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Abstract

Representing molecular structures effectively in chemistry remains a challenging1

task. Language models and graph-based models are extensively utilized within this2

domain, consistently achieving state-of-the-art results across an array of tasks. How-3

ever, the prevailing practice of representing chemical compounds in the SMILES4

format – used by most data sets and many language models – presents notable5

limitations as a training data format. In this study, we present a novel approach6

that decomposes molecules into substructures and computes descriptor-based rep-7

resentations for these fragments, providing more detailed and chemically relevant8

input for model training. We use this substructure and descriptor data as input9

for language model and also propose a bimodal architecture that integrates this10

language model with graph-based models. As LM we use RoBERTa, Graph Isomor-11

phism Networks (GIN), Graph Convolutional Networks (GCN) and Graphormer as12

graph ones. Our framework shows notable improvements over traditional meth-13

ods in various tasks such as Quantitative Structure-Activity Relationship (QSAR)14

prediction.15

1 Introduction16

The integration of machine learning (ML) has emerged as a transformative force in the natural17

sciences, particularly in the discipline of chemistry [6, 21, 53]. This integration encompasses various18

tasks, ranging from the regression of molecular properties, exemplified by quantitative structure-19

activity relationship (QSAR) models [58, 33], to complex challenges, such as predicting nuclear20

magnetic resonance (NMR) spectra from the structure of chemical compounds [60]. As an ever-21

evolving discipline, the latest advancements in machine learning are gradually being adapted for22

applications in chemistry, albeit with some delay. Molecular representations are fundamental to23

the application of machine learning in chemistry, and three primary types are typically employed:24

graph-based [36], string-based [20, 54, 26], and vector representations [38, 13].25

Graph-based representations conceptualize chemical compounds as molecular graphs, effectively26

capturing their structural properties [10, 28]. This format naturally aligns with graph neural networks,27

which have been successfully applied to numerous chemical problems, demonstrating their efficacy28

in molecular analysis. String representations, particularly Simplified Molecular Input Line Entry29

System (SMILES) [54], are widely regarded as a standard method for the linear representation of30

molecular structures. SMILES is typically used for storing compounds in databases and, despite31

its limitations, effectively represents the structure of a molecule [6, 1, 52, 48, 7] and serves as a32

basic data representation for language models [6, 1, 41]. However, it presents notable shortcomings33

[16]. Initially designed for efficient storage and representation of molecular data, SMILES lacks34

comprehensive information regarding the physical and chemical properties of compounds. Two main35
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approaches exist to overcome these difficulties. The first combines graph models with SMILES-based36

natural language processing (NLP) transformers [63], integrating the strengths of both methodologies.37

The second is based on changing the representations of molecules used in training. In cheminformatics,38

molecules are commonly represented as vectors in a high-dimensional space, where each vector39

encodes essential molecular features to enable effective computational analysis. Molecular descriptors40

[46, 2, 9] – numerical values summarizing properties such as size, shape, and electronic characteristics41

– are central to this representation, providing critical information for predicting molecular behavior42

and interactions. There are existing attempts to use quantum-chemical descriptors as a basis for43

transformer-based models [62]44

Thus, there is a legitimate idea of combining these two approaches: adapting descriptors as a data45

format for language models and applying bimodal architectures.46

Contributions. We propose an approach that involves decomposing molecules into chemically47

meaningful substructures and calculating descriptors for each segment. These sequences of sub-48

structure descriptors serve as input to the RoBERTa model [29], enabling it to learn and capture the49

underlying physicochemical relationships within the molecule. This helps in improving performance50

in tasks such as predicting molecular properties [58, 33, 45], classifying biological activity, generating51

novel molecules, and studying molecular interactions [21].52

The graph-based model provides a detailed representation of molecular structures, making it especially53

effective for analyzing large compounds with multiple substructures. By explicitly capturing the54

connectivity and spatial relationships among substructures, it overcomes the limitations of language55

models that lack detailed molecular organization. To improve structural representation and property56

prediction, we use atom masking and graph augmentation with Graphormer, an advanced architecture57

designed to capture complex relational patterns in molecular graphs.58

We propose two bimodal architectures combining RoBERTa with a graph convolutional network59

(GCN) [24] and a Graph Isomorphism Network (GIN) [59], using contrastive learning to enhance60

feature extraction. Although these models train faster, they may underperform on complex tasks61

compared to a more advanced system integrating RoBERTa with Graphormer [61], which specializes62

in modeling intricate relations. In graph models, we apply masking of atom and edge features during63

training to predict masked elements and align embeddings of augmented molecular views. This64

contrastive learning approach is underexplored in cheminformatics and shows promise for advancing65

molecular modeling. Code is available F.66

2 Related Work67

Molecular descriptors. The relationships between molecular properties underpin property prediction68

in chemoinformatics [18, 19, 17]. Molecular descriptors quantitatively represent structure and69

include substructural descriptors (e.g., MACCS keys), 2D topological descriptors, and 3D geometric70

descriptors. These descriptors are primary inputs for QSAR/QSPR models that predict molecular71

properties from structure (appendix A). Conventional whole-molecule descriptors can miss nuanced72

substructure effects in larger, multifunctional molecules [14]; fragment-based descriptors mitigate73

this by enabling more localized and interpretable predictions.74

Used as representations for language models, molecular descriptors offer promising advantages:75

some encode positional information similar to natural language while capturing key physicochemical76

attributes, allowing models to learn both statistical patterns and chemically meaningful relationships77

and thus improve predictive and generative performance.78

BRICS fragmentation. The Breaking of Retrosynthetically Interesting Chemical Substructures79

(BRICS, appendix B) method [11] offers a principled, rule-based approach to fragmenting molecules80

into chemically meaningful components by selectively cleaving bonds commonly involved in syn-81

thesis, guided by 16 well-defined rules. This ensures that the resulting fragments correspond to82

synthetically relevant building blocks while retaining information about their potential attachment83

points, facilitating their recombination in silico. Widely adopted in drug discovery and computa-84

tional chemistry, BRICS mirrors the logic of retrosynthetic analysis by breaking down complex85

molecules into simpler precursors. In our work, we utilize BRICS to preprocess data by partitioning86

molecules into fragments and computing descriptors for each. This fragment-centric strategy shifts87
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focus from the whole molecule to its local chemical environments, improving the model’s ability to88

predict properties influenced by specific substructures and enabling a more interpretable analysis of89

structure–property relationships.90

SMILES-based NLP models. Transformers [50] were initially introduced to facilitate the generation91

of vector representations for natural language processing tasks. Since their inception, they have92

found widespread application across various domains, including speech recognition, medicine, and93

neuroscience [48, 7]. There have been several efforts to adapt transformers for chemical applications,94

exemplified by models such as SmilesBERT [52], ChemBERTa [6], and ChemBERTa-2 [1], and95

almost all of them were trained on SMILES. Many of these models have been trained on substantial96

datasets, including ZINC [22] and PubChem [23], demonstrating commendable performance in97

classification and regression tasks across various established chemical benchmarks.98

C10H12N2O

Molecule

Descriptors

Shifted descriptors

[0, 8, 63, 106, 157, 206, 256, 306, 356, 406, 456, 506, 556, 
606, 656, 706, 756, 809, 858, 1156, 1456, 1756, 2065, 2360, 
4360, 4366, 4372, 4422, '!', 14, 63, 107, 157, 206, 256, 306, 
356, 406, 456, 506, 556, 606, 656, 706, 756, 816, 857, 1156, 

1456, 1766, 2074, 2464, 4359, 4366, 4381, 4424, '$', 16, 
68, 107, 158, 206, 256, 306, 356, 406, 456, 506, 556, 606, 
656, 706, 756, 819, 860, 1156, 1456, 1766, 2082, 2594, 4358, 

4367, 4381, 4424, 2]

Tokens

BRICS Substructures + Additional Substructures

[[10, 12, 1, 2, 0, 
0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0], 

[13], [4, 0, 0, 10],
 [26], [238], [2], 

[3], [9], [2]]

[[8, 7, 1, 1, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0], [10],
 [1, 0, 0, 10], 
[18], [108], [3], 

[2], [9], [2]]

[[2, 7, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0], [3], 
[2, 0, 0, 0], [9], 
[4], [4], [2], [0], 

[0]]

[[16, 68, 107, 158, 
206, 256, 306, 356, 
406, 456, 506, 556, 
606, 656, 706, 756],
 [819], [860, 1156, 
1456, 1766], [2082],
 [2594], [4358], 
[4367], [4381], 

[4424]]

[[14, 63, 107, 157,
 206, 256, 306, 356,
 406, 456, 506, 556,
 606, 656, 706, 756],
 [816], [857, 1156, 
1456, 1766], [2074],
 [2464], [4359], 
[4366], [4381], 

[4424]]

[[8, 63, 106, 157, 
206, 256, 306, 356, 
406, 456, 506, 556, 
606, 656, 706, 756],
 [809], [858, 1156, 
1456, 1756], [2065],
 [2360], [4360], 
[4366], [4372], 

[4422]]

Figure 1: Example of tokenization process.
Toketns "0" and "2" correspond to BOS (be-
gin of sequence) and EOS (end of sequence),
respectively. The ’!’ and ’$’ kept non-
tokenizenised for clarity.

Graph models. Graph neural networks (GNNs) have99

effectively addressed a variety of challenges within100

the field of chemistry [10, 28]. Several method-101

ologies have been proposed to enhance GNN-based102

embeddings. For instance, [21] introduced two pri-103

mary concepts: the recovery of masked properties104

of a molecule, such as the type of a specific atom,105

and the application of contrastive learning to mini-106

mize discrepancies between two subgraphs within107

a molecule. Additionally, MolCLR [53] presents a108

framework based on the augmentation of molecu-109

lar graphs through the removal of atoms, edges, and110

subgraphs, followed by the training of a model to re-111

construct these components. However, many GNNs112

are specialized for specific tasks and are not inher-113

ently designed to generate vector representations of114

chemical compounds.115

In the graph component of our model, we advocate116

for an approach that synthesizes these concepts and117

leverages state-of-the-art models. Specifically, we118

implement a mechanism to mask atom features and119

edge features in the case of Graphormer [61]. The120

model is trained not only to predict these masked121

features but also to align the embeddings of two aug-122

mented versions of the same molecule, which repre-123

sents a modification of contrastive learning. More-124

over, [63] introduced a bimodal architecture incorpo-125

rating a BERT-based language model (LM) trained126

on SMILES alongside a GNN as the graph repre-127

sentation model. In contrast, we propose a distinct128

language model that is trained on fingerprints, thus129

providing a more physically informed perspective130

and an advanced graph model. Additionally, our131

approach includes notable differences in the final pro-132

jection and the processing of embeddings derived from both the language and graph models.133

3 Data Preprocessing134

We propose a data preparation methodology for language models that focuses on representing local135

substructural properties through physicochemical descriptors of molecules. The process divides136

into several key stages. First, molecules represented by SMILES are partitioned into substructures137

using the BRICS algorithm. Then, additional substructures are generated: for every bond removed138

during this fragmentation, a new substructure is created that comprises the two BRICS-derived139

substructures originally connected by that bond (for more details see appendix B). To maintain140

chemical completeness, all substructures are augmented with hydrogen atoms according to valence141

rules, compensating for broken bonds in the parent molecule. This design, somewhat analogous to142
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circular fingerprints such as ECFP [38] or Morgan fingerprints [31], enables the model to capture143

information not only about individual substructures but also about the connections between them.144

Subsequently, a set of structural, topological, and physicochemical descriptors is calculated for each145

substructure via RDKit (see example at Fig. 1). These descriptors are organized into an ordered array,146

which is crucial for incorporating positional information and the usage of positional encoding in147

RoBERTa). The selected descriptors capture various aspects, including the topological structure of the148

molecule, the number of atoms in each substructure, as well as certain quantum and physicochemical149

properties. As a result, each molecule is transformed first into a collection of relevant substructures150

and is represented as a two-dimensional array, where each row corresponds to the descriptor vector151

of an individual substructure (see the next section).152

Discussion. Our approach relies on partitioning molecules into chemically meaningful substructures153

using the BRICS method, rather than applying conventional BPE-like tokenization, which often154

emphasizes frequently occurring but not necessarily chemically relevant fragments. Importantly, the155

BRICS fragmentation is guided by a set of rules specifically developed for retrosynthetic analysis,156

mirroring the way chemists cognitively organize molecular structures into building blocks when157

designing new compounds or predicting their properties. Since chemistry as a scientific discipline is158

fundamentally rooted in human reasoning and intuition, enabling the model to understand molecules159

through these chemically intuitive substructures allows it to capture the underlying chemical principles160

more effectively. By aligning the model’s perspective with the way chemists think, rather than relying161

solely on statistical patterns, we improve its ability to grasp the chemical laws and concepts established162

through decades of human expertise, thereby enhancing both interpretability and practical relevance.163

It is also important to recognize that many molecular properties cannot be accurately represented as a164

simple linear combination of the properties of individual substructure descriptors. This challenge is165

analogous to the problem of constructing a meaningful sentence embedding from the embeddings166

of its constituent words. In this context, substructures can be viewed as words, while the entire167

molecule corresponds to a sentence, with the number of substructures varying between molecules. The168

RoBERTa architecture proves to be particularly well-suited for addressing this type of variable-length,169

context-dependent representation, making it an optimal choice for modeling molecular properties in170

this framework.171

4 Architecture and training details172

4.1 Architecture Overview173

RoBERTa

Language Modeling
Head

Molecule

Descriptors

Augmented Copy
of Graph

Augmented Copy
of Graph

Graph
Representation

Bert Embedding 
(768 dim)

Masked 15%
tokens

Tokens

Graph Model
(GCN/Graphomer)

Graph Model
(GCN/Graphomer)

Graph
Embedding 2 

(768 dim)

Linear layer

Graph
Embedding
(768 dim)

Bert Loss NTXentLoss

Bimodal Loss

NTXentLoss

Graph Loss

CrossEntropyLoss

Language Model Block

Graph Contrastive Learning Block

Graph
Embedding 1

(768 dim)

Loss

Projection BlockProjection Block

Substructures

Figure 2: Full architecture of bimodal model. Language and
Graph blocks are outlined by blue and orange colors. Red color
marks projection blocks.

The proposed model comprises174

three primary components, as il-175

lustrated in Figure 2: the graph176

model, the language model, and177

the projection blocks. The lan-178

guage model is designed to ac-179

cept two-dimensional arrays of180

substructure descriptors as input,181

whereas the graph model pro-182

cesses molecular graphs. The183

function of the projection blocks184

is to transform the embeddings185

generated by the graph and lan-186

guage models from their respec-187

tive latent spaces into a uni-188

fied third latent space. The189

baseline of our approach is the190

language model itself (without191

graph parts), and as shown in192

Section 5, it outperforms other193

modern frameworks in most194

benchmarks.195
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4.2 Language model196

Tokenizer. Our input to the language model consists of two-dimensional arrays of descriptors, where197

each array represents a single molecule and each subarray corresponds to a specific substructure198

within that molecule. The tokenization process applied to these arrays is relatively straightforward,199

as the nature of the chosen descriptors eliminates the need for conventional statistical tokenization200

methods, such as Byte Pair Encoding (BPE), which aim to adjust the dictionary size.201

Instead, the tokenization involves four key steps. First, within each subarray, the descriptor at position202

i is adjusted by adding the sum of the maximum possible descriptor values from the preceding203

positions [0, i − 1]. This operation effectively tokenizes the descriptor values in a position-aware204

manner (see the last two arrows on Fig. 1). Next, a special separator token, denoted here as ’!’, is205

inserted between descriptor subarrays to clearly signal the boundary between different substructures.206

To further highlight the chemical significance of the fragmentation, an additional token ’$’ is inserted207

to separate traditional BRICS-derived substructures from the so-called additional substructures (as208

detailed in the Data Preprocessing). Finally, the resulting two-dimensional array is flattened into a209

one-dimensional sequence, with tokens indicating the start and end of the sequence appended at the210

respective positions.211

RoBERTa training. We utilize the RoBERTa architecture [29], which has been trained on descriptors212

for molecules derived from the PubChem [23] dataset, as our language model. Within this framework,213

the encoding of an individual descriptor is interpreted as a "word", while the substructure in a molecule214

is interpreted as a "sentence" and lastly the encoding of an entire molecule is considered analogous to215

"text". During the training process, the 1-dimensional array obtained after the tokenization process216

undergoes standard procedures, which was given after tokenization process, undergoes standard217

procedures including the masking of 15% of tokens (representing descriptors), with the model218

subsequently predicting the probabilities of these masked tokens. The output embedding is derived219

from the CLS token located in the penultimate layer of the model.220

4.3 Graph model221

Creation and augmentation of graph. A graph is constructed from SMILES representations222

utilizing the RDKit package, wherein each atom is represented as a vertex. Two parameters – atom223

number and chirality – are designated as attributes of the vertices. In this framework, each bond is224

represented as an edge, with the bond multiplicity (single, double, triple, or aromatic) serving as the225

attribute for the edges.226

Subsequently, 20% of the atomic attributes are masked, replacing them with a designated mask token.227

In the case of graphomers, an equivalent approach is applied, where 20% of the edge attributes are228

also masked, transforming these attributes into the mask token. The augmentation process and the229

graph model operation scheme are shown in Figure 3.230

Model training. In the graph component of our model, we have experimented with three distinct231

architectures: Graph Isomorphism Network (GIN), Graph Convolutional Network (GCN), and232

Graphormer. We employ augmentation techniques to transform the molecular graph into two distinct233

representations. Following this, we train the GCN, GIN, or Graphormer models with the objective of234

minimizing the differences between the augmentations of one graph and maximizing the differences235

between augmentations of different graphs (this process for graphs in one batch is shown in Figure 3).236

4.4 Connection Between Models237

The projection blocks illustrated in Figure 4 of our proposed architecture comprise two linear238

layers accompanied by two batch normalization blocks. Prior to the application of the final batch239

normalization block, the ReLU activation function is employed on the embeddings.240

Let egraph denote the output of the graph model and elang represent the output of the language model.241

Furthermore, let ψgraph and ψlang be the respective projection blocks for the graph and language242

models. Define A as the latent space of the graph model, B as the latent space of the language model,243

and C as the space into which the embeddings are projected. Thus, we have egraph ∈ A, elang ∈ B244

with ψgraph : A → C and ψlang : B → C.245
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CN1C=NC2=C1C(=O)N(C(=O)N2C)C

SMILES

Augmented
Molecular

Graph

Augmented
Molecular

Graph

Molecular
Graph

Graph Model

Embedding

Graph Model

Embedding

C1=CC(=C(C=C1CCN)O)O

SMILES

Augmented
Molecular

Graph

Augmented
Molecular

Graph

Molecular
Graph

Graph Model

Embedding

Graph Model

Embedding...

...

...

...

...

Contrastive Loss

Figure 3: Tops masking process and computing the graph loss for one batch.

Embedding 
(768 dim) Linear Layer

Projection Block

Batch
Normalization ReLU Linear Layer Batch

Normalization

Projected
Embedding 

(768 dim)

Figure 4: The structure of the projection block. It helps to translate output vectors from models to the
same linear space.

4.5 Loss functions246

The loss function used in our model is represented as247

L = α · Llang + β · Lgraph + γ · Lbimodal, (1)

where Llang is the loss function of the language model, Lgraph is the loss function of the graph part of248

the model, and Lbimodal is the embedding projection loss function from the graph and language models.249

The coefficients α, β, and γ are constants that can be considered hyperparameters and are assigned250

default values of 1.0. For language model we use regular Cross-Entropy loss, and NTXent-Loss [49]251

for graph model. See D for loss details.252

5 Experiments and limitations253

5.1 Pretraining datasets and data preparation254

We pretrain our model on parts of the PubChem [23] dataset. Initially, the compounds in them are255

stored in SMILES format. By splitting into chemically relevant substructures, leveraging a more256

physics-based input format (descriptors) and employing one of the most sophisticated language mod-257

els, we achieve a significant milestone: a language model (LM) trained from scratch with 10 million258

entries from the PubChem dataset. The pre-training process takes 98 hours for RoBERTa, about259

250 hours for BERT+GCN and BERT+GIN, and approximately 400 hours for BERT+Graphormer260

(each result on the A100 GPU for 10 epochs). This model exhibits performance comparable to those261
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trained on the largest datasets within the field. The data preparation process can be divided into two262

main parts.263

Language model data. We construct the descriptors’ sequence as it was described in previous264

paragraphs, and then we mask 15% of the elements in the obtained array (after performing the265

tokenization process and considering them as tokens).266 O O

O O

Figure 5: Example of drop-
ping edges problem.

Graph model data. We build a graph based on the SMILES of the267

molecule and then use its augmentation, which transforms it into268

two different molecule graphs. The augmentation process consists269

of masking 20% randomly chosen atom types (for GCN and GIN)270

and masking both 20% randomly chosen atom types and edges (for271

Graphormer). We mask only types of atoms and edges, not the edges272

and atoms themselves (as in the MolCLR approach [53]), due to273

the greater physicochemical validity of this method. For example, if we mask the red highlighted274

edge in Figure 5 in octyl formate (with the SMILES encoding CCCCCCCCOC(=O)), we obtain two275

existing compounds: heptane (CCCCCCC) and methyl formate (COC(=O)). Thus, the model learns276

to converge the embeddings of octyl formate and the total embedding of heptane and methyl formate,277

which is fundamentally incorrect.278

5.2 QSAR tasks279

For zero-shot evaluation, we select widely recognized cheminformatics benchmarks focused on280

quantitative structure-activity relationship (QSAR) tasks. Although specially designed descriptors281

often outperform transformer models in this context, the simplicity of these benchmarks allows282

for the assessment of our architecture’s quality and versatility without the influence of large-scale283

superstructures in complex problems.284

We assess four models: RoBERTa (denoted SubD-BERT), trained on descriptors; SubD-BERT285

combined with a Graph Isomorphism Network (GIN); SubD-BERT paired with a Graph Convolutional286

Network (GCN); and SubD-BERT integrated with Graphormer. All models utilize a dataset of287

10 million entries from PubChem. Additionally, classical machine learning models (XGBoost,288

LightGBM, SVM) trained on the same descriptors provide strong baselines, known for QSAR289

effectiveness with handcrafted features. It can be seen that even such simple models show quite good290

results on many presented benchmarks, which demonstrates the correctness of the chosen paradigm291

of partitioning the molecule into substructures and further construction of descriptors.292

The classification benchmark datasets comprised BBBP [47], Tox21 [37], ClinTox [57], BACE [57],293

MUV [39], and HIV [32]. Performance metrics, summarized in Table 1, utilize the receiver operating294

characteristic area under the curve (ROC-AUC) (Table 1). The regression benchmarks included QM7295

[4, 44], QM8 [34], QM9 [42, 43], FreeSolv [30], ESOL [12], and Lipo. Evaluation metrics consisted296

of mean absolute error (MAE) for QM7, QM8, and QM9, and mean squared error (MSE) for FreeSolv,297

ESOL, and Lipo (Table 2).Three runs were conducted for each dataset, and the experiments were298

performed on 4 A100 GPUs.299

Notably, the classification datasets predominantly involve biochemical tasks with relatively large300

molecules. Language models trained on SMILES representations, such as ChemBERTa, demonstrate301

limited efficacy in these cases, likely due to their inability to adequately capture long-range atomic302

interactions. In contrast, our approach, which decomposes molecules into substructures, exhibits303

marked improvements when supplemented with graph-based components that effectively encode304

structural information. Conversely, for regression tasks (in datasets such as QM8 [34] and QM9 [42])305

focusing on smaller molecules, language models achieve comparatively poor results individually.306

The number of substructures in such molecules is small, and the compounds are represented by a307

limited number of substructures and descriptors, which implies insufficient data. Taken together, these308

findings underscore the complementary contributions of both graph and language model components309

in optimizing predictive performance. Graphormer, as a complex model, generally performs better on310

large datasets but struggles with smaller ones due to limited training data. Therefore, we recommend311

BERT+GIN and BERT+GCN for tasks with limited data, while BERT+Graphormer is better suited312

for complex tasks that require intricate node relationships.313

For the general case, our models outperform other frameworks, including MolFormer-XL [41], which314

was trained on a 1.1 billion size dataset for approximately 3200 compute hours on Nvidia V100 GPU.315
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Table 1: Results for classification tasks. ROC-AUC metric (higher is better) for BBBP, Tox21,
ClinTox, BACE, MUV and HIV datasets, the scaffold split was used for train-test-validation (80-10-
10) split.

Models
Datasets

BBBP Tox21
(NR-AR)

ClinTox (FDA
APPROVED)

ClinTox
(CT TOX) BACE MUV HIV

MolCLR(GCN) [53] 0.723±0.025 0.704±0.002 0.668±0.035 0.694±0.032 0.711±0.090 0.676±0.019 0.787±0.005
MolCLR(GIN) [53] 0.742±0.020 0.740±0.003 0.872±0.031 0.775±0.037 0.814±0.07 0.796±0.017 0.761±0.006
ChemBERTa [6] 0.647±0.053 0.753±0.009 - 0.736±0.015 0.721±0.022 0.667±0.015 0.625±0.012
Uni-Mol [62] 0.729±0.006 0.796±0.005 0.895±0.018 0.711±0.023 0.857±0.002 0.821±0.013 0.808±0.003
GEM [15] 0.724±0.004 0.781±0.001 0.875±0.013 0.692±0.019 0.856±0.011 0.817±0.005 0.806±0.009
GROVER (base) [40] 0.700±0.001 0.743±0.001 0.812±0.030 0.664±0.032 0.826±0.007 0.673±0.018 0.625±0.009
GROVER (large) [40] 0.695±0.001 0.735±0.001 0.75±0.037 0.683±0.041 0.810±0.014 0.673±0.018 0.682±0.011
Molformer [56] 0.916±0.002 - 0.907±0.006 0.812±0.031 0.844±0.017 - -
MolFormer-XL [41] 0.917±0.001 0.847±0.001 0.933±0.004 0.901±0.012 0.862±0.009 - 0.812±0.003

SubD-BERT (ours) 0.893±0.018 0.829±0.007 0.947±0.013 0.926±0.017 0.811±0.022 0.753±0.015 0.692±0.011
BERT+GIN (ours) 0.937±0.002 0.852±0.003 0.912±0.009 0.924±0.014 0.855±0.015 0.832±0.011 0.786±0.007
BERT+GCN (ours) 0.891±0.005 0.830±0.002 0.903±0.016 0.793±0.031 0.738±0.012 0.794±0.017 0.736±0.010
BERT+Graphormer (ours) 0.862±0.009 0.815±0.003 0.878±0.019 0.837±0.021 0.892±0.015 0.819±0.013 0.851±0.060

XGBoost (descriptors, ours) 0.821 0.663 0.856 0.871 0.695 0.650 0.562
LightGBM (descriptors, ours) 0.832 0.653 0.886 0.853 0.682 0.581 0.546
SVM (descriptors, ours) 0.612 0.617 0.525 0.679 0.547 0.559 0.534

Table 2: Results regression tasks, MAE (less is better) metric for QM7, QM8 and QM9 datasets.
MSE for FreeSolv, ESOL and Lipo, the scaffold split was used for train-test-validation (80-10-10)
split.

Models Datasets
QM7 QM8 (E1-CC2) QM9 (gap) FreeSolv ESOL Lipo

MolCLR(GCN) [53] 85.4±2.7 0.0178±0.0003 0.0317±0.0005 3.259±0.261 1.419±0.040 0.957±0.010
MolCLR(GIN) [53] 91.6±3.1 0.0167±0.0004 0.0225±0.0003 2.884±0.249 1.253±0.037 0.651±0.004
ChemBERTa [6] 177.2±4.0 - 0.0317±0.0005 3.471±0.085 1.487±0.107 0.721±0.003
Uni-Mol [62] 41.8±0.2 0.0156±0.0001 0.0132±0.0003 1.480±0.048 0.788±0.024 0.603±0.010
GEM [15] 58.9±0.8 0.0171±0.0001 0.0246±0.0003 1.877±0.094 0.798±0.029 0.660±0.008
GROVER (base) [40] 94.5±3.8 0.0218±0.0004 0.0197±0.0003 2.186±0.052 0.983±0.090 0.817±0.008
GROVER (large) [40] 92.0±0.9 0.0224±0.0003 0.0186±0.0025 2.272±0.051 0.895±0.017 0.823±0.001
Molformer [56] 55.2±0.8 0.0095±0.0005 0.0139±0.0004 - - -
MolFromer-XL [41] - 0.0102±0.0002 0.0164±0.0002 0.571±0.027 0.290±0.011 0.551±0.002

SubD-BERT (ours) 55.4±1.3 0.0126±0.0003 0.0148±0.0003 0.859±0.069 0.292±0.013 0.514±0.003
BERT+GIN (ours) 49.8±1.1 0.0083±0.0002 0.0145±0.0003 0.530±0.041 0.331±0.018 0.526±0.009
BERT+GCN (ours) 50.1±1.7 0.0098±0.0003 0.0166±0.0004 0.731±0.098 0.357±0.026 0.540±0.016
BERT+Graphormer (ours) 40.6±0.9 0.0114±0.0003 0.0134±0.0003 0.823±0.091 0.291±0.023 0.589±0.010

XGBoost (descriptors, ours) 69.2 0.0208 0.0174 5.040 1.233 1.013
LightGBM (descriptors, ours) 74.1 0.0203 0.0173 5.435 1.217 0.997
SVR (descriptors, ours) 143.4 0.0301 0.0334 6.207 1.830 1.171

6 Limitations and further improvements316

Limitations. In chemoinformatics, we frequently encounter challenges that require building predic-317

tive models from very limited training datasets, typically consisting of only 100–200 samples. In318

these scenarios, our models tend to be overly complex and are frequently outperformed by simpler319

models trained on task-specific descriptors tailored for the problem at hand.320

Furthermore, similar difficulties arise in cases where the training sample size is relatively small321

(on the order of a few thousand samples), but the compounds under study exhibit a substantial322

domain shift compared to our training set, usually a subset of the PubChem database. This issue323

is particularly pronounced when working with inorganic compounds or polymers. Traditional pre-324

training approaches offer limited benefit here, as BRICS decomposition is primarily designed for325

organic molecules structurally similar to drug-like compounds, and its fragmentation rules require326

adaptation to effectively handle these chemically distinct classes.327

Future works. Further improvements involve training the models on a larger data sample: approxi-328

mately 100 million molecules or more. Given that the current approach outperforms existing methods329

with a rather modest training sample, this should give a significant performance gain.330
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A Descriptors509

A.1 General description510

The interplay between various molecular properties has long been recognized, and exploiting these511

relationships to predict molecular behavior is a standard practice in chemoinformatics [18, 19, 17].512

Central to this approach is the use of molecular descriptors – quantitative representations of molecular513

structure and characteristics – that are typically grouped into six categories. Substructural descriptors,514

such as those in fingerprinting methods like MACCS keys or PubChem fingerprints, encode the515

presence or absence of specific structural motifs as bit vectors. Topological descriptors derive from516

the molecule’s two-dimensional graph, capturing connectivity patterns through graph invariants.517

Geometric descriptors describe the three-dimensional shape and spatial configuration by considering518

molecular conformations or interatomic distances. Electronic descriptors relate to electron distribution519

and chemical reactivity, using parameters like orbital energies and atomic charges. Physico-chemical520

descriptors quantify bulk properties, including polarity, solubility, and hydrophobicity. Hybrid521

descriptors – like circular fingerprints – combine aspects of substructure and local topology to522

generate fixed-length numerical representations tailored to computational modeling.523

Among topological descriptors, the Wiener index is particularly prominent. It measures molecular524

branching by summing shortest path distances between all atom pairs, originally for hydrocarbons but525

now used across diverse chemical applications such as predicting boiling points and drug-likeness [55].526

Another key descriptor is the octanol-water partition coefficient (logP), which reflects hydrophobicity527

through a molecule’s equilibrium distribution between octanol and water phases. LogP is critical in528

drug design because it affects membrane permeability, solubility, and bioavailability [14].529

For 3D representations, the Universal Force Field (UFF) energy estimates steric strain and con-530

formational stability by approximating atomic interactions using simplified force fields. Although531

less accurate than quantum mechanical calculations, UFF energy is computationally efficient for532

large-scale virtual screening [35]. Additionally, ring descriptors – especially distinguishing aromatic533

from non-aromatic rings – are vital in characterizing molecular stability, electron delocalization,534

and reactivity. Aromatic rings, with their conjugated π-systems, often enhance binding affinity in535

drug-receptor interactions, whereas non-aromatic (aliphatic) rings contribute to structural rigidity and536

three-dimensional shape.537

These descriptors form the foundation for quantitative structure – activity and structure–property538

relationship (QSAR/QSPR) models, which predict molecular properties from structural data. Tradi-539

tional QSAR approaches typically compute descriptors for the whole molecule, which works well540

for simpler compounds but may overlook subtle influences of individual substructures, especially in541

larger or multifunctional molecules [14]. To overcome this, recent strategies focus on fragment-level542

descriptors – generating features for discrete molecular fragments rather than the entire molecule.543

This fragment-based modeling enhances interpretability and allows more precise predictions by544

capturing localized structural effects, thereby improving our understanding of complex molecular545

behavior.546

When employed as input representations for language models, molecular descriptors hold significant547

promise. Some descriptors possess positional features similar to natural language sequences while548

also encoding essential physicochemical properties of molecules. This dual nature allows language549

models to capture not only statistical patterns but also meaningful chemical relationships, thereby550

improving their capability to derive insights that are relevant to molecular behavior.551

A.2 Specific for our work552

For this study, we computed a set of molecular descriptors for each substructure to serve as input553

features for the language model (LM). These descriptors comprehensively capture aspects of atomic554

composition, bonding patterns, topological indices, and physicochemical properties, providing the555

LM with rich, chemically meaningful representations.556

Atomic Composition557
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• Counts of key atom types including Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N),558

Sulfur (S), Phosphorus (P), Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), and Silicon559

(Si) – yielding 11 discrete values.560

• Aggregate count of metal atoms such as Sodium (Na), Potassium (K), Magnesium (Mg),561

Iron (Fe), and Zinc (Zn) combined into a single value.562

Substructure Size563

• Total atom count within the substructure (single value).564

Bonding Patterns565

• Counts of various bond types: single, double, triple, and aromatic, represented as four566

discrete values.567

• Total number of bonds in the substructure (single value).568

Topological Descriptors569

• Wiener index: Computed as the sum of shortest topological distances between all pairs of570

atoms within the substructure, serving as a quantitative measure of molecular branching571

[55].572

Physicochemical Properties573

• logP (octanol-water partition coefficient): Classified into seven discrete bins reflecting574

hydrophobicity levels, as detailed in Table 3. This categorization facilitates interpretability575

and relevance to biological contexts.576

Category logP Range Description
1 < −2.0 Extreme hydrophilic
2 −2.0 ≤ logP < −0.5 Strong hydrophilic
3 −0.5 ≤ logP < 0.0 Moderate hydrophilic
4 0.0 ≤ logP < 1.0 Neutral
5 1.0 ≤ logP < 2.0 Moderate hydrophobic
6 2.0 ≤ logP < 4.0 Strong hydrophobic
7 ≥ 4.0 Extreme hydrophobic

Table 3: logP categorization scheme

• Universal Force Field (UFF) energy: Categorized into seven discrete ranges representing577

steric strain and conformational stability; see Table 4. Despite its approximate nature578

compared to quantum calculations, UFF energy offers a computationally efficient descriptor579

of molecular geometry.580

Category Energy Range (kcal/mol) Description
1 < 0 Stable complex
2 0 ≤ E < 50 Very stable
3 50 ≤ E < 100 Stable
4 100 ≤ E < 150 Moderate
5 150 ≤ E < 200 Unstable
6 200 ≤ E < 300 High energy
7 ≥ 300 Extreme energy

Table 4: UFF energy categorization scheme

Ring Systems581

• Number of atoms that participate in at least one ring (single value).582
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• Number of complete rings fully contained within the substructure (single value).583

In summary, this results in a feature vector of dimension 23 for each molecular substructure, integrat-584

ing diverse structural and physicochemical information suitable for language model input.585

B BRICS Decomposition Methodology586

BRICS Substructures + Additional Substructures

C14H16ClN2S2+

Molecule

Molecular Graph

BRICS Substructures

Figure 6: An example of splitting molecule
to substructures and creating the additional
substructure.

The Breaking of Retrosynthetically Interesting Chem-587

ical Substructures (BRICS) method [11] offers a588

systematic, rule-based framework for fragmenting589

molecules into chemically meaningful components590

that correspond to synthetic building blocks. This591

fragmentation strategy is founded on the princi-592

ples of retrosynthetic analysis [8], wherein complex593

molecules are iteratively broken down into simpler594

precursors by cleaving bonds commonly formed or595

targeted in synthetic reactions. The example of our596

modification of BRICS Decomposition (with creating597

additional substructures) can be seen at Fig. 6.598

B.1 BRICS Cleavage Rules599

The BRICS algorithm applies a set of 16 predefined600

bond cleavage rules designed to target specific chemi-601

cal environments. These rules selectively break bonds602

adjacent to key atoms, ensuring the preservation of603

functional group integrity and chemical relevance.604

The full repertoire of bonds eligible for cleavage in-605

cludes:606

• Single bonds between aliphatic carbon607

atoms and any of the following heteroatoms:608

– C – N bonds (Rule 1)609

– C – O bonds (Rule 2)610

– C – S bonds (Rule 3)611

– C – P bonds (Rule 4)612

• Bonds in cyclic systems:613

– C –– C in conjugated systems (Rule 5)614

– Aromatic C – N bonds (Rule 6)615

– Aromatic C – O bonds (Rule 7)616

– Aromatic C – S bonds (Rule 8)617

• Bonds adjacent to carbonyl groups:618

– C – C( –– O) (amide bonds, Rule 9)619

– N – C( –– O) (peptide bonds, Rule 10)620

– O – C( –– O) (ester bonds, Rule 11)621

• Specialized cleavages:622

– C ––– C triple bonds (Rule 12)623

– C – Si bonds (Rule 13)624

– S( –– O) – N sulfonamide bonds (Rule 14)625

– C – B boronic ester bonds (Rule 15)626

– C – Sn stannane bonds (Rule 16)627

Each cleavage generates molecular fragments that incorporate dummy atoms at the original attachment628

sites, thereby retaining critical information about potential points for recombination. These cleavage629

rules are applied recursively until no additional bonds meeting the criteria remain, resulting in a630

comprehensive set of BRICS fragments.631
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B.2 Chemical Rationale632

The choice of targeted bond types is grounded in their widespread occurrence in synthetic organic633

chemistry [5] and pharmaceutical molecules [27]. This targeted fragmentation approach offers several634

key advantages, including:635

• Preservation of essential pharmacophoric features within the generated fragments, ensuring636

retention of bioactive characteristics.637

• Production of building blocks that are synthetically accessible, facilitating practical chemical638

synthesis.639

• Maintenance of chemically valid valency states in all fragments, preserving structural640

integrity and realism.641

• Compatibility with combinatorial library design workflows, enabling efficient exploration of642

chemical space [25].643

B.3 Application in Descriptor Calculation644

In our preprocessing pipeline, molecules are first decomposed into substructures using the BRICS645

methodology, after which molecular descriptors are computed for each fragment individually. This646

fragment-based approach provides several distinct analytical advantages:647

• Enables more precise characterization of local chemical environments that predominantly648

influence specific molecular properties.649

• Facilitates enhanced interpretability by allowing property attributions at the fragment level.650

• Improves the treatment of structurally complex molecules, where different subregions may651

exert contrasting effects on target properties.652

• Aligns naturally with fragment-based drug design strategies, promoting integration with653

established pharmaceutical workflows [3].654

The fragment-centric representation is consistent with the concept of molecular signatures, in which655

molecular properties arise from both additive and nonlinear interactions among constituent substruc-656

tures. By individually evaluating these fragments, our model is capable of pinpointing key structural657

motifs that significantly impact the target properties, while simultaneously ensuring synthetic feasi-658

bility through the use of the BRICS framework.659

C Graph models660

GCN. The Graph Convolutional Network (GCN), as introduced by Kipf and Welling [24], con-661

stitutes a significant advancement in the field of graph neural networks, employing convolutional662

operations tailored specifically for graph data structures. Distinct from conventional neural net-663

works that utilize linear transformations through a weight matrix W, represented mathematically664

as h = Wx, GCNs incorporate the inherent topological characteristics of the graph to update665

node representations. This approach is particularly advantageous given the phenomenon of network666

homophily, wherein connected nodes are more likely to exhibit similar attributes.667

GCNs operate through a principle known as neighborhood aggregation, which amalgamates the668

features of a target node with those of its neighboring nodes. For a given node i and its associated669

neighborhood Ni, this aggregation is formalized as follows:670

hi =
∑
j∈Ni

Wxj . (2)

This formulation enables GCNs to enhance the feature representation of each node by leveraging671

the attributes of its direct connections. However, given the variability in node degree, it is essential672

to normalize the aggregated features to ensure comparability across nodes. This normalization is673

achieved by factoring in the degree of the node, leading to the expression:674

hi =
1

deg(i)

∑
j∈Ni

Wxj . (3)
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Kipf et al. further refined the GCN architecture by addressing the potential imbalance in feature675

propagation, whereby nodes with a greater number of neighbors may disproportionately influence676

the learning process. To mitigate this effect, they proposed a weighted aggregation mechanism677

that accounts for the degrees of both the target node and its neighbors. The updated formulation is678

expressed as:679

hi =
∑
j∈Ni

1√
deg(i)deg(j)

Wxj . (4)

This enhancement promotes a more equitable distribution of influence among nodes, thereby ensuring680

that features from less-connected nodes are adequately considered.681

The versatility of GCNs has led to their incorporation in various advanced frameworks, including682

Graph Attention Networks (GAT) [51] and Message Passing Neural Networks (MPNN). Their683

capacity to capture complex relational patterns and dependencies within graph structures renders684

GCNs particularly suited for applications spanning diverse domains, such as social network analysis,685

recommendation systems, and molecular property prediction in cheminformatics.686

Additionally, GCNs can be further refined through modifications such as attention mechanisms that687

differentially weight the contributions of neighboring nodes based on learned significance or by688

integrating diverse edge types to enrich the contextual information. These adaptations contribute to689

the ongoing research aimed at enhancing GCN performance across a wide spectrum of graph-related690

tasks. In the context of our model, GCNs are instrumental in leveraging the structural information691

inherent in molecular graphs, facilitating improved predictive accuracy with respect to compound692

properties.693

Graph Isomorphism Network (GIN). The Graph Isomorphism Network (GIN) is a neural network694

architecture introduced by Xu et al [59]. in 2019 that aims to improve the expressive capabilities695

of graph neural networks (GNNs). GIN is particularly significant due to its equivalence to the696

Weisfeiler-Lehman (WL) graph isomorphism test, which serves as a standard for assessing the ability697

of models to distinguish between different graph structures.698

The update mechanism for GIN aggregates node features and those of their neighbors using the699

following formulation:700

h(k)v = MLP(k)

(1 + ε)h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

 (5)

In this equation, h(k)v denotes the representation of node v at the k-th layer, while N (v) represents701

the set of neighboring nodes. The term MLP(k) indicates a multi-layer perceptron applied to the702

aggregated features. The parameter ϵ is incorporated to preserve the unique identity of node features,703

thereby enhancing the model’s ability to differentiate between nodes based on their characteristics.704

GIN operates using a two-step framework: initially performing aggregation of neighboring features,705

followed by the application of a multi-layer perceptron. This approach facilitates the learning of706

complex representations that capture both local and relational information within graph structures.707

Empirical evaluations of GIN demonstrate its superior performance in graph classification tasks708

compared to other GNN variants, underscoring its robustness across various datasets. The architecture709

coalesces well with applications where fine distinctions in graph structures are essential, such as in710

the prediction of molecular properties.711

In this study, the integration of GIN into our model is anticipated to enhance the ability to capture712

intricate relationships within molecular graphs. This choice aims to improve the predictive perfor-713

mance across diverse physicochemical tasks, contributing to a more accurate assessment of chemical714

compounds.715

Graphormer. Graphormer is an advanced architecture designed to enhance the capabilities of the716

Transformer model specifically for graph representation learning, as introduced by Ying et al. [61]717

This architecture effectively addresses the limitations encountered by traditional Transformer models,718

which often struggle to capture the inherent structural information present in graph data. To this719
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end, Graphormer incorporates several innovative mechanisms, including centrality encoding, spatial720

encoding, and edge encoding, thereby improving the representation of graph data.721

1. Centrality Encoding: Graphormer enhances the feature representation of nodes by integrating722

degree centrality into the input features. For a node v, the encoded feature is defined as:723

hcentrality
v = hv + MLP(deg(v)), (6)

where hv represents the original feature vector of node v, deg(v) denotes the degree of node v, and724

MLP denotes a multi-layer perceptron that transforms the centrality information into a vector space725

that aligns with the node features.726

2. Spatial Encoding: The architecture utilizes spatial encoding to represent the shortest path distance727

(SPD) between nodes. The SPD between nodes u and v is computed and expressed as:728

spatial(u, v) =
1

SPD(u, v) + 1
, (7)

where SPD(u, v) denotes the shortest path distance between nodes u and v.729

3. Edge Encoding: To effectively utilize the significance of edge features, Graphormer incorporates730

edge encoding by calculating the interaction between edge features and node embeddings. This edge731

encoding is defined as:732

e(u, v) =
dot(hu ·WQ, hv ·WK)√

d
, (8)

where e(u, v) represents the embedded feature for the edge connecting nodes u and v, WQ and WK733

are query and key martices respectively, d corresponds to the hidden dimension. This interaction is734

integrated into the attention mechanism by modifying the attention score as follows:735

Attention(u, v) =
exp(e(u, v) + spatial(u, v))∑

w∈N (u) exp(e(u,w) + spatial(u,w))
· V, (9)

where N (u) represents the set of neighbors of node u and V is value matrix.736

Graphormer has exhibited state-of-the-art performance across a variety of graph-level tasks, including737

graph classification and molecular property prediction, demonstrating its versatility and robustness.738

By integrating Graphormer into our model, we leverage its advanced mechanisms to accurately739

capture intricate relationships and patterns within molecular graphs, significantly enhancing predictive740

performance across a broad spectrum of physicochemical tasks.741

D Some training details742

Language model loss. Llang is calculated as the regular Cross-Entropy applied to the labels and743

predicted tokens of the language model.744

Graph model loss. Lgraph is defined as NTXent-Loss [49] applied to the batch of augmented graphs’745

embeddings and to the batch of original graphs’ embeddings. It tries to minimize the distance746

between augmented and original embeddings of the same index and distances others with different747

indices. NTXent-Loss calculates the cosine distance between two vectors and utilizes the temperature748

parameter to balance the influence of positive and negative pairs. Let sim(u, v) denotes the cosine749

similarity between vectors u and v. Then, the loss function for a positive pair of examples (i, j) is as750

follows:751

(Lgraph)i,j = − log
(

esim(ui,vj)/τ∑N
k=1 esim(ui,vk)/τ

)
, (10)

where N is the total number of examples and τ (temperature) is a parameter that controls the752

contribution of positive and negative pairs.753

Bimodal Loss. The bimodal loss, denoted as Lbimodal, is defined also as the NTXent-Loss applied to754

the output embeddings generated by both the language model and the graph model within a given755

batch. This loss function aims to minimize the distance between the embeddings of the same index756

from both models while maximizing the distance between embeddings corresponding to different757

indices. To achieve this, we employ two distinct projection blocks to convert the embeddings from758

the graph and language models into a unified third latent space. Utilizing a single projection block to759

transfer the embeddings from one model into the latent space of the other could inadvertently lead to760

the training of one model to mimic the behavior of the other. Such an outcome is undesirable, as the761

distinct functionalities of the models enhance the universal applicability of the bimodal architecture.762
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Weighted Cross-Entropy Loss. Weighted cross-entropy loss assigns different weights to different763

classes based on their frequency in the dataset. Such approach is useful when you have unbalanced764

data and you want the model to pay more attention to less represented classes. Class weights do765

compensate for the imbalance by increasing the contribution of rare classes to the total loss, according766

to the formulae:767

L = − 1

N

N∑
i=1

C∑
c=1

wc · yi,c · log(pi,c + ϵ), (11)

where768

- N - the number of examples in the batches,769

- C - number of classes,770

- wc - weight for class c,771

- yi,c - true label for example i and class c,772

- pi,c - probability predicted by the model for example i and class c (after applying softmax),773

- ϵ - a small value to prevent division by zero.774

This formulae calculates the average of the weighted cross-entropy over all examples in the batches.775

We used this variation of Cross-Entropy Loss for the HIV, the Tox21, the ClinTox and the MUV776

datasets to improve the quality of our models.777

E Testing datasets (QSAR)778

QM7. The QM7 dataset is a curated subset of GDB-13, a comprehensive database containing779

nearly one billion stable and synthetically accessible organic molecules. Specifically, QM7 includes780

7,165 molecules, each composed of up to 23 atoms, with a focus on seven heavy atoms: carbon (C),781

nitrogen (N), oxygen (O), and sulfur (S). This dataset not only provides a diverse array of molecular782

structures – such as double and triple bonds, cyclic compounds, carboxylic acids, cyanides, amides,783

alcohols, and epoxides – but also features the Coulomb matrix representation of these molecules.784

Additionally, the atomization energies for the QM7 molecules are computed using methods aligned785

with the FHI-AIMS implementation of the Perdew-Burke-Ernzerhof hybrid functional (PBE0).786

QM8. The QM8 dataset consists of 21,786 small organic molecules and serves as a critical resource787

for evaluating machine learning models in predicting quantum mechanical properties. Each molecule788

is characterized by quantum chemical properties, including total energies and electronic spectra789

derived from time-dependent density functional theory (TDDFT). Although TDDFT offers favorable790

computational efficiency for predicting electronic spectra across chemical space, its accuracy can791

be limited.dataset is used to validate machine learning models in a prediction of deviations between792

TDDFT predictions and reference second-order approximate coupled-cluster (CC2) singles and793

doubles spectra. This approach has successfully applied to the low-lying singlet-singlet vertical794

electronic spectra of over 20,000 synthetically feasible small organic molecules.795

QM9. The QM9 dataset is a prominent collection in computational chemistry, comprising 133,885796

molecules with up to nine heavy atoms, including carbon (C), nitrogen (N), oxygen (O), and fluorine797

(F). This dataset is particularly valuable for evaluating machine learning models as it features a rich798

set of molecular structures representative of a wide chemical space.799

Each molecule is identified by a unique ’gdb9’ tag facilitating data extraction and a consecutive integer800

identifier (i). Rotational constants (A, B, and C, in GHz) describe the molecule’s rotational inertia.801

The dipole moment (µ, in Debye) indicates the molecule’s polarity, while isotropic polarizability (α,802

in a3) reflects its response to electric fields. The energies of the highest occupied molecular orbital803

(HOMO) and lowest unoccupied molecular orbital (LUMO), both in Hartree (Ha), are included, along804

with the energy gap (lumo− homo, also in Ha). Electronic spatial extent (R2, in Ha) characterizes805

the molecule’s size. Vibrational properties are represented by the zero-point vibrational energy (zpve,806

in Ha). Thermodynamic properties at 0 K and 298.15 K are also provided, including internal energy807

(U0 and U , in Ha), enthalpy (H , in Ha), Gibbs free energy (G, in Ha), and heat capacity (Cv, in808

cal/mol K).809

FreeSolv. The FreeSolv database is a comprehensive resource that offers a curated collection810

of experimental and calculated hydration-free energies for small neutral molecules in water. This811
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database integrates both experimental values obtained from established literature and calculated812

values derived from advanced molecular dynamics simulations. It encompasses 643 small molecules,813

significantly expanding upon a previously existing dataset of 504 molecules. FreeSolv includes814

essential metadata, such as molecular structures, input files, and annotations, facilitating ease of815

access and reproducibility in research. The calculated values are derived from alchemical free energy816

calculations employing the Generalized Amber Force Field (GAFF) within a TIP3P water model,817

utilizing AM1-BCC charges. Calculations were conducted using the GROMACS simulation package,818

ensuring high accuracy and reliability. Furthermore, the database is regularly updated with new819

experimental references and data, enhancing its utility as a dynamic and evolving resource for the820

research community. Detailed construction processes and references are documented to provide821

transparency and context for users.822

ESOL. The ESOL (Estimated SOLubility) dataset, introduced by Delaney ([12]), provides a robust823

method for estimating the aqueous solubility of compounds directly from their molecular structure.824

The model, derived from a comprehensive training set of 2,874 measured solubilities, employs linear825

regression analysis based on nine molecular properties, with calculated logP octanol identified as826

the most significant parameter. Other key descriptors include molecular weight, the proportion827

of heavy atoms in aromatic systems, and the number of rotatable bonds. ESOL demonstrates828

competitive performance relative to the well-established General Solubility Equation, particularly829

for medicinal and agrochemical compounds. In our study, we build upon the ESOL dataset by830

utilizing a superstructure aimed at predicting water solubility across an extended set of 1,128 samples.831

This enhancement not only broadens the applicability of the original model but also supports more832

precise solubility estimations in diverse chemical spaces. The combination of ESOL’s foundational833

framework with our superstructure facilitates further exploration of solubility-related properties,834

making it a valuable tool for researchers in drug discovery and environmental sciences.835

LIPO (Lipophilicity). The lipophilicity dataset is a vital resource for examining the pharmacoki-836

netic properties of drug molecules, specifically in relation to membrane permeability and solubility.837

Curated from the ChEMBL database, this dataset encompasses experimental results for the oc-838

tanol/water distribution coefficient (logD) at pH 7.4 across a diverse collection of 4,200 compounds.839

Lipophilicity, described by the n-octanol/water partition coefficient or the n-octanol/buffer solution840

distribution coefficient, is of considerable significance in pharmacology, toxicology, and medici-841

nal chemistry. In this study, a quantitative structure–property relationship (QSPR) analysis was842

conducted to predict logD values at pH 7.4 for the dataset. Comparative analysis with previously843

established logD values demonstrated that the developed predictive model offers reliable and robust844

performance. This enhances its utility as a valuable tool for researchers aiming to evaluate and845

optimize the lipophilicity of potential drug candidates, thereby informing pharmacological strategies846

in drug development.847

BBBP. The Blood-Brain Barrier Permeability (BBBP) dataset serves as a resource for studying the848

ability of chemical compounds to penetrate the blood-brain barrier (BBB), which is an important849

consideration in drug development for central nervous system disorders. The BBB selectively850

regulates the transfer of substances from the bloodstream into the brain, thereby necessitating851

an accurate assessment of BBB penetration for potential therapeutic agents. In this study, the852

original BBBP dataset was modified to create both free-form and in-blood-form datasets. Molecular853

descriptors were generated for each dataset and employed in machine learning (ML) models to predict854

BBB penetration. The dataset was partitioned into training, validation, and test sets using the scaffold855

split algorithm from MoleculeNet, which intentionally creates an unbalanced partition to enhance856

the evaluation of predictive performance for compounds that are structurally dissimilar to those used857

in the training data. Notably, the random forest model achieved the highest prediction score using858

212 descriptors from the free-form dataset, surpassing previous benchmarks derived from the same859

splitting method without any external database augmentations. Additionally, a deep neural network860

produced comparable results with just 11 descriptors, emphasizing the significance of recognizing861

glucose-like characteristics in the prediction of BBB permeability.862

Tox21. The Tox21 dataset is a significant resource in toxicology research, comprising 12,060863

training samples and 647 test samples representing various chemical compounds. Each sample is864

associated with 12 binary labels reflecting the outcomes (active/inactive) of different toxicological865

experiments, although the label matrix contains numerous missing values. Due to the extensive866
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size of the dataset, our study focuses exclusively on predicting the NR-AR property. Since its867

inception in 2009, the Tox21 project has screened approximately 8,500 chemicals across more than868

70 high-throughput assays, yielding over 100 million data points, all publicly accessible through869

partner organizations such as the United States Environmental Protection Agency (EPA), National870

Center for Advancing Translational Sciences (NCATS), and National Toxicology Program (NTP).871

This collaborative effort has produced the largest compound library specifically aimed at enhancing872

understanding of the chemical basis of toxicity across research and regulatory domains. Each federal873

partner contributed specialized resources, culminating in a diverse set of compound libraries that874

collectively expand coverage of chemical structures, use categories, and properties. The integrated ap-875

proach of Tox21 enables comprehensive analysis of structure–activity relationships through ToxPrint876

chemotypes, allowing the identification of activity patterns that might otherwise remain undetected.877

This dataset underscores the central premise of the Tox21 program: that collaborative merging of878

distinct compound libraries yields greater insights than could be achieved in isolation.879

ClinTox. The ClinTox dataset serves as an a resource for understanding the factors influencing drug880

approval and toxicity outcomes in clinical trials. This dataset compares drugs approved by the FDA881

with those that have failed clinical trials due to toxicity reasons, encompassing two classification tasks882

for 1,491 drug compounds with known chemical structures. Specifically, it aims to classify (1) clinical883

trial toxicity (or absence of toxicity) and (2) FDA approval status. The compilation of FDA-approved884

drugs is derived from the SWEETLEAD database, while information regarding compounds that885

failed clinical trials is sourced from the Aggregate Analysis of Clinical Trials (AACT) database.886

BACE. The BACE dataset is a resource for the study of inhibitors targeting human β-secretase 1887

(BACE-1), a key enzyme involved in the pathogenesis of Alzheimer’s disease. This dataset provides888

both quantitative binding results (IC50 values) and qualitative outcomes (binary labels) for a collection889

of 1,522 compounds, encompassing experimental values reported in the scientific literature over the890

past decade. Notably, some of these compounds have detailed crystal structures available, which891

enhances the dataset’s utility for structure-activity relationship (SAR) studies. The BACE dataset has892

been integrated into MoleculeNet, where it is structured as a classification task, effectively merging893

the compounds with their corresponding 2D structures and binary labels. The use of scaffold splitting894

in this context is particularly beneficial, facilitating the assessment of predictive performance on a895

single protein target by preventing bias associated with structural similarities among compounds.896

This integration of experimental binding data and diverse structural information underscores the897

dataset’s potential to aid in the design and optimization of BACE-1 inhibitors, ultimately contributing898

to advancements in therapeutic strategies for Alzheimer’s disease.899

MUV. The Maximum Unbiased Validation (MUV) dataset serves as a benchmark for evaluating900

virtual screening techniques in drug discovery. Selected from the PubChem BioAssay database,901

the MUV dataset comprises 17 challenging tasks associated with approximately 90,000 chemical902

compounds, strategically designed to facilitate robust validation of virtual screening methodologies.903

A key feature of this dataset is its foundation in refined nearest neighbor analysis, a technique904

derived from spatial statistics that offers a mathematical framework for the nonparametric analysis of905

mapped point patterns. This methodology enables the systematic design of benchmark datasets by906

purging compounds that exhibit activity against pharmaceutically relevant targets while eliminating907

unselective hits. Through topological optimization and experimental design strategies, the refined908

nearest neighbor analysis constructs data sets of active compounds and decoys, ensuring they are909

unbiased concerning analogue bias and artificial enrichment. Consequently, the MUV dataset910

provides an essential resource for Maximum Unbiased Validation, empowering researchers to assess911

and improve the predictive performance of virtual screening methods in a more rigorous manner.912

HIV. The HIV dataset, introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen,913

encompasses an extensive screening of over 40,000 compounds to assess their inhibitory effects914

on HIV replication. The screening results are categorized into three classifications: confirmed915

inactive (CI), confirmed active (CA), and confirmed moderately active (CM). For the purposes of916

analysis, CA and CM labels are combined to formulate a binary classification task distinguishing917

between inactive (CI) and active (CA/CM) compounds. This dataset is particularly valuable for918

researchers aiming to discover new categories of HIV inhibitors, and the use of scaffold splitting919

is recommended to enhance the identification of novel compounds while mitigating bias related920

to structural similarities. Additionally, the HIV positive selection mutation database provides a921
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comprehensive resource for understanding the selection pressures exerted on HIV protease and922

reverse transcriptase, which are critical targets for antiretroviral therapy. This large-scale database923

contains sequences from approximately 50,000 clinical AIDS samples, leveraging contributions924

from Specialty Laboratories, Inc., allowing for high-resolution selection pressure mapping. It offers925

insights into selection pressures at individual sites and their interdependencies, along with datasets926

from other public repositories, such as the Stanford HIV database. This confluence of data facilitates927

cross-validation with independent datasets and enables a nuanced evaluation of drug treatment effects,928

significantly advancing the understanding of HIV resistance mechanisms.929

F Code930

Our code is available by link 1.931

1Our code for all experiments is accessible on https://anonymous.4open.science/r/thinking-like-a-chemist-
EC7B.
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