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ABSTRACT

Class Incremental Learning (CIL) presents a major challenge due to the phe-
nomenon of catastrophic forgetting. Recent studies on Linear Mode Connectivity
(LMC) reveal that Naive-SGD oracle, trained with all historical data, connects to
previous task minima through low-loss linear paths—a property generally absent
in current CIL methods. In this paper, we explore whether LMC holds for the
CIL oracle. Our empirical results confirm the presence of LMC in the CIL oracle,
showing that models can retain performance on earlier tasks by following the
discovered low-loss linear paths. Motivated by this finding, we propose Increment
Vector Transformation (IVT), which leverages the diagonal of the Fisher Informa-
tion Matrix to approximate Hessian-based transformation, uncovering low-loss
linear paths for incremental updates. Our method is orthogonal to existing CIL
approaches, serving as a plug-in with minor extra computational costs. Extensive
experiments on CIFAR-100, ImageNet-Subset, and ImageNet-Full demonstrate
significant performance improvements when integrating IVT with representative
CIL methods.

1 INTRODUCTION

Class Incremental Learning (CIL) poses a significant challenge in machine learning, requiring models
to learn sequentially without access to previous training data. A notorious phenomenon in this
paradigm is catastrophic forgetting (McCloskey & Cohen, 1989), where models overwrite previously
acquired knowledge when adapting to new tasks. To mitigate this, various approaches have been
proposed. Regularization methods (Kirkpatrick et al., 2016; Zenke et al., 2017) constrain updates
to crucial parameters for past tasks or transfer knowledge from previous tasks through intermediate
features and outputs (Kirkpatrick et al., 2016; Hou et al., 2019; Douillard et al., 2020). Memory
replay methods (Rebuffi et al., 2016; Liu et al., 2020; Luo et al., 2023) retain a subset of exemplars
from previous tasks for rehearsal, selecting representative samples to optimize memory efficiency.
Dynamic architecture methods (Liu et al., 2021; Zhou et al., 2022) introduce new network components
to accommodate new tasks. However, despite these advancements, incremental models still fall short
compared to oracles trained incrementally with access to all historical data.

Recently, key insights into this performance gap have emerged from the studies on mode connectivity
in neural networks (Draxler et al., 2018; Garipov et al., 2018; Frankle et al., 2020). Mode connectivity
refers to the existence of low-loss paths that connect different minima in the loss landscape. In CIL,
Mirzadeh et al. (2021) demonstrated that the Naive-SGD oracle exhibits more favorable linear mode
connectivity (LMC), meaning that a simple linear manifold of low error connects the Naive-SGD
oracle and the minima of past tasks. Following this linear path results in minimal degradation of
performance on past tasks. In contrast, this property generally does not hold for incremental solutions.
Beyond the Naive-SGD, Wen et al. (2023) explored mode connectivity for recent advanced CIL
approaches, and empirically found that LMC is still absent in these methods.

In this paper, we further investigate the connection between LMC and CIL by addressing a crucial
question: “Does LMC hold for the oracle of a CIL approach?”. The significance of this question
lies in its implications: If the CIL oracle1 exhibits LMC, then there must be a transformation to
uncover this low-loss linear path for the CIL models. Surprisingly, we empirically demonstrate

1Hereafter, ‘CIL oracle’ refers to the oracle of a CIL approach.
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that LMC indeed exists for CIL models, and traversing these paths allows the model to maintain
high performance on earlier tasks. Moreover, we found that the model can effectively acquire new
knowledge without disrupting previously learned information along these paths, striking a balanced
stability-plasticity trade-off (Mermillod et al., 2013).
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Figure 1: Illustration of IVT. The
CIL oracle θ∗t can be reached by
transforming increment vector Vt

of the incremental model θt.

The observation above motivates us to propose a method for find-
ing low-loss linear paths. We begin by theoretically analyzing
the inaccuracy of incremental methods. Specifically, we define
an increment vector Vt, representing the linear path from the old
model to the incremental model. As illustrated in Fig. 1, our anal-
ysis shows that the CIL oracle θ∗t can be approximated by adding
an increment vector Vt, transformed by a matrix St, to the old
model θ∗t−1. The transformation St is derived from the Hessian
and captures the curvature of the loss landscapes for both old and
new tasks, ensuring updates remain within the low-loss region for
previous tasks. Building by this insight, we introduce Increment
Vector Transformation (IVT). Since computing the full Hessian
is impractical for large neural networks, IVT efficiently approx-
imates it by using the diagonal of the Fisher Information Matrix.
This approximation retains essential curvature information while
greatly reducing computational overhead, making IVT both ef-
ficient and seamlessly compatible with existing CIL methods.

Extensive experiments on benchmark datasets, including CIFAR-
100, ImageNet-Subset, and ImageNet-Full, demonstrate significant improvements when integrating
IVT with existing representative CIL methods. Our contributions are summarized as follows:

• Linear mode connectivity in CIL is empirically analyzed, with a focus on accuracy consis-
tency and the stability-plasticity trade-off along the linear paths.

• A novel method, IVT, is proposed to find low-loss linear paths for CIL, mitigating catas-
trophic forgetting by transforming the increment vector to a low-loss region for past tasks.

• The effectiveness of IVT is empirically validated on CIFAR-100, ImageNet-Subset, and
ImageNet-Full, demonstrating significant performance improvements when integrated with
representative CIL methods.

2 REVISITING LINEAR MODE CONNECTIVITY IN CIL

The forgetting analysis based on Taylor expansion is commonly used in CIL (Yin et al., 2020;
Mirzadeh et al., 2020; Wu et al., 2024). For simplicity, suppose that there are two tasks, T1 and T2.
Let θ1 be the minima obtained on T1, we perform a second-order Taylor expansion of L1(θ) at θ1:

L1(θ) ≈ L1 (θ1) + (θ − θ1)
⊤∇L1 (θ1) +

1

2
(θ − θ1)

⊤
H1 (θ − θ1) (1)

≈ L1 (θ1) +
1

2
(θ − θ1)

⊤
H1 (θ − θ1) . (2)

The last equality holds because, at the minima θ1 of T1, the model is assumed to converge and thus
∇L1 (θ1) ≈ 0. Besides, the Hessian matrix H1 = ∇2L1 (θ1) needs to be positive semi-definite at
the converged minima. Therefore, the forgetting F1 can be bounded as follows:

F1 = L1(θ)− L1 (θ1) ≈
1

2
(θ − θ1)

⊤
H1 (θ − θ1) ≤

1

2
λ1∥∆θ∥2. (3)

where ∆θ = θ − θ1 and λ1 is the maximum eigenvalue of H1. When ∆θ aligns with the eigenvector
corresponding to λ1, F1 reaches its upper bound, and the model update follows the direction of
maximum curvature of H1. Conversely, reducing F1 can be achieved by minimizing ∆θ or by
steering the model update direction away from the higher curvature directions of H1.

Recently, some studies have linked catastrophic forgetting in CIL to mode connectivity (Mirzadeh
et al., 2020; Verwimp et al., 2021; Wen et al., 2023). Mirzadeh et al. (2021) empirically demonstrate
that Naive-SGD oracle obtained through joint training with all previous data lies within the same

2
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low-loss region as the solutions for previous tasks and can be connected to them via low-loss linear
paths. Moving along this path does not significantly impact the performance for previous tasks,
suggesting that the Naive-SGD oracle has identified low-curvature directions in the loss landscape
for earlier tasks. In contrast, this property does not hold for the incremental solution. Moving along
the linear path from the previous solution to the incremental solution often results in a substantial
drop in accuracy for previous tasks (Mirzadeh et al., 2020; Wen et al., 2023).

Beyond the Naive-SGD, we explore the linear mode connectivity (LMC) for the CIL approaches θt
and its oracle θ∗t , with a particular focus on accuracy consistency and the stability-plasticity trade-off
along the linear path. To achieve this, we evaluate the accuracy of a series of interpolation models,
starting from the old model θ∗i (for i ≤ t − 1) and progressing along the updated linear direction.
Formally, the interpolation models are defined as follows:

θ̄t,i (λ) = θ∗i + λUt. (4)

Here, λ is the interpolation factor, and Ut = (θt − θ∗i ) /∥θt − θ∗i ∥2 represents the normalized update
vector. Similarly, we define the interpolation to the CIL oracle as θ̄∗t,i (λ) = θ∗i + λU∗

t , where
U∗
t = (θ∗t − θ∗i ) /∥θ∗t − θ∗i ∥2. Note that adding Ut to θ∗i with λ̂ = ∥θt − θ∗i ∥2 results in θt, and

adding U∗
t with λ̂∗ = ∥θ∗t − θ∗i ∥2 leads to θ∗t . For the mismatched parameters between the two

interpolated models, e.g., the classifier parameters for the new classes, we initialize them for θ∗i as
described in (Wen et al., 2023) before interpolation.

2.1 ACCURACY CONSISTENCY ALONG THE LINEAR PATH

We evaluate accuracy consistency along the linear path on CIFAR-100 using PODNet (Douillard
et al., 2020) and LUCIR (Hou et al., 2019). The experiments consist of an initial task with 50 classes,
followed by 5 incremental tasks, each introducing 10 new classes. The incremental model retains 20
exemplars per class, while the CIL oracle has access to the full training data of previous tasks at each
incremental step. Fig. 2 illustrates the test accuracy of T1 along the linear path from θ∗1 to the models
of subsequent tasks, as well as the test accuracy of both T1 and T2 as we move from θ∗2 to the models
of later tasks.
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Figure 2: Evaluating accuracy consistency along the linear path on CIFAR-100 for increments of
5 tasks (i.e., 6 tasks in total). The star and square denote the CIL oracle θ∗t = θ̄∗(λ̂∗) and the
incremental model θt = θ̄(λ̂), respectively.

In Fig. 2, we can observe that the CIL oracle achieves better accuracy consistency along the linear
path. Concretely, the experiments uncover two key observations: (1) The CIL oracles tend to stay
closer to the minima of previous tasks, indicating joint training with old training data prevents the
models from moving too far from their previous states, resulting in smaller ∆θ. (2) The updates of
the CIL oracle aligns with the direction of lower curvature. As λ increases from 0, the accuracy of
θ̄ drops sharply, indicating the presence of a high-loss ridge along the path in the loss landscape.
Although the accuracy of θ̄ begins to recover as λ continues to increase, it ultimately falls into a
sub-optimal basin, as θ̄(λ̂) shows significantly lower accuracy compared to θ̄(0). In contrast, θ̄∗
maintains consistently high accuracy along the linear path, indicating that the CIL oracles remain
within the same low-loss basin as the previous minima.

2.2 STABILITY-PLASTICITY TRADE-OFF ALONG THE LINEAR PATH

To further investigate the stability-plasticity trade-off of the interpolation models along the linear
path, we plot their accuracy on both new and old classes. As depicted in Fig. 3, we interpolate θ∗1

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8
Accuracy on 2

0.4

0.6

0.8

Ac
cu

ra
cy

 o
n 

1

2, 1

2, 1

2, 1 LF
2, 1 LF

0.0

0.5

1.0

1.5

2.0
×102

0.2 0.4 0.6
Accuracy on 2 to 4

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 o
n 

1

4, 1

4, 1

4, 1 LF
4, 1 LF

0

1

2

×102

0.0 0.2 0.4 0.6
Accuracy on 2 to 6

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 o
n 

1

6, 1

6, 1

6, 1 LF
6, 1 LF

0

1

2

3

×102

Figure 3: Evaluating stability-plasticity trade-off along the linear path achieved by PODNet on
CIFAR-100 for increments of 5 tasks. LT represents the linear fit to the scattered points. The
red-edged star and square denote the CIL oracle θ̄∗(λ̂∗) and the incremental model θ̄(λ̂), respectively.

with the models of subsequent tasks. The figure reveals that as λ increases, θ̄∗ and θ̄ exhibit different
behaviors. For θ̄, as λ increases from 0 to the midpoint, the accuracy on new classes improves
while the accuracy on T1 drops significantly, highlighting a strong stability-plasticity trade-off. As
λ continues to increase, θ̄ gradually mitigates this trade-off. In contrast, θ̄∗ demonstrates a more
balanced trade-off, maintaining high performance on T1 while improving accuracy on new classes.
This indicates that θ̄∗ effectively integrates new information without significantly compromising
previous knowledge. Such behavior suggests that θ̄∗ resides in a more favorable region of the loss
landscape, marked by lower curvature and smoother transitions between tasks, allowing it to achieve
better overall performance across both old and new classes as λ increases.

3 APPROACHING ORACLE BY INCREMENT VECTOR TRANSFORMATION

The analysis in Sec. 2 demonstrates the existence of LMC in the CIL oracle. The linear paths
discovered by the oracle connect its minima with those of previous tasks while maintaining low loss,
providing a promising strategy for addressing catastrophic forgetting in CIL. In this section, we aim
to approach the oracle by finding these low-loss linear paths.

Assuming we start from the same old model2 θ∗t−1, we can express the oracle θ∗t and the incremental
model θt into the sum of θ∗t−1 and their respective increment vectors V ∗

t and Vt:

θ∗t = θ∗t−1 + V ∗
t , θt = θ∗t−1 + Vt, (5)

where V ∗
t = θ∗t − θ∗t−1 and Vt = θt − θ∗t−1. Since V ∗

t is derived from the joint training with all
previous data, obtaining it under the CIL scenario is challenging. However, there should exist a
transformation St such that:

V ∗
t = StVt, θ∗t = θ∗t−1 + StVt. (6)

In other words, we aim to solve for St to transform Vt into V ∗
t , ensuring that the incremental model

resides in the low-loss region for previous tasks and remains close to θ∗t−1, as analyzed in Sec. 2.

In what follows, we first theoretically study the inaccuracy of the incremental model and derive the
form of St. We then introduce a practical method that exploits this spirit with almost no additional
training cost.

3.1 ANALYZING THE INACCURACY OF INCREMENTAL MODEL

We first consider the optimization objectives for the incremental model θt and the oracle θ∗t on task t.
The objective for θt is defined by minimizing the loss function of task t, along with a regularization
term that approximates the implicit proxy loss of various CIL methods Wu et al. (2024),

θt = argmin
θ
Lt(θ) +

1

2
∥θ − θ∗t−1∥2H̄t−1

, (7)

where H̄t−1 =
∑t−1

i=1 Hi is the cumulative Hessian for previous tasks. ∥∆θ∥2
H̄t−1

= ∆θ⊤H̄t−1∆θ

measures how different θ is from θ∗t−1. The optimization objective for θ∗t is similar, but it considers

2We can also start from θt−1, which does not affect the derivation.
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minimizing the joint loss across all tasks seen up to t,

θ∗t = argmin
θ

t∑
i=1

Li(θ) +
1

2
∥θ − θ∗t−1∥2H̄t−1

. (8)

Based on these optimization objectives, we can quantify the error between θt and θ∗t and derive the
form of transformation matrix St as presented in Proposition 1. For a detailed derivation, please refer
to the proof in the Appendix 7.2.
Proposition 1. Consider the incremental model θt and oracle θ∗t , both initialized from the old model
θ∗t−1, with optimization objectives defined in Eqs. 7 and 8. If θi and θ∗i are searched within the
neighborhood set

⋃t−1
i=1 Ni, whereNi = {θ : d(θ, θ̂i) < δi}, then θ∗t can be approximately expressed

as the sum of θ∗t−1 and an increment vector (θt − θt−1) transformed by the term (H̄t−1 + H̄t)
−1H̄t,

which is shown below:

θ∗t ≈ θt−1 + (H̄t−1 + H̄t)
−1H̄t(θt − θt−1) (9)

From the results in Eq. 9, we have the following observations: (1) When θt resides within a relatively
flat loss landscape for the old tasks, characterized by a small H̄t−1, the approximation indicates that
θ∗t closely aligns with θt. This suggests that the incorporation of new tasks does not significantly
disrupt the knowledge acquired from previous tasks. (2) When θt lies in a region of low curvature
for the new task, that is, when Ht is small and H̄t is approximately equal to H̄t−1, then θ∗t can be
approximated as the arithmetic mean of θt and θt−1.

3.2 INCREMENT VECTOR TRANSFORMATION FOR CIL

In neural networks with numerous parameters, explicitly computing the full Hessian matrix is
often impractical. The Fisher Information Matrix (FIM) (Fisher, 1922; Amari, 1996) is an efficient
alternative for Hessian estimation, as it can be directly derived from first-order derivatives. Building
on Proposition 1, we propose a novel method for CIL named Increment Vector Transformation (IVT),
which utilizes the diagonal of the FIM.

As is common in existing approaches (Kirkpatrick et al., 2016; Matena & Raffel, 2022; Daheim et al.,
2023), we can reduce the computation cost by using the diagonal of the FIM, bringing it to a level
comparable to training on N samples. The diagonal of the FIM is computed as follows:

Ft = E(x,y)∈Tt
(∇Lt(x, y))

2
. (10)

In our implementation, we compute the diagonal of FIM in an online manner by accumulating the
backpropagated gradients from each batch during training, leading to negligible computational cost.
By replacing the Hessian in Eq. 9 with Eq. 10, we formally define IVT as follows:

θ̂t := θt−1 +
F̄t

F̄t−1 + F̄t
(θt − θt−1), (11)

where F̄t =
∑t

i=1 Fi represents the cumulative diagonal of the FIM up to task t. The operation in Eq.
11 consists of simple matrix operations on parameters, performed only at intervals of several epochs.
Consequently, IVT is simple, incurs minor extra computational cost, and can be implemented with
just a few lines of PyTorch code. It can used as a plug-in to enhance the efficacy of many advanced
CIL methods. Algo. 1 presents the pseudo code for IVT.

4 EXPERIMENT

We conduct extensive experiments on CIFAR-100 (Krizhevsky et al., 2009), ImageNet-Subset,
and ImageNet-Full (Deng et al., 2009). The protocol follows Douillard et al. (2020), where the
initial task includes half of the classes, and the remaining classes are evenly distributed across the
subsequent incremental tasks, e.g., CIFAR-100 starts with 50 classes, with the remaining classes
divided equally over 5, 10, or 25 incremental learning steps. The class order is randomized using
seed 1993 (Rebuffi et al., 2016). Our evaluation is consistent with most existing work, using the
average incremental accuracy, denoted as AA = 1

N

∑T
t=1 at, and the last accuracy, LA = aT , where

5
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at represents the accuracy over all classes seen after task t. To assess forgetting, we use the forgetting
measure (Chaudhry et al., 2018), defined as FM = 1

T−1

∑T−1
i=1 maxt∈{i,T−1}(at,i−aT,i), with at,i

representing the accuracy of task i after training task t.

Implementation Details. We conduct
extensive experiments on CIFAR-100
(Krizhevsky et al., 2009), ImageNet-
Subset, and ImageNet-Full (Deng et al.,
2009). We use ResNet-32 (He et al., 2016)
with stride 8 for CIFAR-100 and ResNet-
18 (He et al., 2016) with stride 32 for both
ImageNet-Subset and ImageNet-Full. The
optimizer used is SGD, starting with an
initial learning rate of 0.1, which decays
according to a cosine annealing schedule.
On CIFAR-100, we train for 160 epochs,
while on ImageNet-Subset and ImageNet-
Full, training is conducted for 90 epochs.
The batch size is set to 128 across all
datasets. The interval for IVT is set to
10 epochs. Unless otherwise specified, the

Algorithm 1 Increment Vector Transformation (IVT)
1: Train θ1 on in T1
2: Compute F1 on T1 by Eq. 10
3: for incremental task Tt ∈ {T2, T3, · · · } do
4: Initialize θt ← θt−1

5: for Epoch ∈ {1, 2, · · · } do
6: Initialize Ft = 0
7: for mini-batch Bi ∈ permute({B1,B2, · · · }) do
8: Compute gi = E(x,y)∈Bi

(∇Lt(x, y))
9: Update θt ← CIL Method(θt, gi)

10: end for
11: Compute Ft = Ei(g

2
i )

12: if Epoch mod Interval = 0 then
13: Update θt ← θt−1 +

F̄t

F̄t−1+F̄t
(θt − θt−1)

14: end if
15: end for
16: end for

exemplar size is fixed at 20 exemplars per class in all experiments.

Comparison Methods. Our method (IVT) is orthogonal to existing CIL approaches and can
augment their efficacy as a plug-in unit. We select PODNet (Douillard et al., 2020) and AFC (Kang
et al., 2022) as representative methods for adapting IVT. For comparison, we use iCaRL (Rebuffi
et al., 2016), BiC (Wu et al., 2019), LUCIR (Hou et al., 2019), Mnemonics (Liu et al., 2020), GeoDL
(Simon et al., 2021), and EOPC (Wen et al., 2023) as our baseline methods.
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Figure 4: Evaluating accuracy consistency along the linear path on CIFAR-100 for increments of 5
tasks. The star denotes the CIL oracle θ̄∗(λ̂∗) and square denotes the IVT model θ̄(λ̂).
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Figure 5: Evaluating stability-plasticity trade-off achieved by PODNet along the linear path on
CIFAR-100 for increments of 5 tasks. LT represents the linear fit to the scattered points. The
red-edged star denotes the CIL oracle θ̄∗(λ̂∗) and square denotes the IVT model θ̄(λ̂).

4.1 ANALYTICAL EXPERIMENTS

Linear Mode Connectivity along the Linear Path. Similar to Sec. 2, we analyze the LMC of
the IVT model. As shown in Fig. 4, the IVT model demonstrates LMC behavior comparable to the
CIL oracle along the linear path. As λ increases, the IVT model experiences only a slight accuracy
decline, while its distance to the old model remains closely aligned with that of the oracle. This
suggests that both the IVT model and the oracle occupy low-curvature regions in the loss landscape
for old tasks, staying close to the old model. Moreover, Fig. 5 illustrates that the IVT model achieves
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Figure 6: Visualization of the training loss landscape in parameter vector space, produced by PODNet
on CIFAR-100 with increments of 5 tasks.

a stability-plasticity trade-off comparable to the oracle. In comparison to Fig. 3, IVT significantly
mitigates this trade-off, allowing it to acquire new tasks with minimal interference to previously
learned knowledge.

Training Loss Landscape. To better understand the relationships between the old model θ∗t−1, the
incremental model θt, the IVT model θ̂t, and the oracle θ∗t , we visualize the training loss landscape
in the parameter vector space, following (Mirzadeh et al., 2021). As shown in Fig. 6, the IVT model
θ̂t stays closer to θ∗t compared to the incremental model θt. The visualization illustrates that θ∗t−1, θ̂t,
and θ∗t all reside within the same low-loss region, allowing the model to maintain strong performance
on previously learned tasks. In contrast, the incremental model θt drifts into regions with higher
loss, indicating difficulties in retaining knowledge from prior tasks. This observation supports the
effectiveness of IVT in guiding model updates to remain within the low-loss region of earlier tasks,
thus mitigating catastrophic forgetting and promoting stability during incremental learning.

5 Tasks 10 Tasks 25 Tasks50
55
60
65
70

AA
 (%

)
w/o VIT
Int=1

Int=5
Int=10

Int=25

Figure 7: Ablating IVT interval
with PODNet on CIFAR-100.

The Effect of IVT Interval. The stationarity condition is pro-
vided in Proposition 1. In general, a short interval leads to
inaccurate transformations, while a long interval reduces the
chance of finding a low-loss linear path. Therefore, selecting
an appropriate interval is crucial. We conduct sensitivity experi-
ments on the interval, the only hyperparameter of IVT. As shown
in Fig. 7, IVT is robust to interval variations and consistently
improves baseline performance.

Table 1: Ablating exemplar size |E| on CIFAR-100 with incre-
ments of 5 tasks.

Method |E| = 5 |E| = 10 |E| = 20
AA ↑ LA ↑ FM ↓ AA ↑ LA ↑ FM ↓ AA ↑ LA ↑ FM ↓

PODNet 54.63 45.50 26.06 61.28 49.87 21.82 64.00 56.47 17.72
w/ EOPC 56.52 46.82 14.20 63.96 52.54 12.37 65.36 55.55 8.45
w/ IVT 62.04 51.33 17.11 63.02 53.59 13.06 65.36 56.61 11.68

Table 2: Training time (s)
for each incremental task.

Method CIFAR-100
5 10 25

PODNet 621 487 326
w/ IVT 655 495 396

The Effect of Exemplar Size. We investigate the effect of IVT on exemplar size and compare it
to EOPC. EOPC leverages exemplars to identify low-loss paths, typically resulting in a nonlinear
optimized trajectory. In contrast, our method does not rely on exemplars but instead uses the diagonal
of the FIM. As shown in Tab. 1, IVT consistently improves baseline performance, particularly in the
low-exemplar regime. When sufficient exemplars are available, IVT achieves results comparable to
EOPC. This highlights the effectiveness of IVT and its robustness in scenarios with limited exemplars.

Time Complexity. To investigate whether IVT introduces extra computational overhead when
adapted to CIL methods, we conducted a time complexity analysis. As shown in Tab. 2, IVT
results in only a slight increase in training time compared to the baseline methods. The experiments
demonstrate that our method ensures high computational efficiency.
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Table 3: Comparative results (%) on CIFAR-100 with different numbers of incremental tasks. The
results are averaged over 3 random runs, with both the mean and standard deviation reported. Results
marked with † and ‡ are referenced from (Simon et al., 2021) and (Wen et al., 2023), respectively. ⋆

indicates reproduced EOPC+PODNet results.

Method 5 Tasks 10 Tasks 25 Tasks
AA ↑ LA ↑ FM ↓ AA ↑ LA ↑ FM ↓ AA ↑ LA ↑ FM ↓

iCaRL‡ 57.83 – 25.16 52.63 – 26.57 49.02 – 29.83
BiC† 59.36 49.56 – 54.20 45.28 – 50.00 – –
LUCIR‡ 63.62 – 19.58 60.95 – 19.79 57.79 – 20.31
Mnemonics† 63.34 52.14 – 62.28 52.53 – 60.96 – –
GeoDL† 65.14 55.62 – 65.03 55.26 – 63.12 – –
EOPC⋆ 65.36 55.55 8.45 63.44 53.88 8.68 61.44 51.27 11.29
PODNet 64.00(±0.54) 54.47(±0.88) 17.72(±0.27) 62.47(±0.51) 52.89(±0.80) 21.57(±0.38) 59.82(±0.84) 50.71(±0.96) 25.90(±0.89)
w/ IVT 65.36(±0.24) 56.61(±0.47) 11.68(±0.47) 63.45(±0.72) 55.41(±0.72) 12.87(±0.47) 61.74(±0.98) 53.43(±1.15) 15.84(±0.76)
AFC 65.51(±0.33) 56.25(±0.54) 11.16(±0.56) 64.00(±0.77) 54.37(±0.83) 14.31(±0.46) 62.53(±0.68) 53.86(±0.86) 17.90(±0.38)
w/ IVT 65.94(±0.32) 56.62(±0.59) 8.44(±0.39) 64.53(±0.64) 56.00(±1.25) 10.00(±0.53) 63.36(±0.74) 54.77(±0.81) 14.05(±0.30)

Table 4: Comparative results (%) on ImageNet-Subset and ImageNet-Full with different numbers of
incremental tasks. Results marked with † and ‡ are referenced from (Simon et al., 2021) and (Wen
et al., 2023), respectively.

Method
ImageNet-Subset ImageNet-Full

5 Tasks 10 Tasks 25 Tasks 10 Tasks

AA ↑ LA ↑ FM ↓ AA ↑ LA ↑ FM ↓ AA ↑ LA ↑ FM ↓ AA ↑ LA ↑ FM ↓

iCaRL‡ 64.75 – 24.22 58.80 – 29.63 52.46 – 32.58 47.42 – 15.94
BiC† 70.07 60.34 – 64.96 56.18 – 57.73 – – 58.72 51.23 –
LUCIR‡ 71.93 – 20.56 69.43 – 25.97 63.51 – 28.55 61.63 – 26.99
Mnemonics† 72.58 64.58 – 71.37 62.52 – 69.74 – – 63.01 55.45 –
GeoDL† 73.87 67.37 – 73.55 65.57 – 71.72 – – 64.46 56.75 –

PODNet 72.41 63.06 14.04 69.69 59.28 18.38 59.10 48.04 29.56 64.10 55.57 14.09
w/ IVT 73.57 65.10 8.81 71.29 62.76 10.05 66.74 55.64 16.17 65.07 56.95 13.00
AFC 76.15 70.20 5.87 74.49 66.88 11.00 71.19 62.36 13.92 64.36 56.86 13.80
w/ IVT 76.58 70.68 3.67 74.95 67.68 7.92 72.15 63.46 13.87 64.87 57.36 13.26

4.2 COMPARATIVE RESULTS

Results on CIFAR-100. To evaluate the effectiveness of IVT, it is applied to two prominent CIL
methods, PODNet and AFC. Tab. 3 summarizes the comparative results, demonstrating IVT’s
significant improvements on CIFAR-100. For PODNet, IVT improves average incremental accuracy
by 1.36%, 0.98%, and 1.92% over 5, 10, and 25 steps, respectively. Additionally, the last accuracy is
improved by 2.14%, 2.52%, and 2.72%, while the forgetting measure is reduced by 6.04%, 8.70%,
and 10.06% across the same steps. IVT also yields substantial performance gains for AFC, notably
decreasing forgetting.

Results on ImageNet. Tab. 4 further presents the comparative and adaptation results of IVT
on both ImageNet-Subset and ImageNet-Full. On ImageNet-Subset, IVT enhances PODNet’s
average incremental accuracy by 1.16%, 1.60%, and 7.64% across 5, 10, and 25 steps, respectively.
Furthermore, the last accuracy is improved by 2.04%, 3.48%, and 7.60%, while the forgetting measure
is reduced by 5.23%, 8.33%, and 13.39%. For ImageNet-Full, IVT delivers improvements of 0.96%
in average incremental accuracy and 1.38% in last accuracy, reducing the forgetting measure by
1.09%. AFC similarly benefits from IVT, showing enhanced performance and reduced forgetting.

5 RELATED WORK

Class Incremental Learning. Existing CIL methods can be broadly categorized into three main
approaches. Regularization methods mitigate catastrophic forgetting by imposing constraints on
model parameters or outputs. Approaches like EWC (Kirkpatrick et al., 2016) calculate the importance
of parameters for previous tasks and penalize changes to crucial parameters, while knowledge
distillation techniques such as LUCIR (Hou et al., 2019), PODNet (Douillard et al., 2020), and GeoDL
(Simon et al., 2021) use output logits or intermediate features to preserve learned representations.
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To address class imbalance, methods like BiC (Wu et al., 2019) and FOSTER (Wang et al., 2022a)
apply post-hoc corrections and classifier adjustments to reduce bias toward newly introduced classes.
Memory replay methods store a subset of exemplars and replay them during new task learning. For
instance, iCaRL (Rebuffi et al., 2016) selects samples that best approximate class means, while
Mnemonics (Liu et al., 2020) and CIM (Luo et al., 2023) optimize exemplar selection or compression
to maximize memory efficiency. When storing real data is infeasible due to privacy or memory
constraints, prompt-based methods (Wang et al., 2022c;b), prototype-based approaches (Zhu et al.,
2021; 2022), and synthetic data techniques (Choi et al., 2021; Qiu et al., 2024) simulate replay
without violating these constraints. Dynamic architecture methods adapt the network structure to
accommodate new tasks by expanding or modifying network components. Approaches like AANet
(Liu et al., 2021) and MEMO (Zhou et al., 2022) dynamically allocate resources, effectively isolating
new knowledge from previously acquired information. This adaptability balances stability and
plasticity, allowing the model to learn new information flexibly while preserving existing knowledge.

Mode Connectivity. Mode connectivity is a phenomenon where different minima in the loss
landscape of deep neural networks are connected by low-loss paths in the parameter space (Draxler
et al., 2018; Garipov et al., 2018). It offers a novel perspective on optimization, suggesting that optima
obtained through gradient-based methods are points on a connected, low-loss manifold. Various
methods, such as polygonal chains, Bézier curves, elastic bands, and simplicial complexes, have been
used to model these low-loss paths (Draxler et al., 2018; Garipov et al., 2018; Benton et al., 2021).
The initialization of minima plays a crucial role: high-loss ridge often exists along the linear path
between minima trained from different initializations, but linear connectivity can be achieved when
minima share the same initialization and are stable to SGD noise (Frankle et al., 2020; Neyshabur
et al., 2020). Mode connectivity advances our understanding of neural network optimization and
facilitates applications in loss landscape analysis, weight pruning, and model ensembling (Draxler
et al., 2018; Frankle et al., 2020; Fort & Jastrzebski, 2019).

6 CONCLUSION

In this paper, we investigate whether LMC holds in the CIL oracle and confirm that models can retain
performance on earlier tasks by following these low-loss linear paths. Inspired by this finding, we
introduce Increment Vector Transformation (IVT), a method that uses the diagonal of the Fisher
Information Matrix to approximate a Hessian-based transformation, allowing the discovery of low-
loss linear paths for incremental updates. IVT is compatible with existing CIL methods and requires
minimal additional computational overhead. Extensive experiments on CIFAR-100, ImageNet-
Subset, and ImageNet-Full demonstrate that integrating IVT with state-of-the-art CIL methods leads
to substantial performance improvements.

Limitations. Since IVT is a transformation method based on Hessian information, the accuracy
of Hessian estimation is critical. Our use of the diagonal Fisher Information Matrix approximation
may not achieve high accuracy. Furthermore, as tasks progress, the effectiveness of the accumulated
diagonal Fisher Information Matrix stored by IVT may decrease. Updating the Hessian information
for past tasks is likely to improve performance. We leave these considerations for future work.
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7 APPENDIX

7.1 THE DETAILS OF BENCHMARK DATASETS

To achieve a comprehensive study, we conduct extensive experiments in the main paper, including
datasets CIFAR-100 (Krizhevsky et al., 2009), ImageNet-Subset (Deng et al., 2009), and ImageNet-
Full (Deng et al., 2009).

• CIFAR-100 is a widely-used image classification dataset, consisting of 60,000 color images
with dimensions of 32×32 pixels, across 100 different classes. Each class in the dataset is
designed to represent a distinct object category (e.g., animals, vehicles, everyday objects).
The dataset is split into a training set of 50,000 images, with 500 images per class, and a
validation (or test) set of 10,000 images, with 100 images per class.

• ImageNet-subset (ImageNet-100) is a smaller, 100-class subset derived from the larger
ImageNet dataset. It is frequently used for tasks like transfer learning and incremental
learning, offering a balance between dataset size and complexity. Each class in ImageNet-
Subset contains approximately 1,300 training images and 50 validation images, making it a
more computationally manageable version of the full ImageNet dataset while still providing
substantial class diversity and variability in visual content.

• ImageNet-Full (ImageNet-1000) refers to the subset of ImageNet containing 1,000 classes.
It is the most commonly used version of ImageNet for tasks such as image classification,
pretraining, and benchmarking deep learning models. This dataset includes around 1.2
million training images and 50,000 validation images, with approximately 50 images per
class in the validation set. Each class in ImageNet-full represents a distinct object category,
ranging from animals to everyday objects.

7.2 PROOF PROPOSITION 1

Proposition 2. Consider the incremental model θt and oracle θ∗t , both initialized from the old model
θ∗t−1, with optimization objectives defined in Eqs. 7 and 8. If θi and θ∗i are searched within the
neighborhood set

⋃t−1
i=1 Ni, whereNi = {θ : d(θ, θ̂i) < δi}, then θ∗t can be approximately expressed

as the sum of θ∗t−1 and an increment vector (θt − θt−1) transformed by the term (H̄t−1 + H̄t)
−1H̄t,

which is shown below:

θ∗t ≈ θt−1 + (H̄t−1 + H̄t)
−1H̄t(θt − θt−1)

Proof. We begin by stating the stationarity conditions for both the incremental model θt and the
oracle θ∗t , which are derived from setting the derivatives of the objectives in Eqs. 7 and 8 to zero:

H̄t−1(θt − θt−1) = −∇Lt(θt), (12)

H̄t−1(θ
∗
t − θt−1) = −

t∑
i=1

∇Li(θ
∗
t ), (13)

Next, we subtract Eq. 13 from Eq. 12, yielding:

H̄t−1(θ
∗
t − θt) = −

t−1∑
i=1

∇Li(θ
∗
t )− [∇Lt(θ

∗
t )−∇Lt(θt)] . (14)

To proceed, we apply a first-order Taylor approximation to approximate the difference between the
gradients:

∇Lt(θ
∗
t )−∇Lt(θt) = Ht(θ

∗
t − θt). (15)

Substituting Eq. 15 into Eq. 14, we obtain:

H̄t−1(θ
∗
t − θt) = −

t−1∑
i=1

∇Li(θ
∗
t )−Ht(θ

∗
t − θt). (16)
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We then move the term Ht(θ
∗
t − θt) to the left-hand side and multiply the entire expression by H̄−1

t :

θ∗t − θt = −H̄−1
t

t−1∑
i=1

∇Li(θ
∗
t ) (17)

Now, by approximating θ∗i for each i as in Eq. 15, we express:

θ∗t − θt = −H̄−1
t

t−1∑
i=1

[∇Li(θi) +Hi(θ
∗
t − θi)] (18)

Since the gradient∇Li is close to zero for the converged old model, it can be neglected in practice,
leading to:

θ∗t − θt ≈ −H̄−1
t

t−1∑
i=1

Hi(θ
∗
t − θi) (19)

Assuming the parameters are searched within the neighborhood set
⋃t−1

i=1 Ni, where Ni = {θ :

d(θ, θ̂i) < δi}, we follow the approximation from (Huszár, 2018):

j−1∑
i=1

Hi(θ − θi) ≈ (

j−1∑
i=1

Hi)(θ − θj−1) (20)

Substituting Eq. 20 into Eq. 19 and rearranging with respect to θt, we recover Eq. 9:

θ∗t ≈ θt−1 + (H̄t−1 + H̄t)
−1H̄t(θt − θt−1) (21)

7.3 DETAILED COMPARATIVE RESULTS

For a fair comparison with subsequent work, we provide the detailed comparative results in Tab. 3
and Tab. 4.

Table 5: Classification accuracy (%) on CIFAR-100 for 5 increments.

Method Step
1 2 3 4 5 6

PODNet 79.56 69.726 65.25 60.22 54.74 54.47
PODNet w/ IVT 79.56 70.80 66.15 61.82 57.22 56.62

AFC 79.71 71.57 67.09 62.00 56.44 56.24
AFC w/ IVT 79.71 71.74 67.13 62.54 57.90 56.62

Table 6: Classification accuracy (%) on CIFAR-100 for 10 increments.

Method Step
1 2 3 4 5 6 7 8 9 10 11

PODNet 79.56 73.89 68.45 64.94 63.30 60.97 58.72 56.96 53.46 53.97 52.89
PODNet w/ IVT 78.76 72.99 68.83 65.43 64.12 62.15 59.86 58.92 55.48 55.99 55.41

AFC 79.71 74.49 70.05 67.01 65.48 63.52 60.86 58.57 54.59 55.30 54.37
AFC w/ IVT 79.71 74.49 69.84 66.94 65.83 63.48 61.12 59.16 56.38 56.83 55.99
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Table 7: Classification accuracy (%) on CIFAR-100 for 25 increments.

Method Step
1 2 3 4 5 6 7 8 9 10 11 12 13 14

PODNet 79.56 74.62 72.46 70.65 66.82 65.49 63.76 62.17 61.25 60.51 60.57 59.74 59.42 57.72
PODNet w/ IVT 79.56 74.73 73.37 71.47 67.72 66.61 65.45 64.11 63.16 62.45 62.20 61.08 60.97 59.82

AFC 79.71 75.81 74.59 72.79 69.03 67.86 67.33 66.04 64.60 64.30 63.53 62.61 62.34 60.95
AFC w/ IVT 79.71 76.06 74.64 72.90 69.45 68.63 67.93 66.66 65.30 65.08 64.12 63.13 63.21 62.16

Method Step
15 16 17 18 19 20 21 22 23 24 25 26

PODNet 57.07 55.95 55.77 54.98 54.37 54.12 51.16 52.38 51.75 51.34 50.92 50.71
PODNet w/ IVT 59.47 58.77 58.29 57.16 57.30 56.69 53.83 55.02 54.68 53.95 53.81 53.43

AFC 59.39 58.95 58.28 57.02 56.84 56.62 54.33 55.15 54.92 54.64 54.27 53.86
AFC w/ IVT 60.37 60.21 59.40 58.02 58.26 57.83 55.68 56.51 56.14 55.74 55.36 54.77

Table 8: Classification accuracy (%) on ImageNet-Subset for 5 increments.

Method Step
1 2 3 4 5 6

PODNet 84.60 78.00 72.49 70.47 65.82 63.06
PODNet w/ IVT 84.60 78.67 73.66 71.88 67.53 65.10

AFC 83.60 80.43 77.14 74.70 70.84 70.20
AFC w/ IVT 83.60 80.53 77.69 75.22 71.76 70.68

Table 9: Classification accuracy (%) on ImageNet-Subset for 10 increments.

Method Step
1 2 3 4 5 6 7 8 9 10 11

PODNet 84.64 80.11 74.63 72.28 70.31 69.39 67.95 65.20 62.18 60.63 59.28
PODNet w/ IVT 84.60 80.58 76.73 74.06 71.09 70.43 68.97 66.42 64.56 63.98 62.76

AFC 83.84 82.00 78.47 77.11 75.17 74.03 73.00 70.64 69.22 68.99 66.88
AFC w/ IVT 83.60 83.02 78.77 76.83 75.46 75.15 73.52 71.53 69.87 69.07 67.68

Table 10: Classification accuracy (%) on ImageNet-Subset for 25 increments.

Method Step
1 2 3 4 5 6 7 8 9 10 11 12 13 14

PODNet 84.60 72.69 69.89 68.68 65.17 64.43 63.03 61.78 60.97 59.06 57.80 58.17 58.41 58.21
PODNet w/ IVT 84.60 80.04 78.41 77.25 74.17 73.80 72.03 71.41 69.36 67.18 64.91 66.94 65.95 64.97

AFC 83.60 80.65 80.78 80.04 78.48 75.70 75.61 73.94 72.88 72.47 72.94 71.50 72.14 70.97
AFC w/ IVT 83.60 83.00 81.81 81.32 79.90 76.77 76.55 74.94 74.36 73.00 73.69 71.56 72.22 71.92

Method Step
15 16 17 18 19 20 21 22 23 24 25 26

PODNet 57.85 56.63 56.10 54.07 54.63 53.93 51.80 51.39 50.68 49.83 48.88 48.04
PODNet w/ IVT 65.05 63.90 63.95 62.24 61.12 61.50 60.24 59.26 57.91 57.04 56.49 55.64

AFC 69.82 69.37 67.76 67.74 66.47 66.41 64.67 65.26 63.66 63.02 62.65 62.36
AFC w/ IVT 70.23 70.00 69.17 68.24 67.47 67.36 66.18 66.43 64.83 64.44 63.41 63.46

Table 11: Classification accuracy (%) on ImageNet-Full for 10 increments.

Method Step
1 2 3 4 5 6 7 8 9 10 11

PODNet 76.83 72.85 69.68 67.20 64.72 62.87 61.10 59.52 57.96 56.80 55.57
PODNet w/ IVT 76.91 73.16 70.43 68.04 65.60 63.79 62.23 60.97 59.48 58.25 56.95

AFC 76.82 72.02 69.21 67.06 64.91 63.16 61.32 60.18 58.74 57.71 56.86
AFC w/ IVT 76.81 72.28 69.73 67.53 65.19 63.46 62.10 60.97 59.55 58.55 57.36
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