily under conditions that yield lower
overall quality and diversity scores compared to other achievable conditions. For anyone seeking
higher quality or diversity, min-p offers no apparent advantage over basic or top-p sampling.

3 Extending Min-p’s NLP Benchmark Evaluations

We next turned to the original paper’s NLP benchmark evaluations of several models on GSM8K with
Chain-of-Thought (Cobbe et al., 2021) and GPQA (5-shot) (Rein et al., 2023), which concluded that:

“Min-p sampling achieves superior performance across benchmarks and tempera-
tures.”

3.1 Thorough Hyperparameter Sweep on GSM8K Contradicts Claim of Min-p’s Superiority

To test whether min-p indeed achieves superior performance, we conducted an extensive analysis on
GSM8K, sweeping the following models, samplers, hyperparameters and sampling seeds:

• 9 Models: Qwen 2.5 (Qwen et al., 2025) 0.5B, 1.5B, 3B and 7B; Mistral 7Bv0.1 (Jiang
et al., 2023); Llama (Grattafiori et al., 2024) 3.1 8B and 3.2 3B; Gemma 2 (Team et al.,
2024) 2B and 9B.

• 2 Model Stages: Pre-trained (“Base") and Post-Trained (“Instruct").
• 4 Samplers: basic, top-p, top-k, min-p.
• 31 Temperatures: 0.0 (“greedy") to 3.0 in increments of 0.1.
• 6 Hyperparameters Per Sampler: We chose 6 hyperparameters per sampler, except for
basic which has no hyperparameter beyond temperature. The values were taken from the
original paper; some were lightly edited to make them more evenly distributed:

– basic: No hyperparameters other than temperature.
– top-k: k ∈ {10, 30, 50, 100, 150, 200}.
– top-p: p ∈ {0.99, 0.98, 0.95, 0.9, 0.8, 0.7}.
– min-p: p ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.3}.

• 3 Random Seeds for Sampling: {0, 1, 2}
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Figure 4: Min-P Does Not Consistently Outperform Other Samplers on GSM8K When Con-
trolling For Hyperparameter Volume. In our first analysis, we measured how the maximum
Exact Match (Strict) for each sampler improves as the number of hyperparameters increases. Basic
sampling has only a temperature hyperparameter, and we therefore do not sweep it to the same degree.

Due to our compute budget, we only evaluated GSM8K (albeit under two prompt formats, for reasons
explained below). This sweep and the sweep below required ∼ 6000 Nvidia A100-hours. GSM8K
contains a subset of samples with ambiguous language or incorrect labels that have since been
identified and cleaned (Vendrow et al., 2025) and that models may have been trained on GSM8K
(Zhang et al., 2024), but we used GSM8K nonetheless for consistency with the original paper. We
similarly used EleutherAI’s LM Eval Harness (Gao et al., 2021; Biderman et al., 2024).

To evaluate how performant each sampler is, we first averaged over the three sampling seeds and then
conducted two complementary analyses:

1. For each sampler, we subsampled an equal number of hyperparameters ranging from N = 1
to N = 100 and computed the maximum Exact Match (Strict) score achieved by the sampled
subset of size N . We repeated this process 150 times, averaging over the subsampled subsets’
scores. This “Best-of-N" analysis (Nakano et al., 2021; Stiennon et al., 2020; Hughes et al.,
2024; Schaeffer et al., 2025b) tells us the best possible performance each sampler will likely
obtain as its hyperparameter space increases.

2. For N = 1 to N = 100, we subsampled N hyperparameters per sampler and computed
the difference of the maximum Exact Match (Strict) score achieved by min-p minus the
maximum score achieved by any other sampler. We repeated this process 150 times,
averaging over the subsampled subsets. This tells us by how much min-p outperforms all
other samplers, controlling for the size of hyperparameter space of each sampler.
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Figure 5: Min-P Does Not Consistently Outperform Other Samplers on GSM8K When Control-
ling For Hyperparameter Volume. In our second analysis, we measured how the difference between
min-p’s highest score and the best non-min-p sampler’s highest score changes as the number of
swept hyperparameters increases. Min-p matches or underperforms other samplers.

Both analyses reached consistent results: min-p does not outperform other samplers when
equalizing the volume of hyperparameter space. Fig. 4 and Fig. 5 respectively demonstrate that
min-p is largely indistinguishable from other samplers.

After we showed these results to the authors, they informed us that we had run our experiments
using the “Llama" formatting of GSM8K prompts as we used the command from the authors’ public
Colab notebook; the authors clarified that "Llama" formatting should be used only for Llama models.
We then reran our experiments using standard formatting of GSM8K prompts. The results were
nearly identical (Appendix B), with one small difference: min-p does produce higher scores for 2 of
12 language models. Again, we conclude min-p does not outperform other samplers on either
formatting of GSM8K when controlling for hyperparameter volume.

4 Investigating Min-p’s LLM-As-A-Judge Evaluations

We then turned to the original paper’s LLM-as-a-Judge evaluations (Zheng et al., 2023), specifically
AlpacaEval creative writing evaluations (Dubois et al., 2023).
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Figure 6: Nguyen et al. (2024)’s LLM-As-A-Judge Evaluations Suggest Min-p Typically Matches
Other Samplers Despite 2× to 10× More Hyperparameter Tuning. Left: Nguyen et al. (2024)
swept min-p with more than twice as many hyperparameters as top-p and more than ten times
as many hyperparameters as basic. Right: Pairwise comparisons show min-p typically performs
on-par with other samplers. Data were obtained from the first author’s public GitHub repository.

4.1 Under-Specified and Indirect Methodology Hinders Reproduction and Interpretation

In the Oct 2024 Arxiv manuscript and ICLR OpenReview manuscript, the methodology is under-
specified in several ways: There is no mention which model(s) were sampled from, which model(s)
served as the judge(s), or how hyperparameters were chosen or swept. Additionally, there is no
description of uncertainty for the reported win rates, meaning readers are unable to decide whether
win rates are statistically different from chance (50.00%).

Furthermore, the experiment seems designed in a manner that introduces a confounder. For those
unfamiliar, AlpacaEval reports win rates between paired comparisons. Instead of directly comparing
min-p against other samplers, the authors compared each sampler against a common fixed sampler:
basic(τ = 1.0). This comparison strategy is indirect since comparing directly against min-p would
offer a clearer test of its superiority while using the same number of comparisons. The authors’
design choice is additionally concerning because LLM-judge preferences are probably not transitive,
as shown by recent research (Xu et al., 2025); that is, if sampler A beats sampler B, and sampler B
beats sampler C, it does not necessarily follow that sampler A beats sampler C. Therefore, comparing
all methods to basic(τ = 1.0) provides no reliable inference about min-p’s performance relative
to top-p or basic at other temperatures. These under-specified aspects of the methodology,
combined with its indirect experimental design, make drawing conclusions difficult.

4.2 Min-p Received More Hyperparameter Tuning and Frequently Fails to Win

No scores or code to create scores were provided with the original paper’s GitHub repository. While
drafting this manuscript, we became aware of ongoing work to release code in a separate repository.
Results from that code revealed two discoveries: First, min-p received ∼ 2× more hyperparameter
tuning than top-p sampling and ∼ 10× more tuning than basic sampling (Fig. 6, left), potentially
tilting the scales in its favor. Second, the win-rates show that min-p frequently fails to outperform
top-p and basic sampling, especially when accounting for confidence intervals; we visualized the
new data with 95% confidence intervals (with horizontal offsets added for visibility) (Fig. 6, right).

4.3 Table 3(b) Reported The Higher of Two Scores For Min-p But the Lower of Two Scores
For Top-p

As evidence for the LLM-As-A-Judge evaluation scores in the original paper’s Table 3(b), the first
author publicly shared a Telegram link that showed the higher of two scores was reported for min-p
(the reported win rate of 52.01 corresponds to p = 0.05, but p = 0.01 yields a lower win rate of
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50.14) but the lower of two score was reported for top-p (the reported win rate of 50.07 corresponds
to p = 0.9, but p = 0.98 yields a higher win rate of 50.43).

5 Substantiating Min-p’s Community Adoption Claims

5.1 Claimed GitHub Repositories & Stars Were Unsubstantiated and Retracted

The Arxiv and peer-reviewed manuscripts of Nguyen et al. (2024) included specific claims about
min-p’s adoption in the language modeling community:

“Community Adoption: Min-p sampling has been rapidly adopted by the open-
source community, with over 54,000 GitHub repositories using it, amassing a
cumulative 1.1 million stars across these projects."

These numbers were highlighted by the paper’s ICLR 2025 reviewer and Area Chair as compelling
evidence of impact. We attempted to verify these numbers through analysis of major GitHub language
modeling repositories. Per our calculations, the combined GitHub stars of leading LM repositories
(transformers, ollama, llama.cpp, vLLM, Unsloth, mamba, SGLang, llama-cpp-python) sum
to 453k stars as of March 2025, less than half the 1.1M stars claimed by min-p alone. We could
not substantiate either 49k GitHub repositories or 1.1M GitHub stars. When we inquired how these
numbers were calculated, the authors publicly stated that GitHub was searched for “min-p”, which
yields many false positives. The authors retracted both the 54k GitHub repository claim and the
1.1M GitHub stars claim from the ICLR 2025 Camera Ready manuscript.

5.2 The Revised Community Adoption Statement Inflates Min-p’s Adoption

The ICLR 2025 Camera Ready now has a different statement of community adoption:

“[Min-p] is now integrated in widely used frameworks such as Hugging Face
Transformers, vLLM, and SGLang, which collectively have accrued over 350,000
GitHub stars. This integration, coupled with extensive downstream usage (e.g., over
290,000 dependent repositories for Transformers alone), underscores the method’s
practical impact."

While being integrated into such frameworks is indeed a contribution, this statement misleadingly
represents these frameworks’ usage as min-p’s usage, rather than specifically measuring min-p’s
usage. This new statement is akin to publishing a book and then claiming credit for the library.

6 Discussion and Limitations

Scientific Conclusions This investigation led us to conclude that the four lines of evidence presented
by Nguyen et al. (2024) – (1) human evaluations, (2) NLP benchmark evaluations, (3) LLM-as-a-
Judge evaluations, (4) community adoption – do not support claims of min-p’s superiority. While
min-p is useful for providing users another options to try, the original paper’s data and our extensions
of the original paper’s data suggest that all samplers perform roughly the same once given the same
amount of hyperparameter tuning; however, in our view, more research would be needed to assess the
veracity of this conclusion. The paper’s data does weakly suggest that min-p sampling can sometimes
provide a benefit at higher temperatures, albeit with the critical caveat that absolute performance is
meaningfully lower in this high-temperature regime than in standard temperature regimes.

Key Limitation Our manuscript re-analyzes the evidence presented by the original paper (Nguyen
et al., 2024) and additional evidence created using the original paper’s code. Conclusions here are
based on that evidence. We emphasize that new evidence might lead to different conclusions.

What Went Wrong During the ICLR 2025 Review Process? Nguyen et al. (2024)’s outstanding
success in the ICLR 2025 review process—achieving Oral presentation status and ranking as the 18th
highest-scoring submission (Yang, 2025)—is difficult to reconcile with the flaws our investigation
uncovered.
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The reviewers overlooked methodological issues such as which model(s) are being sampled from for
the LLM-as-judge evals and missing/inadequate/improper consideration of uncertainty in presented
results. Reviewers uncritically accepted the authors’ claim that "over 54,000 GitHub repositories"
were using min-p sampling, when intuition or a quick GitHub search reveals cause for pause.

The Area Chair’s comment also contains a clear misstatement: it highlights min-p’s success in the
low temperature regime ("in the low temperature regime, [min-p] provides a significant advantage"),
when the paper specifically claims benefits in the high temperature regime.
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A Examples of Human Qualitative Responses Favoring Basic Sampling Over
Min-P Sampling

susan: I don’t really get this section: were these preferences mislabeled by the min-p authors to favor
min-p over basic sampling?

In Section 2.3, we described how qualitative responses from many human participants in the orig-
inal paper’s study favored basic sampling. Direct quotes from human evaluators favoring basic
sampling are provided below. In the study, basic sampling was called “Model A”; for clarity, we
substituted below for clarity):

• “[basic sampling] on Temp 3.0 - High Diversity setting. The stories where [sic] more
interenting [sic], felt more different compared to the others, which felt like the same ideia
[sic] just in a different format.”

• “I felt like [basic sampling] was most diverse and most interesting with it’s [sic] descriptions
of the characters and the setting. It appealed to me most and seemed to have less ’broken’
sentences that didn’t make sense. Descriptions were painterly [sic] and elaborate.”

• “[basic sampling] was more engaging, it aroused my curiosity.”
• “[basic sampling] provided more depth and easy to read for me and there was more

diversity.”
• “[basic sampling], they presented creative storytelling”
• “[basic sampling]. From the very beginning the verbiage and descriptions were very

creative and vivid. And each story was unique”
• “I believe that [basic sampling] has provided stories with more differentiation overall than

the other two models. From the point of view of creativity, all three models are more or less
equivalent as they almost always talk about stories set in extraterrestrial worlds both from a
physical and mental (dreams) point of view"

• “[Basic sampling]: Sample 2: Temperature Setting F (Temp 3.0 - High Diversity). The
story was captivating, it took inside the mystical land and walked you right besides all
the characters, you can even draw the characters from just th descriptions provided by the
prompt. you Could even smell them, smell the setting and be at one with the setting."

• “I personally preferred [basic sampling] on the setting of creative, descriptive storytelling.
I enjoyed how the writing was creative, showing imagination and a strong use of language.
The stories were quite evocative, with intriguing settings and characters that helped to draw
the reader in. I also appreciated the diversity of themes that were explored, from night
weavers to dream manipulation and mysterious libraries, which kept the stories engaging
and interesting."

• “Temporature setting C on [basic sampling] was the best. The story was fascinating and
very engaging. I wanted to read more."

• “I prefered the first [basic sampling]. Tho [basic sampling] and C seem to be very head
to head. But something about [basic sampling] seemed different in quality about it to me."

More quotes are in the original paper’s data. We urge readers to draw their own conclusions.

33

https://github.com/menhguin/minp_paper/blob/main/min_p%20user%20preference%20study%20v2.0%20(Responses)%20-%20Form%20responses%201%20(1)%20(2).csv)


B GSM8K Chain-of-Thought Scores with “Standard" Formatting

At the request of Nguyen et al. (2024), we reran our GSM8K Chain-of-Thought sweeps using “stan-
dard" formatting instead of “Llama" formatting. Both analyses reached consistent results: min-p
does not consistently outperform other samplers when controlling the volume of hyperparame-
ter space.
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Figure 7: Min-P Does Not Consistently Outperform Other Samplers on GSM8K When Control-
ling For Hyperparameter Volume. We reran our GSM8K sweep using “standard" formatting rather
than “Llama" formatting and observed qualitatively similar data.
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Figure 8: Min-P Does Not Consistently Outperform Other Samplers on GSM8K When Control-
ling For Hyperparameter Volume. We reran our GSM8K sweep using “standard" formatting rather
than “Llama" formatting and observed qualitatively similar data.
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C GSM8K Scores By Model, Sampler and Hyperparameters
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Figure 9: GSM8K Scores By Model, Sampler and Sampler Hyperparameters. Many models
achieve their highest scores at low temperatures across samplers.
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D Additional Evidence of the Fallibility of the Machine Learning Conference
Peer Review Process

Conferences sometimes (nearly) reject seminal papers: NeurIPS 2014 rejected Knowledge Distillation
(Hinton et al., 2015) in 2014 (Vinyals, 2019), Adam (Kingma & Ba, 2014) was originally rejected
from ICLR 2015 before the decision was overturned, and distributed Shampoo (Anil et al., 2020) was
rejected at ICLR 2021 before later winning the AlgoPerf optimization track (Arohan, 2024). Recently,
the senior author of ICLR 2025’s Best Paper (Qi et al., 2024) shared publicly that the paper was
rejected from NeurIPS 2024 even though their resubmission had not changed “the key contributions
in any significant manner" (Mittal, 2024). Other stories include frustrating interactions with obstinate
reviewers, or on the flip side, aggressive authors “wearing down" reviewers (ICML 2025 Program
Chairs, 2025). Two well-known experiments at NeurIPS, one in 2014 (Cortes & Lawrence, 2021) and
another in 2021 (Beygelzimer et al., 2021), have sought to quantify the noise in the ML conference
review process. In short, the review process is, at times, fallible.
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