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Abstract

We focus on the task of creating a reinforcement learning agent that is inherently
explainable—with the ability to produce immediate local explanations by think-
ing out loud while performing a task and analyzing entire trajectories post-hoc
to produce temporally extended explanations. This Hierarchically Explainable
Reinforcement Learning agent (HEX-RL), 1 operates in Interactive Fictions, text-
based game environments in which an agent perceives and acts upon the world
using textual natural language. These games are usually structured as puzzles
or quests with long-term dependencies in which an agent must complete a se-
quence of actions to succeed—providing ideal environments in which to test an
agent’s ability to explain its actions. Our agent is designed to treat explainability
as a first-class citizen, using an extracted symbolic knowledge graph-based (KG)
state representation coupled with a Hierarchical Graph Attention mechanism
that points to the facts in the internal graph representation that most influenced
the choice of actions. Experiments show that this agent provides significantly
improved explanations over strong baselines, as rated by human participants
generally unfamiliar with the environment, while also matching state-of-the-art
task performance.

1 Introduction

Observation:  Up a tree   
Beside you on the branch is a small birds nest 
In the birds nest is a large egg encrusted with 
precious jewels, scavenged by a childless songbird...

  

✵ Explanation:
I am in the Forest Path now.
trees are intereactable
✪ Agent needs this action to:
take egg at Up a tree 

Action: go up              Game Score: 0 

Observation: Forest Path
The path heads northsouth here.  
One particularly large tree with some low 
branches stands at the edge of the path...

Action: take egg          Game Score: 5 

✵ Explanation:
egg is interactable

 

Observation: Up a tree
Taken.

Figure 1: Excerpt from zork1 with immediate
step-by-step explanations constructed from
the KG represented by and temporally ex-
tended explanations by . Colors represent
different categories of KG facts seen in Fig. 2.

Explainable AI refers to artificial intelligence
methods and techniques that provide human-
understandable insights into how and why an
AI system chooses actions or makes predictions.
Such explanations are critical for ensuring reliabil-
ity and improving trustworthiness by increasing
user understanding of the underlying model. In
this work we specifically focus on creating deep re-
inforcement learning (RL) agents that can explain
their actions in sequential decision making envi-
ronments through natural language.

In contrast to the majority of contemporary work
in the area which focuses on supervised machine
learning problems which require singular instance
level local explanations (You et al., 2016; Xu et al.,
2015; Wang et al., 2017; Wiegreffe and Marasovic,
2021), such environments—in which agents need
to reason causally about actions over a long series

1Code: https://github.com/xiangyu-peng/HEX-RL
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of steps—require an agent to take into account both environmentally grounded context as well
as goals when producing explanations. Agents implicitly contain beliefs regarding the down-
stream effects—the changes to the world—that actions taken at the current timestep will have.
This requires explanations in these environments to contain an additional temporally extended
component taking the full trajectory’s context into account—complementary to the immediate
step-by-step explanations.

Interactive Fiction (IF) games (Fig. 1) are partially observable environments where an agent
perceives and acts upon a world using potentially incomplete textual natural language descriptions.
They are structured as long puzzles and quests that require agents to reason about thousands of
locations, characters, and objects over hundreds of steps, creating chains of dependencies that
an agent must fulfill to complete the overall task. They provide ideal experimental test-beds for
creating agents that can both reason in text and explain it.

We introduce an approach to game playing agents—Hierarchically Explainable Reinforcement
Learning (HEX-RL)—that is designed to be inherently explainable, in the sense that its internal
state representation—i.e. belief state about the world—takes the form of a symbolic, human-
interpretable knowledge graph (KG) that is built as the agent explores the world. The graph
is encoded by a Graph Attention network (GAT) (Veličković et al., 2017) extended to contain a
hierarchical graph attention mechanism that focuses on different sub-graphs in the overall KG
representation. Each of these sub-graphs contains different information such as attributes of
objects, objects the player has, objects in the room, current location, etc. Using these encoding
networks in conjunction with the underlying world KG, the agent is able to create immediate
explanations akin to a running commentary that points to the facts within this knowledge graph
that most influence its current choice of actions when attempting to achieve the tasks in the game
on a step-by-step basis.

While graph attention can tell us which elements in the KG are attended to when maximizing
expected reward from the current state, it cannot explain the intermediate, unrewarded depen-
dencies that need to be satisfied to meet the long term task goals. For example, in the game
zork1, the agent needs to pick up a lamp early on in the game—an unrewarded action—but the
lamp is only used much later on to progress through a location without light. Thus, our agent
additionally analyzes an overall episode trajectory—a sequence of knowledge graph states and
actions from when the agent first starts in a world to either task completion or agent death—to
find the intermediate set of states that are most important for completing the overall task. This
information is used to generate a temporally extended explanation that condenses the immediate
step-by-step explanations to only the most important steps required to fulfill dependencies for the
task.

Our contributions are as twofold: (1) we create an inherently explainable agent that uses an
ever-updating knowledge-graph based state representation to generate step-by-step immediate
explanations for executed actions as well as performing a post-hoc analysis to create temporal
explanations; and (2) a thorough experimental study against strong baselines that shows that
our agent generates significantly improved explanations for its actions when rated by human
participants unfamiliar with the domain while not losing any task performance compared to the
current state-of-the-art knowledge graph-based agents.

2 Background and Related Work

Interactive Fiction (IF) games are simulations featuring language-based state and action spaces. It
provides a platform for exploring lifelong open-domain dialogue learning (Shuster et al., 2020) and
action elimination with deep reinforcement learning (Zahavy et al., 2018). In this paper, we use IF
games as our test-bed because they provide an ideal platform for collecting data, linking game
states and actions to the corresponding natural language explanations. We use the definition of
text-adventure games as seen in Côté et al. (2018) and Hausknecht et al. (2020). We take Jericho
(Hausknecht et al., 2020), a framework for interacting with text games, as the interface connecting
learning agents with interactive fiction games. A text game can be defined as a partially-observable
Markov Decision Process: G = hS,P, A,O,≠,R,∞i, representing the set of environment states,
conditional transition probabilities between states, the vocabulary or words used to compose text
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Figure 2: Knowledge graph extraction and the (HEX-RL) agent’s architecture at step t .

commands, observations, observation conditional probabilities, reward function, and discount
factor, respectively. The reinforcement learning agent is trained to learned a policy ºG (o) ! a.

Knowledge Graphs for Text Games. Ammanabrolu et al. (2020) proposed Q*BERT, a reinforce-
ment learning agent that learns a KG of the world by answering questions. Xu et al. (2020) introduce
the SHA-KG, a stacked Hierarchical Graph Attention mechanism to construct an explicit represen-
tation of the reasoning process by exploiting the structure of the KG. Adhikari et al. (2020) present
the Graph-Aided Transformer Agent (GATA) which learns to construct a KG during game play and
improves zero-shot generalization on procedurally generated TextWorld games. Other works such
as Murugesan et al. (2020) explore how to use KGs to endow agents with commonsense. While
these works showcase the effectiveness of KGs on task performance and do not focus on how
explainable their architectures are. We further note that these architectures do now allow for as
fine-grained attention-based attribution as HEX-RL’s architecture does—e.g. Q*BERT does not
use relationship information in their policy and SHA-KG averages attention across large portions
of the graph and is unable to point to specific triples in its KG representation to explain an action.

Explainable Deep RL. Contemporary work on explaining deep reinforcement learning policies
can be broadly categorized based on: (1) how the information is extracted, either via intrinsic
motivation during training (Shu et al., 2017; Hein et al., 2017; Verma et al., 2018) or through
post-hoc analysis (Rusu et al., 2015; Hayes and Shah, 2017; Juozapaitis et al., 2019; Madumal
et al., 2020); and (2) the scope—either global (Zahavy et al., 2016; Hein et al., 2017; Verma et al.,
2018; Liu et al., 2018) or local (Shu et al., 2017; Liu et al., 2018; Madumal et al., 2020; Guo et al.,
2021). In our work, we create an agent that spans more than one of these categories providing
immediately local explanations through extracted knowledge graph representations and post-hoc
temporal explanations. Inspired by Madumal et al. (2020), we learn a graphical causal model
which focuses on using relations between steps in a puzzle to generate temporal explanations
instead of generating counterfactuals.

3 Hierarchically Explainable RL

Our work aims to generate (1) immediate step-by-step explanations of an agent’s policy by captur-
ing the importance of the current game state observation and (2) temporally extended explanations
that take into context an entire trajectory via a post-hoc analysis. Formally, let X = {st ,at }t=1:T be
the set of game steps that compose a trajectory. Each game state st consists of a knowledge graph
Gt representing all the information learned since the start of the game. This graph is further split
into four sub-knowledge graphs each containing different, semantically related relationship types.
This section first describes a graph attention based architecture that uses these sub-graphs to pro-
duce immediate explanations. We then describe how to filter the game states in a trajectory into a
condensed set of the most important ones X0 Ω X that best capture the underlying dependencies
that need to be fulfilled to complete the task—enabling us to produce temporal explanations.
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Knowledge Graph State Representation. Building on Ammanabrolu et al. (2020), constructing
the knowledge graph is treated as a question-answering task. KGs in these games take the form of
RDF triples (Klyne, 2004) of hsub j ect ,r el ati on,ob j ecti—extracted from text observations and
update as the agent explores the world. The agent answers questions about the environment such
as, “What am I carrying?” or “What objects are around me?”. A specially constructed dataset for
question answering in text games—JerichoQA—is used to fine-tune ALBERT (Lan et al., 2019) to
answer these questions (See Appendix A.3). The answers form a set of candidate graph vertices Vt
for the current step and questions form the set of relations Rt . Both Vt and Rt are then combined
with the graph at the previous step Gt°1 to update the agent’s belief about the world state into Gt .
The left side of Figure 2 showcases this.

In an attempt to enable more fine grained explanation generation and inspired by Xu et al. (2020),
we divide the knowledge graph G into multiple sub-graphs Gatr ,Gi nv ,Gob j ,Gloc , each represent-
ing (1) attributes of objects, (2) objects the player has, (3) objects in the room, and (4) other
information such as location (right side of Fig. 2) based on the corresponding relationship types
extracted by the ALBERT-QA module. The union of all sub-graphs is equivalent of Vt and Rt
extracted from the current game state. The full knowledge graph Gt captures the overall game
state since the start of the game. The sub-graphs easily reflect different relationships of the current
game state.

Template Action Space. Agents output a language string into the game to describe the ac-
tions that they want to perform. To ensure tractability, this action space can be simplified
down into templates. Templates consist of interchangeable verbs phrases (V P ), optionally fol-
lowed by prepositional phrases (V P PP ), e.g. ([car r y/t ake] ) and ([thr ow/di scar d/put ]
[ag ai nst/on/down] ), where the verbs and prepositions within [.] are aliases. Actions are con-
structed from templates by filling in the template’s blanks using words in the game’s vocabulary.
Size of action space is shown in Appendix A.1.

3.1 Immediate Explanations

Our immediate explanations consist of finding the subset of triplets in sub-graphs
Gatr ,Gi nv ,Gob j ,Gloc c the action decision made at the current step—is capable of explaining the
action. We introduce a deep RL architecture capable of this.

Hierarchical Knowledge Graph Attention Architecture. At each step, a total score Rt and an

observation ot is received—consisting of
≥
otdesc ,otgame ,otinv , at°1

¥
corresponding to the room de-

scription, game feedback, inventory, and previous action and are processed using a GRU based
encoder using the hidden state from the previous step, combining them into a single observation
embedding ot 2Rdtext£c (bottom of Fig. 2).

The full knowledge graph Gt is processed via Graph Attention Networks (GATs) (Veličković et al.,
2017) followed by a linear layer to get the graph representation gt 2Rdtext (middle of Fig. 2). We
compute LSTM attention between ot and gt as:

ÆLSTM = softmax(W lhLSTM +bl) (1)

hLSTM = tanh
°
W oot ©

°
W ggt +bg

¢¢
(2)

where © denotes the addition of a matrix and a vector. W l 2 Rdtext£dtext , W g 2 Rdtext£dtext , W o 2
Rdtext£dtext are weights and bl 2Rdtext , bo 2Rdtext are biases. The overall representation vector is
updated as:

qt = gt +
cX

i
ÆLSTM,i Øot,i (3)

where Ø denotes dot-product and c is the number of ot’s components.
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Sub-graphs are also encoded by GATs to get the graph representation g0
t 2 RdGt ,sub£m (no. of

subgraphs). The Hierarchical Graph Attention between qt 2RdGt ,sub 2 and g0
t is calculated by:

ÆHierarchical = softmax(W HhH +bH) (4)

hH = tanh
°
W g0 g

0
t ©

°
W qq t +bq

¢¢
(5)

where W H 2 RdGt ,sub£dGt ,sub , W g0 2 RdGt ,sub£dGt ,sub , W q 2 RdGt ,sub£dGt ,sub are weights and bH 2
RdGt ,sub , bq 2RdGt ,sub are biases. Then we get state representation, consisting of the textual obser-
vations full knowledge graph and sub-knowledge graph.

vt = qt +
sX

i
ÆHierarchical,i Øg 0

t,i (6)

where s is the number of sub-graphs (4 in our paper). The full architecture can be found in
Figure 2.

The agent is trained via the Advantage Actor Critic (A2C) (Mnih et al., 2016) method to maximize
long term expected reward in the game in a manner otherwise unchanged from Ammanabrolu
et al. (2020) (See Appendix A.2). These attention values thus reflect the portions of the knowledge
graphs that the agent must focus on to best achieve this goal of maximizing reward.

Hierarchical Graph Attention Explanation. The graph attentionÆHierarchical is used to capture
the relative importance of game state observations and KG entities in influencing action choice.
For each sub-graph, the graph attention,ÆHierarchical,i 2Rnnodes£m is summed over all the channels
m to obtainÆ0

Hierarchical,i 2R
nnodes£1, showing the importance of the KG nodes in the i th sub-graph.

The top-k valid entities (and corresponding edges) with highest absolute value of its attention
form the set of knowledge graph triplets that best locally explain the action at .

In order to make the explanation more readable for a human reader, we further transform knowl-
edge graph triplets to natural language by template filling.

We create templates for each type of sub-graphs Gatr ,Gi nv ,Gob j ,Gl oc .

• hob j ect , i s, at tr i butei!“Object is attribute”
• hpl ayer,has,ob j ecti!“I have object”
• hob j ect , i n, locati oni!“Object is in location”
• hlocati on1,di r ect i on, locati on2i!“location 1 is in the direction of location 2”, e.g.
h f or est ,nor th,housei is converted to “Forest is in the north of house”

More examples can be found in Appendix A.4.

3.2 Temporally Extended Explanations

Graph attention tells us which entities in the KG are attended to when making a decision, but
is not enough alone for explaining “why” actions are the right ones in the context of fulfilling
dependencies that may potentially be unrewarded by the game—especially given the fact that
there are potentially multiple ways of achieving the overall task. HEX-RL thus saves trajectories for
hundreds of test time rollouts of the games, performed once a policy has been trained (Table 1 and
Appendix A.5). The game trajectories consist of all the game states, actions taken, predicted critic
values, game scores, the knowledge graphs, and the immediate step level explanations generated
as previously described. HEX-RL produces a temporal explanation by performing a post-hoc
analysis on these game trajectories. The agent then analyzes and filters these trajectories in an
attempt to find the subset of states that are most crucial to achieving the task as summarized in
Figure 3—then using that subset of states to generate temporal trajectory level explanations.

Bayesian State Filter. We first train a Bayesian model to predict the conditional probability
P(A | Bi ) of a game step (A) given any other possible game step (Bi ) in the game trajectories. More
specifically, each game step is composed of 3 elements, game state ot , action at and the current
knowledge graph Gt . The key intuition here being that state, action pairs that appear in a certain
ordering in multiple trajectories are more likely to dependant on each other.

2A linear transformation ensures that qt 2RdGt ,sub .
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The set of game steps with the highest P(A | Bi ) is used to explain taking the action associated with
game state A. For example, “take egg” (A) is required to “open egg” (B), and P(A | B) = 1, hence
“open egg” is used as a reason why action “take egg” must be taken first. The initial set of game
states X is filtered into X1 by working backwards from the final goal state by finding the set of states
that form the most likely chain of causal dependencies that lead to it. Details can be found in
Appendix A.5 and A.6.

Up a Tree
Take egg
Up a Tree

   5

Forest Path
Go up

Up a tree

P(A|Bi) > p

CALM

Behind House
Go north

North of House
A

Behind House
Go west
Kitchen

     
 10

Semantic Filter

BAYES

Game Trajectories 
(Table 1) Forest PathAll game states    All game states    

Bi

Key
Input
Used for Training
 

Location after Action
 Game score

Location before Action
 Action
 

Figure 3: Temporal explanation pipeline for why
the agent chose the action—"go north" at "Be-
hind House".

Language Model Action Filter. Following
this, we apply a GPT-2 (Radford et al., 2019)
language model trained to generate actions
based on transcripts of text games from hu-
man play-throughs to further filter out impor-
tant states—known as the Contextual Action
Language Model (CALM) (Yao et al., 2020). As
this language model is trained on human tran-
scripts, we hypothesize that it is able to further
filter down the set of important states by find-
ing the states that have corresponding actions
that a human player would be more likely to
perform—thus potentially leading to more nat-
ural explanations. CALM takes into observa-
tion ot , action at and the following observa-
tion ot+1, and predicts next valid actions at+1.
In our work, we use CALM as a filter to look
for the relations between a game step A and
the explanation candidates Bi 2 X1. We feed
CALM with the prompt oA , aA ,oBi to get an ac-
tion candidate set. When the two game steps
A and Bi are highly correlated, given oA , aA
and oBi , CALM should successfully predict aBi
with high probability. The game steps Bi , whose associated action aBi is in this generated action
candidates set, are saved as the next set of filtered important candidate game states (X2).

Table 1: Example state saved during game play.

STEP: 16

Text Observation:
Up a Tree
Beside you on the branch is a small birds nest.
In the birds nest is a large egg encrusted with jewels...
Knowledge graph:
htr ee, i n, f or esti, heg g , i s, i nter act ablei...
Action: take egg
Immediate explanation: egg is interactable

Game Score:5
Critic Value: 5.7457

Semantic State-Action Filter. To better ac-
count for the irregularities of the puzzle like
environment, we adopt a semantic filter to
obtain the final important state set X3. Here,
given A,Bi 2 X2, states are further filtered on
the basis of whether one of these scenarios oc-
curs: (1) aA and aBi contain the same entities,
e.g. “take egg” and “open egg”. (2) G A and GBi
share the same entities, e.g. “lamp” occurs
in both observations. (3) A and Bi occur in
the same location, e.g. after taking action aA ,
the player enters “kitchen” and B occurs in
“kitchen”. (4) The state has a non-zero reward
or a high absolute critic value, indicating that
it is either a state important for achieving the goals of the game or it is a state to be avoided. The
final set of important game states X3 is used to synthesize post-hoc temporal explanations for why
an action was performed in a particular state—as seen in Figure 1—taking into account the overall
context of the dependencies required to be satisfied and building on the immediate step level
explanations for each given state in X3. Ablation studies pin-pointing the relative contributions
of the different filters are found in Section 4.4. We concluded that all three steps of the filtering
process to identify important states are necessary for creating coherent temporal explanations
that effectively take into account the context of the agent’s goals.
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Table 2: Asymptotic scores on games by different methods across 5 independent runs. Eps.
indicates normalized scores averaged across 100 episodes of testing which occurs at the end of the
training period and Max indicates the maximum score seen by the agent over the same period.
We present results on two training rewards for HEX-RL, game only and game and IM.

Experiment LSTM-A2C KG-A2C SHA-KG Q*BERT HEX-RL HEX-RL Max
Game Only Game and IM

Metric Eps. Max Eps. Max Eps. Max Eps. Max Eps. Max Eps. Max -
zork1 27 31.2 34 35 33.6 34.5 35 35 29.8 40 30.2 40 350
library 8.2 10 14.3 19 10.0 15.8 18 18 16.0 19 13.8 21 30
detective 141 188 207.9 214 246.1 308 274 310 276.7 330 276.9 330 360
balances 10 10 10 10 9.8 10 10 10 10.0 10 10.0 10 51
pentari 50.4 55 50.7 56 48.2 51.3 50 56 34.6 55 44.7 60 70
ztuu 5 5 5 5 5 25 5 5 5.0 5 5.1 9 100
ludicorp 14.4 18 17.8 19 17.6 17.8 18 19 14.0 18 17.6 18 150
deephome 1 1 1 1 1 1 1 1 1.0 1 1.0 1 300
temple 8 8 7.6 8 7.9 6.9 8 8 8.0 8 7.6 8 35
% compl. 22.6 25.9 27.3 30.8 27.2 33.1 30.8 34.9 27.2 33.9 28.2 35.8 100
std dev 0.02 0.01 0.06 0.01 - - 0.03 0.00 0.03 0.01 0.03 0.02 -

4 Evaluation

Our evaluation consists of three phases: (1) We show that HEX-RL has the comparable perfor-
mance to state-of-art reinforcement learning agents on text games in Section 4.1. (2) Then in
Section 4.2, we evaluate our immediate attention explanation model by comparing the expla-
nations generated by HEX-RL and agents that do not use knowledge graphs (See Fig. 2 and
Section 3.1). (3) In Section 4.3 we compare immediate to temporal explanations, focusing on the
effects that including trajectory level context when evaluating explanations in the context of agent
goals. (4) In Section 4.4 we conduct human participant ablation study evaluating the individual
contributions of the filtration pipeline for generating temporal explanations seen in Figure 3.

4.1 Task Performance Evaluation

We compare HEX-RL with four strong state-of-art reinforcement learning agents—focusing on
contemporary agents that use knowledge graphs—on an established test set of 9 games from the
Jericho benchmark (Hausknecht et al., 2020).

• LSTM-A2C is a baseline that only uses natural language observations as state representa-
tion that is encoded with an LSTM-based policy network.

• KG-A2C. Instead of training a question-answering system like Q*BERT to build knowledge
graph state representation, KG-A2C (Ammanabrolu and Hausknecht, 2020) extracts
knowledge graph triplets from the text observations using a rules based approach built
on OpenIE (Angeli et al., 2015).

• SHA-KG is adapted from Xu et al. (2020) and uses a rules-based approach to construct
a knowledge graph for the agent which is then fed into a Hierarchical Graph Attention
network as in HEX-RL. This agent separates the sub-graphs out using a rules-based
approach and makes no use of any graph edge relationship information.

• Q*BERT. Ammanabrolu et al. (2020) uses a similar method of creating the knowledge
graph through question answering but does not use the hierarchical graph attention
architecture combined with the sub-graphs.

These baselines are all trained via the Advantage Actor Critic (A2C) (Mnih et al., 2016) method—
further comparisons to other contemporary agents can be found in Appendix A.7. It is also worth
noting that most contemporary state of the art deep RL agents for text games use recurrent neural
policy networks as opposed to transformer networks due to their improved performance in this
domain.

HEX-RL Training. We trained HEX-RL on two reward types: (a) game only, which indicates that
we only use score obtained from the game as reward. (2) game with intrinsic motivation (game
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and IM), which contains an additional intrinsic motivation reward based on knowledge graph
expansion as seen in Ammanabrolu et al. (2020)—where the agent is additionally rewarded for
learning more about the world by finding new facts for knowledge graph (see Appendix A.8, A.9
and A.10).

Table 2 shows the performance of HEX-RL and the other four baselines. We can see that designing
the HEX-RL agent to be inherently explainable through the use of Hierarchical Graph Attention
and the sub-graphs improves the overall maximum score seen during training when compared to
any of the other agents. In terms of the average score seen during the final 100 episodes, HEX-RL
wth intrinsic motivation outperforms all baselines with the exception of Q*BERT—there HEX-RL
significantly outperforms Q*BERT on one game, is outperformed on two games, and comparable
on the remaining six games. HEX-RL thus performs comparably to other state-of-the-art baselines
in terms of overall task performance while also boasting the additional ability to explain its actions.

4.2 Immediate Explanation Evaluation

Having established that HEX-RL’s performance while playing text games is comparable to other
state-of-the-art agents, we attempt to answer the question of exactly how useful the knowledge
graph based architecture is when generating immediate step-by-step explanations by comparing
HEX-RL to a baseline that doesn’t use knowledge graphs in a human participant study. Two models
for step-by-step explanations are compared:

• LSTM Attention explanations. Extracts the most important substring in the observations
through LSTM attention ÆLST M and then uses those words to create an explanation.

• Hierarchical Graph Attention explanations. Extracts KG triplets most influenced the
choice of actions by Hierarchical Attention ÆHierarchical and then transforming them into
readable language explanations through templates.

We recruited 40 participants—generally unfamiliar with the environment at hand—on a crowd
sourcing platform. Each participant reads a randomly selected subset of 10 explanation pairs
(drawn randomly from a pool totaling 60 explanation pairs), generated by Hierarchical Graph
Attention and LSTM attention explanation on three games in the Jericho benchmark: zork1,
library, and balances. We choose three games with very different structures and genres as defined
in Hausknecht et al. (2020). They each require a diverse set of action types and solutions to
complete and thus provide a wide area of coverage when used as test beds for human evaluation
of explanations. Then they are given the following metrics and asked to choose which explanation
they prefer for that metric:

• Confidence: This explanation makes you more confident that the agent made the right
choice.

• Human-likeness: This explanation expresses more human-like thinking on the action
choice.

• Understandability: This explanation makes you understand why the agent made the
choice.

Variations of these questions have been used to evaluate other explainable AI systems (eg. Ehsan
et al. (2019)). At least 5 participants give their preference for each explanation pair. We take the ma-
jority preference from humans participants as the result. More details are shown in Appendix B.1.

Figure 4 shows the result of the human evaluation of attention explanations. Hierarchical graph
attention explanation is preferred over LSTM attention explanation in all three dimensions. These
results are statistically significant (p < 0.05) with fair inter-rater reliabilities. We also observe that
these three dimensions are highly, positively correlated using Spearman’s Rank Order Correlation.3

A slightly higher proportion of participants preferred the LSTM Attention explanations in the
human-likeness dimension compared to the other two. The participants preferring LSTM Atten-
tion explanation stated that they found it intuitive but often incoherent and found the Hierarchical
Graph Attention explanations to be more robotic. LSTM attention explanations are substrings of
the human-written observation and thus have the potential to be more natural sounding than

3rs = 0.70, p < 0.01, between “confidence” and “understandability”; rs = 0.67, p < 0.01, between “confi-
dence” and “human-likeness”; rs = 0.89, p < 0.01, between “human-likeness” and “understandability”
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the templated Hierarchical Graph Attention explanations when they are coherent enough to be
understood. The KG sacrifices a small amount of human-likeness in return for much greater
overall coherence and accuracy. KGs with Hierarchical Graph Attention give us explanations that
are more easily understood and inspire greater confidence in the agent’s decisions.

Figure 4: Human evaluation results showing the
proportion of participants that prefer Hierarchi-
cal Graph Attention vs. LSTM Attention explana-
tions, §§ indicates p < 0.01, † indicates ∑ > 0.2 or
fair agreement. ‡ indicates ∑ > 0.4 or moderate
agreement. Evaluation results on each game are
shown in Appendix A.11.

Example qualitative LSTM Attention and Hier-
archical Graph Attention explanations can be
found in Appendix C.2. As our system relies
on graph hierarchical graph attention to gen-
erate immediate explanations, a well-trained
knowledge graph representation module of the
world knowledge is required. Most cases where
the agent fails to provide satisfactory immedi-
ate explanations are either when: (1) the expla-
nation is not directly linked to the one of the
facts we choose to extract from the knowledge
graph, such as object/location information;
and (2) due to the error of knowledge graph
extraction models themselves.

4.3 Immediate vs. Temporal Explanations

Having proved the effectiveness of the knowl-
edge graph at the immediate step-by-step ex-
planation level, we evaluate our method of pro-
ducing temporal explanations and how they
compare to the immediate explanations along two dimensions: (1) coherence; and (2) explanation
accuracy when taken in the context of the agent’s goals.

Participants first read a trajectory of the game combined with step-by-step immediate explanations
and the game goal, then indicate how much they agree with the statements on a Likert scale of 1
(strong disagree) to 5 (strong agree). Here, we add two metrics from the previous study:

• Goal context: You are able to understand why the agent takes this particular sequence of
actions given what you know about the goal.

• Readability: This explanation is easy to read.

Figure 5: Human judgment5 results on immedi-
ate and temporal explanation, § indicates p <
0.05. Error bars indicate a confidence level of
95%.

Figure 5 shows the average scores for each
question for the immediate and temporal
explanations. The temporal explanations
achieve comparable performance to the im-
mediate explanations on all metrics except for
the the metric relating to goal context where
they significantly out-perform the immediate
explanations. A majority of participants stated
that a condensed trajectory level explanation
made the goals of the agent easier to under-
stand than reading through each step level ex-
planation. These results indicate that HEX-RL
can generally successfully identify the most im-
portant states in a trajectory and use them to
create temporal explanations that are on par
with immediate explanations in terms of co-
herence but provide significantly more context
in terms of explaining an agent’s actions with respect to its task-based goals.

Cases where the agent does not provide a temporally coherent and goal-driven explanation revolve
around failures—particularly by the Bayesian State Filter—in detecting the most important states
in the trajectory. A qualitative analysis (as seen in Appendix C.3) suggests that this occurs in cases
where there are a large number of branching paths that lead to the same end state. Thus, the
quality of the generated temporal explanations appears to be inversely proportional to the relative
complexity of the game as measured by its branching factor.
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4.4 Temporal Explanation Ablation Study

Having established the overall effectiveness of the filters in HEX-RL that create the temporal
explanations, we perform pair-wise ablation studies to pinpoint the relative contributions of the
different filters seen in Fig. 3. We first compare explanations generated using a set of important
states filtered from the trajectory using the Bayes model compared to Bayes+CALM explanation.
This how applying the language model action filter affects the quality of the temporal explanations.
As before, we recruited 30 participants on a crowd sourcing platform. Each participant reads a
randomly selected subset of explanation pairs, comprised of temporal explanations filtered by
Bayes and Bayes+CALM models. Figure 6a shows that after applying the CALM model to filter
explanation candidates, generated explanations are significantly preferred on the “Confidence”
and “Understandability” dimensions.

Similarly, we then conducted another ablation study to validate the contribution of semantic filter
by comparing the Bayes+CALM filtering method to the full HEX-RL using Bayes+CALM+Semantic
filters. The experiment setup is the same as the previous ablation study. Figure 6b shows that
Bayes+CALM+Semantic performs significantly better than Bayes+CALM on all three dimensions.

We additionally observe that these three metrics are highly, positively correlated using Spearman’s
Rank Order Correlation in both of these ablation studies4. When asked to justify their choices,
participants indicated that the full HEX-RL system with Bayes+CALM+Semantic filters provided
temporal explanations that they felt was more understandable than alternatives. These results
indicate that all three steps of the filtering process to identify important states are necessary
for creating coherent temporal explanations that effectively take into account the context of the
agent’s goals.

(a) Bayes vs. Bayes + CALM explanation (b) Bayes + CALM vs. Bayes + CALM + Semantic expla-
nation

Figure 6: Human evaluation results on ablation study, § indicates p < 0.05, † indicates ∑ > 0.2 or
fair agreement.

5 Conclusions

Explaining deep RL policies for sequential decision making problems in natural language is a
sparsely studied problem despite a steadily growing need. An oft given reason for this phenomenon
is that deep RL methods perform better without the additional burden of being explainable. In an
attempt to encourage work in this area, we create the Hierarchically Explainable Reinforcement
Learning (HEX-RL) agent which treats explainability as a first-class citizen in its design by using
a readily interpretable knowledge graph state representation coupled with a Hierarchical Graph
Attention network. This agent is able to produce step-by-step commentary-like immediate expla-
nations and also a condensed temporal trajectory level explanation via a post-hoc analysis. We
show that with careful design, it is possible to create inherently explainable RL agents that do not
lose performance when compared to contemporary state-of-the-art agents and simultaneously
are able to generate significantly higher quality explanations of actions.

4rs = 0.86, p < 0.01, between “confidence” and “understandability”; rs = 0.79, p < 0.01, between “confi-
dence” and “human-likeness”;rs = 0.90, p < 0.01, between “human-likeness” and “understandability”
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