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Abstract

Recent studies have raised concerns about the001
reliability of current mathematical benchmarks,002
highlighting issues such as simplistic design003
and potential data contamination. Therefore,004
creating a reliable benchmark that effectively005
evaluates the genuine capabilities of large lan-006
guage models (LLMs) in mathematical reason-007
ing remains a significant challenge. To address008
this, we propose RV-Bench, a framework for009
Benchmarking LLMs via Random Variables010
in mathematical reasoning. Specifically, the011
background content of a random variable ques-012
tion (RV question) mirrors the original prob-013
lem in existing benchmarks, but the variable014
combinations are randomized, making it “un-015
seen” by the LLMs. Models must completely016
understand the question pattern of the original017
problem to correctly answer RV questions with018
various variable values. As a result, the LLM’s019
genuine capability in mathematical reasoning is020
reflected by its accuracy and robustness on RV-021
Bench. We conducted extensive experiments on022
over 30 representative LLMs across more than023
1000 RV questions. Our findings suggest that024
LLMs exhibit an imbalance in proficiency be-025
tween encountered and "unseen" data domains.026
Proficiency generalization across similar mathe-027
matical reasoning tasks is verified to be limited028
by accuracy and robustness, but it can still be029
enhanced through test-time scaling.030

1 Introduction031

The emergence of LLMs has led to impressive re-032

sults across a wide range of applications, includ-033

ing machine translation (Zhang et al., 2023; Zhu034

et al., 2024), text summarization (Liu et al., 2024d),035

and question answering (Kamalloo et al., 2023).036

With advancements in LLMs’ reasoning capabili-037

ties (Huang and Chang, 2023), their performance038

on complex tasks such as code generation (Chen039

et al., 2021; Hong et al., 2024b), planning (Huang040

et al., 2024a), and, particularly, mathematical rea-041

soning and computation (Romera-Paredes et al.,042
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Figure 1: When mathematical problems are presented
with identical content but various variable combinations,
LLMs experience a significant drop in accuracy. This
discrepancy poses challenges in evaluating the genuine
capabilities of LLMs in mathematical reasoning.

2024), has become a central focus within the LLM 043

research community (Zhao et al., 2023). As this 044

area continues to be a prominent focus of LLM 045

research, numerous promising methods (Luo et al., 046

2023; Xu et al., 2024b) and benchmarks (Fang 047

et al., 2024) have been developed to enhance LLMs’ 048

performance on mathematical tasks. 049

However, are existing benchmarks of LLMs 050

in mathematical reasoning truly reliable? Fig- 051

ure 1 illustrates a discrepancy within the well- 052

known MATH (Hendrycks et al., 2021b) dataset. 053

In our pilot experiments, powerful LLMs like 054

GPT-4o (Achiam et al., 2023) perform well on 055

MATH problems but still experience a significant 056

drop in accuracy when answering questions with 057

the same content but various variable combina- 058

tions (Mirzadeh et al., 2024), as detailed in Sec- 059

tion 4.2. This discrepancy raises two potential con- 060

cerns about the existing evaluation framework: 1) 061

The existing benchmarks’ design may be overly 062

simplistic for contemporary LLMs, as they typi- 063

cally only evaluate performance on fixed-variable 064

problems. The LLMs may not genuinely under- 065

stand the problem but instead "guess" the correct 066

answer (Dong et al., 2024); 2) The problems in 067

widely-used benchmarks might be encountered 068
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by LLMs through data contamination during069

training, allowing the models to achieve high ac-070

curacy solely on the original problems (Ni et al.,071

2024) but not completely understand the inherent072

question pattern. These concerns present a signifi-073

cant challenge in evaluating the genuine capabili-074

ties of LLMs (Deng et al., 2024).075

The advanced study presents an in-depth analy-076

sis about the probabilistic modeling of LLMs dur-077

ing reasoning process obscures the fact that they078

are not genuinely capable of formal reasoning (Shi079

et al., 2023; Jiang et al., 2024). Additionally, poten-080

tial issues such as data leakage and overfitting dur-081

ing LLM training are also being studied (Xu et al.,082

2024a). Given that mathematics is a foundational083

topic applicable across a wide range of semantic084

scenarios, the increasing popularity and prevalence085

of math datasets like GSM8K (Cobbe et al., 2021)086

and MATH (Hendrycks et al., 2021b) raise the087

risk of potential data contamination. Although088

recent studies on contamination detection (Chern089

et al., 2024; Ni et al., 2024) can signal unreli-090

able results, they fail to reflect the genuine per-091

formance of LLMs, as data contamination oc-092

curs during the training phase and remains non-093

intervenable (Kapoor and Narayanan, 2023).094

The phenomenon mentioned above raises a criti-095

cal issue: current benchmarks may not truly reflect096

the performance of LLMs (Balloccu et al., 2024;097

Mirzadeh et al., 2024). In this context, effectively098

benchmarking LLMs for genuine mathematical099

reasoning capabilities remains a significant chal-100

lenge. To address this, we propose RV-Bench in101

this paper as a solution for benchmarking LLMs102

in mathematical reasoning using random variable103

questions (RV questions), which provide a variety104

of “unseen” questions with specific variable com-105

binations. This novel study introduces a genuine106

and effective benchmark, RV-Bench, that addresses107

concerns 1) and 2) mentioned above.108

Specifically, we construct question functions109

based on the original problems from two selected110

mathematical data sources: MATH (Hendrycks111

et al., 2021b) and LeetCode-Math1. These func-112

tions generate instantiated questions with random113

variables and their corresponding answers. The RV114

questions are then collected to evaluate LLMs. Un-115

like existing math benchmarks (Cobbe et al., 2021;116

Hendrycks et al., 2021b), RV-Bench includes ques-117

tions with a wide range of variable combinations,118

1https://leetcode.com/problem-list/math/

rather than fixed ones. Furthermore, RV-Bench 119

provides "unseen" questions, allowing LLMs to 120

demonstrate their genuine performance even if 121

the model has been exposed to certain bench- 122

marks (Mirzadeh et al., 2024). To achieve high ac- 123

curacy in RV-Bench, an LLM must completely un- 124

derstand the inherent question pattern to correctly 125

answer the RV questions, effectively reflecting its 126

genuine capabilities in mathematical reasoning. 127

Our contributions are listed following: 128

• We construct the RV-Bench leaderboard, pro- 129

viding a comprehensive evaluation of the gen- 130

uine mathematical reasoning capabilities of 131

LLMs. A macroscopic analysis of RV-Bench 132

quantifies the degree of question pattern un- 133

derstanding in existing LLMs. 134

• By comparing the LLMs’ accuracy on RV 135

questions with their accuracy on the corre- 136

sponding original problems, we observe a sig- 137

nificant accuracy drop, indicating the unrelia- 138

bility of existing benchmark designs. 139

• Combining the accuracy of LLMs in RV- 140

Bench and their robustness during accuracy 141

dropping, we propose our findings that: LLMs 142

obtain certain proficiency in mathematical rea- 143

soning from their training, which is partially 144

dependent on the data domain. The general- 145

ization of this proficiency is limited but can 146

be elicited by test-time scaling. 147

2 RV-Bench 148

Figure 2 provides workflows for RV-Bench in both 149

the MATH (Hendrycks et al., 2021b) and Leet- 150

Code data sources. In this section, we introduce 151

the process of constructing RV-Bench, from the 152

data sources to the annotation process. 153

2.1 Data Sources 154

The proposed RV-Bench comprises question func- 155

tions constructed based two selective data sources: 156

the MATH (Hendrycks et al., 2021b) test set and 157

the LeetCode-Math branch. 158

MATH is a well-known dataset that covers 159

12,500 challenging mathematics problems targeted 160

at high-school mathematics competitions. It in- 161

cludes annotated answers with full step-by-step 162

reasoning processes, frequently used to enhance 163

LLMs’ capabilities in complex mathematical rea- 164

soning. Following the processing settings of the 165
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In right triangle ABC, we have AB = 10, BC = 
24, and ∠ABC = 90°. If M is on AC such that BM 
is a median of triangle ABC, what is cos ∠ABM?

Solution:
The Pythagorean Theorem gives us AC = √(AB² + 
BC²) = √(100 + 576) = √676 = 26.
The median to the hypotenuse of a right triangle 
has length half the hypotenuse, so BM = AM, 
which means ∠ABM = ∠BAM. Therefore, we have 
cos ∠ABM = cos ∠BAM = cos ∠BAC = AB/AC = 
10/26 = 5/13. And 5/13 is rounded to 0.38

AB = 16
BC = 10

AB = 14
BC = 14

AB = 6
BC = 21 0.27

0.85
0.71

Suppose there are 6 candies and 4 children. Each 
child can receive up to 2 candies. How many ways 
can you distribute the candies among the children?

Generated QA pairsThree-step 
Question Functions Construction

Original Problem

class Question:
def initialization():

AB = random.randint(5, 30)
BC = random.randint(5, 30)

def solution():
AC = math.sqrt(AB**2 + BC**2)
BM = AC/2
answer = (AB/2)/BM
return "{:.2f}".format(answer)

def generation():
question = "In right triangle ABC..." % 

(AB, BC)
answer = solution()
return {"Question": question,
"Answer": f"{answer}"}

4

10

candies: 6
children: 4
limitation: 2

2
4
1

4
4
1

5
4
2

class Question:
def initialization():

num_children = 3
candy_limit = random.randint(1, 5)
total_candies = random.randint(

1, num_children * candy_limit)
def solution():

def ways(remaining, candy_limit, 
remaining_children):

[…]
return ways

return ways(total_candies, candy_limit, …)
def generation():

question = (f“Suppose there are…” % 
(candi_limit, num_children, total_candies)

answer = solution()
return {"Question": question, 

"Answer": str(answer)}

1

Figure 2: Two workflows of RV-Bench are shown for the MATH (above) and LeetCode (below) data sources. The
question function Question comprises three modules: Initially, the initialization module randomizes a variable
combination. Subsequently, the solution module returns a corresponding answer. Finally, the generation module
outputs the instantiated question along with the corresponding answer, forming a QA pair for RV-Bench.

MATH-split in another widely-adopted dataset,166

PRM800K (Lightman et al., 2024), we construct167

120 question functions by uniformly selecting prob-168

lems at random from the test split for the follow-169

ing process. LeetCode is a widely recognized170

platform providing coding and algorithmic prob-171

lems for users to practice coding skills (Coignion172

et al., 2024). As a branch of the coding ques-173

tions, LeetCode-Math includes algorithmic ques-174

tions whose content is designed based on mathemat-175

ical reasoning and computation. Our motivation176

for selecting LeetCode as one of our data sources is177

derived from its original focus on coding problems.178

By transforming these problems into mathematical179

formats, we ensure these problems are unlikely to180

have been encountered during the LLMs’ training.181

Through a careful review of all candidate solutions182

for each question, we construct 130 question func-183

tions by reformatting the question content with ran-184

dom variables, selected at random. Consequently,185

the question functions in RV-Bench are randomly 186

sampled from their respective data sources, main- 187

taining similar distributions of difficulty, type, and 188

bias as the original problems. 189

2.2 Question Functions 190

As illustrated in Figure 2, a complete question func- 191

tion consists of three modules: initialization, 192

solution, and generation. These modules are 193

responsible for instantiating the random variables, 194

solving any RV questions, and generating the QA 195

pairs for RV-Bench, respectively. The construction 196

details of RV-Bench is given in Appendix B. 197

3 Experimental Setups 198

Datasets. After the calibration and post-filtering 199

processes, RV-Bench consists of 230 question func- 200

tions, with 115 derived from the MATH test set 201

and 115 from LeetCode-Math. To compare the 202

LLM performance on the random variables and 203
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the original setting, we sample the corresponding204

original problems of question functions from the205

MATH test set (MATH-Sp) and LeetCode-Math206

(LeetCode-Sp). Specifically, we define the prob-207

lem that instantiated with the variable combinations208

and the answer provided by examples found below209

the official description as the original problem for210

LeetCode-Sp2. In this paper, for each question211

function, we generate an RV question group with212

five RV questions that are instantiated with unique213

variable combinations. In total, 575 RV questions214

from 115 RV question groups are generated by the215

MATH question functions (MATH-RV) and also216

the same number by the LeetCode question func-217

tions (LeetCode-RV). These two question sets are218

utilized in the all the experiments in our study.219

Evaluation Metrics. We define four metrics for220

our RV-Bench evaluation. Given a set of RV ques-221

tion groups QRV = {G(1),G(2), . . . ,G(m)}, where222

m = |QRV|, their corresponding original problems223

set is denoted as QSp. The RV question group224

generated by the i-th question function is denoted225

as G(i) =
(
q
(i)
1 , q

(i)
2 , . . . , q

(i)
n

)
∈ QRV, where n226

is the number of generated RV questions q
(i)
j in227

each G. The original problem of G(i) is denoted as228

q
(i)
Sp ∈ QSp. Let â(i)j , a(i)j , â(i)Sp , and a

(i)
Sp denote the229

predicted answers and label answers of RV ques-230

tion q
(i)
j and the original problem q

(i)
Sp , respectively.231

We further define NG(i) as the number of correctly232

answered RV questions in RV question group G(i).233

1) Exact Match Accuracy (Acc): Measures the234

correctness of the answer for each RV question235

through strict string matching, representing the ap-236

proximation of the expectation over QRV:237

Acc =

∑m
i

∑|G(i)|
j 1

(
â
(i)
j = a

(i)
j

)
m · n

. (1)238

2) Group Accuracy@n (GA@n): Indicates239

that all n generated questions are answered cor-240

rectly in G(i), representing aggregate correctness241

of the model on the RV question group:242

GA@n =

∑m
i=1 1

(
∀q(i)j ∈ G(i), â

(i)
j = a

(i)
j

)
m

.

(2)243

3) Complete Ratio (CR): Assess whether the244

original problem is answered correctly and at least245

2Annotators are required to select the appropriate example
with reasonable variables; an instance can be found here.

80% of the generated RV questions are also cor- 246

rectly answered. It represents the ratio of questions 247

where the model can completely solve both the 248

original and random variable versions: 249

CR =

∑m
i=1 1

(
â
(i)
Sp = a

(i)
Sp ∧NG(i) ≥ ⌈0.8 · n⌉

)
m

.

(3) 250

4) Original Only Ratio (OOR): Evaluates 251

whether the original problem is answered correctly, 252

while at least 80% of the answers to the RV ques- 253

tions are incorrect. It represents the proportion of 254

questions where the model can only solve the orig- 255

inal problem but fails to solve the RV questions: 256

OOR = (4) 257∑m
i=1 1

(
â
(i)
Sp = a

(i)
Sp ∧NG(i) ≤ ⌈0.2 · n⌉

)
m

. 258

Implementations. Following the evaluation set- 259

ting of LLaMA-3 (Dubey et al., 2024), we em- 260

ploy 4-shot prompting using problems from Min- 261

erva (Lewkowycz et al., 2022) as the few-shot ex- 262

amples during inference on MATH-RV and MATH- 263

Sp. Similarly, for LeetCode-RV and LeetCode-Sp, 264

we randomly select four problems from LeetCode- 265

Math out of LeetCode-RV and manually craft step- 266

by-step solutions to serve as the few-shot examples. 267

All experiments on open-source LLMs are con- 268

ducted on an NVIDIA server with 8 A100 GPUs, 269

while proprietary LLMs are accessed via APIs pro- 270

vided by their respective official platforms. 271

Model Selection. The selected models include 272

a diverse range of LLMs, covering various model 273

sizes and families to draw comprehensive conclu- 274

sions across different aspects. Given the current 275

focus on open-source LLMs, we select widely- 276

used representative models such as LLaMA (Dubey 277

et al., 2024), Qwen (Bai et al., 2023; Yang et al., 278

2024a), Phi (Abdin et al., 2024), Yi (Young 279

et al., 2024), Gemma (Team et al., 2024b), and 280

DeepSeek (Liu et al., 2024a) We also include math- 281

specific open-source models tailored for mathemat- 282

ical domain expertise: Qwen-Math (Yang et al., 283

2024b), and DeepSeek-Math (Shao et al., 2024). 284

For proprietary LLMs, we incorporate well-known 285

models like GPT-4o (Achiam et al., 2023), Claude- 286

3 (Anthropic, 2023), GLM-4-Plus (GLM et al., 287

2024), Gemini-2-Pro (Team et al., 2024a), and 288

DeepSeek-V3 (Liu et al., 2024b). Finally, given the 289

rising interest in large reasoning models (LRMs) 290
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# Models Size MATH-RV LeetCode-RV Overall Acc (↑)
Acc (↑) GA@5 (↑) CR (↑) OOR (↓) Acc (↑) GA@5 (↑) CR (↑) OOR (↓)

1 o3-mini ∼ 92.52 82.61 87.83 6.09 77.57 61.74 67.83 6.09 85.05
2 DeepSeek-R1 671B 92.52 85.22 88.70 6.09 72.17 52.17 57.39 5.22 82.35
3 o1-mini ∼ 84.00 67.83 80.87 5.22 66.09 41.74 51.30 6.09 75.05
4 Gemini-2.0-Pro ∼ 84.17 71.30 78.26 8.70 60.17 34.78 42.61 8.70 72.17
5 DeepSeek-v3 671B 85.04 72.17 76.52 5.22 58.26 34.78 37.39 12.17 71.65
6 GLM-Zero-Preview ∼ 83.13 65.22 77.39 6.09 60.00 35.65 44.35 9.57 71.57
7 QwQ-32B-Preview 32B 83.83 60.87 79.13 5.22 58.96 30.43 42.61 7.83 71.40
8 Claude-3.5-Sonnet ∼ 80.35 63.48 73.04 6.09 61.39 35.65 42.61 8.70 70.87
9 Qwen2.5-Max ∼ 81.39 63.48 74.78 6.96 58.43 33.04 42.61 12.17 69.91

10 Qwen2.5-72B-It 72B 81.04 62.61 76.52 6.09 58.43 29.57 40.00 10.43 69.74
11 Qwen2.5-32B-It 32B 80.00 61.74 73.91 4.35 55.48 26.09 39.13 12.17 67.74
12 GLM-4-Plus ∼ 77.91 53.91 71.30 6.96 55.30 26.96 38.26 14.78 66.61
13 o1-preview ∼ 75.83 42.61 59.13 6.96 54.78 32.17 40.87 9.57 65.31
14 GPT-4o ∼ 76.70 57.39 63.48 6.09 50.09 20.00 32.17 13.04 63.40
15 Phi-4 14B 72.00 53.04 61.74 8.70 54.78 26.96 34.78 9.57 63.39
16 Llama3.3-70B-It 70B 74.43 52.17 62.61 9.57 45.57 18.26 22.61 15.65 60.00
17 Qwen2.5-7B-It 7B 71.65 52.17 60.00 8.70 46.78 20.87 26.09 13.04 59.22
18 Qwen2.5-Math-It 7B 72.70 51.30 62.61 12.17 37.91 10.43 17.39 14.78 55.31
19 Qwen2.5-3B-It 3B 67.65 43.48 60.00 8.70 37.04 12.17 19.13 14.78 52.35
20 Llama3.1-70B-It 70B 62.78 39.13 50.43 9.57 40.35 14.78 23.48 15.65 51.57
21 Gemma2-27B-It 27B 59.13 34.78 46.96 6.09 35.65 13.04 17.39 13.91 47.39
22 Phi-3-medium-4k-It 14B 53.04 24.35 35.65 11.30 37.22 8.70 19.13 13.91 45.13
23 Yi-1.5-Chat 34B 50.96 21.74 31.30 11.30 33.74 8.70 13.04 13.04 42.35
24 Phi-3-mini-4k-It 3.8B 50.26 26.09 37.39 14.78 34.26 9.57 16.52 11.30 42.26
25 Qwen2.5-7B-Base 7B 53.22 25.22 36.52 13.04 31.13 7.83 12.17 21.74 42.18
26 Gemma2-9B-It 9B 51.30 30.43 36.52 13.04 29.91 5.22 12.17 13.91 40.61
27 GPT-3.5-turbo ∼ 48.35 20.87 30.43 11.30 31.48 9.57 14.78 12.17 39.92
28 Mathstral-7B 7B 45.22 19.13 29.57 14.78 28.70 6.96 12.17 11.30 36.96
29 Llama3.1-8B-It 8B 46.43 25.22 30.43 16.52 27.13 6.96 10.43 15.65 36.78
30 DeepSeek-Math-It 7B 48.17 18.26 33.04 11.30 24.70 6.09 7.83 12.17 36.44
31 Mixtral-8x7B-It-v0.1 46.7B 33.22 11.30 13.91 17.39 27.65 6.09 9.57 20.00 30.44
32 Llama3.2-3B-It 3B 36.70 15.65 22.61 14.78 23.83 5.22 9.57 20.00 30.27
33 Llama3.1-8B-Base 8B 24.52 6.09 12.17 17.39 21.57 5.22 7.83 16.52 23.05

Table 1: The RV-Bench leaderboard across various LLMs comprises the RV-questions generated from MATH
(MATH-RV) and LeetCode (LeetCode-RV) question functions. The leaderboard is ranked by Overall Acc, which
denotes the exact match accuracy for all generated RV-questions in both MATH-RV and LeetCode-RV. The rank of
each model is listed in the column #, with the best and second-best results for each column highlighted in bold and
underlined, respectively. An ∼ in column Size indicates that the model is proprietary that the model size in not
publicly available. (↑) indicates a higher value is better for this metric, while (↓) indicates a lower value is better.

in both academia and industry, we also include291

QwQ (Team, 2024; Yang et al., 2024a), OpenAI292

o1-preview/mini (Qin et al., 2024) and o3-mini.293

4 RV-Bench Learderboard for LLMs294

Table 1 summarizes the performance of various295

LLMs on our proposed RV-Bench. Given the def-296

initions of the metrics in Section 3, it is intuitive297

that, in most cases, the order of metric values for a298

specific LLM follows Acc ≥ CR ≥ GA@5. Specif-299

ically, higher Acc and GA@5 indicate the model’s300

greater performance on RV questions and correct-301

ness on RV question groups. The higher CR shows302

that the models completely understand the pattern303

when they correctly answer the original problem.304

In contrast, a higher OOR reveals that even though305

the models correctly answer the original problem,306

they fail to sufficiently understand the pattern of the307

question content, leading to difficulties in solving308

the same question with random variables.309

LLMs are expected to demonstrate superior per-310

formance across metrics such as Acc, CR, and311

GA@5, and are preferably expected to have lower 312

OOR. Models that meet this expectation are rec- 313

ognized as having completely understood the ques- 314

tions and possessing genuine mathematical reason- 315

ing capabilities. Furthermore, the generally lower 316

GA@5 suggests that while models can solve indi- 317

vidual instances correctly, they struggle to main- 318

tain consistency across various variable combina- 319

tions. This indicates that current LLMs still face 320

challenges in thoroughly solving certain types of 321

mathematical problems, regardless of the poten- 322

tial perturbations introduced by the variable com- 323

binations. Additionally, LLMs may suffer from 324

non-integer intermediate computation when replac- 325

ing well-designed original variables with random 326

variable combinations in mathematic problems. 327

In detail, o3-mini and DeepSeek-R1 achieve 328

disruptive leading performance on RV-Bench, ex- 329

celling not only in overall accuracy at 92.52% but 330

also in GA@5, CA, and OOR metrics, highlight- 331

ing their outstanding mathematical reasoning ca- 332

pabilities. Additionally, proprietary LRMs like the 333
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Models ordered by Acc on MATH-RV (descending)
0.0

0.2

0.4

0.6

0.8

1.0

Llama3.2-3B-It

Mixtral-8x7B-It

Llama3.1-8B-Base

Complete Understanding
Collpsed Understanding
Partial Understanding
MATH-RV Understanding Score

Models ordered by Acc on LeetCode-RV (descending)
0.0

0.2

0.4

0.6

0.8

1.0
o3-mini
DeepSeek-R1

o1-mini

Claude-3.5-Sonnet

Gemini-2.0-Pro

GLM-Zero-Preview
QwQ

Qwen2.5-Max

Qwen2.5-72B-It

DeepSeek-v3

Qwen2.5-32B-It
GLM-4-Plus o1-preview

Phi-4
GPT4o

Qwen2.5-7B-It

Complete Understanding
Collpsed Understanding
Partial Understanding
Understanding Score

Figure 3: The blue and orange lines show average under-
standing degrees for correctly answered questions. The
red line with circular markers represents the average
pattern understanding score for each RV question group.
Inconsistencies in LLMs’ question pattern understand-
ing are highlighted in the color shaded area.

o1-mini and GLM-Zero-Preview demonstrate re-334

liable mathematical reasoning abilities. Despite335

having a model size of approximately 30B, the336

open-source LRM QwQ-32B also achieves promis-337

ing results. Its performance, enhanced by com-338

putation scaling during test-time, even surpasses339

that of renowned advanced LLMs such as GPT-4o340

and Claude-3.5. Large-scale chat LLMs such as341

Gemini-2.0-Pro, DeepSeek-V3, and Claude-3.5-342

Sonnet obtain solid results, verifying the benefits343

of scaling in model size. Furthermore, the Phi-4344

model achieves impressive results with just 14B345

parameters, validating the effectiveness of training346

with synthetic data (Abdin et al., 2024). Compar-347

atively, open-source LLMs, especially those with348

sizes around 7B, exhibit mediocre accuracy.349

4.1 Macroscopic Analysis of RV-Bench350

We further advanced the analysis from a macro-351

scopic perspective, considering the model’s accu-352

racy on both RV questions from MATH-RV and353

LeetCode-RV, as well as the original problems354

from MATH-Sp and LeetCode-Sp. Table 1 re-355

ports the CR and OOR metrics, which measure356

the model’s understanding of the question pattern357

by verifying the consistency of accuracy. Appar-358

ently, the higher overall accuracy a model achieves,359

the higher CR it will have. Leading models like360

o3-mini and DeepSeek-R1 achieve nearly 90% of361

CR, demonstrating that they completely understand362

most of the question patterns behind the original363

problems and can expertly handle the associated364

RV questions with various variable combinations.365

For well-performing models, they maintain a con-366

sistent OOR and a slight difference between CR 367

and Acc, indicating that a small portion of the ques- 368

tion patterns are not sufficiently understood, which 369

is evidenced by correct answers to only the origi- 370

nal problems. In contrast, models with compara- 371

tively worse performance possess a higher OOR 372

and greater variance between CR and Acc. 373

As CR and OOR reveal both complete and in- 374

sufficient understanding behaviors based on the 375

inconsistency in accuracy, when LLMs correctly 376

answer the original problems, we further quantify 377

the degree of the LLMs’ understanding of question 378

patterns to verify their genuine mathematical rea- 379

soning capability on RV-Bench. Specifically, we 380

assign a pattern understanding score S to each RV 381

question group G(i). Derived from Section 3, the 382

score is formulated as: 383

SG(i) =


1, NG(i) ≥ ⌈0.8 · n⌉
0, NG(i) ≤ ⌈0.2 · n⌉
0.5, otherwise

. (5) 384

Different values of SG(i) reflect different degrees of 385

LLM’s understanding of the question pattern corre- 386

sponding to q
(i)
Sp . Moreover, the degrees are catego- 387

rized as complete understanding (SG(i) = 1), par- 388

tial understanding (SG(i) = 0.5), and collapsed 389

understanding (SG(i) = 0) of q(i)Sp . 390

Figure 3 presents the average frequency of var- 391

ious understandings for each correctly answered 392

original problem and the average pattern under- 393

standing score obtained by the corresponding RV 394

question group across different LLMs. Further- 395

more, we highlight the models in the colored 396

shaded area with an average score below 0.6, we 397

consider that these models demonstrate inconsis- 398

tency in their question pattern understanding. In 399

other words, these models do not perform genuine 400

mathematical reasoning capability on RV-Bench. 401

What can be concluded from the previous ob- 402

servation is that: the performance of nearly all 403

LLMs on MATH-RV is significantly better than 404

their performance on LeetCode-RV. One possible 405

reason for this discrepancy is the higher difficulty 406

and complexity of LeetCode-RV and LeetCode-Sp. 407

Beyond this, we introduce another potential expla- 408

nation based on our findings: the mathematical 409

reasoning accuracy of LLMs partially depend on 410

the data-domain involved in their training, which 411

does not generalize across mathematical reason- 412

ing tasks. As mentioned in Section 2.1, LeetCode- 413

related data is primarily utilized for enhancing 414
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Figure 4: Accuracy drop from answering original problems to the corresponding RV questions is illustrated. Green
data points represent the accuracy drop from MATH-Sp to MATH-RV, and pink data points represent the accuracy
drop from LeetCode-Sp to LeetCode-RV. Different types of LLMs are presented with different shapes of markers,
and some of the representative model names are provided. A dotted line is fitted from the data points of MATH-RV,
the corresponding 95% confidence interval are given. We further calculate the correlation coefficient of green data
points, which is rM = −0.72, and the correlation coefficient of pink data points is rL = −0.14.

coding skills and kept “unseen” for mathematical415

reasoning tasks. For questions in MATH-RV, al-416

though these questions remain new to the LLMs, it417

is highly likely that they have encountered MATH418

training sets within the same data domain to en-419

hance their mathematical reasoning capabilities.420

Through this, LLMs can develop specific profi-421

ciency in MATH-domain data. However, such pro-422

ficiency is scarce on LeetCode. Deducing from423

the performance variance, this proficiency does not424

generalize well, even when directly applied to sim-425

ilar mathematical reasoning tasks.426

4.2 Accuracy Dropping in RV427

Figure 4 illustrates the accuracy drop of various428

LLMs when transitioning from answering the orig-429

inal problems in MATH-Sp and LeetCode-Sp to430

solving the same questions with various variable431

combinations in MATH-RV and LeetCode-RV. Each432

data point in the scatter plot represents the accu-433

racy drop of a specific LLM on a particular ques-434

tion set. Significantly, all models exhibited varying435

degrees of accuracy drop introduced by random436

variable perturbation, ranging from 4% to 16%.437

The widespread occurrence of this dropping phe-438

nomenon supports our previous concern, namely439

that the existing benchmark design is overly sim-440

plistic for current LLMs. We consider that match-441

ing a single answer only for a fixed problem is un-442

reliable, as it may neglect influences such as data 443

contamination and inherent randomness, and in- 444

troduce potential bias into the final results. In 445

our proposed random variable setting, replacing 446

variables in mathematical problems can lead to sig- 447

nificant accuracy deviations. 448

When observing the data points representing dif- 449

ferent question sets, we fit a line using MATH- 450

related data points that indicating. Further calcu- 451

lating the correlation coefficient between accuracy 452

on MATH-RV and accuracy drop from MATH-Sp 453

to MATH-RV, we obtained rM = −0.72, indicat- 454

ing a high negative correlation: the poorer the 455

model’s performance, the more significant the accu- 456

racy drop it suffers. In other words, the higher the 457

accuracy of the LLM on MATH-RV, the better its 458

robustness and consistency across various variable 459

combinations. In contrast, the correlation coeffi- 460

cient computed with LeetCode-related data points 461

is rL = −0.14, indicating that there is no convinc- 462

ing relationship between the model’s accuracy on 463

LeetCode-RV and its robustness and consistency. 464

Similarly, we can conclude that: the consistency 465

and robustness of LLMs on random variable set- 466

tings in LeetCode-RV are significantly poorer than 467

those in MATH-RV. Apart from the possible reason 468

of varying difficulties, we extend the potential ex- 469

planation we introduced at the end of Section 4.1: 470
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Figure 5: Results using Pass@k metric of Llama3.2-3B-
It and GPT-3.5-Turbo, where each line stands for one
model’s test-time scaling on one data domain.

the mathematical reasoning robustness and con-471

sistency of LLMs are also partially data-domain-472

dependent. The proficiency in a specific data473

domain does not generalize well in terms of ro-474

bustness and consistency to similar mathematical475

reasoning tasks. In conclusion, we merge these476

explanations as the potential underlying reason for477

this inconsistent phenomenon: LLMs obtain cer-478

tain proficiency in mathematical reasoning from479

their training, but this proficiency is partially de-480

pendent on the data domain. It works for simi-481

lar questions within the same domain but does482

not generalize well. As a result, it is questionable483

whether this data-domain-dependent proficiency484

can truly constitute LLMs’ genuine mathematical485

reasoning capability.486

4.3 Test-time Scaling Elicits Proficiency487

The previous section introduces two potential rea-488

sons for the model’s inconsistent accuracy and ro-489

bustness between MATH-RV and LeetCode-RV: the490

possible variance in difficulty level and the poten-491

tial data-domain-dependent proficiency of LLMs.492

We extend the experimental setting by using test-493

time scaling to allow LLMs to answer the ques-494

tions with multiple attempts (Brown et al., 2024)495

for further exploration. Specifically, we evaluate496

the LLMs using pass@k metrics following the set-497

ting of Codex (Chen et al., 2021). For every math-498

ematical question, we let the LLMs generate P499

independent answers. For 1 ≤ k ≤ P , the pass@k500

metric is formulated as:501

pass@k = EQuestions

[
1−

(
P−c
k

)(
P
k

) ]
, (6)502

where c is the number of correctly answered ques- 503

tions. By setting P = 100, we re-evaluate two 504

selective LLMs from Table 1: Llama3.2-3B-It and 505

GPT-3.5-Turbo that using pass@k. 506

Figure 5 displays the pass@k with multiple at- 507

tempts. Taking LeetCode-RV as an example, with 508

a single attempt, the llama’s accuracy is about 509

26.67%. However, with up to 10 attempts, the 510

model’s pass@10 increases to 56.52%. Notably, 511

the upper bounds of pass@k by increasing k in 512

LeetCode-RV are consistent with those in MATH- 513

RV, reaching around 70% at pass@30. The remain- 514

ing 30% of questions are considered high difficulty- 515

level questions that LLMs cannot correctly solve 516

due to their inherent mathematical reasoning lim- 517

itations. Apart from the potential reason for diffi- 518

culties, the extent of pass@k scaling in the Leet- 519

Code domain data is observable larger than the 520

scaling in the MATH domain. We consider this 521

phenomenon an “elicitation of proficiency gener- 522

alization in mathematics reasoning tasks.” As 523

a result, these findings indirectly support the po- 524

tential reason for the inconsistency between the 525

MATH-RV and LeetCode-RV being more likely due 526

to LLMs’ imbalance in proficiency between en- 527

countered and “unseen” data domains. The gen- 528

eralization of proficiency is not well-established 529

across similar mathematical reasoning tasks but 530

can be elicited by test-time scaling. 531

5 Conclusion 532

Motivated by significant limitations in existing 533

mathematical reasoning benchmarks, such as their 534

simplistic design and potential data contamination, 535

we introduce RV-Bench, a novel benchmark that 536

utilizes RV questions to more accurately evaluate 537

the capabilities of LLMs. Our findings reveal that 538

there are significant drops in accuracy when LLMs 539

encounter variable combinations that are "unseen" 540

during training, underscoring the unreliability of 541

existing benchmarks in truly capturing LLM per- 542

formance. Additionally, while LLMs do gain math- 543

ematical proficiency during their training phase, 544

this proficiency is typically tied to specific data do- 545

mains and exhibits limited generalizability across 546

broader mathematical contexts. However, we fur- 547

ther demonstrate that employing test-time scaling 548

can enhance this generalization. RV-Bench pro- 549

vides a more reliable and effective framework for 550

evaluating LLMs, offering insightful findings to 551

advance mathematical reasoning applications. 552
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6 Limitations553

A potential limitation of this study is that our find-554

ings and conclusions regarding LLMs in mathemat-555

ical reasoning rely on experimental analysis and556

empirical studies; theoretical analysis remains a557

subject for future work. Another potential limi-558

tation is that, as RV-Bench is a fully open-source559

benchmark, over time, more RV questions may ex-560

perience data contamination during LLM training,561

similar to their original counterparts from existing562

datasets. In such cases, RV-Bench may not main-563

tain the reliability described in this paper.564
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We confirm that we have fully complied with the566

ACL Ethics Policy in this study. All research in567
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extensively used in studies related to LLMs in math-569

ematical reasoning, and all annotation parts of our570
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A Related Work 947

A.1 Benchmarking LLMs 948

The rapid development of LLMs has signifi- 949

cantly advanced the evaluation of their capabili- 950

ties (Chang et al., 2024). Well-designed bench- 951

marks such as MMLU (Hendrycks et al., 2021a), 952

GLUE (Wang et al., 2018), MMLU-Pro (Wang 953

et al., 2024b), SuperGLUE (Wang et al., 2019), 954

CommonSenseQA (Talmor et al., 2019), and 955

ARC (Clark et al., 2018) have pioneered the eval- 956

uation of general tasks like question answering 957

(QA), natural language understanding (NLU), and 958

commonsense reasoning. As LLMs have demon- 959

strated success across various domains, there has 960

been a growing demand to evaluate their perfor- 961

mance on task-specific benchmarks (Chang et al., 962

2024). As a result, an increasing number of domain- 963

specific datasets have been introduced. For exam- 964

ple, BoolQ (Clark et al., 2019) and SQuAD (Ra- 965

jpurkar et al., 2016) evaluate reading comprehen- 966

sion (Hong and Liu, 2024) and language-based 967

complex reasoning, while GSM8K (Cobbe et al., 968

2021), MATH (Hendrycks et al., 2021b), and 969

MathQA (Amini et al., 2019) focus on mathe- 970

matical problem-solving. With the growing num- 971

ber of LLMs, leaderboards such as the OpenLLM 972

Leaderboard (Beeching et al., 2023; Fourrier et al., 973

2024) and OpenCompass (Contributors, 2023) now 974

provide comprehensive evaluations across various 975

mainstream benchmarks. For more complex rea- 976

soning tasks, benchmarks like InfiBench (Li et al., 977

2024), MathBench (Liu et al., 2024c), and Olympi- 978

cArena (Huang et al., 2024b) have been succes- 979

sively released. 980

Our proposed RV-Bench is also a domain- 981

specific benchmark for evaluating LLMs’ math- 982

ematical reasoning capabilities. The well-designed 983
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random variables framework effectively reflects984

LLMs’ genuine performance in understanding985

mathematical problems.986

A.2 LLMs in Mathematical Reasoning987

Mathematical reasoning is a task that effectively988

showcases the capabilities of LLMs and has gar-989

nered significant attention within the commu-990

nity, achieving remarkable advancements (Ahn991

et al., 2024). Techniques such as continual pre-992

training (Lin et al., 2024), fine-tuning (Yuan993

et al., 2023), and reinforcement learning (Wang994

et al., 2024a) are extensively employed to en-995

hance LLMs’ mathematical reasoning. This has996

led to the development of math-specific LLMs997

like Qwen-Math (Yang et al., 2024b), DeepSeek-998

Math (Shao et al., 2024), and MetaMath (Yu999

et al., 2024). Consequently, these methodologies1000

have attained near-perfect performance on com-1001

plex mathematical reasoning datasets (Fourrier1002

et al., 2024). OpenMath (Toshniwal et al., 2024)1003

highlighted the importance of question diversity1004

during fine-tuning, achieving a 96% accuracy on1005

the grade-school arithmetic reasoning benchmark1006

GSM8K (Cobbe et al., 2021). Likewise, o1 (Zhong1007

et al., 2024) improved performance on the high-1008

school-level mathematical competition benchmark1009

MATH (Hendrycks et al., 2021b), attaining nearly1010

95% accuracy.1011

Most recently, GSM-Symbolic (Mirzadeh et al.,1012

2024) uncovered a limitation regarding LLMs’ gen-1013

uine capabilities in arithmetic reasoning by evalu-1014

ating them with diverse questions generated from1015

symbolic templates of GSM8K. The study revealed1016

that LLMs tend to replicate reasoning steps ob-1017

served during training, rather than genuinely rea-1018

soning through specific problems, which poses a1019

critical challenge to the current evaluation method-1020

ologies for LLMs. To further address this issue, our1021

proposed RV-Bench employs “unseen” RV ques-1022

tions to effectively assess LLMs’ mathematical rea-1023

soning. We provide a re-ranking and comparison1024

with the original MATH benchmark, demonstrat-1025

ing that LLMs still face significant challenges in1026

understanding and solving complex mathematical1027

reasoning questions, thereby revealing their gen-1028

uine capabilities.1029

B Construction of RV-Bench1030

In this section, we detail the construction of the1031

question function by thoroughly describing the an-1032

Original Problem:
Suppose that we roll 2 fair 6 -sided dice. What
is the probability that the 2 numbers rolled sum
to 4 ?
Initialization:

num_dice ∈ {2, 3, 4}
target_sum ∈ [ num_dice , 6× num_dice ]

Table 2: Step 1. Annotators first review the problem
and identify the variables, assigning each variable a
semantic-based name. Then, a random range is set for
each variable. The ranges are required to maintain the
difficulty level of the original problem.

notation process for each module. This section also 1033

serves as an guideline of RV-Bench annotation. 1034

Preliminaries. To ensure the quality of our 1035

benchmark, we recruited 10 candidate annotators, 1036

all of whom are graduate students with strong back- 1037

grounds in mathematics and computer science (ma- 1038

joring in one domain and achieving an "A" grade in 1039

the other through examination). Candidates were 1040

required to solve a selection of mathematical and 1041

coding problems (100 in total) sampled from the 1042

MATH test set and LeetCode for qualification pur- 1043

poses. Ultimately, six candidates were chosen to 1044

serve as the professional annotators for RV-Bench. 1045

For a specific problem, as exemplified in Fig- 1046

ure 2, the annotator initially reviews the problem 1047

meticulously to ensure a thorough understanding 1048

of the original content and the text-based solution 1049

provided. If the problem is found to be unclear or 1050

insufficiently comprehended by the annotator, it is 1051

subjected to a post-calibration process for further 1052

discussion, details of which are provided in Sec- 1053

tion B.2. Problems that are well comprehended 1054

proceed to the annotation process as described be- 1055

low. 1056

Step 1: Identify and Initialize the Variables. 1057

For a problem meeting the criteria, the annotator 1058

begins by identifying the variables. Typically, key 1059

numbers, names, and equations are potential candi- 1060

dates for random variables. In practice, a problem 1061

may contain multiple variables, but to maintain a 1062

consistent difficulty level, only those variables that 1063

align with the original problem’s intent are selected 1064

for randomization. As illustrated in Tab. 2, the 1065

original problem involves calculating the probabil- 1066

ity for a specific sum with two dice. The number 1067

of dice and the target sum, which are integral to 1068

the problem’s intent, are identified as variables, 1069
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Original Solution:
There are 3 ways to roll a sum of 4: 3 on

the first die and ... 3 on the second die.
There are 36 total possibilities , so the proba-

bility is \frac{3}{36} = \frac{1}{12} .
Solution:
total_outcomes = 6**num_dice

————————————
enumerate the possible outcomes

————————————
prob = outcomes / total_outcomes

Table 3: Step 2. Annotators convert the original text-
based step-by-step solution into code implementation.
Due to the close coupling of some solutions with specific
problems, annotators may need to revise the solutions
to ensure they are generalizable.

highlighted in green and yellow, respectively. The1070

description “6-sided dice” which serves as a charac-1071

teristic of the objective content, is not identified as1072

a variable and is shown in gray. Once the variables1073

are identified, the annotator locates their numerical1074

and symbolic elements in the original problem and1075

replaces them with slots.1076

Next, the annotator assigns a range to the iden-1077

tified variables, accompanied by semantically re-1078

lated variable names to define the initialization1079

module. For variables that involve interdependent1080

calculations, their ranges must be mutually con-1081

strained to ensure the question remains solvable1082

(details are discussed in Sec. B.1). For example, in1083

Tab. 2, the range of the target sum depends on the1084

number of dice. To initialize the question function,1085

each variable is assigned a random value selected1086

from its range.1087

Step 2: Construct the General Solution. For1088

RV questions, the numerical outcomes will vary1089

with different combinations of variable values.1090

Therefore, a general solution must be constructed1091

to solve the problem irrespective of these values.1092

In the case of problems from the MATH test set,1093

the provided solutions include detailed text-based1094

step-by-step problem-solving process. The annota-1095

tor is required to convert these text-based solutions1096

into code implementations. In certain instances,1097

the annotator may need to revise the code imple-1098

mentation because some text-based solutions are1099

coupled tightly to the specific problem and lack1100

generalization. The process of constructing a gen-1101

eral solution for LeetCode-Math problems differs1102

Step 1 & Step 2:
num_dice = 3
target_sum = 9
prob = \frac{25}{216}
Generation:

Q: Suppose that we roll 3 fair 6 -sided dice.
What is the probability that the 3 numbers
rolled sum to 9 ?
A: \frac{25}{216}

Table 4: Step 3. Based on the initialized variables from
Step 1 and the corresponding answer from Step 2, the
QA pair is generated as an instantiated question.

slightly. For each problem in LeetCode, some code- 1103

based solutions are available from the community3, 1104

which have been validated through successful ex- 1105

ecution. The annotator must identify and compre- 1106

hend a Python solution and transform it into the ap- 1107

propriate format, therefore defining the solution 1108

module based on the community-provided solu- 1109

tions. 1110

Once the variable combination has been ini- 1111

tialized in Step 1, the solution module takes it 1112

as input and returns a correct corresponding an- 1113

swer. This module undergoes further validation for 1114

correctness and effectiveness through calibration 1115

among annotators, as detailed in Sec. B.2. 1116

Step 3: Generate the QA Pairs. Following the 1117

completion of the previous steps, where the initial- 1118

ized variables and the general solution for various 1119

variable combinations were defined, annotators pro- 1120

ceed to Step 3. In this step, annotators utilize the 1121

problem content with slots identified in Step 1 to 1122

define the generation module. This involves fill- 1123

ing the slots with randomized variable values and 1124

formatting the output into question-answer (QA) 1125

pairs. Importantly, the original problem may in- 1126

clude content that is extraneous to the problem 1127

(e.g., restrictions related to computational environ- 1128

ments). Annotators are required to remove these 1129

irrelevant sections to ensure the question content 1130

focuses solely on the pertinent details. All gener- 1131

ated questions from different question functions 1132

are compiled into a comprehensive question set for 1133

RV-Bench. 1134

3An solution instance can be found here.
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B.1 Conditions1135

To maintain the difficulty level of the RV questions1136

consistent with the original problems, we incorpo-1137

rate difficulty control conditions when defining the1138

random ranges for variables. We establish three1139

conditions/criteria for setting the random range1140

in Step 1: 1) The fluctuation range of variables1141

should remain uniform across different questions;1142

2) Variables that significantly affect the problem’s1143

complexity may be fixed as constants; 3) The ran-1144

dom range for simpler questions can be broader,1145

whereas for more challenging questions, it should1146

be narrower to prevent considerable variations in1147

difficulty.1148

By controlling the difficulty level, we ensure that1149

LLMs are fairly compared on RV questions relative1150

to the original problem, minimizing performance1151

differences that could arise from variations in diffi-1152

culty.1153

B.2 Calibration and Post-Filtering1154

Following the annotation process, we undertake1155

a calibration and post-filtering step (Li et al.,1156

2024) to enhance the consistency and objectiv-1157

ity of the question functions in RV-Bench. Dur-1158

ing Step 1, any problematic question that is not1159

well-comprehended is promptly subjected to cal-1160

ibration and discussion. Confusing problems are1161

collaboratively reevaluated and re-entered into the1162

annotation process. If a problem cannot guaran-1163

tee solvability or generalization for random vari-1164

ables, it is removed from the dataset. After all1165

question functions have been annotated, a cross-1166

calibration process is conducted. Annotators re-1167

view each other’s annotations, verifying the cor-1168

rectness of the question functions and testing the1169

runtime of the solution module across a broad1170

spectrum of variable combinations. This runtime1171

testing helps identify potential issues, such as ex-1172

ceeding maximum recursion depth, to ensure that1173

each unique variable combination remains correctly1174

solvable. Additionally, question functions derived1175

from LeetCode-Math that do not closely relate to1176

mathematical reasoning or computation are filtered1177

out.1178
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