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Abstract

Aspect-based sentiment Analysis (ABSA) is
an advanced NLP task that identifies senti-
ments related to specific aspects of a product
or service, offering more detailed consumer
insights than general sentiment analysis. The
proposed research introduces a hybrid model,
Instruct-DeBERTa, which combines
InstructABSA for aspect term extraction
(ATE) and DeBERTa-V3-baseabsa-V1
for aspect sentiment classification (ASC).
Using datasets from SemEval Restaurant
2014,2015,2016 and SemEval Laptop 2014,
the model demonstrated improved perfor-
mance across domains. Further enhancements
included category classification using cosine
similarity, linear layers with ReLU activation,
regularization methods, and optimized atten-
tion heads for the hospitality domain. These
improvements address existing model limita-
tions, providing a comprehensive solution for
analyzing consumer feedback, valuable for
enhancing customer satisfaction and product
development.

1 Introduction

Aspect-based sentiment Analysis (ABSA) extracts
opinions on specific product or service aspects, of-
fering deeper insights than traditional sentiment
analysis, which focuses on overall sentiment (Mu-
dalige et al., 2020; Rajapaksha et al., 2020, 2021).
Early lexicon-based methods struggled with con-
text, while machine learning required manual
feature extraction. Deep learning models like
RNNs and LSTMs improved ABSA with auto-
feature learning (Jayasinghe et al., 2021; Rajapak-
sha et al., 2022; Samarawickrama et al., 2022) but
had difficulty with complex syntax. Transformer
models, especially BERT, revolutionized ABSA
by using attention mechanisms for better contex-
tual understanding, greatly improving aspect ex-
traction and sentiment classification. Variants like
RoBERTa and DeBERTa have further enhanced

performance. In this paper, we introduce a novel
model named Instruct-DeBERTa and apply
several enhancements to improve its performance,
achieving state-of-the-art results for the joint task
of Aspect Term Extraction (ATE) and Aspect Sen-
timent Classification (ASC) on SemEval datasets.
Experiments conducted using datasets extracted
from the SemEval 2014-2016 restaurant reviews
(Res-14, Res-15, Res-16), and the SemEval 2014
laptop dataset (Lap-14) demonstrate the remark-
able performance of Instruct-DeBERTa in
the field of accurately detecting aspects and sen-
timent classification.

2 Methodology

In this study, we developed an aspect-based senti-
ment analysis pipeline utilizing transformer-based
models to automatically extract aspects and an-
alyze sentiments in textual data. The pipeline
is composed of two primary stages: aspect ex-
traction and sentiment classification. For these
two stages, we utilized the best models for each
task that we found through our thorough lit-
erature review. Instruct-DeBERTa fuses
the current state-of-the-art InstructABSA de-
veloped by Scaria et al. (2024) for ATE and
DeBERTa-V3-baseabsa-V1 by Yang et al.
(2023) for ASC into one single unified model for
doing the joint task of ATE and ASC.

Next the performance of the
Instruct-DeBERTa model was optimized for
Aspect-Based Sentiment Analysis (ABSA) in the
hospitality domain using datasets Res-14, Res-15,
and Res-16. A new mechanism for category
classification was introduced, leveraging a cosine
similarity-based methodology to categorize aspect
terms into predefined categories without explicit
training on categorized datasets. The visualization
of relationships between aspects and categories
was done using t-SNE and Voronoi diagrams.



Figure 1: Complete Structure of the final improved version of Instruct-DeBERTa

F1 Score (%)
Model Res-14 Res-15 Res-16

ATE ASC ATE ASC ATE ASC
InstructABSA (Scaria et al., 2024) 92.10 --- 76.64 --- 80.32 ---
DeBERTa-V3-base-absa-v1.1 (Yang et al., 2023, 2021)* --- 90.94 --- 89.55 --- 83.71
DeBERTa-V3-base-absa-v1.1-Improved version --- 91.62 --- 86.79 --- 85.88
Instruct-DeBERTa (Single task)* 91.39 88.63 75.13 81.26 77.79 79.35
Instruct-DeBERTa-Improved version (Single task) 91.39 89.22 75.13 81.14 77.79 80.61
Instruct-DeBERTa (Joint task)* 80.78 --- ---
Instruct-DeBERTa-Improved version (Joint task) 81.64 68.93 72.23

Table 1: F1 scores for the selected models individually and when pipe-lined. *These F1 scores were taken from
(Jayakody et al., 2024).

Several architectural modifications were made
to improve the model, such as adjusting dropout
rates, adding a linear layer with ReLU activation
for better aspect extraction, and fine-tuning
parameters like attention heads. Regularization
techniques like L2 regularization and optimized
dropout rates were used to prevent overfitting.
These adjustments improved performance, specif-
ically the weighted F1 score for some datasets,
though performance gains were marginal in
certain cases, like the aspect term extraction task.

3 Results

Our hybrid model, Instruct-DeBERTa, out-
performed all other million parameter models on
most datasets for the ATE-ASC joint task. The
initially developed model outperformed the previ-
ous best performing models as Grace (Luo et al.,
2020) and Span (Hu et al., 2019). The improve-
ments to the Instruct-DeBERTa model, in-
cluding adding a linear layer with ReLU, regu-
larization, and tuning attention heads, led to en-
hanced performance across several datasets. For
Res-14 and Res-15, the weighted F1 scores im-

proved as in Table 1. In terms of aspect cate-
gorization, t-SNE was used to visualize relation-
ships between aspect terms and their categories
in 2D space. Voronoi diagrams were generated
to clearly map aspect terms to predefined cate-
gories like cleanliness and room service in the hos-
pitality domain. This categorization was manually
verified with an accuracy of 85%. These visual-
izations clarified the relationships between aspect
terms and categories.

4 Conclusion

The hybrid Instruct-DeBERTa model com-
bines InstructABSA for aspect extraction
and DeBERTa-V3-baseabsa-V1 for senti-
ment classification. Recent adjustments—adding
a linear layer, ReLU, regularization, and optimiz-
ing attention heads—boosted F1 scores, especially
in the hospitality domain, without retraining. The
model is also capable of classifying aspect cate-
gories, boosting accuracy for ABSA.
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