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Abstract001

Embedding fusion has emerged as an effective002
approach for enhancing performance across var-003
ious NLP tasks. However, systematic guide-004
lines for selecting optimal layers and devel-005
oping effective fusion strategies for the inte-006
gration of LLMs remain underexplored. In007
this study, we propose a layer-aware embed-008
ding selection method and investigate how to009
quantitatively evaluate different layers to iden-010
tify the most important ones for downstream011
NLP tasks, showing that the critical layers012
vary depending on the dataset. We also ex-013
plore how combining embeddings from multi-014
ple LLMs, without requiring model fine-tuning,015
can improve performance. Experiments on016
four English text classification datasets (SST-017
2, MR, R8, and R52) demonstrate that differ-018
ent layers in LLMs exhibit varying degrees019
of representational strength for classification,020
and that combining embeddings from differ-021
ent models can enhance performance if the022
models exhibit complementary characteristics.023
Additionally, we discuss resources overhead024
(memory and inference time) to provide a bal-025
anced perspective on the real-world feasibil-026
ity of embedding fusion. Code is available027
at: https://anonymous.4open.science/r/028
Layer-Aware-Embedding-Fusion-7877/029

1 Introduction030

With the recent advancements in large language031

models (LLMs), the representational capacity of032

decoder-based models (Brown et al., 2020; Tou-033

vron et al., 2023a,b) has attracted considerable at-034

tention in NLP downstream tasks (Zhang et al.,035

2022; Sun et al., 2023). Despite their impressive036

zero or few-shot performance, these models are037

primarily trained for next token prediction, leading038

to layer-wise differences in how semantic and con-039

textual information is encoded. Traditional usage040

often relies on final layer embeddings (Brown et al.,041

2020), yet previous studies in encoder-based archi-042

tectures (Devlin et al., 2019) have hinted that inter- 043

mediate layers may yield richer representations for 044

classification (Zhang et al., 2024). 045

Moreover, as diverse pretrained models includ- 046

ing generative LLMs and specialized embedding 047

models continue to proliferate (Lee et al., 2025; 048

Wang et al., 2024), model fusion has emerged as 049

a practical approach to leverage complementary 050

knowledge. However, systematic guidelines for (1) 051

which layer to select from a decoder-based LLM 052

for a particular task, and (2) how to efficiently fuse 053

embeddings across multiple LLMs with minimal 054

computational overhead, remain limited. 055

To address these challenges, we present a series 056

of contributions aimed at improving layer selec- 057

tion and model combination in LLM-based embed- 058

dings. 059

Layer-Aware Selection We present a method that 060

empirically demonstrates the importance of layer 061

selection through quantitative experiments, show- 062

ing that specific layers are crucial for text classifi- 063

cation. The results provide both empirical and par- 064

tially theoretical insights into why certain mid/late 065

layers outperform the final layer in decoder-based 066

LLMs. 067

Layer-Aware Embedding Fusion We demon- 068

strate the fusion of embeddings from multiple LLM 069

models without fine-tuning, showing how combin- 070

ing different models improves performance across 071

various NLP tasks. By considering the layers of 072

the LLM models, we achieve optimal performance 073

through embedding fusion, proving that specific 074

layers play a crucial role in determining the most 075

effective combination. 076

Stabilizing Performance through Multi-Model 077

Fusion Through experiments combining more 078

than three models, we show that classification per- 079

formance becomes more stable as more models 080

are integrated, providing empirical evidence of the 081

benefits of multi-model fusion for improving task- 082

specific accuracy. 083
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2 Related Work084

2.1 Text Classification and Pretrained085

Language Models086

Text classification has long been a central re-087

search topic in the field of natural language pro-088

cessing (NLP). In the early stages, statistical089

representation techniques such as bag-of-words,090

term frequency-inverse document frequency (TF-091

IDF), and n grams, along with traditional machine092

learning models such as support vector machines093

(SVM) (Pang et al., 2002) and logistic regres-094

sion (Zhang et al., 2003), dominated the field.095

With the rapid advancement of deep learning,096

particularly the introduction of pretraining lan-097

guage models, the paradigm of text classification098

has undergone a significant change. Representa-099

tive models such as BERT (Bidirectional Encoder100

Representations from Transformers) (Devlin et al.,101

2019) and RoBERTa (Robustly Optimized BERT102

Pre-Training Approach) (Liu et al., 2019) signifi-103

cantly improved the ability to capture contextual104

information in text through bidirectional encoder ar-105

chitectures and large-scale pre-training corpora. By106

fine-tuning these models on downstream tasks, they107

have been shown to achieve substantially higher108

classification performance compared to traditional109

approaches (Youngmin et al., 2024).110

2.2 Extended Applications of LLM111

The evolution of Large Language Models (LLMs)112

based on decoder architectures has enabled zero-113

shot (Kojima et al., 2023) and few-shot (Zhang114

et al., 2022) learning for downstream tasks115

such as text classification, spurring research on116

prompt-based approaches such as chain-of-thought117

(CoT) (Wei et al., 2023) and CARP (Sun et al.,118

2023). Numerous studies have reported on the per-119

formance of LLMs in classification tasks, including120

models such as GPT-3 (Brown et al., 2020) and the121

LLaMA series (Touvron et al., 2023a,b), as well as122

empirical studies analyzing their behavior (Sarkar123

et al., 2023; Gretz et al., 2023). However, these124

methods exhibit considerable performance variabil-125

ity depending on prompt design (Cao et al., 2024;126

He et al., 2024).127

Meanwhile, there is growing interest in using128

LLMs not only as generative models but also as129

providers of high-quality embeddings (Tao et al.,130

2024). Recent research suggests that relatively131

lightweight LLMs (e.g. up to 7B parameters) can132

produce strong embedding quality with efficient133

computational resources (Wang et al., 2024; Lee 134

et al., 2025). Furthermore, several studies have 135

emphasized that different embedding layers within 136

a model can produce optimal representations for 137

tasks, with a particular focus on the importance of 138

layer selection (Zhang et al., 2024). These findings 139

highlight the role of intermediate representations 140

in understanding the encoding behavior of trans- 141

former models in various applications (Skean et al., 142

2024). 143

2.3 Embedding Fusion 144

As diverse pretrained models, including large lan- 145

guage models (LLMs), continue to emerge, there 146

has been increasing interest in combining embed- 147

dings extracted from multiple models (Shinnou 148

et al., 2018; Blandfort et al., 2019). Previous stud- 149

ies have reported performance improvements on 150

tasks such as text classification and sentiment anal- 151

ysis through embedding fusion. 152

For example, LLMEmbed (Liu et al., 2024) 153

demonstrates that combining embeddings from 154

LLaMA2 (Touvron et al., 2023b) with those from 155

BERT and RoBERTa can effectively leverage the 156

distinctive representational characteristics of each 157

model. Moreover, a variety of fusion strategies 158

have been proposed not only in NLP, but also in 159

other domains for instance, QUARC (Kumar et al., 160

2020) applies quaternion-based operations, while 161

FuseMoE (Han et al., 2024) adopts a mixture-of- 162

experts (MoE) architecture. 163

However, significant performance differences 164

arise depending on the fusion method employed, 165

and not all combinations lead to consistent improve- 166

ments (Ko et al., 2024). Furthermore, since each 167

embedding layer possesses a different representa- 168

tional capacity, understanding the layer-wise char- 169

acteristics is critical for effective fusion (Kaushik 170

et al., 2024). 171

3 Methodology 172

In this study, we enhance text classification per- 173

formance using embeddings from various LLMs 174

through three primary perspectives. First, we 175

quantitatively examine the performance differences 176

when using embeddings from a single layer ver- 177

sus combining embeddings from multiple layers in 178

decoder-based LLMs. 179

Second, we compare and analyze strategies to 180

enhance performance by combining embeddings 181

from different LLMs. Lastly, we explore the po- 182
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Figure 1: The embeddings extracted from the LLM are mapped to a unified dimension using a linear projection,
after which various fusion techniques are applied. The selected layer n from the generation models represents the
most informative layer for classification The two embeddings, normalized to dimension dM(M=1024), are then
combined using a specific fusion strategy to generate a new representation. Finally, this fused embedding is fed into
the classifier head, which is trained to optimize classification performance.

Table 1: Summary of the key specifications of the gen-
eration models and embedding models utilized in the
experiments, including model name, embedding dimen-
sion (Dim), and parameter size.

Model Dim Parameters

LLaMA2(Touvron et al.,
2023a,b)

4096 6.92B

Qwen2.5(Qwen et al.,
2025)

3584 7.62B

Falcon 3(Almazrouei
et al., 2023)

3072 6.98B

Mistral(Jiang et al.,
2023)

4096 6.92B

Gemma 2(Team et al.,
2024)

2304 2B

NV-Embed-v2(Lee et al.,
2025)

4096 7.1B

e5-large-v2(Wang
et al., 2024)

1024 0.335B

tential for further performance improvement when183

combining embeddings from three or more LLMs.184

The experiments utilize generation models (with185

up to 7B parameters) and embedding models. The186

following table summarizes the key specifications187

of the models used in the study.188

3.1 Strategies for Using Embeddings from189

Generation Models190

Last Layer vs. Layer wise Performance First,191

it is known that the embedding representation ca-192

pacity of decoder-based LLMs generally increases 193

as the layers deepen. To verify this, this study ex- 194

tracts the hidden states of all layers and generates 195

embeddings for each layer to measure text classifi- 196

cation performance. Through this process, we aim 197

to identify the optimal layers that yield the best 198

classification performance. 199

Multi-Layer Representation Aggregation Sec- 200

ond, we investigate how performance variations 201

when combining embeddings from the last 1 to 10 202

layers. Fusion methods such as averaging, max, 203

and min are applied to integrate the embeddings. 204

For instance, if embeddings are extracted from the 205

last three layers, we average them to create a sin- 206

gle embedding and input it into the classification 207

model. This is expected to provide more stable and 208

consistent performance compared to a single layer, 209

while methods like max or min fusion may cause 210

performance fluctuations due to inherent biases in 211

element selection. 212

Single Layer vs Multiple Layers Finally, based 213

on the results of the previous two experiments, we 214

compare the use of a single layer versus combin- 215

ing multiple layers. This comparison quantitatively 216

evaluates whether combining multiple layers sig- 217

nificantly improves classification performance or if 218

a single optimal layer can achieve sufficient perfor- 219

mance, considering the additional computational 220

cost and memory usage. 221
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3.2 Integrating Embeddings from Various222

Models223

Linear Projection for Embedding Dimension In-224

tegration Embeddings extracted from multiple225

models may have different dimensions, so we apply226

a linear projection to unify them before combining.227

For example, to project an embedding E ∈ Rd1228

to a target dimension d2, we use learnable param-229

eters: a weight matrix W ∈ Rd2×d1 and a bias230

vector b ∈ Rd2 . To incorporate nonlinearity, we231

apply a transformation such as: To incorporate232

nonlinearity, we apply a transformation such as233

f(E) = ReLU(WE + b). These projected em-234

beddings are then integrated using various fusion235

techniques, allowing them to coexist within a uni-236

fied dimensional space. In this study, we perform237

the projection onto the smaller dimension and ap-238

ply the ReLU activation function (Agarap, 2019)239

to introduce nonlinear characteristics into the em-240

beddings.241

Fusion Methods A key focus of this study is242

to enhance representational capabilities of various243

models by combining embeddings extracted from244

various LLMs. To ensure the validity of the exper-245

iments across multiple models, embeddings from246

the last layers of each model are extracted and fused247

in various ways. The specific fusion techniques are248

as follows:249

• Concatenation: Directly concatenating the250

embedding vectors E along the matrix dimen-251

sion to form a single embedding:252

E′ = [E1∥∥E2∥∥ . . . ∥∥En] (1)253

• Sum: After aligning the dimensions of the254

embeddings, we form a new embedding by255

element-wise addition:256

E′ =

n∑
i=1

f(Ei) (2)257

• Multiplication: After aligning dimensions,258

embeddings are transformed into 2D arrays259

and combined via matrix multiplication.260

E1 ∈ Rd → reshape → E′
1 ∈ R32×32261

E2 ∈ Rd → reshape → E′
2 ∈ R32×32 (3)262

E′ = E′
1 · E′

2263

E′′ = flatten(E′) ∈ R1024264

• Hadamard (Element-wise Product): Em- 265

beddings are combined by multiplying corre- 266

sponding elements at the same position across 267

models. 268

• Quaternion Fusion (Kumar et al., 2020): Em- 269

beddings are treated as quaternion-valued vec- 270

tors and fused using quaternion operations, 271

preserving multidimensional inter-model rela- 272

tionships. 273

• Mixture-of-Experts Fusion (Han et al., 274

2024): Embeddings from each model are 275

processed through different expert modules, 276

and the final representation is generated via 277

weighted sum across experts. 278

• All Methods: All fusion methods above are 279

applied simultaneously and sequentially to 280

observe how combinations influence perfor- 281

mance. 282

• Residually Enhanced Fusion (Gardias et al., 283

2020): The newly generated embedding is 284

combined with the original one via residual 285

connections to incorporate additional informa- 286

tion while preserving the original expressive- 287

ness. 288

3.3 Fusion of Three or More LLMs 289

While the previous sections focused on combining 290

embeddings from two models, this section inves- 291

tigates the performance impact when combining 292

embeddings from three or more LLMs. 293

The motivation behind combining multiple mod- 294

els is to leverage their complementary strengths, 295

potentially maximizing performance improvement. 296

The key objectives of this experiment are twofold: 297

first, to determine whether combining embeddings 298

from three or more models leads to performance im- 299

provement. second, to assess whether performance 300

variance decreases as more models are combined, 301

thus improving stability. 302

The fusion method used for combining embed- 303

dings in this experiment is primarily concatena- 304

tion, and all possible combinations are tested. Per- 305

formance is evaluated using the same method de- 306

scribed in section 3.2. 307

3.4 Enhancing Fusion by Selecting 308

Meaningful Layers 309

Based on the observations from Sections 3.1 to 310

3.3, we design an additional experiment to inves- 311
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tigate whether selecting embeddings from dataset-312

specific optimal layers can enhance fusion perfor-313

mance.314

For each dataset, we first identify the most ef-315

fective layers using the methodology described in316

Section 3.1. These layers are then used in fusion317

experiments involving single or multiple models318

(Sections 3.2 and 3.3). We compare the classifi-319

cation performance of these optimal-layer-based320

fusions against baselines that use default or last-321

layer embeddings. This experiment aims to evalu-322

ate whether layer selection tailored to each dataset323

leads to improved accuracy and stability without324

requiring fine-tuning of the underlying models.325

4 Experiment326

Text classification performance using the combined327

embeddings is primarily evaluated based on ac-328

curacy. Given the extensive nature of the experi-329

mental results, we present a summary of the most330

significant or representative results in table format.331

To evaluate text classification performance,332

this study utilized SST-2 (Socher et al., 2013)333

MR (Maas et al., 2011), and R8 datasets. SST-334

2 and MR are binary sentiment classification335

datasets based on movie reviews, with 67,349/872336

(train/test) and 40,000/10,000 samples, respectively.337

R8, derived from Reuters-21578, is a document338

classification dataset with 5,485/2,189 samples339

across 8 categories. R52, also derived from Reuters-340

21578, is a larger variant consisting of 6,532 train-341

ing and 2,568 test samples distributed across 52 cat-342

egories. In this study, experiments were conducted343

in an environment equipped with two NVIDIA344

RTX 4090 GPUs (24GB each). To perform text345

classification using the fused embedding vectors, a346

multi-layer perceptron (MLP)-based classifier was347

employed. During training, the batch size was set348

to 100, the learning rate to 1e-4, the optimizer to349

Adam, and the number of epochs to 120.350

This chapter systematically analyzes the perfor-351

mance variations observed when using embeddings352

extracted from decoder-based LLMs for text classi-353

fication. The analysis focuses on two main aspects:354

(1) performance across specific layers, and (2) the355

impact of fusing embeddings from different mod-356

els.357

4.1 Layer Selection Strategies for Embeddings358

Single Layer As shown in Figure 2, classification359

performance generally increases toward the upper360

Figure 2: Comparison of Single-Layer Embedding Clas-
sification Performance in Decoder-Based LLMs

Figure 3: Comparison of Averaged Layer Embedding
Fusion in Decoder-Based LLMs

layers but tends to drop slightly at the final layer. 361

This pattern suggests that the penultimate or nearby 362

layers yield more discriminative and stable repre- 363

sentations for classification tasks, with an average 364

performance difference of approximately 0.04. 365

Multiple Layer As shown in Figure 3, the 366

averaging-based fusion method generally outper- 367

formed the embedding from the final layer, al- 368

though its performance remained lower than that of 369

a well performing specific layer. Fusion methods 370

based on maximum or minimum values exhibited 371

performance comparable to that of the final layer. 372

While combining multiple layers can lead to more 373

stable representations, it does not necessarily yield 374

better results than appropriately selecting a single 375

representative layer. Furthermore, such approaches 376

introduce additional memory usage and computa- 377

tional overhead. 378

4.2 Layer Selection in Single Models for 379

Classification 380

According to section 4.1, we conducted further ex- 381

periments using a single layer that demonstrated 382

high performance. Instead of utilizing the final 383

layer, we selected a specific intermediate layer, 384

which showed an average performance improve- 385

ment of approximately +0.4. However, this im- 386

provement was not consistent across all models. 387
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Table 2: This table presents the accuracy for the three datasets. l represents the optimal layer for each model.
Models without l in the table either achieve the highest accuracy at the last layer or correspond to embedding models.
Bolded values indicate the best performance for each dataset.

Previous Work

Method Backbone SST2 MR R8 R52

CARP (Sun et al., 2023) LLaMA2 7B 0.8842 0.8494 0.9676 0.7305
CARP (Sun et al., 2023) LLaMA2 7B 0.9569 0.9074 0.9783 0.9627
LLMEmbed (Lee et al., 2025) LLaMA2 7B 0.9576 0.9549 0.9822 0.9568

Fusion Method

Embeddingmodel,layer Fusion Method SST2 MR R8 R52

Specific
Layer

Ell(LLaMA2,L=32) – 0.9518 0.9586 0.9735 0.9381
Best Ell,L=20 0.9522 0.9629 0.9794 0.9416
Emi(Mistral,L=32) – 0.9232 0.9539 0.9639 0.9042
Best Emi,L=25 – – – 0.9136
Efa(Falcon3,L=28) – 0.9220 0.9552 0.9657 0.8314
Best Efa,L=21 0.9369 0.9589 0.9694 0.8376
Eqw(Qwen,L=28) – 0.9335 0.9589 0.9753 0.9412
Best Eqw,L=20 0.9484 0.9632 0.9772 0.9451
Ege(Gemma2,L=26) – 0.9209 0.9564 0.9753 0.8742
Best Ege,L=19 0.9278 0.9601 0.9781 –
Env(NV-Embed-v2) – 0.9564 0.9699 0.9808 0.9595
Ee5(e5_large_v2) – 0.9461 0.9545 0.9785 0.9583

Two
Models

Ee5, Env Quaternion(R) 0.9644 0.9709 0.9840 0.9595
Env, Ege,L=l Hadamard(R) 0.9564l=19 0.9709l=20 0.9849l=23 0.9451l=23
Ell,L=l, Env Quaternion(R) 0.9644l=20 0.9702l=20 0.9826l=27 0.9591l=28
Eqw,L=l, Env Multiplication(R) 0.9587l=20 0.9721l=20 0.9836l=27 0.9626l=27

Multi
Models

Ell, Eqw, Env, Ee5 Concatenation 0.961 0.9709 0.9845 0.9638
ALL(E) Sum(R) 0.961 0.9719 0.9822 0.9611

The optimal layer varied depending on the dataset:388

for SST-2 and MR, layers closer to the middle389

tended to yield better performance, whereas for390

R8 and R52, later layers performed better. The391

specific layers used in each case are presented in392

the “Specific Layer” row of Table 2.393

4.3 Layer-Aware Fusion of Embeddings from394

Two Models395

Across datasets, the best performance was achieved396

by selecting optimal layers from each model, rather397

than using final-layer representations. Compared398

to NV_embed (Lee et al., 2025), the strongest-399

performing single model, fusion methods showed400

improvements of +0.080 on SST-2, +0.022 on MR,401

+0.041 on R8, and +0.043 on R52.402

SST-2, MR, and R8 achieved the highest scores403

through layer-wise selective fusion, the correspond-404

ing results are presented in the Two Model row 405

of Table 2. Notably, combining two individually 406

strong models did not always result in superior 407

performance, highlighting that model complemen- 408

tarity is more critical than standalone strength in 409

fusion-based approaches. 410

4.4 Combining Embeddings from Multiple 411

Models 412

Combining embeddings from multiple models gen- 413

erally resulted in improved performance. In nearly 414

all cases, multi-model fusion outperformed single- 415

model baselines. The highest performance on the 416

R52 dataset was achieved by combining embed- 417

dings from four models, with an improvement of 418

+0.0043. 419

For the other datasets, however, the highest 420

performance was achieved by fusing embeddings 421
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from two models with appropriately selected layers.422

While the optimal number of models varied depend-423

ing on the dataset, combining more models tended424

to improve classification performance in general.425

These results are presented in the “Multi-Model”426

row of Table 2.427

5 Results Analysis428

5.1 Decline in Performance at the Last Layers429

The performance degradation observed in the final430

layers of decoder-based LLMs is closely related431

to their training objective. These models are pri-432

marily trained for next token prediction, leading433

them to emphasize token level interactions and lo-434

calized patterns rather than capturing a global se-435

mantic representation. As a result, the later layers,436

particularly the final layer, become increasingly437

specialized for generation tasks, focusing on syn-438

tactic structures and positional cues essential for439

predicting the next token (Kaushik et al., 2024).440

In contrast, classification tasks require a broader441

contextual understanding and inference of seman-442

tic relationships, making the middle-to-late layers443

more effective than the final layer in many cases.444

These intermediate layers capture richer semantic445

representations, which can be beneficial for tasks446

involving general meaning inference and contex-447

tual comprehension (Skean et al., 2024). Therefore,448

embeddings extracted from the middle-to-late lay-449

ers are often more effective than those from the450

final layer for classification tasks.451

5.2 Effect of Embedding Fusion452

To enhance the performance of downstream tasks,453

embedding fusion combining embeddings from454

multiple layers has been widely explored. By inte-455

grating features from different layers, this approach456

enables models to generate richer contextual rep-457

resentations, resulting in more comprehensive and458

robust embeddings. Embedding fusion not only459

enhances semantic expressiveness but also miti-460

gates noise, improving overall stability and gener-461

alization across tasks. Experimental results have462

demonstrated performance improvements through463

this technique.464

5.3 Complementarity Between Different465

Models466

When combining different models, the unique char-467

acteristics and biases of each model play a crucial468

role. Since each model is trained differently, inte-469

grating complementary information from various 470

models can lead to performance improvements. 471

Complementarity arises when models capture 472

different types of information. By combining 473

models that encode distinct representational pat- 474

terns, the resulting embeddings can provide a richer 475

and more informative signal for downstream tasks. 476

However, when models encode similar or overlap- 477

ping information, fusion tends to be less effective, 478

sometimes even degrading performance due to re- 479

dundancy or conflicting representational features. 480

Therefore, model selection is critical when con- 481

sidering combination. Selecting models with com- 482

plementary representational characteristics is more 483

likely to enhance performance, making it essential 484

to analyze and understand the strengths of each 485

model before fusion. 486

5.4 Efficiency Analysis 487

Memory consumption increases linearly with the 488

number of fused models due to the expansion of the 489

combined embedding dimension. For example, fus- 490

ing embeddings from two models (e.g., NV-embed 491

and e5) resulted in a combined embedding size 492

of 5120 dimensions, requiring approximately 1.3 493

GB of storage for SST-2. However, adding more 494

models rapidly increased memory requirements: 495

combining embeddings from five models (e.g., NV- 496

embed, e5, LLaMA2, Qwen, and Mistral) resulted 497

in a combined embedding size of 16,896 dimen- 498

sions and required approximately 4.3 GB—over 4× 499

more memory compared to the two model case. 500

Memory growth is primarily driven by the in- 501

crease in the fused embedding size, as each ad- 502

ditional model contributes its own feature dimen- 503

sions, leading to a proportional increase in storage 504

and computational costs. While more models pro- 505

vide additional features, the diminishing returns in 506

performance highlight the importance of balancing 507

the trade off between accuracy gains and memory 508

efficiency. Techniques such as dimensionality re- 509

duction or learned projections can mitigate memory 510

growth while preserving performance. 511

6 Conclusion 512

This study analyzed various strategies for improv- 513

ing text classification performance using embed- 514

dings from large language models (LLMs). The 515

analysis compared the effectiveness of single-layer 516

and multi-layer embeddings, and experi-mentally 517

investigated the impact of combining embeddings 518
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from different LLMs. Based on these results, op-519

timal strategies for embedding fusion were dis-520

cussed.521

Improving text classification performance with522

LLM embeddings requires more than simply ap-523

plying a fusion strategy. Our findings show that524

embeddings from mid-to-late layers generally out-525

perform those from the final layer, which tend to526

encode generation specific or position heavy sig-527

nals. While averaging across multiple layers yields528

more stable performance, it also increases memory529

and computational costs. When per-dataset layer530

selection is infeasible, selectively averaging late531

layers or empirically identifying a single effective532

layer can offer a practical alternative.533

In multi-model settings, combining embeddings534

from different LLMs yields modest performance535

gains, but only when the models encode comple-536

mentary information. Redundant or similarly bi-537

ased models provide limited benefit and may intro-538

duce overfitting or inefficiencies. Although com-539

bining more than two models can improve perfor-540

mance stability, it also significantly increases re-541

source demands. Therefore, task specific and re-542

source aware fusion strategies, grounded in a care-543

ful analysis of model and layer characteristics, are544

essential for designing scalable and effective text545

classification systems.546

7 Limitation547

This study presents promising strategies for enhanc-548

ing text classification performance but is limited by549

its focus on widely used English datasets (SST-2,550

MR, R8, R52), leaving the effectiveness in multi-551

lingual or domain specific contexts (e.g., medical,552

legal) largely unverified. This narrow focus on553

general purpose English classification represents a554

significant constraint on the generaliz ability of our555

findings.556

The embedding fusion strategies explored557

showed performance improvements across several558

conditions but not consistently across all combina-559

tions. The optimal layer or model selection may560

vary depending on dataset characteristics, requir-561

ing repeated experimentation to identify the most562

effective configuration. Additionally, while our563

dimension adaptive projection approach partially564

addresses computational resource costs, it does not565

fully eliminate the trial-and-error needed to dis-566

cover an optimal fusion strategy.567

8 Future Works 568

Future research should focus on developing meth- 569

ods for extracting task optimized embedding lay- 570

ers, while also evaluating the generalizability of 571

fusion strategies across multilingual datasets and 572

various domains (e.g., medical, legal, technical doc- 573

uments). This could involve analyzing how embed- 574

dings from different layers influence task specific 575

performance and establishing frameworks for au- 576

tomatically identifying the most suitable layers for 577

specific tasks or domains. Such approaches could 578

ensure high performance across diverse languages 579

and domains, while also reducing computational 580

costs and resource requirements. These advance- 581

ments are expected to significantly contribute to 582

both the practical applicability and scalability of 583

real-world natural language processing tasks. 584

References 585

Abien Fred Agarap. 2019. Deep learning using rectified 586
linear units (relu). 587

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al- 588
shamsi, Alessandro Cappelli, Ruxandra Cojocaru, 589
Mérouane Debbah, Étienne Goffinet, Daniel Hess- 590
low, Julien Launay and Quentin Malartic et al. 2023. 591
The falcon series of open language models. 592

Philipp Blandfort, Tushar Karayil, Federico Raue, Jörn 593
Hees and Andreas Dengel. 2019. Fusion strategies 594
for learning user embeddings with neural networks. 595

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 596
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 597
Neelakantan, Pranav Shyam, Girish Sastry and 598
Amanda Askell et al. 2020. Language models are 599
few-shot learners. 600

Bowen Cao, Deng Cai, Zhisong Zhang, Yuexian Zou 601
and Wai Lam. 2024. On the worst prompt perfor- 602
mance of large language models. 603

Jacob Devlin, Ming-Wei Chang, Kenton Lee and 604
Kristina Toutanova. 2019. Bert: Pre-training of deep 605
bidirectional transformers for language understand- 606
ing. 607

Przemek Gardias, Eric Arthur and Huaming Sun. 2020. 608
Enhanced residual networks for context-based image 609
outpainting. 610

Shai Gretz, Alon Halfon, Ilya Shnayderman, Orith 611
Toledo-Ronen, Artem Spector, Lena Dankin, Yan- 612
nis Katsis, Ofir Arviv, Yoav Katz and Noam Slonim 613
et al. 2023. Zero-shot topical text classification with 614
LLMs - an experimental study. In Findings of the 615
Association for Computational Linguistics: EMNLP 616
2023, pages 9647–9676, Singapore. Association for 617
Computational Linguistics. 618

8

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/2311.16867
http://arxiv.org/abs/1901.02322
http://arxiv.org/abs/1901.02322
http://arxiv.org/abs/1901.02322
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2406.10248
http://arxiv.org/abs/2406.10248
http://arxiv.org/abs/2406.10248
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.06723
http://arxiv.org/abs/2005.06723
http://arxiv.org/abs/2005.06723
https://doi.org/10.18653/v1/2023.findings-emnlp.647
https://doi.org/10.18653/v1/2023.findings-emnlp.647
https://doi.org/10.18653/v1/2023.findings-emnlp.647


Xing Han, Huy Nguyen, Carl Harris, Nhat Ho and Suchi619
Saria. 2024. Fusemoe: Mixture-of-experts transform-620
ers for fleximodal fusion.621

Jia He, Mukund Rungta, David Koleczek, Arshdeep622
Sekhon, Franklin X Wang and Sadid Hasan. 2024.623
Does prompt formatting have any impact on llm per-624
formance?625

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-626
sch, Chris Bamford, Devendra Singh Chaplot, Diego627
de las Casas, Florian Bressand, Gianna Lengyel, Guil-628
laume Lample and Lucile Saulnier et al. 2023. Mis-629
tral 7b.630

Arjun Ramesh Kaushik, Sunil Rufus R P and Nalini631
Ratha. 2024. Enhancing authorship attribution632
through embedding fusion: A novel approach with633
masked and encoder-decoder language models.634

Young Su Ko, Jonathan Parkinson and Wei Wang.635
2024. Benchmarking text-integrated protein lan-636
guage model embeddings and embedding fusion on637
diverse downstream tasks. bioRxiv.638

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-639
taka Matsuo and Yusuke Iwasawa. 2023. Large lan-640
guage models are zero-shot reasoners.641

Deepak Kumar, Nalin Kumar and Subhankar Mishra.642
2020. Quarc: Quaternion multi-modal fusion archi-643
tecture for hate speech classification.644

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan645
Raiman, Mohammad Shoeybi, Bryan Catanzaro and646
Wei Ping. 2025. Nv-embed: Improved techniques647
for training llms as generalist embedding models.648

Chun Liu, Hongguang Zhang, Kainan Zhao, Xinghai649
Ju and Lin Yang. 2024. Llmembed: Rethinking650
lightweight llm’s genuine function in text classifi-651
cation.652

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,653
Mandar Joshi, Danqi Chen, Omer Levy, Mike654
Lewis, Luke Zettlemoyer and Veselin Stoyanov. 2019.655
Roberta: A robustly optimized bert pretraining ap-656
proach.657

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,658
Dan Huang, Andrew Y. Ng and Christopher Potts.659
2011. Learning word vectors for sentiment analysis.660
In Proceedings of the 49th Annual Meeting of the661
Association for Computational Linguistics: Human662
Language Technologies, pages 142–150, Portland,663
Oregon, USA. Association for Computational Lin-664
guistics.665

Bo Pang, Lillian Lee and Shivakumar Vaithyanathan.666
2002. Thumbs up? sentiment classification using667
machine learning techniques.668

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,669
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li670
and Dayiheng Liu et al. 2025. Qwen2.5 technical671
report.672

Souvika Sarkar, Dongji Feng and Shubhra Kanti Kar- 673
maker Santu. 2023. Zero-shot multi-label topic infer- 674
ence with sentence encoders and LLMs. In Proceed- 675
ings of the 2023 Conference on Empirical Methods in 676
Natural Language Processing, pages 16218–16233, 677
Singapore. Association for Computational Linguis- 678
tics. 679

Hiroyuki Shinnou, Xinyu Zhao and Kanako Komiya. 680
2018. Domain adaptation using a combination of 681
multiple embeddings for sentiment analysis. In Pro- 682
ceedings of the 32nd Pacific Asia Conference on Lan- 683
guage, Information and Computation, Hong Kong. 684
Association for Computational Linguistics. 685

Oscar Skean, Md Rifat Arefin, Yann LeCun and Ravid 686
Shwartz-Ziv. 2024. Does representation matter? ex- 687
ploring intermediate layers in large language models. 688

Richard Socher, Alex Perelygin, Jean Wu, Jason 689
Chuang, Christopher D. Manning, Andrew Ng and 690
Christopher Potts. 2013. Recursive deep models for 691
semantic compositionality over a sentiment treebank. 692
In Proceedings of the 2013 Conference on Empiri- 693
cal Methods in Natural Language Processing, pages 694
1631–1642, Seattle, Washington, USA. Association 695
for Computational Linguistics. 696

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei 697
Guo, Tianwei Zhang and Guoyin Wang. 2023. Text 698
classification via large language models. 699

Chongyang Tao, Tao Shen, Shen Gao, Junshuo Zhang, 700
Zhen Li, Zhengwei Tao and Shuai Ma. 2024. Llms 701
are also effective embedding models: An in-depth 702
overview. 703

Gemma Team, Morgane Riviere, Shreya Pathak, 704
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati- 705
raju, Léonard Hussenot, Thomas Mesnard, Bobak 706
Shahriari and Alexandre Ramé et al. 2024. Gemma 707
2: Improving open language models at a practical 708
size. 709

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 710
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 711
Baptiste Rozière, Naman Goyal, Eric Hambro and 712
Faisal Azhar et al. 2023a. Llama: Open and efficient 713
foundation language models. 714

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, 715
Amjad Almahairi, Yasmine Babaei, Nikolay Bash- 716
lykov, Soumya Batra, Prajjwal Bhargava and Shruti 717
Bhosale et al. 2023b. Llama 2: Open foundation and 718
fine-tuned chat models. 719

Liang Wang, Nan Yang, Xiaolong Huang, Binxing 720
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder 721
and Furu Wei. 2024. Text embeddings by weakly- 722
supervised contrastive pre-training. 723

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 724
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le and 725
Denny Zhou. 2023. Chain-of-thought prompting elic- 726
its reasoning in large language models. 727

9

http://arxiv.org/abs/2402.03226
http://arxiv.org/abs/2402.03226
http://arxiv.org/abs/2402.03226
http://arxiv.org/abs/2411.10541
http://arxiv.org/abs/2411.10541
http://arxiv.org/abs/2411.10541
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2411.00411
http://arxiv.org/abs/2411.00411
http://arxiv.org/abs/2411.00411
http://arxiv.org/abs/2411.00411
http://arxiv.org/abs/2411.00411
https://doi.org/10.1101/2024.08.24.609531
https://doi.org/10.1101/2024.08.24.609531
https://doi.org/10.1101/2024.08.24.609531
https://doi.org/10.1101/2024.08.24.609531
https://doi.org/10.1101/2024.08.24.609531
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2012.08312
http://arxiv.org/abs/2012.08312
http://arxiv.org/abs/2012.08312
http://arxiv.org/abs/2405.17428
http://arxiv.org/abs/2405.17428
http://arxiv.org/abs/2405.17428
http://arxiv.org/abs/2406.03725
http://arxiv.org/abs/2406.03725
http://arxiv.org/abs/2406.03725
http://arxiv.org/abs/2406.03725
http://arxiv.org/abs/2406.03725
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015/
http://arxiv.org/abs/cs/0205070
http://arxiv.org/abs/cs/0205070
http://arxiv.org/abs/cs/0205070
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2023.emnlp-main.1008
https://doi.org/10.18653/v1/2023.emnlp-main.1008
https://doi.org/10.18653/v1/2023.emnlp-main.1008
https://aclanthology.org/Y18-1068/
https://aclanthology.org/Y18-1068/
https://aclanthology.org/Y18-1068/
http://arxiv.org/abs/2412.09563
http://arxiv.org/abs/2412.09563
http://arxiv.org/abs/2412.09563
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
http://arxiv.org/abs/2305.08377
http://arxiv.org/abs/2305.08377
http://arxiv.org/abs/2305.08377
http://arxiv.org/abs/2412.12591
http://arxiv.org/abs/2412.12591
http://arxiv.org/abs/2412.12591
http://arxiv.org/abs/2412.12591
http://arxiv.org/abs/2412.12591
http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2212.03533
http://arxiv.org/abs/2212.03533
http://arxiv.org/abs/2212.03533
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


Lee Youngmin, Lang S. I. D. Andrew, Cai Duoduo and728
Wheat R. Stephen. 2024. The role of model archi-729
tecture and scale in predicting molecular properties:730
Insights from fine-tuning roberta, bart, and llama.731

Haoxing Zhang, Xiaofeng Zhang, Haibo Huang and Lei732
Yu. 2022. Prompt-based meta-learning for few-shot733
text classification. In Proceedings of the 2022 Con-734
ference on Empirical Methods in Natural Language735
Processing, pages 1342–1357, Abu Dhabi, United736
Arab Emirates. Association for Computational Lin-737
guistics.738

Jian Zhang, Rong Jin, Yiming Yang and Alexander739
Hauptmann. 2003. Modified logistic regression: An740
approximation to svm and its applications in large-741
scale text categorization. volume 2, pages 888–895.742

Yang Zhang, Yanfei Dong and Kenji Kawaguchi. 2024.743
Investigating layer importance in large language mod-744
els.745

A Layer-wise experimental results on the746

decoder-based models747

Table 3: Layer-wise classification performance on the
R8 dataset.

Layer Llama2 Qwen2.5 Gemma2

15 0.9671 0.9630 0.9689
16 0.9680 0.9625 0.9703
17 0.9758 0.9612 0.9744
18 0.9740 0.9603 0.9753
19 0.9749 0.9621 0.9772
20 0.9749 0.9644 0.9781
21 0.9758 0.9644 0.9776
22 0.9772 0.9721 0.9767
23 0.9772 0.9735 0.9781
24 0.9772 0.9744 0.9772
25 0.9772 0.9740 0.9776
26 0.9776 0.9749 0.9753
27 0.9790 0.9772 -
28 0.9794 0.9730 -
29 0.9790 - -
30 0.9772 - -
31 0.9762 - -
32 0.9712 - -

The selected models represent the top three748

decoder-based generative language models, ranked749

by classification accuracy. Table 3 and Table 4750

present label-wise classification accuracy on the R8751

and R52 datasets, respectively. For both datasets,752

the highest performance was typically achieved753

at the final decoder layers, indicating that deeper754

representations carry more task-relevant semantic755

information. Although results for SST-2 and MR756

are not explicitly included, peak performance for 757

those datasets was observed around the 20th to 21st 758

layers. 759

Table 4: Layer-wise classification performance on the
R52 dataset.

Layer Llama2 Qwen2.5 Mistral

15 0.9147 0.8766 0.8621
16 0.9147 0.8773 0.8606
17 0.9248 0.8731 0.8703
18 0.9206 0.8727 0.8727
19 0.9248 0.8707 0.8688
20 0.9260 0.8769 0.8711
21 0.9280 0.8746 0.8734
22 0.9330 0.8863 0.8715
23 0.9361 0.9015 0.8688
24 0.9369 0.9210 0.9062
25 0.9400 0.9260 0.9163
26 0.9400 0.9319 0.9081
27 0.9416 0.9451 0.9128
28 0.9412 0.9412 0.9069
29 0.9412 - 0.9077
30 0.9408 - 0.9051
31 0.9400 - 0.9042
32 0.9381 - -

B Fusion-based classification results with 760

more than three decoder-based models 761

Interestingly, fusing embeddings from more than 762

three models often resulted in lower accuracy com- 763

pared to the optimal fusion of two complementary 764

models. This observation suggests that simply in- 765

creasing the number of models in the fusion does 766

not guarantee better performance, and may even 767

introduce redundant or conflicting information that 768

leads to representational noise. 769

However, it is noteworthy that multi-model fu- 770

sion still demonstrated stable and robust perfor- 771

mance on average, indicating that while the accu- 772

racy may not always improve, the representation 773

becomes more resilient across tasks. This may 774

be particularly beneficial in scenarios where task- 775

specific model selection is not feasible, or when 776

general-purpose robustness is preferred over task- 777

specific tuning. 778

An exception to this trend was observed on 779

the R52 dataset, where the highest accuracy was 780

achieved by concatenating embeddings from four 781

different models. Given the larger number of 782

classes and higher semantic diversity in R52, it 783
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Table 5: Three-model fusion classification performance across SST-2, MR, R8, and R52 datasets.

SST-2 MR R8 R52

llama2, mistral, falcon3 0.9461 0.9588 0.9708 0.9354
llama2, mistral, nv_embed 0.9599 0.9701 0.9822 0.9601
llama2, mistral, e5 0.9564 0.9633 0.9758 0.9579
llama2, falcon3, nv_embed 0.9564 0.9698 0.9831 0.9599
llama2, falcon3, e5 0.9599 0.9639 0.9804 0.9591
llama2, nv_embed, e5 0.9610 0.9710 0.9822 0.9611
llama2, qwen2.5, nv_embed 0.9563 0.9706 0.9831 0.9622
mistral, falcon3, nv_embed 0.9599 0.9702 0.9813 0.9591
mistral, falcon3, e5 0.9484 0.9628 0.9749 0.9540
mistral, nv_embed, e5 0.9610 0.9706 0.9822 0.9618
falcon3, nv_embed, e5 0.9599 0.9712 0.9831 0.9603
qwen2.5, gemma2, nv_embed 0.9610 0.9643 0.9840 0.9603

Table 6: . Four-model and All-model fusion classification performance across SST-2, MR, R8, and R52 datasets.

SST-2 MR R8 R52

Four Models
llama2, mistral, falcon3, nv_embed 0.9587 0.9702 0.9813 0.9595
llama2, mistral, falcon3, e5 0.9576 0.9636 0.9744 0.9579
llama2, mistral, nv_embed, e5 0.9622 0.9706 0.9808 0.9626
llama2, qwen, nv_embed, e5 0.9610 0.9709 0.9845 0.9638
llama2, falcon3, nv_embed, e5 0.9610 0.9712 0.9831 0.9628
mistral, falcon3, nv_embed, e5 0.9610 0.9704 0.9813 0.9618

All Models
All 0.9610 0.9719 0.9822 0.9611

is plausible that aggregating multiple embedding784

spaces contributed to a richer and more discrimi-785

native representation. This highlights the potential786

of multi-model fusion strategies in complex clas-787

sification tasks with fine-grained label sets. These788

findings underscore the importance of not only the789

number of models, but also the method of fusion790

and task characteristics, in determining the effec-791

tiveness of embedding combination strategies.792
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