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Abstract

Achieving deep alignment between vision and language re-
mains a central challenge for Multimodal Large Language
Models (MLLMs). These models often fail to fully leverage
visual input, defaulting to strong language priors. Our ap-
proach first provides insights into how MLLMs internally
build visual understanding of image regions and then intro-
duces techniques to amplify this capability. We explore tech-
niques designed both to deepen the model’s understanding
of visual content and to ensure that these visual insights
actively guide language generation. We demonstrate the
superior multimodal understanding of our resultant model
through a detailed upstream analysis on predicting visually-
dependent tokens as well as >10 percentage point boost on
a visually challenging task and a consistent boost across
multiple tasks.

1. Introduction

Recent years have witnessed remarkable progress in the
field of multimodal artificial intelligence, particularly with
the advent of Large Multimodal Models (MLLMs) [1, 5,
9, 21]. These models, capable of jointly processing infor-
mation from different modalities like vision and language,
have demonstrated impressive general-purpose capabilities
across a wide range of tasks. This success has spurred
significant interest and research, pushing the boundaries of
what AI systems can perceive, understand, and communi-
cate about the visual world.

Despite these striking capabilities, recent work on prob-
ing the workings of MLLMs have begun to uncover sig-
nificant limitations in how current MLLMs integrate visual
information [3, 11, 19]. This growing body of evidence
reveals that many state-of-the-art models exhibit a strong
reliance on learned language priors and statistical correla-
tions present in their vast training datasets. Consequently,
they can be surprisingly weak at leveraging fine-grained
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visual signals crucial for nuanced understanding. Models
may generate plausible-sounding but factually incorrect re-
sponses when faced with visual details that contradict com-
mon knowledge or require careful observation, effectively
‘hallucinating’ or ignoring specific visual evidence in favor
of more probable textual outputs. This gap highlights a crit-
ical challenge: ensuring that visual input genuinely grounds
the model’s reasoning and generation processes.

To address these fundamental challenges, this paper
proposes a novel methodology centered on enhancing the
model’s internal visual representation. First, we strengthen
the visual signal processing, enabling the model to extract
richer and more fine-grained visual representations. Sec-
ond, we introduce a training mechanism that explicitly en-
courages the model to allocate greater attention to these en-
hanced visual inputs during the response generation phase,
reducing over-reliance on language priors. Finally, com-
plementing these training modifications, we construct a tar-
geted synthetic dataset specifically designed to leverage
this advanced training fabric, providing controlled exam-
ples that force the model to learn and exploit fine-grained
visual cues effectively. Our key contributions are:

Enhanced Visual Representation using VISUALLOSS. We
introduce a new loss function to ensure the LLM backbone
builds a rich representation of the input image, independent
of whether they are mentioned in associated training text.

Weakening Language-prior via BLANKTOKENS. To fully
leverage the model’s enhanced visual understanding, we in-
troduce a technique to gently reduce the LLM backbone’s
reliance on strong language priors. Complementing this,
we develop a specialized synthetic dataset, specifically to
encourage sensitivity to fine-grained visual details.

Analysis of Multimodal Alignment. We provide insights
into how MLLMs attempt to understand visual information
and motivates our approach. Our analysis demonstrates sig-
nificant improvements in multimodal alignment, showcas-
ing that our work pushes MLLMs towards a more visually
faithful reasoning and generation.



2. Challenges and Related Work

This section first overviews the key challenges in multi-
modal LLMs that we seek to address in our work and then
discuss prior work on addressing these challenges.

2.1. Challenges in Multimodal LLMs
We highlight three key challenges from prior works and ad-
dress them in this paper:
Weak Visual Understanding. First, several studies high-
light the often weak visual understanding capabilities in-
herent in many contemporary MLLMs [3, 18]. This limi-
tation is frequently attributed, at least in part, to the nature
of the vision encoders employed, such as CLIP. While ef-
fective for capturing global image-text semantics, encoders
like CLIP may not provide the sufficiently detailed, fine-
grained representations required for nuanced visual com-
prehension, leading to models struggling with specific ob-
ject attributes, states, or intricate scene details.
Sparse Training Signals. Second fundamental challenge
limiting the depth of visual understanding in current MLLM
arises from the sparse nature of the loss signals. The stan-
dard next-token prediction loss is calculated exclusively on
the text sequence which provides only an indirect and often
weak signal for visual learning, as only a fraction of the text
tokens may have a strong, unambiguous dependence on the
visual content. Furthermore, the textual descriptions fre-
quently refer only to a subset of the objects, attributes, and
relationships present in the image. As a result of this sparse
supervision derived from text, the LLM backbone has lim-
ited opportunity to develop a truly rich, comprehensive in-
ternal representation of the full visual context.
Strong Language Priors. As demonstrated in prior work
like SpatialEval [19], models may fail to utilize visual con-
text correctly, particularly for tasks demanding spatial rea-
soning or precise grounding of textual concepts in the im-
age. This indicates that even if relevant visual information
is encoded, the mechanisms for cross-modal interaction and
reasoning within the LLM component may be insufficient to
properly access, interpret, and apply that information when
answering questions or generating descriptions.

2.2. Related Work
Prior work attempts to address the above challenges in
multiple different ways. These include strengthening vi-
sual signals by providing embeddings from multiple vi-
sual encoders to the LLM backbone [17, 18], adding aux-
iliary losses to help the LLM build a richer visual rep-
resentation [22], and generating synthetic or augmented
data [13, 16]. Our training innovations fundamentally dif-
fer from these approaches in that we do not require extra
visual annotations or the overhead of additional encoders at
inference time (details in Appendix 6.5).

Figure 1. Sample demonstrates how MLLMs attempt to build an
internal representation that capture semantic information about the
image patches even without any explicit supervision

3. Our Approach
We first analyze the internal visual understanding in existing
MLLMs (Section 3.1) and rest of this section details our
proposed training strategy shown in Algorithm 1.

3.1. Dissecting visual tokens in MLLMs
Understanding how MLLMs internally develop visual rep-
resentations is crucial for addressing their limitations and
guiding future improvements. To gain insights into this pro-
cess, we perform probing analyses focused specifically on
the visual tokens processed by the model following initial
encoding (Figure 1). In particular, we feed the visual to-
ken embeddings generated by the LLM backbone through
its final layer, i.e., language modeling head (lm head) and
identify the top predicted token for each visual patch. We
qualitatively examined a diverse set of images and present
examples in Figure 1. Some key observations include:
• The model captures information about both foreground

and background elements.
• The model is capable of localizing fine-grained structures

or small items (e.g., lines, cones).
• The model captures semantically distinct items at varying

scales (e.g., handle, canoe, cow) within an image.
Our investigations indicate that MLLMs do not treat vi-

sual tokens merely as abstract feature vectors. Instead, they
exhibit an emergent capability to associate meaningful se-
mantic labels or concepts with their corresponding image
patches. This suggests that the model performs a degree of
localized scene interpretation prior to extensive cross-modal
fusion. Notably, MLLMs develop this localized understand-
ing without explicit supervision for this capability.

This observation – that MLLMs develop rudimentary se-
mantic grounding at the visual token level – provides strong
motivation for our proposed approach. Given that the model
possesses this nascent ability, interventions designed both to
enhance this specific capability and to encourage the model
to more effectively utilize this internal visual information
hold significant potential. Our approach to achieving this
goal is detailed in the following three sub-sections.



Figure 2. Proposed modifications to MLLM training that en-
hances visual understanding through VISUALLOSS (Section 3.2)
and encourages LLM backbone to pay greater attention to them
using BLANKTOKENS (Section 3.3).

3.2. Visual Representation using VISUALLOSS

We introduce a fundamentally new strategy (referred to as
VISUALLOSS in this work) to enrich the LLM’s internal pro-
cessing rather than just augmenting its inputs, as illustrated
in Figure 2. In particular, we introduce an auxiliary vi-
sion encoder with rich visual semantic understanding (I-
JEPA [2] in our work) during training phase and use it to in-
troduce a new loss term, VISUALLOSS, on the visual tokens
of the LLM backbone. By requiring the LLM backbone to
predict corresponding I-JEPA representations, we provide
a strong, targeted supervisory signal that directly fosters a
deeper and more nuanced visual understanding within the
language model itself. This process encourages the model
to build a comprehensive understanding of the visual con-
tent, rather than being limited to learning only those con-
cepts explicitly captured in the text description. Please refer
to Appendix 6.1 for details.

3.3. Language Priors using BLANKTOKENS

Achieving accurate and visually grounded responses re-
quires addressing another key challenge: over-reliance of
MLLMs on strong language priors. Even with improved
visual feature processing, models often default to gener-
ating text driven by learned linguistic patterns, potentially
overlooking specific visual evidence. To mitigate this ten-
dency, we introduce a complementary strategy focused on
gently recalibrating the model’s dependence on textual con-
text during training. This involves strategically masking
portions of the input text, thereby disrupting straightfor-
ward language-based auto-completion and compelling the
model to rely more heavily on its visual comprehension ca-
pabilities to generate coherent outputs. Please refer to Ap-
pendix 6.2 for details.

Algorithm 1 Forward pass with proposed enhancements.

1: INPUT: I, Tin, Tout, MLLM, Vaux, β
2: OUTPUT: LOSS
3: #I: Image, Tin, Tout: Text input and output
4: #Vaux: Aux Vision Encoder
5: TinBlank = BlankInputsPartial(Tin) #Section 3.3
6: Vfeat, Tfeat = MLLM(I, Tin)
7: #Vfeat, Tfeat is visual and text features
8: Vemb = Vaux(I) #Section 3.2
9: Lntp = CE(lm head(Tfeat), Tout) #Next token loss

10: LvisualLoss = VisualLoss(Vfeat, Vemb) #Section 3.2
11: Ltot = Lntp + β· LvisualLoss

3.4. Targeted Synthetic Data Generation

Figure 3. Examples of synthetic grid data for spatial awareness.
Objects are randomly sampled from a large public image collec-
tion [4, 6, 7], and placed onto distinct locations.

We design synthetic training samples with the goal of
further encouraging the model to focus on specific spatial
relationships and visual attribute identification. We con-
struct each image as a grid of objects using real-world natu-
ral images along with their segmentation masks from Open-
Images-v7 [4, 6, 7] dataset, inspired by prior work using
synthetic data to build foundational capabilities in mod-
els [16]. Figure 3 shows examples of synthetic grid visual
data and Appendix 6.3 show examples of corresponding
questions and additional details.

4. Results
This section analyzes the effectiveness of our proposed ap-
proach. We layer our techniques on top of a LlaVA [9]
model with Llama 3.1 8B backbone (Baseline) and de-
tail the training setup in Appendix 6.4. We demonstrate that
our approach improves the model’s ability to predict visu-
ally relevant tokens (Section 4.1) and significantly enhances
its performance on challenging visual tasks (Section 4.2).

4.1. Upstream Analysis
To evaluate the impact of our techniques on the model’s
ability to integrate visual information during language gen-
eration, we conduct an upstream analysis on the SpatialMM
dataset [15], that by construction has text with a high depen-
dence on specific visual content, demanding strong visual



Table 1. Next token prediction (NTP) loss on SpatialMM dataset.
We see an improvement as our techniques are introduced. Note
that each line is additive, e.g., +BLANKTOKENS captures impact of
adding VISUALLOSS and BLANKTOKENS over the baseline.

Technique NTP

Baseline 3.59

+ VISUALLOSS 3.54
+ BLANKTOKENS 3.48

+ ind. weights 3.20
+ AIMv2 encoder 2.96
+ VISUALLOSSADV 2.94

grounding, making it suitable for this analysis.
Table 1 shows consistent decrease in cross entropy loss

for the next token prediction, especially with our proposed
enhancements, indicating improved prediction capability.
Qualitative visualizations of token-level prediction losses
(Appendix 6.6) further support this finding, showing lower
values for tokens referencing visual objects, attributes, or
relationships within the image.

4.2. Evaluation on SpatialEval Benchmark
We evaluate our proposed techniques on the SpatialE-
val [19] benchmark1, designed to probe spatial understand-
ing capabilities. Our results, summarized in Table 2,
demonstrate a clear trend of performance improvement
across all benchmark subsets with our proposal.

The addition of VISUALLOSS results in a significant
improvement in model performance for SpatialMap
and SpatialReal subsets of the benchmark. We at-
tribute these improvements to VISUALLOSS’s ability to
strengthen the model’s understanding of visual content.
Adding synthetic data provides consistent improvement
across all benchmark subsets, despite minimal overlap with
the benchmark tasks. In particular, it helps us narrow the
performance gap with the Llama 3.2 11B model [5], even
though our model is smaller (8B vs 11B), utilizes a lower
input resolution (e.g., 224x224 vs Llama’s higher resolu-
tion of 560x560), and employs a simpler modality combina-
tion approach (input-layer feature appending vs multi-layer
cross-attention). This underscores the synthetic data’s ef-
fectiveness in enhancing visual grounding by leveraging our
proposed training enhancements (Section 3).

4.3. Future Extensions
We explore two extensions to further improve LLM’s in-
ternal visual representation. First, to mitigate the potential
representational conflict arising from tasking the same LLM
weights with processing both visual and textual concepts,

1we had to enhance benchmark’s prompting and parsing capabilities
which we open source as well for reproducibility

Table 2. Our proposed techniques consistently improve SpatialE-
vals accuracy across all benchmark subsets. Avg. is calculated as
mean of normalized accuracy improvement.

Technique Grid MazeNav Map Real Avg.

Baseline 34.5 15.1 44.1 50.4 1

+ VISUALLOSS 31.3 17.0 50.7 56.3 1.075
+ BLANKTOKENS 30.1 22.9 47.1 52.6 1.125

+ Synthetic 41.1 26.3 55.2 53.3 1.31

+ VISUALLOSSADV 43.5 26.7 64.1 53.3 1.385

Llama 3.2 11B [5] 50.1 28.1 48.2 53.3 1.365

we experimented with providing each modality with an in-
dependent set of weights [8, 20]. Cross-modal interaction
was maintained through the standard self-attention mecha-
nism. Our initial results in Table 1 (+ind. weights
row) indicate that this separation significantly enhances vi-
sual representation - providing the biggest reduction in up-
stream loss thus far (3.48⇒ 3.20).

Next, we demonstrate that VISUALLOSS can leverage ad-
vancements in image encoders to help the LLM backbone
build richer visual representations. We replace I-JEPA [2]
with the AM-Radio [12] encoder as the auxiliary image en-
coder for our visual loss (shown as VISUALLOSSADV in Ta-
ble 2) yields an additional gain of approximately 9.1 per-
centage points on the SpatialMap subset. This enhance-
ment enables our model to match the performance of Llama
3.2 11B on this task, despite our model being smaller, em-
ploying a simpler architecture, and using a lower-resolution
visual input. Further investigation of these extensions con-
stitute key directions for our subsequent research.

5. Conclusion

This paper addresses the challenge of weak visual ground-
ing in Multimodal Large Language Models (MLLMs),
which often underutilize visual input due to over-reliance on
language priors. We provide insights into MLLMs’ nascent
internal visual representation and propose novel training
strategies to strengthen the LLM backbone’s visual repre-
sentation and its ability to leverage this understanding dur-
ing response generation. The effectiveness of our approach
is demonstrated through upstream analysis on the visually
rich SpatialMM dataset and accuracy evaluations on the
challenging SpatialEvals benchmark. We observe consis-
tent improvement as we layer in our innovations which con-
firms model’s superior visual reasoning capabilities. These
results validate our strategy, highlighting the value of si-
multaneously enhancing core visual understanding and en-
couraging cross-modal attention as well as paves a scalable
path for leveraging advances in image encoders to enhance
MLLM’s internal visual representation.
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Supplementary Material

6. Appendix
6.1. VISUALLOSS Formulation
Formally, we introduce an auxiliary vision encoder (say,
A(·; θA)) in addition the the standard vision encoder (de-
fined as G(·; θG) representing CLIP [10] in our implemen-
tation connected to LLM backbone using MLP connector
M). We choose the auxiliary vision encoder to be based on
pretrained I-JEPA [2] model that can extract rich visual rep-
resentations from the image (XI). As shown in Figure 2,
this auxiliary loss is implemented by predicting the visual
features from the LLM backbone (F) and matching them
with the auxiliary representation using MSE loss as follows,

LvisualLoss(θF , θM , θG) =

∥A(XI)−F
(
M

(
G(XI)

)
⊕ T

)
⊙ vMask∥2

(1)

where vMask is the binary mask that only retains the
visual features in the output and masks out the textual fea-
tures. The term M

(
G(XI) represents the visual tokens pro-

jected into LLM space and ⊕T represents the concatena-
tion of textual tokens. The auxiliary loss is combined with
the auto-regressive objective for LLM to train the overall
MLLM using Ltot,

Ltot = Lntp + β · LvisualLoss (2)

6.2. BLANKTOKENS Formulation
Formally, we implement BLANKTOKENS
(BlankInputsPartial from Algorithm 1) as fol-
lows: say Tin are input text tokens, bid is one of the
reserved tokens from LLM vocabulary that we designate
as blank token id, and M is the mask vector determining
whether we want to blank an input token, then

TinBlank =

{
Tin if M is True
bId otherwise

(3)

Our specific implementation of this strategy targets the
initial tokens during response generation. We consistently
blank out the first N text tokens of the input sequence pro-
vided to the model during training. This deliberate masking
at the beginning of the sequence prevents the model from re-
lying on leading textual cues to initiate its response. Instead,
the model is forced to formulate its initial coherent thought

and begin the generation process based primarily on the pro-
cessed visual information. This targeted intervention aims
to cultivate stronger visual grounding precisely at the crit-
ical starting point of generation, encouraging the model’s
subsequent output to remain more faithful to the visual con-
text. Furthermore, beyond these initial tokens, we randomly
blank out a fraction (about 20%) of the subsequent input to-
kens to discourage excessive reliance on language context
and ensure the model continues to refer back to visual sig-
nals throughout its response generation.

6.3. Synthetic Data Generation
The generation process involves programmatically cre-
ating visual scenes paired with corresponding questions
and answers. We randomly sample object instances
from a large public image collection [7], and place a
small number of these objects onto distinct locations
within an N × N grid background. For each gen-
erated scene, we automatically formulate basic ques-
tions focusing on visual understanding (for example
What are the objects in the image?), relative object
direction (for example In which direction is ... ?)
and simple distance (e.g. What is the distance ... ?).
The ground truth answers are derived directly from the pro-
grammed spatial layout. Figure 4 shows examples of dif-
ferent grid layouts. The grids vary in background col-
ors and grid size granularity, such as 4×4 or 8×8. We
formulate 4 types of queries classified as: Describe,
Directional, Distance, Location. Figure 5 shows
examples of such queries.

Crucially, these generated questions are designed so they
can typically only be answered correctly by accurately pars-
ing the visual content of the grid and reasoning about the
relative placement of the objects depicted. They inherently
resist solutions based purely on language priors or statistical
shortcuts. By integrating this synthetic data into our train-
ing, we complement our other innovations (VISUALLOSS,
BLANKTOKENS) by providing the model with explicit, tar-
geted tasks that directly exercise and thereby sharpen its vi-
sual reasoning and modality alignment capabilities.

6.4. Training Details
Model Architecture. Our model architecture is closely
based on the LLaVA framework [9]. We employ Llama 3.1
8B [5] as the LLM backbone. For visual feature extraction,
we utilize the pre-trained CLIP backbone [10].



Figure 4. Examples of synthetic visual samples with objects placed on N ×N grid with different backgrounds.

Figure 5. Examples of spatial queries of type Describe, Directional, Distance, Location generated for a visual sample.

Training Setup. Our training follows a three-stage pro-
cedure similar to LLaVA. Stage 1 (Feature Alignment):
We first train only the MLP connector module, keeping
both the vision encoder and the LLM backbone frozen.
We do not apply VISUALLOSS and BLANKTOKENS in this
stage. Stage 2 (End-to-End Continued Pretraining): Sub-
sequently, we train the MLP connector, LLM backbone and
the image encoder jointly using a mixture of multimodal
pretraining dataset. In this stage, we apply VISUALLOSS and
BLANKTOKENS to encourage LLM to build a rich visual rep-
resentation. Stage 3 (End-to-End Instruction Fine-tuning):
Finally, we fine-tune the MLP connector, LLM backbone
and the image encoder to answer questions based on visual
and text information.

Technique Implementation & Data Mixture. When in-
corporating our auxiliary visual loss during training, we set
the loss weighting coefficient β = 0.5. For our input mask-

ing technique aimed at reducing language prior reliance, we
consistently blank out the first N = 5 text tokens as well as
randomly selected 20% tokens in the input sequences. Dur-
ing the Stage 3 fine-tuning phase, our data mixture consists
of 75% standard multimodal instruction data and 25% of
our targeted synthetic dataset described in Section 3.4.

6.5. Related Work

Our approach relates to but diverges from several lines of
prior work aimed at improving MLLM visual grounding.
We highlight two key areas:
Multiple Image Encoders. A substantial body of work
has explored enhancing visual input by feeding represen-
tations from multiple distinct image encoders into the LLM
backbone [14, 17, 18]. While providing more diverse visual
information can be marginally helpful, this strategy often
struggles to significantly improve the LLM’s core visual un-



derstanding. This limitation arises partly because the stan-
dard next-token prediction loss used in LLM training is not
inherently conducive to integrating rich, fine-grained visual
information deeply into the LLM’s latent space.
Auxiliary Visual Losses. Another relevant direction in-
volves cross-modal attention by incorporating auxiliary
losses specifically designed to promote region-level under-
standing or grounding during training [13, 22, 23]. These
methods aim to provide more direct supervision for visual
interpretation (GlaMM [13] offers a detailed analysis re-
lated to auxiliary visual input). However, a common down-
side of such approaches is the potential need for extra vi-
sual signals or annotations (e.g., object locations, regional
descriptions) to compute these losses. In contrast, our work
focuses on enhancing the LLM’s internal visual representa-
tion through an auxiliary loss applied in a self-supervised
manner, leveraging the structure learned by powerful image
encoders without requiring explicit region-level annotations
for the auxiliary task itself.

6.6. Next-token Prediction Visualization
We make the following observations regarding the next-
token prediction accuracy shown in the figure:
• Higher-quality captions: We observe that the first few

tokens are consistently more accurate for our model
compared to the baseline. This demonstrates that our
BLANKTOKENS intervention enhances the model’s ability
to compose text grounded in the visual content from the
outset.

• Higher confidence prediction of visually relevant text
tokens: We observe that tokens pertaining to visual con-
cepts (such as objects, people, orientation, shape, and
color) are predicted with higher confidence by the model
trained with our innovations.

• Focus on enriching cross-modal alignment: The base-
line model achieves its highest prediction accuracy pri-
marily for language-centric tokens like contains, in
the, and side. This further supports the conclusion
that our approach’s primary impact is on improving the
generation of visually grounded text requiring reference
to visual input and reasoning.



Figure 6. This figure visualizes the next-token prediction loss on a per-token basis for our proposed approaches. The
visualization highlights improvements in the model’s ability to predict tokens corresponding to visual content. In the figure,
bold text represents the lowest cross entropy loss when comparing across the model variants.
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