Under review as submission to TMLR

Stabilizing black-box model selection with the inflated argmax

Anonymous authors
Paper under double-blind review

Abstract

Model selection is the process of choosing from a class of candidate models given data.
For instance, methods such as the LASSO and sparse identification of nonlinear dynamics
(SINDy) formulate model selection as finding a sparse solution to a linear system of equations
determined by training data. However, absent strong assumptions, such methods are highly
unstable: if a single data point is removed from the training set, a different model may
be selected. In this paper, we present a new approach to stabilizing model selection with
theoretical stability guarantees that leverages a combination of bagging and an “inflated”
argmax operation. Our method selects a small collection of models that all fit the data, and
it is stable in that, with high probability, the removal of any training point will result in
a collection of selected models that overlaps with the original collection. We illustrate this
method in (a) a simulation in which strongly correlated covariates make standard LASSO
model selection highly unstable, (b) a Lotka—Volterra model selection problem focused on
identifying how competition in an ecosystem influences species’ abundances, (¢) a graph
subset selection problem using cell-signaling data from proteomics, and (d) unsupervised
k-means clustering. In these settings, the proposed method yields stable, compact, and
accurate collections of selected models, outperforming a variety of benchmarks.

1 Introduction

Model selection is typically formulated as a procedure to identify the model that “best” represents data from
among a set of candidate models. For instance, scientists may choose among many interpretable models to
identify salient variables, interactions, or policies, with the goal of developing a fundamental understanding
of the natural or social phenomenon underlying experimental data. Examples of model selection include
variable selection (choosing a subset of covariates from a larger pool that best explains the response variable
or label), selecting a decision tree, selecting the order or memory of an autoregressive model, selecting a
kernel function for a support vector machine, selecting the number of clusters in x-means, selecting the
number of factors in factor analysis, and more. The issue of model selection is a common problem in a
variety of domains, including bioinformatics (Saeys et al., 2007), environmental studies (Effrosynidis and
Arampatzis, 2021), and psychology (Vrieze, 2012).

In this paper, we argue that constraining a procedure to return a single model does not adequately express
any uncertainties in the model selection process, and therefore, returning a set of selected model(s) is more
appropriate than only ever returning one. An ideal method would return a single model as often as possible
while guaranteeing some degree of stability, i.e., the selection should not be too sensitive to small changes in
the data (Yu, 2013).

Especially in model selection scenarios where the goal is to interpret the model to learn something funda-
mental about the studied process, trustworthiness in the results is paramount. A necessary condition for
trustworthy model selection procedures is stability. Conventional methods for model selection provide ad hoc
procedures that do not provide theoretical stability guarantees without strong assumptions on the data or
model. Our goal is to provide a method that is adaptive to the underlying uncertainty of the model selection
process without placing strong assumptions on the data distribution or the models themselves.

In this paper, we propose stabilizing model selection, leveraging ideas from stabilized classification (Soloff
et al., 2024b), which exhibits desirable theoretical guarantees. We provide comparisons of our proposed
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approach to widely used conventional model selection methods as well as explore the trade-offs of stability,
accuracy, and interpretability of the model selection procedures.

1.1 Our contributions

In this work, we allow model selection procedures to return a set of candidate models, conveying uncertainty
about which model is best while returning a single model as often as possible. We formulate a notion of
model selection stability based on the idea that our claims about which model is best should remain logically
consistent when we drop a small amount of data.

We develop a framework for stabilizing black-box model selection procedures by combining bagged model
selection with the inflated argmaxz (Soloff et al., 2024b), which was formulated in the context of multiclass
classification. The key insight of this paper is that if we formulate model selection as a multi-
class classification problem, where each class corresponds to one of the candidate models,
then we can directly use the inflated argmax and inherit its corresponding theoretical stability
guarantees for model selection, which are agnostic to the model class and data distribution.
Additionally, the stability guarantee holds even if the “true” model is not considered in the class of candidate
models. We emphasize that our approach is highly generic and can be applied to many base model selection
tasks, such as variable selection, constructing decision trees, selecting the order of an autoregressive model,
and more.

We show empirically that the inflated argmax can improve black-box model selection stability with examples
in clustering, decision trees, and variants of variable selection tasks. For variable selection (a special case of
model selection), we show this result for data with correlated covariates, a setting known to yield instabilities
in standard model selection algorithms. We compare against and outperform numerous conventional model
selection approaches, described in §2.2. These conventional methods, unlike our approach, are not adaptive
to the underlying level of uncertainty of the model selection procedure.

2 Model selection

More formally, model selection focuses on selecting one or more models from among a set of candidate
models, denoted M™. A model selection procedure is a map M from data D to a set of selected models
M C M*.! The output M = M(D) is a nonempty subset of M*. If M always outputs a singleton (i.e.,

|M| = 1), M is called simple.

For example, in variable selection (a special case of model selection), the data consists of n variable-response
pairs D = {(x;,y;)}",, where 7; € R%. We seek to identify relevant variables (e.g., variables of z most
predictive of .), so the model class M+ = 2[4 is the power set of [d] = {1,...,d}. However, in more general
settings, the set of all candidate models M ™ can contain any class of models. For instance, in graphical
model selection, M is the set of all graphs G on d vertices, where an edge (4, k) in G encodes conditional
dependence between variables j and k (Drton and Perlman, 2004; Friedman et al., 2008). In dynamical
system identification, M is a set of possible differential equations governing the dynamics underlying noisy
data (Brunton et al., 2016). In econometrics, M+ could be a collection of competing time series forecasts
(Masini et al., 2023). To keep our discussion general, the model class is an abstract, countable set M.

We decompose the model selection procedure M into two stages

M=SoA, (1)

where A maps data D to weights @ = A(D) € R|M+|, where for each m € M, 1,, is the weight assigned to
model m € M™. This weight may be loosely interpreted as the probability of the candidate model being the
best model given the data among the choices in M. The selection rule S takes these weights @ as input and

returns a non-empty set of selected model(s) N C M that provide the best performance as a function of

INote that this is a general formulation of the model selection problem, and does not assume that there is a true data
generating model in M.
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input Model weighting algorithm A; data D; ensemble size B; bag size K
forb=1,...,B do
Construct D° by sampling uniformly (with or without replacement) K times from D
Compute model weights @° = A(D")
end for
output Ensemble weights o = & Zle N

the training data, where performance may reflect some combination of fit to data and structural properties
of the model.

2.1 Stage 1: Assigning weights to candidate models with A

Base algorithm A. A base algorithm A is any off-the-shelf model weighting algorithm. Many model
selection methods lead to weight vectors @ that place all weight on a single model (i.e., the algorithm A
returns only one model, so w is a vector of zeros with an entry of 1 corresponding to the selected model).
Examples of such algorithms are LASSO for variable selection (Tibshirani, 1996), SINDy for model discovery
for dynamical systems (Brunton et al., 2016), and graphical LASSO for graph subset selection (Friedman
et al., 2008), all of which are experimentally explored in this work. A known issue of these procedures is
that these algorithms can produce unstable model selections. One mechanism that has been shown to help
its stability is bagging.

Bagged algorithm A K,B- We denote flK B as the algorithm resulting from applying a bagging technique
on a base algorithm A, where K is the number of samples per bag and B is the number of bags. The
output of the weighting algorithm /IK, g must be bounded. For simplicity, we assume that the weights can
be normalized such that @ belongs to the probability simplex Ajps+|_1. 2 Bagging averages an ensemble
of weight vectors fit on different randomly sampled bags; see Algorithm 1. Sampling with replacement is
known as bagging, and sampling without replacement is known as subbagging.

For a base algorithm A that places all weight on a single model, bagging A to compute w0, simply counts
the fraction of bags where m was selected. Even if the set of candidate models is infinite (i.e., |MT| = o0),
the weights @ will have at most B nonzero entries, so bagging is still tractable. Generally, increasing the
number of bags B used in flK,B provides a more stability, as we empirically show in Figures 12 and 13.

2.2 Stage 2: Conventional selection rules S

We discuss conventional selection approches S and their limitations.

The standard argmax. The default selection rule selects the best model(s) M €argmax,, @y,. (M may
contain more than one model in the case of exact ties for the top weight.) If the weights contain near-
maximizers, the argmax can be sensitive to small perturbations of @, meaning that a different model may
be selected with a small perturbation to the training data.

Top-k. Instead of returning the very best model(s) using the argmax, an alternative is to return the top
k models that receive the largest weight, where k is user-specified. Similar to the argmax, top-k fails to
automatically adapt to the inherent uncertainty in the model selection process. In particular, if @ has
far more than k near-maximizers, top-k(w) will be unstable. On the other hand, if @ has fewer than k
near-maximizers, top-k returns a set that is unnecessarily large.

Stability selection. In the context of variable selection, the stability selection method (Meinshausen and
Biihlmann, 2010) selects a single model based on whether each covariate is included in the model with
probability at least 7. Concretely, consider a vector of weights @ associated with candidate models M,
where |[M*| =204 since each of the d covariates is either included or not for each model in M*.Define

2The probability simplex A|M+‘71 consists of nonnegative weights w that sum to one: Zm W, = 1.

eM+
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the marginal variable probabilities ij = ngd]

jem W, for 7 = 1,...,d, where j € m corresponds to

variable j being included in model m. In other words, II; corresponds to the frequency of variable j be-
ing included in any selected model. Stability selection returns ip, (@) := {j € [d 1y > 7-} for some

use-specified threshold 7. Similar to the standard argmax (without ties), ip, (@) only returns a collection
of wariables, which together constitute a single model. This selection procedure can be unstable if some
marginal probabilities f[j are near the threshold 7. §A presents a more detailed comparison between this
method and our method, particularly in the setting of correlated variables.

2.3 Model selection stability

The stability of M corresponds to how much the output of M may change with small perturbations to D for
any dataset D. Note that this cannot be estimated empirically because we cannot test all possible datasets
D with finite computational resources. We adapt the definition of stability in Soloff et al. (2024b) to the
context of model selection.

Definition 2.1. A procedure M has model selection stability 1 — ¢ at sample size n if, for all datasets D
with n samples,

ILgn v
521{M0M\1=@}g5, (2)

i=1
where M = M(D) and M\" = M(D\) for each i € [n].

In Definition 2.1, D\ refers to dataset D with the i-th sample removed. In plain language, the inequality
in (2) quantifies stability in terms of whether the sets of selected models overlap when we drop a single
observation at random. Note that this notion of model selection stability holds for any “black box” model
selection method of the form (1), in contrast to prior works that focus on particular settings, such as variable
selection (e.g., Meinshausen and Biithlmann (2010)) or k-means clustering (e.g., Ben-David et al. (2007)).
While this definition of stability may seem weak (i.e., in practice, much larger perturbations to the data
could be made), we will see empirically in our results that this minimal change to the data can have a
substantial impact on model selection stability. Moreover, stability according to this criterion is necessary
for most stronger notions of stability to be satisfied.

3 Related work

Model selection has a rich history in the statistics literature. Ding et al. (2018) provides a recent overview of
model selection techniques. Various aspects of model selection have been studied in previous work, including
hyperparameter selection via cross-validation (Raschka, 2020), preventing overfitting (Cawley and Talbot,
2007), selection criteria (Rao et al., 2001), among others. In this work, we are particularly interested in the
aspect of model selection stability, and bagging has been a key tool to address instability in model selection.

Returning a model selection set. Returning a set of models to acknowledge inherent uncertainty in
model selection is an old idea. Early literature on subset selection for linear regression (Spjgtvoll, 1972)
focused on selecting the true model with high probability. Breiman (2001) coined the terms “Rashomon set”
to refer to a complete set of nearly equally performing models (e.g., Xin et al. (2022) finds the full Rashomon
set for decision trees), and the “Rashomon effect” to refer to the phenomenon that multiple, vastly distinct
models may all perform equally well on out-of-sample data for a particular problem. More recent works
extend the idea of a model confidence set to more general modeling settings (Hansen et al., 2011; Zhang
et al., 2024). These works have a stochastic model for the data and construct a confidence set containing
the best-fitting model with high probability. By contrast, our framework places no stochastic assumptions
on the data, instead targeting a more modest goal of stability for the selected set.

Stability in variable selection. There is extensive literature on stability in variable selection; see, e.g.,
Khaire and Dhanalakshmi (2022) for a recent overview. Work in this area has overwhelmingly focused on
“simple” procedures, returning a single subset of variables, and stability is measured based on the similarity
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of the selected subsets of variables. By contrast, Definition 2.1 is not satisfied by simple procedures unless
they return the same model most of the time.

Bagging to improve stability. Bagging is an important tool for model selection and variable selection,
and has been widely applied to stabilize model selection procedures (Breiman, 1996a;b). For example,
stability selection thresholds the marginal bootstrap inclusion probabilities of each variable (Meinshausen and
Bithlmann, 2010; Shah and Samworth, 2013). Additionally, BayesBag (Bithlmann, 2014) directly averages
posterior distributions over different resamplings of the data. Huggins and Miller (2023) analyze the accuracy
and stability properties of the BayesBag approach specifically for Bayesian model selection. Soloff et al.
(2024a;c) shows that bagged weights are stable, meaning that dropping a single sample cannot change the
bagged weights @ by much in the Euclidean norm. Bagging can thus express model uncertainty, but, as we
show empirically in §5, selecting the most frequent model among multiple close contenders can still be quite
unstable. In order to achieve any stability guarantees of the selected model(s), a new selection rule S is
needed, as discussed in §4.1.

Stabilizing classification. Our work builds on ideas from stable classification. Soloff et al. (2024b)
introduces a framework for set-valued classification, combining the inflated argmax with bagging to guarantee
stability for classification.

4 Our approach
We now provide a brief overview of our pipeline for stabilizing a model selection procedure M =S o A.

1. First, we bag the weighting algorithm A, i.e., average the weights fit on different random samples
from D. We fully define bagging in Algorithm 1.

2. Next, we pass the bagged weights @ through the inflated argmax, which selects a set of near-
maximizers of 1 that is robust to small perturbations of the weights. We define the inflated argmax
for model selection in Definition 4.1.

In §4.2, we provide a stability guarantee for this pipeline that can be applied to any algorithm .4 and any
data set D. We first discuss our pipeline in detail.

4.1 The inflated argmax for model selection

In this section, we propose an alternative selection procedure S based on the inflated argmax. Soloff et al.
(2024b) introduced the inflated argmax to guarantee stability in the context of multiclass classification.
A key insight of this paper is that if we formulate model selection as a multi-class classification
problem, where each class corresponds to one of the candidate models, then we can directly
use the inflated argmax and inherit its corresponding theoretical stability guarantees for model
selection. With this insight, the inflated argmax, an alternative model selection criteria S that we denote
by argmax®, will allow us to decide which subset M of M+ to return.

Definition 4.1 (Inflated argmax). For m € M, let

€
R, =qweA _1: Wy = Max Wy + — ¢, 3
' { S m'm \/Q} )

where A|yr+|—1 is a probability simplex. For any w € Ajpz+|—1 and € > 0, the inflated argmax is defined as
argmax®(w) := {m € M* : dist(w, R;,) < £}, (4)
where dist(w, R;,) = inf,cpe ||¢ — w||, and || - || is the Euclidean norm.

A visualization of a simple example of argmax® where more than one model is returned is shown in Figure 1.
An intuitive explanation of Definition 4.1 is that m € argmax®(w) indicates that m would have the largest
weight in w by some margin if the weights w were slightly perturbed, where both the size of the margin and
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Figure 1: Visualization of argmax® when |[M | =
3. The weights assigned to each model A can
be mapped onto a 3-dimensional probability sim-
plex as shown. The example weight vector w =

Set of w witf . o .
RS dm(‘e‘, C,)W‘)‘ !L,;md [5,2,3] lands in an area that is within £ dis-

w=1[0,0,1]

dist(w, R?) < & tgncgc %f regions R5 and R§, which are the re-
‘ gions corresponding to returning models my and
mg, respectively. Because this weight vector is
| 4 47 in an “uncertain” region based on e for distin-

l guishing whether model ms or mgs provides a
better fit to the data, argmax® will return both
models: {mq,m3}. In contrast, weight vector
W= [1.00] f—e— w =1[0,1,0] w = [%, %, %} would land in the area labeled Rj,
and argmax® will return mg only.

the weight perturbations scale with . This definition naturally allows for the number of returned models to
adapt to the uncertainty in the model selection: for example, if the top two competing models are close in
probability, then the inflated argmax will return both models for some choice of small €. On the other hand,
if the top two competing models have a large enough gap in their two weights, the inflated argmax will only
return the top model for a choice of small €. The parameter ¢ is not something to be tuned. It is chosen to
satisfy a user-specified stability tolerance; see §4.2.

4.2 Stability guarantee

In this section, we state a theorem guaranteeing the stability of our approach based on our definition of
stability in Definition 2.1.

Theorem 4.2. (Adapted from Soloff et al. (2024b, Theorem 17).) For any model selection procedure S o A,
our method argmax® o Ai g satisfies model selection stability at instability level

1 1 1 p 16€2
§=—(1-
< |M+|)<n11p+ B)’

where p = % for subbagging and p=1— (1 — %)K for bagging.

The proof immediately follows from the proof presented in Soloff et al. (2024b). The main use for this
theorem is that the user can choose a tolerable worst-case instability § for their model selection,
input the known parameters of the problem (i.e., |[M ™| candidate models, K samples per bag, n total
samples, and B bags), and directly solve for the ¢ that should be used for argmax®©.

Recall that e determines how much we inflate the argmax, so when it’s smaller, the inflated argmax is closer
to the standard argmax. Accordingly, when ¢ is smaller, Theorem 4.2 gives a larger 9§, reflecting a weaker
stability guarantee. Further, note that the instability level § decreases (i.e., stability increases) by decreasing
the bag size K and increasing the number B of bags. The size of our model class |M ™| has only a small
influence on the level of instability of our procedure. For example, when there are two models, |[M ™| = 2,

the factor 1 — ﬁ = %, giving a constant-factor boost in stability over the case where M is countably

infinite, where 1 — ﬁ becomes 1. This theoretical result is the first to provide theoretical guarantees for

model selection stability that is agnostic to the underlying models, base algorithm, and data distribution.

5 Experiments

Our experiments assess and compare the stability of five different model selection approaches, described in
Table 1. We perform experiments in three settings: identifying important variables in a synthetic dataset
that contains a small collection of highly correlated variables (see Appendix C), identifying the latent Lotka-
Volterra governing differential equations from noisy trajectory data generated from these equations, and
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NOTATION SELECTION CRITERION
argmax o A Model(s) with maximum weight assigned by A
argmax o flK B Model(s) with maximum weight assigned by .,Zl;g B
top-k o ,ZlK,B k models with k largest weights assigned by AK’B
ipr o flK B Model with variables with inclusion probability > 7 in AK B
argmax® o flK, B e-inflated argmax of flK_, B

Table 1: Table of notation for each model selection algorithm. A refers to a base algorithm mapping a
dataset D to empirical predicted probabilities 1 for each possible subset, and A g is the subbagged version
of A for bags with K randomly selected (without replacement) samples.

constructing a graph to represent cell-signaling pathways of 11 proteins. In the first two settings, we generate
synthetic datasets for IV trials, each contaminated with independent Gaussian noise, allowing us to examine
the stability across a collection of datasets where we know the ground truth m*.

In each experiment, we compute weights @ across the set candidate models M T using a base algorithm A
and a subbagged version of A denoted Ag, . Based on (2), we compute the stability for trial j € [N] using

TN v
6= =y L{N;n )" = 2}, (5)

i=1

This empirical measure of stability measures, for trial j, the proportion of LOO selected models M j\i for

i € [n] that have no overlap with the set of selected models M ; returned by training with access to the entire
dataset. We also compute the empirical cumulative distribution function (CDF)

1 N
v 2 Mo <a}, (6)
j=1

as a function of § € [0,1] to highlight variation across trials with different random seeds (shown in Figure 3
and Figure 8). Curves higher on the plot are better in the sense that the corresponding method achieves
model selection stability § (Definition 2.1) for a larger fraction of trials, and our primary interest is in small
d (i.e., high stability).

We additionally compute utility-weighted accuracy, inspired by Zaffalon et al. (2012), using

m* € M;} e M;}
szl A (7)

where m* is the “true” data generating model in the synthetic experiments. This measure down-weights
the accuracy by the number of models returned |M;|. For example, if |[M| =1, and the true model is con-

tained in M (i.e., m* € M ), then both the accuracy and the utility-weighted accuracy are 100%. However,

if |M | = 1,000 and m* € M , the accuracy is 100%, but the utility-weighted accuracy is 0.1%. The utility-
weighted accuracy measure aims to identify returned model sets that are both accurate and interpretable,
and we argue that a smaller number of returned models is more interpretable. This metric is used to compare
methods in the center column of Figure 3.

5.1 Model discovery of Lotka-Volterra dynamics

This experiment focuses on discovering Lotka-Volterra dynamics from data using SINDy. The Lotka-Volterra
equations were first derived to model chemical reactions in the seminal work (Lotka, 1910) and later studied
in the now classic use case of predator-prey dynamics (Lotka, 1925). The Lotka-Volterra equations are

WM (t) = au(t) — BuM ()u@ (1), (8a)
W (t) = —yu® (t) + u® (t)uP (1), (8b)
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Lotka-Volterra Dynamics
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Figure 2: (Left) Lotka-Volterra trajectories for one
simulated dataset. The time span ranges from 0 to
16, and there are 21 time points with predator-prey
information contaminated with A (0,0.05) distributed
noise. (Right) Empirical correlation matrix for the
variable library input into SINDy and E-SINDy. We
use the library (¢, ™ (u®)2, uMy?) 42 (4(2)2),
where c¢ is a constant.

where u(!) is the population density of prey, u(?) is the population density of predators, ¢V and @(? are

the population growth rates, and ¢ corresponds to time. The parameters «, 3,7, > 0 respectively refer to
the prey’s growth rate, the predator’s impact on the prey’s death rate, the predator’s death rate, and the
prey’s impact on the predator’s growth rate (Lotka, 1925). We now imagine we do not know our system is
governed by the Lotka-Volterra equations and wish to discover the governing model from data. Our concern
is in recovering the correct terms rather than estimating the parameters.

5.1.1 Base algorithm A: Sparse ldentification of Nonlinear Dynamical Systems (SINDy) with
Sequentially Thresholded Ridge Regression (STRidge)

One application of sparse regression is the discovery of governing equations of a system from observations.
Specifically, we seek to learn the governing equations of a system of the form

where u(t) = [uV(2),u@ (),

,ulD(t)

]T

d

Sult) = f(u(t)) )

is a d-dimensional state vector containing quantities of interest at
time ¢, and f is the function describing how the derivative of u(t) evolves with time. The Sparse Identification
of Nonlinear Dynamical Systems (SINDy, Brunton et al. (2016)) algorithm represents a differential equation
of the form (9) as a weighted sum of terms in a library of functional forms,

at) =

O(u)E, (10)

where ©(u) € R™*P (n samples of p functionals) is the library of functionals of w(¢) (e.g., polynomial
transformations), and = € RP*? are the fitted coefficients. = is assumed to be sparse, so our goal is to find
which elements of = should be nonzero, which will immediately give the estimated structure of the governing
equations. SINDy finds a sparse solution to = by solving a sparse linear regression problem; see §B for more

details on sparse regression.

As a bagged extension of SINDy, Ensemble SINDy (E-SINDy, Fasel et al. (2022)) creates an ensemble of
model fits, and with this ensemble, the final model is chosen via thresholding inclusion probabilities of each
library term based on a tolerance 7. This approach corresponds to applying stability selection (Meinshausen
and Bithlmann, 2010; Shah and Samworth, 2013) to SINDy, using sequentially thresholded ridge regression
(STRidge, Rudy et al. (2017)) instead of the LASSO for .A. E-SINDy aggregates the coefficients by selecting
covariates whose inclusion probability is greater than some prespecified value 7 € (0,1). Of the variables
with an inclusion probability greater than 7, the corresponding coefficients are set to the average fitted values
across bags. The collection of variables with a nonzero coefficient correspond to the selected model. We refer
to this ensemble approach as ip; o fl;g B, where the base algorithm A is SINDy solved with STRidge.

5.1.2 Data generation

We generate synthetic datasets containing n = 21 time points of abundance data for predator and prey
populations, solve from the Lotka-Volterra equations and contaminate with Gaussian noise. This data is
generated to match key characteristics of a real world predator-prey dataset from the Hudson Bay Company
(Hewitt, 1921) in terms of the periodicity of observations in relation to the dynamics. N = 100 trials
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(i.e., independent datasets) are independently generated according to the same data generation process. We
provide further details of this data generation process in §D.1. We visualize one set of trajectories in Figure 2.

To construct our library of functions, we selected degree-two polynomials as our covariates, and for one
dataset, we visualize the corresponding covariate correlations in Figure 2. As seen in the correlation matrix,
the covariate structure contains highly correlated variables (e.g., u(!) and (u(1))?), which impacts the model
selection stability of SINDy. In our experiments, we solve the SINDy linear regression problem with STRidge
penalization (Rudy et al., 2017) as our base algorithm A, as in Fasel et al. (2022).

5.1.3 Results

We see that across various choices of €, the inflated argmax provides enhanced stability while at the same
time yielding small and accurate sets of selected model(s). This boost in utility-weighted accuracy is due to
the adaptivity of the inflated argmax: this method will output a single model as often as possible, whereas
for example, top-k will always output k model selections, leading to a comparatively lower utility in many
cases. This point is further confirmed in the plot of the median number of models returned vs. worst-case
instability in Figure 3. For a fixed level of worst-case instability empirically seen, we can visualize the
empirical CDF to assess the distribution of instability values d; across trials j € [IN]. We see in Figure 3
that the inflated argmax provides a distribution of instability values much closer to 0 (i.e., higher stability)
compared to all other conventional approaches investigated.

In summary, Figure 3 shows that (a) selection methods that return a single model (argmax and ip,, even
with subagging the base algorithm) are less stable than methods that return one or more selected models
(i.e., the inflated argmax and top-k), (b) the inflated argmax provides higher utility-weighed accuracy scores
for similar worst-case stability levels as top-k, meaning that the inflated argmax is returning smaller sets
containig the correct model more often and (c) the inflated argmax provides smaller sets of returned models
compared to top-k for a wide range of worst-case stability values. We additionally plot the stability across
the parameter B in §E.

Lotka-Volterra
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Figure 3: Lotka-Volterra results. (Left column) Empirical CDF for the stability measures d;, computed in
(5), across j € [N] for each §. We chose the parameters 7 = 0.63, k = 2, and e = 0.09 since these values yield
a utility-weighted accuracy of approximately 0.3 for each S. (Center column) Utility-weighted accuracy,
computed in (7), versus the worst-case instability across ¢;. (Right column) Median number of models
returned across j versus the maximum 0; across j € [N] for each S. (Center and right columns) We
plot the range of values k € [1,...,6], and € € (0,1) and 7 € (0, 1) with approximately evenly spread values
across their supports.

5.2 Graph selection on flow cytometry data

We consider a model selection problem where the model to select is the sparse connection structure within
a graph. The base algorithm A we consider for this problem is the Graphical LASSO (gLASSO), which
is developed in Friedman et al. (2008). The gLASSO estimates the structure of a graph by performing a
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Top 1 Graph Top 2 Graph
P2 P2 Figure 5: Visualization of the top two graph struc-
= tures selected via subbagged glLASSO with 10,000
bags. The red connection shown in the right graph
highlights that this connection is the only difference
between the top 1 and top 2 selected graph struc-
tures. The top 1 graph was selected for 9.31% of
bags, and the top 2 graph was selected for 8.54% of
bags.

paaja2

maximum likelihood estimation of the precision matrix © subject to an Iy

Empirical Correlation Matrix

1.00

o 075 penalty of the estimated precision matrix. More precisely, the gLASSO
pia 050 assumes the data z; ~ N'(0,07!), where z; € R? across samples i € [n],
PP 025 5§ and finds an estimate © such that

pakaars e R .
pch O =argmax logdet © — tr(20) — A||O||1, (11)
e ors ©
pink _1.00 . . . .

where || - ||1 is the entry-wise I; norm, tr(-) is the trace, ¥ is the sample
covariance matrix, and A is the penalization hyperparameter. In our ex-
periments, we select A via cross-validation, as described in §F, and hold
this quantity fixed across our experiments.
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Figure 4: Empirical correlation
matrix of the 11 proteins. Data We compute LOO stability results from a flow cytometry dataset in Sachs
from Sachs et al. (2005). et al. (2005) (labeled “cd3cd28icam2+u0126”), containing d = 11 proteins
(nodes) and n = 759 cells (samples). Figure 4 shows the empirical corre-
lation structure of these 11 proteins in this dataset, which clearly shows
grouped relationships among proteins.

SELECTION METHOD LOO INSTABILITY AVG. LOO SET SIZE

argmax o A 0.453 1.00

ipo.s o Ax.p 0.013 1.00

argmax o .,ZlK B 0.112 1.00

top-2 o .AK B 0.008 2.00

(Ours) argmax®%? o A p 0.008 1.58

Table 2: Table of stability and the average number of model structures returned across LOO trials for
selecting the structure of the inverse precision matrix for a flow cytometry dataset taken from Sachs et al.
(2005). In this experiment, A is the graphical LASSO (Friedman et al., 2008), A k,B is the bootstrapped
graphical LASSO with B = 10,000 and K = 700.

5.2.1 Results

Since we have one dataset to compute the LOO stability, N = 1. We compute stability results for the
algorithms gL.ASSO (A) and subbagged gLASSO (Ag ), where K = 700 and B = 10,000, for the selection
methods argmax, ipg 5, top-2, and argmax®°2. The value for ¢ for the inflated argmax was chosen so that the
LOO instability closely matched the LOO instability of top-2, and 7 in ip, was chosen so that the number of
selected connections was approximately the the same as the number of connections given by the top selected
subbagged graph. These results are shown in Table 2.

As seen in Table 2, our method, argmax® %2, provides the lowest LOO instability while minimizing the average

number of graphs selected across the 759 LOO model fits. We also note that the percentage of model fits
on bags that resulted in the top 2 models shown in 5 are relatively close: 9.31% for the top graph structure
versus 8.54% for the second most selected graph structure, which suggests a reasonable degree of uncertainty
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in the “best” model. Due to this uncertainty in the selected model, selection methods that return only one
model (i.e., argmax and ip,) cannot sufficiently account for this uncertainty in the top model. Since the
top two graph structures differ by one connection, this kind of result can provide evidence for follow up
experiments, for example, to elucidate the relationship between the pakts473 and pmek proteins.

Though there is no agreed-upon “ground truth” graph connection structure for this real world example, we
can compare the identified connections between proteins with those established in the literature. For exam-
ple, Sachs et al. (2005) visualizes connections between proteins based on scientific evidence, which include
PIP3-plcg, praf-pmek, PKA-praf, PIP2-PIP3, PKA-p38, and others, where some of these listed connections
are mediated via intermediate proteins. These validated connections are seen in Figure 5. We note, how-
ever, that hyperparameter X in (11) largely impacts the accuracy by controlling the number of connections
retained in the graph. In our experiment, this parameter was chosen in a purely data-driven way in §F, but
a different value may have been chosen with domain expertise.

5.3 Selecting the number of clusters for xk-means

In this section, we present results on simulated data of an unsupervised k-means® clustering (MacQueen,
1967) example where the task is to identify the number of clusters x in the data. This examples illustrates
our algorithm’s use on non-variable selection types of problems. Another example on decision trees can be
found in §H. We generate N = 100 independent datasets, each with sample size n = 30 with a true number
of clusters k = 3. Further details of our synthetic data generation can be found in §G.

5.3.1 Results

In this setting, each model corresponds to a different number of clusters x, so the model selection problem
is to choose k. In our experiments, our base algorithm A is a deterministic computation of the “elbow”
of the sum of squared distances versus number of clusters x, which is a heuristic approach introduced in
Thorndike (1953) and commonly used in unsupervised clustering tasks. For each «, clusters are partitioned
with the Lloyd-Forgy algorithm (Forgy, 1965), the standard algorithm for x-means. Further details of our
data generation and implemented methods can be found in §G.2. We construct AK B by bagging this base
algorithm by computing B = 10,000 bags, each with K = 25 samples per bag. Figure 6 shows the main
results of our experiment. We notably do not include results for the model selection method ip, o AK B since
that method is only applicable to variable selection problems.

The leftmost panel shows the empirical distribution of stabilities across methods, with fixed values of € = 0.3
and k = 2 for argmax® and top-k. Choosing k = 2 provides 100% stability, meaning there are seemingly
only two reasonable choices for the number of clusters x. The argmax®? showed an empirical worst-case
instability of 0.067 and an average returned set size of 1.18 across LOO trials, which provides high stability
with minimal returned models. The middle plot of Figure 6 shows that our approach provides the best
utility-weighted accuracy and stability compared to competing methods. In this setting, accuracy is mea-
sured based on how often the true x = 3 is returned in M j across all j = 1,..., N trials). This result shows
that the inflated argmax returns sets that are both accurate and as small as possible at each fixed e value.
This point is further confirmed by looking at the rightmost plot of the median number of returned models
versus worst-case instability. Across a wide range of choices of worst-case instabilities, the inflated argmax
consistently returns interpretable sets.

6 Discussion

Our framework provides multiple opportunities for further investigation, including exploring the interplay
of stable model selection and identifiability, as well as stabilizing model selection without bagging, therefore
reducing computation. Moreover, this work primarily focuses on providing theoretical stability guarantees
for model selection, but in practice, a practitioner would also be interested in maximizing model performance.
Additional future work could explore maximizing performance subject to stability guarantees.

3In this paper, we use K to represent the number of samples in a bag, k to correspond to the number of models returned by
a top-k selection procedure, and k to represent the number of clusters in a clustering problem.
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Figure 6: Unsupervised x-means clustering results. (Left column) Empirical CDF for the stabil-
ity measures 0;, computed in (5), across j € [N] for each S. We chose the parameters k=2, and
e =0.3. (Center column) Utility-weighted accuracy, computed in (7), versus the worst-case instabil-
ity across J;. (Right column) Median number of models returned across j versus the maximum §;
across j € [N] for each S. (Center and right columns) We plot the range of values k € [1,2,3], and
e € [0.005,0.01,0.05,0.1,0.2,0.3,0.5,0.7,0.95, 1.0].

We believe another interesting direction is developing similar theoretical stability results for other measures
of stability aside from Definition 2.1. Our definition of stability is relatively weak, reflecting a bare minimum
criterion necessary (though not sufficient) for many other notions of stability. Moreover, a limitation of our
stability measure is that it may favor larger sets since two returned sets need to overlap by only one model

to achieve a score of 1 for that LOO trial. For example, if |M;| and |]\Zf]\z| are large but |M; N MJ\Z| =1,
the LOO stability for trial ¢ would be 1, which may not reflect what one would colloquially deem as “stable.”
An interesting alternative stability measure to theoretically analyze would be one that computes the percent

overlap between elements of M; and M j\i.

A natural follow up question to our approach is what a practitioner should do if multiple models are re-
turned. As noted in § 5.2.1, top models that substantially overlap can prompt directed follow-up experiments.
Moreover, the size of the set of returned models may be a useful indicator of model uncertainty for a prac-
titioner. The decision for how to handle multiple models should be carefully considered and align with the
practitioner’s ultimate goals (e.g., model interpretation or predictive accuracy).

The combination of bagging and the inflated argmax described in this paper can be applied to any black-box
model selection procedure and offer stability guarantees described in Theorem 4.2. We define a notion of
stability that is distinct from other works, one that computes the proportion of LOO selected models that are
disjoint from the selection made by training with access to the full data. This is in contrast to, for example,
covariate-level stability in linear models.

Our experiments illustrate that, in addition to providing theoretical stability guarantees, our method out-
performs ad hoc procedures. Specifically, choosing the most frequently selected model across bags (i.e.,
argmax o A k.B) provides limited stability gains relative to an unstable base algorithm. Selecting the top-k
models across bags enhances stability but is not adaptive to the underlying empirical uncertainty of the
model selection process; k£ models will always be returned to the user. Choosing the returned model based
on marginal inclusion probabilities (ip,) of individual covariates is limited to covariate stability tasks and
presents hyperparameter selection challenges (i.e., how to select 7). In contrast, the inflated argmax adapts
to the number of models returned based on the underlying uncertainty, provides an approach for empirically
protecting against a worst-case instability, and provides competitive utility-weighted accuracies (i.e., returns
the correct model in the smallest possible ).
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A Example: Linear regression with correlated covariates

Consider the setting in which we have a set of covariates z = [sr:(l), PAC I ,x(d)] ! where
E[Y|X = 2] = 2® 4+ 2®), (12)

and we seek to learn this relationship using sparse variable selection. If z(!) is highly correlated with z(®,
and z®) is highly correlated with (4 and z(®) (see covariance matrix in Figure 7), then subtle changes in
the dataset could result in selecting any of the following models my(x):

m1<x) :{x(l),x(?’)}, mg(X) :{x(l)w(“)},
ms(x) ={zM, 2™}, my(x) ={z®, 23}, (13)

ms(x) :{x(2),x(4)}, me(x) :{x(z),x(5)}.

If each of the six models above were selected with approximately equal frequency across bags, the output of
Algorithm 1, would be approximately

W~ (1/6) [1,1,1,1,1,1,0,0,--]. (14)

A selection method that finds the argmax of @ would be unstable despite the stability of @ derived from
bagging. We seek a method that outputs models corresponding to selected variable sets

{{-T(l),$(2)} % {x(3),x(4),x(5)}}, (15)

accurately indicating that our method suggests either x; or x5 should be included in the selected model, but
not necessarily both. In other words, this output reflects the fact that our model selection method cannot
reliably distinguish among the six models in (13).

Limitations of the argmax. The argmax applied to @ in (14) will be highly sensitive to small perturbations
in w. Furthermore, the single best model does not reflect the inherent uncertainty in the model selection
and that several models are almost equally likely.

Limitations of top-k. If the user chooses k = 2, only 2 models will be returned to the user, which does
not reflect that any of the 6 models are approximately equally likely. This failure to adapt to uncertainty
also applies to the other direction: if the user chooses k > 6, top-k will still give back k& models, despite the
fact that only 6 are highly likely.

Limitations of stability selection The stability selection method (Meinshausen and Biithlmann, 2010)
will select the model corresponding to selected variables {z(1), 2(2) () 21 2V if 7 is sufficiently small.
This result can be misleading, in that it ultimately selects a model with five selected covariates as opposed
to indicating that we lack certainty about which of multiple two-covariate models is correct.

Benefits of the inflated argmax. For a large enough choice of ¢, the argmax® would return all 6 models
in (13). This output can be reported as a Boolean expression as in (15), which accurately reflects the
uncertainty in the model selection.
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Figure 7: Covariance matrix for each simulated dataset. Covariate indices 1 and 3 were used to construct
the response y.

B Variable selection in linear models with LASSO

In the linear case, the data is modeled as the form

yi = (x4, B) +mi, mi ~ N(0,07), (16)

where 02 € R is a vector containing the response error variance, and 3 € R? is the vector of regression
coefficients. In many practical settings, the true population 3 is hypothesized to be sparse, and the goal is
to accurately estimate which elements of 3 are nonzero.

2

Consider the following common model selection approach: first solve the least absolute shrinkage and selection
operator (LASSO, Tibshirani (1996)) problem

= argmin, {iZ@i — (w1, ) + AR(@} , (a7)

where X is a hyperparameter controlling the sparsity of 8, and the regularization term R(3) = ||5]|1. Then
select variables via A

m(D) = 1{|5| > 0} (18)
where /3 implicitly depends on the dataset D. In this context, the LASSO provides unstable model selections,
particularly in settings with nontrivial correlations among covariates (Meinshausen and Biithlmann, 2010).
Moreover, since many variable selection algorithms, including the LASSO, only return a single set of selected
covariates, these methods do not directly provide an approach for assessing uncertainty in the selected model.

C Experiment: Penalized linear regression experiment with highly correlated
covariates

This experiment is based on the motivating example in (12), where we have two important covariates and a
small collection of highly correlated covariates.

C.1 Data generation

In our standard regression example, we simulate datasets for j € [N] trials, where N = 200, according to
the following process:

Xy NN(O,C), (19)
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In the left plot, we plot the stability curves for the parameters 7 = 0.3,

k = 2, and € = 0.8 since these values yield a utility-weighted accuracy of approximately 0.18 for each S.
(Left column) Empirical CDF for the stability measures ¢;, computed in (5), across j € [N] for each S.
(Center column) Utility-weighted accuracy, computed in (7), versus the worst-case instability across ;.
(Right column) Median number of models returned across j versus the maximum J; across j € [N] for
each S. (Center and right columns) We plot the values k € [1,...,6], and € € (0,1) and 7 € (0, 1) with
approximately evenly spread values across their supports.

where 2; € R?, N denotes a Normal distribution, and C' € R4*? is visualized in Figure 7. Figure 7 visualizes
the covariance structure of the 20 covariates in the design matrix X, where the nonzero covariance between
distinct covariates is 0.99, corresponding to extremely correlated covariates. For a single trial j, we simulate
a dataset with d = 20 covariates and i € [n] samples. We take the first and third columns as the covariates
used to create the response v,

1)

yi =, + z® v; ~ N(0,0.3%),

i =+ vi, (20)
where 8 = [1,1] T, xl(-l) and xgg) are respectively the first and third covariates for sample i, and v; represents

independent Gaussian distributed observation noise with mean 0 and standard deviation 0.3 for sample 3.

We solve each optimization problem (i.e., fits on the full datasets D, LOO datasets D\ for i € [n], and bags
D for b € [B] across trials j € [N]) for 3 using the optimization function in (17) for R(8) = ||f||1, which is
equivalent to the LASSO.

C.1.1 Optimization hyperparameter

Selecting A via cross-validation leads to much denser models than the ground truth model, so we increase
A to a level that induced more sparsity. This approach implicitly assumes we have prior knowledge of
approximately how many coefficients are important in the regression task, but not necessarily which are
important. We select A = 0.5 since this penalization level led to highly sparse variable selections. We note,
however, that the theory behind the inflated argmax is model agnostic, meaning that stability guarantees
apply for any choice of A.

C.2 Small sample size (n = 30)

We generate independent datasets (i.e., trials) for a small sample size, n = 30. For each of the N = 200
trials, we generate a dataset with d = 20 covariates and n = 30 training samples.

C.2.1 Base algorithm A: LASSO

Our learning algorithm A is the LASSO, which corresponds to solving (17) with R(8) = ||3||1, and Ak 5
corresponds to a subbagged LASSO with B = 10,000 bags and K = 25 training samples per bag.
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Figure 9: Top-10 selected models with their corresponding weights % Z;V:1 w%), which averages the weights

across trials. Selected covariates for each model are shown with a black square.

C.2.2 Results

Figure 8 provides an empirical CDF of ¢ (6), the utility-weighted accuracy (7) versus the empirical worst-
case instability, and the median number of sets returned across NN trials versus the worse-case instability.
The empirical CDF across our chosen selection methods S show that the selection methods that return a
single model, the argmax and ip,, are the least stable. Subagging, which helps in stabilizing the estimated
weights w assigned to each model m, yields marginal gains in stability when using the argmax. Top-k and
the inflated argmax, on the other hand, provide enhanced stability due to the fact that these methods are
able to return more than one model. The ip, selection method fails to control the worst-case instability
across a variety values of 7, but is able to achieve good utility-weighted accuracy. Top-k is able to achieve
good utility-weighted accuracy with stable estimates. However, the inflated argmax is able to attain similar
stability as top-k, while achieving a higher utility-weighted accuracy across a range of stability levels.

We confirm that the inflated argmax frequently outputs a single model by plotting the median number
of models returned compared to the worst-case instability across various choices of € compared to various
choices of k.

To illustrate that returning multiple models, when necessary, can be represented compactly, we borrow
notation from logic to express an example of 6 models, reported in Figure 9. Figure 9 shows that the model

weights averaged across trials (% Z;‘Vﬂ WU )>. The top 6 models can be reported as

{{xu)’x(z)} % {$<3>,x(4>’x<5>}}
which succinctly describes the model options.

C.3 Larger sample size (n = 300)

To illustrate the utility of the inflated argmax in a setting where this method is particularly useful, we con-
struct an example where the model weights @ estimated via bootstrapping suggest a high level of uncertainty
in the model selection. We focus on one trial, so N = 1. In constructing this example, we follow a similar
procedure as described in (19) and (20). We set d = 200, n = 300, B = 10,000, K = 25, A = 0.5, and
v; ~ N(0,0.5%), where 0.5 is the response error standard deviation for each sample i. The correlation struc-
ture of covariates is extended to 200 covariates, where similarly the first 5 covariates are highly correlated
with a correlation of 0.99 as in Figure 7, and z(*) and z(®) are used to construct y with 3 = [1,1)7.

Figure 10 shows the selections of among the first 5 covariates out of the 200 total for the top-10 models
(covariates 6 through 200 are not selected in any of the top-10 models) using the full dataset versus a LOO
dataset. As an illustrative example, we choose a LOO dataset that yielded a different top model compared
to the top model using the full dataset.

The model weights clearly show uncertainty in the selection since the weights estimated for each of the
top-10 models are very close together, suggesting that small perturbations of the dataset could impact the

18



Under review as submission to TMLR

Selected Covariates Selected Covariates
(Full Data) (LOO)
X1 X2 X3 @) x(5) x1) x@ xB) x@ (5
0.062 0.056
0.055 0.049
2 0.044 0.048
2
§ 0.036 0.043
V]
; 0.032 0.032
K
3 0.026 0.029
=
o 0.02 0.019
—
a
o 0.014 0.014
}_
0.014 0.013
0.012 0.012

Figure 10: Models with the top 10 largest weights assigned via subbagging with B = 10,000 bags for one
trial. The y-axis labels correspond to the model weights estimated with 10,000 bags. Covariates within each
model (row) that were selected to have a nonzero estimated coefficient by LASSO are shown in black, and
covariates that were not selected are shown in white. Only the first 5 covariates are shown since the top 10
models did not select covariates any of the covariates (6, (7). . x(200), (Left) Top-10 models using the
full dataset where n = 300. (Right) Top-10 models using a LOO dataset where n — 1 = 299.

top model selected. The empirical stability for argmaxoA g using (5) yields §; = 0.14 for this one trial j.
This result means that 14% of the time in our 300 LOO trials, when a single sample was removed from the
full dataset, a model other than {2(?), (3} (the model selected using all 300 samples) was selected.

The inflated argmax, on the other hand, will select more than one model in this instance for relatively small
€ due to the large uncertainty in the model weights. To concretely show this result, we compute the inflated
argmax’s model selection(s) and choose € using the result in Theorem 4.2. Setting ¢ to a fixed value, we can
compute ¢ via the following expression for subbagging

E:\/cls (nang/n)' (1)

Since |M*| = 2290 we set |M71+| to 0. Additionally, since the Monte-Carlo error term HEZ is known to be

overly conservative, and since we use a large number of bags B in this experiment, we set this term equal to
0 as well. With n = 300, K = 25, and § = 0.05, we compute that ¢ = 0.078.

The instability of argmax®°7® o Ay p is 0, meaning that for 0% of the 300 leave-one-out datasets, the inflated

argmax returned a completely disjoint model selection. Additionally, the inflated argmax returned 6 models,
which correspond to

{{xm’l_(z)} % {x(3>,x<4>,z<5>}}.

This set of returned models is very reasonable given the underlying correlation structure among the covariates.

Moreover, the type of stability in this work only measures changes the stability due to LOO changes to the
dataset, which is a relatively small perturbation to the data. In reality, a method would ideally provide
robustness to more substantial changes in the dataset (e.g., providing the same, or approximately the same,
model selection(s) with a different dataset drawn from the same underlying distribution). The inflated
argmax is better equipped than the argmax in this scenario by returning six models, reflecting the large
uncertainty in selecting a model.
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D Main experimental details

In our experiments, we utilize a cluster computing system to distribute parallel jobs across CPU nodes.

D.1 Lotka-Volterra simulations

This section provides further details of the experiment in §5.1. We utilize the pysindy Python package
(Kaptanoglu et al., 2022; de Silva et al., 2020) for their implementations of these methods to perform out
Lotka-Volterra experiments with SINDy.

D.1.1 Data generation

We generate data from the Lotka-Volterra differential equations described in (8) for (a,f3,7,() =
(2/3,4/3,1,1) for 21 evenly spread time points ¢ in the range ¢ € [0,16] and initial condition [1,1]T. Solu-
tions of this ordinary differential equation were obtained with the LSODA (Petzold, 1983) solver. For each
t € (0,16], non-inclusive of the initial condition, we contaminate each u(™(t) and u®(¢) with A(0,0.052)
Gaussian noise, where 0.05 is the standard deviation of the measurement noise level.

To obtain sparse solutions of the regression problem and therefore estimate the governing equations, we
solve the optimization problem with STRidge (Rudy et al., 2017), which iteratively (a) solves the equation
in (17) with R(3) = ||8||?, corresponding to solving Ridge regression (Hoerl and Kennard, 1970), and (b)
thresholds 3 based on w, where w is the minimum magnitude needed for a coefficient in the weight vector.
Any coefficient with an estimated magnitude below w is set to 0. This process is repeated until a convergence
criterion is met.

D.1.2 Cross-validating optimization hyperparameters

We perform a grid search across two parameters to find a combination that leads to a low validation MSE.
The 5-fold validation MSE is measured as

5
1
Val-MSE(\wi5) = e 30 3 [laft A w) — u(d)] (22)
Voli= 5%,
where V(v) is the collection of time points included in the validation evaluation for fold v € 1,2,...,5;

a(t; \,w) is a vector of solutions, containing 4" (¢; A\, w) and 4 (¢; \,w), to the model selected by SINDy
using optimization parameters A and w at time #; u(t) is a vector of the observed values for u")(t) and u(?(t)
at time ¢t. The trajectories were temporally split into 5 disjoint sets, where each set contains temporally
adjacent time points.

| w

A 016 017 018 019 020 025

0.0075
0.01
0.02
0.03

0.0538 0.0538 0.0539 0.0982 0.0963 0.1156
0.0538 0.0538 0.0538 0.0981 0.0963 0.1942
0.12850.1285 0.1287 0.1275 0.1256 0.4403
0.12850.1285 0.3160 0.3166 0.3202 0.3451

0.15
1

0.0788

10.65

14.94

Table 3: Table of hyperparameter combinations and corresponding validation MSEs for choosing the STRidge
A and w hyperparameters. Any combination of hyperparameter values that led to a null model (selecting
none of the covariates to include in the model) for any of the validation folds is reported as “-”. We choose
the hyperparameter combination that should give sparser models (larger A and larger w) in the case of tied
validation MSE, which leads us to choose A = 0.01 and w = 0.18 (bolded and highlighted).
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Figure 11: Lotka-Volterra solutions (solid lines) for the equations selected using SINDy with hyperparameters
A =0.01 and w = 0.18 using one observational dataset (points).

We provide a table of validation MSEs averaged across the 5 folds in Table 3. Given our discretization of
A and w values, we choose w = 0.18 and A = 0.01 and keep these values fixed in our experiments presented
in Appendix C. Figure 11 visualizes the corresponding model selected by 5-fold cross validation. The best
estimated model is

a4 = 0.636u® + —1.255uVu®), (23)
a® = —0.839u? +0.833uMu®), (24)

which selects the correct terms in each differential equation with low error on the fitted 3 coefficients.

E Stability with varying numbers of bags: Lotka-Volterra example

Regression

argmaxo A top-20.4x 8 argmax®8. Ay p ipo.3 ° Ak B
A I
-
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Figure 12: Empirical CDF of instability measures §; across trials j € [N] in the regression experiment for
varying number of bags B across four different selection methods: the argmax, top-2, argmax®®, ipg 3. The
values of k, €, and 7 were chosen to be consistent with the CDF plot in Figure 8.

The computational complexity of estimating the weights associated with each possible model m € MT is
not determined by the cardinality of the set M, but rather the number of bags B used to estimated the
weights associated with each model. Intuitively, we can generally expect that a larger number of bags (i.e.,
larger B) will correspond to a better estimate of the weights @ for each model m across selection methods.
Figures 12 and 13 visualize the empirical CDF of instabilities ¢; across trials j € [N], where N = 200 in the

21



Under review as submission to TMLR

. Lotka-Volterra . .
argmaxe.A top-2¢Ax g argmax®9 o Ay g iPo.63 ° Ak,B

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
6 6 6 6

v B=10 ¢ B =100 = B =1000 B = 5000 B = 7000

Figure 13: Empirical CDF of instability measures ¢; across trials j € [N] in the Lotka-Volterra experiment
for varying number of bags B across four different selection methods: the argmax, top-2, argmax®%, ipg 3.
The values of k, €, and 7 were chosen to be consistent with the CDF plot in Figure 3.

regression experiments and N = 100 in the Lotka-Volterra experiment. A separate line is plotted for each
choice of B.

In both plots, we see that B = 10 provides the least stability, evidenced by the larger proportion of §;s near
0 = 1. The regression example provides evidence that generally, increasing the number of bags improves
stability. However, this plot does not appear to clearly evidence this hypothesis as well as the Lotka-Volterra
experiment. We hypothesize that since the covariates are highly correlated in the regression example with
many reasonable models able to accurately predict the response, this setting may yield more variable stability
results across the number of bags compared to the Lotka-Volterra example, which has a clear, unique model.

F Graph subset selection

F.1 Cross-validation to select )\

We select the penalization hyperparameter A in (11) via 5-fold cross-validation. The validation log-likelihood
averaged across the 5 folds is computed as

>~ (logdet 6, — tr(3,6,) = A6 ]l1) (25)

v=1

1
val-log-likelihood(); 5) = R

where 0, is computed by solving (11) using the training data in fold index v, and ¥, is the sample covariance
matrix computed from the validation data in fold index v. Computing (25) on the flow cytometry data across
various choices of A € [1,...,500] yields the curve shown in Figure 14. Based on this figure, the best choice
of \is A = 77, which we keep constant throughout our experiments in §5.2.1.

G k-means clustering

G.1 Data generation

We randomly generate N = 100 independent datasets in R"*? with n = 30 total data points per dataset and
x = 3 distinct clusters. To generate the three clusters, we generate m; = 5 samples from A ([1.5, 1.5]7, .[2),
ng = 5 samples from N([3.5,3.5] ", I5), and nz = 20 samples from N([2.5,2.5]7,0.3%]5), where N denotes
a Gaussian distribution, and I5 is a 2 x 2 identity matrix. An example of one of our generated datasets is
shown in Figure 15.
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Figure 14: Average 5-fold validation log-likelihood across different choices of A. The A that maximizes the
log-likelihood averaged over 5 held-out validation folds is A = 77.
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Figure 15: Example clustering dataset where the sample size is n = 30 and the number of clusters is kK = 3.

G.2 Base algorithm A: the “elbow” plot from x-means

A common technique in unsupervised clustering for selecting the number of clusters x is via the “elbow” of
the plot of the sum of squared distances (SSD) vs. k. We deterministically select k as described in Algorithm
2, which selects the number of clusters by some hyperparameter for the x value that leads to the minimum
observable slope of the SSD vs. x plot. In equation 26, S; is the set of points in cluster i, and p; is the
cluster center for cluster i selected via k-means. In our generated example, the maximum number of clusters
M = 29, and the slope tolerance w = 5. Additionally, for each run of k-means, the clusters are randomly
initialized.

H Decision tree classification on single cell transcriptomics data

We investigate a model selection problem involving deciding the structure of a decision tree for multiclass
classification. In this setting, we only measure two decision trees as distinct from each other if the trees split
on the same features for a given split. Therefore, we do not consider the exact split value for continuous
features in deciding whether two selected models are the same.

We explore the decision tree stability with data from single cell transcriptomics to classify stem cell fate based
on gene expression. Mouse embryonic stem cells were sequenced for their gene expression and subsequently
labeled as three different cell types: embryonic stem cells (ESC), epiblast-like intermediate cells (EPI), and
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Algorithm 2 Computing the number of clusters

input Maximum number of clusters M, dataset X, slope tolerance w
fork =1,...,M do
Compute the sum of squared distances (SSD):

=1 Tj €S;
Compute the slope of SSD curve using the current SSD,, and the previous SSD,_1:

SSD,, — SSD,.—1

1 _
slope,, Py )

if slope,;, < w then
output Number of clusters k
end if
end for
output Number of clusters M

neural progenitor cells (NPC) (Veleslavov and Stumpf, 2020). The cell fate label is noted to be assigned by
clustering, so there is uncertainty in the true cell type label.

The dataset contains 547 cells and 96 gene expression values per cell. To explore stability in a setting where
the sample size is much lower than the feature dimensionality, which is a common problem in genetics, we
randomly subsample the number of cells to 50 and compute decision tree stabilities. As shown in Figure 16,
gene expression is high correlation among genes, which may lead to instabilities in the fitted decision tree
for small perturbations in the training data.

The base algorithm A corresponds to a multiclass classification tree. Broadly, decision trees create a sequence
of splits on features that sort the training data samples into nodes, where a particular split is chosen to
minimize the impurity of the samples in the two split nodes. Greedy algorithms are typically implemented
to sequentially choose the locally best split at each node. More information on decision trees can be found in
Breiman et al. (1984). Additionally, Xin et al. (2022) formulates an algorithm for finding the full Rashomon
set for decision trees, which can be used as an alternative base algorithm to rank decision tree structures.

For this classification problem, we choose to measure dissimilarities among samples in a node via Gini
impurity, which can be written as

> pa(l = pua) (27)

d=1

for d € [D] classes at node I, where the proportion of class d in node [ is

b= > Hy =), (28)

YyEQL

and @; denotes the split of node [ based on feature index f and split value ¢;:

= A{(wy) 2y <, (29)
right

lef
=\ Q. (30)
Our experiments use the default hyper-parameters in the sklearn.tree.DecisionTreeClassifier function.
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Figure 16: Empirical correlation matrix of gene expression across 50 cells from data in Veleslavov and Stumpf
(2020). Rows and columns that show a null value correspond to genes that showed no variability in expression
across the 50 cells.
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H.1 Results

Since we have one dataset of gene expression across cells, N = 1 in this example. Table 4 shows the stability
results and average number of models returned across LOO trials. Notably, ip, is absent from this table
because this selection method is specific to variable selection, which is a special class of model selection.

Based on Table 4, significant instabilities are seen for both the argmaxo A and argmaxo flK 5 model
selection methods, while top-2 o flK, B provides enhanced stability. For the inflated argmax, we chose
e = 0.03 so that the stability matched that of the stability of top-2 in order for us to directly compare the
number of returned models. For a fixed level of instability § = 0.12, the inflated argmax returns a smaller
number of models on average across LOO trials, showing that our method adaptively returns the smallest
set of models based on the underlying uncertainty in the selection.

For € = 0.04, we obtain 0.04 instability, corresponding to a high degree of stability with a LOO average of
2.88 returned models. We visualize the top 3 selected models across bootstrap samples in Figure 17. From
these trees, we can see that the first and second most common selected trees across bootstrap samples are
completely disjoint, potentially indicating strong correlations among the features for both trees. However,
the third most commonly selected tree differs from the top tree by only one split, suggesting there may be
a high correlation between the gene expressions of Lin28a and Nanog. Future investigations can focus on
disentangling the associations among the genes selected in the top tree versus the second most selected tree
to elucidate their associations with the cell fates.

SELECTION METHOD LOO INSTABILITY AVG. LOO SET SIZE

argmax o .4 0.40 1.00
argmax o -{lK,B 0.24 1.00
top-2 o Ak p 0.12 2.02

0.03

(Ours) argmax ) .,ZlK,B 0.12 1.74

Table 4: Table of stability and the average number of models returned across LOO trials for selecting the
structure of the multi-class decision tree for a gene expression dataset from Veleslavov and Stumpf (2020).
In this experiment, A is a classification decision tree, and A K,B is a bootstrapped classification decision tree
with B = 10,000 and K = 45. In computing the returned models, if there is an exact tie in the top models,
all ties are returned, which explains why top-2 returns slightly more than 2 models on average across the
LOO fits.
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Top 1 Decision Tree Top 2 Decision Tree Top 3 Decision Tree

EPI NPC

Figure 17: Visualization of the decision tree structures for the top 2 trees chosen by bootstrap sampling the
data for K = 45 samples per bag across B = 10,000 bags. Differences between the top and second tree are
indicated in blue in the second tree, and the differences between the first and third trees are indicated in
red. The names of the genes that determine the split at each node are shown in ovals, and the class labels
NPC, ESC, and EPI are listed for each leaf. The top 1 decision tree was selected by 4.74% of bags, the top 2
decision tree was selected by 2.80% of bags, and the third decision tree was selected by 2.24% of bags. The
exact values used for the splits at each node were not considered in our stability results.
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