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ABSTRACT

Sparse autoencoders (SAEs) have recently emerged as a powerful tool for inter-
preting the features learned by large language models (LLMs). By reconstructing
features with sparsely activated networks, SAEs aim to recover complex super-
posed polysemantic features into interpretable monosemantic ones. Despite their
wide applications, it remains unclear under what conditions SAEs can fully recover
the ground truth monosemantic features from the superposed polysemantic ones. In
this paper, we provide the first theoretical analysis with a closed-form solution for
SAEs, revealing that they generally fail to fully recover the ground truth monose-
mantic features unless the ground truth features are extremely sparse. To improve
the feature recovery of SAEs in general cases, we propose a reweighting strategy
targeting at enhancing the reconstruction of the ground truth monosemantic fea-
tures instead of the observed polysemantic ones. We further establish a theoretical
weight selection principle for our proposed weighted SAE (WSAE). Experiments
across multiple settings validate our theoretical findings and demonstrate that our
WSAE significantly improves feature monosemanticity and interpretability.

1 INTRODUCTION

The “black-box” nature is a long-standing problem plaguing the mechanistic interpretability of deep
neural networks. One of the key problems is feature polysemanticity, where an individual neuron
is often activated by multiple semantically unrelated features (Elhage et al., 2022b; Hänni et al.;
Scherlis et al., 2022; Zhang et al., 2025). This issue is particularly evident in large language models
(LLMs) as neurons rarely correspond to distinct and well-defined features. Previous studies have
proposed the superposition hypothesis that the polysemantic features are linear combinations of the
monosemantic ones, so that models can represent more features than they have dimensions (Elhage
et al., 2022b; Hänni et al.; Scherlis et al., 2022).

To disentangle the superposed polysemantic features, sparse autoencoders (SAEs) (Gao et al., 2025;
Makhzani & Frey, 2013; Minegishi et al., 2025; Ng et al., 2011) have demonstrated significant
potential for identifying interpretable monosemantic features. They have been widely used as a
promising approach to enhancing the interpretability of LLMs (Cunningham et al., 2023; Ferrando
et al., 2025; Gao et al., 2025; Lieberum et al., 2024) and VLMs (Daujotas, 2024; Lim et al., 2025;
Lou et al., 2025; Thasarathan et al., 2025). Typically, an SAE has a single wide layered encoder-
decoder architecture, with sparse activations such as ReLU (Cunningham et al., 2023), JumpReLU
(Rajamanoharan et al., 2024b), TopK (Gao et al., 2025), BatchTopK (Bussmann et al., 2024), etc.
While previous works mainly focused on studying architecture (Braun et al., 2024; Makhzani & Frey,
2013; Rajamanoharan et al., 2024a; Tibshirani, 1996; Bussmann et al., 2025) or evaluation (Minegishi
et al., 2025; Karvonen et al., 2025) of SAEs, the theoretical understanding of the identifiability of
SAEs is still lacking. Specifically, we wonder: Can SAEs recover the ground truth monosemantic
features from the polysemantic inputs?

To answer the above question, in this paper, we investigate the theoretical conditions of SAE feature
recovery. First of all, under the superposition hypothesis, we propose a theoretical framework and
derive the closed-form optimal solution to SAEs. Nonetheless, we show that a full recovery of the
ground truth monosemantic features is not theoretically guaranteed under general conditions, with
standard SAEs plagued by feature shrinking and feature vanishing. As a possible explanation why
SAEs do work well in some empirical cases, we further show that the sparsity of the ground truth
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features might be the key. Specifically, if the ground truth monosemantic features are extremely
sparse, the optimal solution to an SAE is unique and precisely recovers the ground truth features.
Moreover, considering that the sparsity of the ground truth features is not controllable through
training, when the extreme sparsity assumption is not met (SAE feature not fully recoverable), we
propose a reweighting strategy to enhance the reconstruction of the ground truth features. We also
propose a principle for the weight selection through theoretical analysis. Specifically, we derive the
theoretical relationship between the loss of SAE feature reconstruction and that of the ground truth
feature reconstruction, and discuss that smaller weights on the more polysemantic dimensions help
reduce the negative interferences hindering the reconstruction of ground truth features.

Our contributions are summarized as follows.

• We propose a theoretical framework for analyzing SAE feature recovery based on the
superposition hypothesis and derive a closed-form solution to SAEs. Based on this, we
show that SAEs fails to recover the ground truth monosemantic features in general unless
the ground truth features are extremely sparse.

• In low sparsity conditions where SAE full recovery does not meet, we propose a reweighting
strategy to improve the reconstruction of ground truth features by SAEs and theoretically
discuss the principle of weight selection.

• We validate our theoretical findings through experiments and show that our reweighting
strategy significantly enhances the monosemanticity and interpretability of SAE features.

2 RELATED WORKS

2.1 POLYSEMANTICITY AND SUPERPOSITION HYPOTHESIS.

A widely accepted explanation for feature polysemanticity is the superposition hypothesis (Elhage
et al., 2022b; Hänni et al.; Scherlis et al., 2022), which regards a polysemantic dimension to be an
approximately linear combination of several natural semantic concepts. To investigate the mechanism
of polysemanticity, mainstream studies reveal that superposition occurs when a model represent more
features than they have dimensions. Specifically, Elhage et al. (2022b) introduced a single-layer toy
model demonstrating that polysemanticity occurs when ReLU networks are trained on synthetic data
with sparse input features. Hänni et al. proved that superposition is actively helpful for efficiently
accomplishing the task of emulating circuits via mathematical models of computation. Scherlis
et al. (2022) explained polysemanticity through the lens of feature capacity, suggesting that the
optimal capacity allocation tends to polysemantically represent less important features. Aside from
the dimension restriction, Lecomte et al. demonstrated that polysemanticity can also incidentally
occur because of sparse regularization or neural noise.

In this paper, we adopt the superposition hypothesis to simulate the generation of polysemantic
features from the ground truth monosemantic inputs.

2.2 SPARSE AUTOENCODERS (SAES).

Sparse autoencoder (SAEs) automatically learn features from unlabeled data, typically trained with
sparsity priors such as ReLU activation and l-1 penalty (Ng et al., 2011). To mitigate the feature
suppression caused by l-1 regularization (Tibshirani, 1996; Wright & Sharkey, 2024), Makhzani &
Frey (2013) proposed k-sparse autoencoders, which replace the l-1 penalty with a Top-k activation
function. To address the same problem, Rajamanoharan et al. (2024a) proposed the gated SAE that
decouples detection of which features are present from estimating their magnitudes. Besides, to
ensure the features learned are functionally important, Braun et al. (2024) propose to optimize the
downstream KL divergence instead of reconstruction MSE. Moreover, by using k-sparse autoencoders,
Gao et al. (2025) found clean scaling laws with respect to autoencoder size and sparsity. Minegishi
et al. (2025) proposed a suite of evaluations for SAEs to analyze the quality of monosemantic features
by focusing on polysemous words. They showed that compared with alternative activations such as
JumpReLU and Top-k, ReLU still leads to competitive semantic quality.
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Figure 1: Theoretical framework for sparse autoencoder (SAE) feature recovery. The superposed
polysemantic features xp, composed of ground truth monosemantic features x with matrix Wp, serve
as the input to the SAE. For the SAE, Wm denotes the weight matrix, σ denotes the sparse activation
function, and LSAE denotes the reconstruction loss of xp. Ideally, we expect the SAE output xm to
fully recover the ground truth monosemantic features x through reconstruction of xp.

In this paper, we investigate the identifiability of SAEs. Specifically, we are interested in the
conditions under which SAEs can uniquely recover the ground truth monosemantic features from the
polysemantic inputs. We consider the reconstruction-based SAEs with ReLU or Top-k activations.

3 PRELIMINARIES & MATHEMATICAL FORMULATIONS

Notations. Denote x := (x1, . . . , xn)
⊤ ∈ Rn as the ground truth monosemantic feature with

dimension n > 0, and xp ∈ Rnp as the superposed polysemantic feature, where we assume
n > np > 0. Moreover, we use xm ∈ Rnm to denote the feature learned by sparse autoencoder,
where nm > np. For the weight matrices, we denote Wp ∈ Rnp×n and Wm ∈ Rnm×np . Throughout
this paper, ∥ · ∥ denotes the l2 norm if not otherwise specified. For mathematical conciseness, we
denote 1 as the all-one vector, and 0 as the all-zero vector. Also, we denote [n] = {1, . . . , n}.
Furthermore, for a matrix W we use W[i,:] to denote the i-th row of W , and use W[:,j] to denote the
j-th column of W . For a vector x, we use xi to denote the i-th element of x.

Sparsity of ground truth features. For the ground truth monosemantic features x := (x1, . . . , xn)
⊤,

we assume the xi’s are identically and independently distributed, where given the sparse factor
S ∈ [0, 1], we have xi > 0 with probability (1− S) and xi = 0 with probability S, for i ∈ [n]. The
sparsity assumption follows from Elhage et al. (2022b) and has been observed through empirical
evidence (Olah et al., 2020; Elhage et al., 2022a), but ours is weaker since we do not require the
uniform distribution assumption of Elhage et al. (2022b) when xi > 0.

Superposition of features. Superposition has been widely hypothesized in previous works (Arora
et al., 2018; Olah et al., 2020; Elhage et al., 2022b). Following the superposition hypothesis,
we formulate the superposed polysemantic feature as a linear transformation of the ground truth
monosemantic input feature x. Specifically, we assume the polysemantic features to be

xp = Wpx (1)
given the ground truth monosemantic features x with some weight matrix Wp. Moreover, as
discussed in Elhage et al. (2022b), the superposed dimensions usually have negative interferences,
i.e., W⊤

p,[:i]Wp,[:j] ≤ 0 for i ̸= j, and form geometric sturctures of digons or polygons.

Sparse autoencoders (SAEs). We use a sparse autoencoder to recover the ground truth monosemantic
feature x from the polysemantic input xp. SAE is a neural network with a single hidden layer and a
sparse activation function σ : Rnm → Rnm such as ReLU (Cunningham et al., 2023), JumpReLU
(Rajamanoharan et al., 2024b), Top-k (Gao et al., 2025), etc. For mathematical simplicity, we omit
the bias term and define the encoder and decoder as

xm = σ(Wmxp) (2)

x̃p = W⊤
mxm. (3)

It is trained with a reconstruction loss
LSAE(Wm;xp) = Exp∥xp − x̃p∥2 = Ex∥Wpx−W⊤

mσ(WmWpx)∥2. (4)
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As not all SAE architectures include the sparsity regularization, e.g. Gao et al. (2025), we here omit
the l1 penalty and focus on the reconstruction loss only. Then under the optimal weight matrix

W ∗
m = argmin

Wm

LSAE(Wm;xp) (5)

the learned monosemantic feature is xm = σ(W ∗
mxp).

Feature Recovery. Ideally, we expect the SAE-learned feature xm to exactly recover the ground
truth x, i.e., xm = x if nm = n. Nonetheless, as the ground truth dimension is unknown, we believe
additional zero-valued dimensions and dimension reordering are also acceptable. Therefore, in this
paper, we say an SAE fully recovers the ground truth monosemantic features x by reconstructing
polysemantic features xp if

xm ∼ x, if nm = n and (6)

xm ∼ (x,0)⊤, if nm > n, (7)

where we denote x′ ∼ x if x′ = x after a reordering of the feature indexes, i.e., there exists a matrix
I∗ formed by swapping rows of the identity matrix, such that x′ = I∗x. Or equivalently, from the
perspective of the loss function, we say an SAE fully recovers the monosemantic features if the
solution W ∗

m = argminWm
LSAE(Wm;xp) recovers the ground truth monosemantic features up to

index reordering and zero padding.

The overall theoretical framework for SAE feature recovery is illustrated in Figure 1.

4 THEORETICAL RESULTS

In this section, we discuss the provable conditions for SAE feature recovery. First of all, in Section
4.2, by deriving a closed-form solution to SAEs, we show that in general cases, an SAE may fail to
fully recover the ground truth monosemantic features, plagued by problems such as feature shrinking
and feature vanishing. Then in Section 4.1, we show that one possible reason why an SAE still works
in some real cases is the sparsity of the ground truth monosemantic features. We show that under the
extreme sparsity condition, the unique optimal solution to an SAE fully recovers the ground truth
features. In order to overcome such limitations of SAEs, in Section 4.3, we propose a reweighted
version of SAE to achieve a better reconstruction of the ground truth monosemantic features, and
theoretically discuss the weight selection principle. All proofs can be found in Appendix A.

4.1 SAES FAIL TO RECOVER GROUND TRUTH FEATURES IN GENERAL

By the mathematical formulations introduced in Section 3, we derive the closed-form solution to SAEs
in Theorem 1. Note that the assumption of Wp follows from the feature geometry of superposition
observed in Elhage et al. (2022b), where the columns of Wp within the superposed dimensions form
digons or polygons.

Theorem 1 (Closed-Form Solution to SAEs). Let LSAE be defined in equation 4 with sparse
activation function σ. If nm ≥ n and the columns of Wp within the superposed dimensions form
digons/polygons, then we have W ∗

m = I∗(Wp,0)
⊤ ∈ argminWm

LSAE(Wm;xp), where I∗ is
formed by swapping row i with row j ̸= i of the identity matrix.

Theorem 1 shows that given the superposition matrix Wp, its transpose W⊤
p serves as the closed-form

solution to SAEs in the sense of zero-padding and row-reordering. Specifically, the SAE recovered
features are xm = σ(W⊤

p xp) with zero-padding and index-reordering.

However, by such a solution, we discuss that the recovered features xm do not always recover the
ground truth monosemantic feature x. Instead, they often deviate from the ground truth because of the
feature shrinking and feature vanishing phenomena, which we illustrate in the following examples.

Feature shrinking. The SAE-recovered features from the polysemantic dimensions are shrunk to be
smaller compared to their ground truth value. Typically, we say a superposed feature dimension is
“more polysemantic” if it has interference with more ground truth monosemantic features. Then the
more polysemantic a feature dimension is, the more severe its SAE-recovered monosemantic features
are shrunk in value. In Example 1, as the second and third dimensions of x are more polysemantic in
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the superposed feature xp, they shrink severely after recovered by an SAE (from (1.0, 0.8) to (0.2, 0),
whereas the first dimension, which is monosemantic, does not shrink. This could lead to incorrect
interpretation of the feature, because the top-1 activated dimension of the ground truth x should be
the second dimension (1.0), whereas when using an SAE, the top-1 activated dimension of xm turns
out to be the first one (0.5). In other words, SAEs have a tendency to better interpret the relatively
monosemantic features, whereas overlook the relatively polysemantic ones.
Example 1 (Feature Shrinking). Suppose nm = n = 3, np = 2, x = (0.5, 1.0, 0.8)⊤, and

Wp =

[
1 0 0
0 1 −1

]
. Then we have xp = (0.5, 0.2)⊤ and

xm = σ(W⊤
p Wpx) = σ

([1 0 0
0 1 −1
0 −1 1

][
0.5
1.0
0.8

])
=

[
0.5
0.2
0

]
. (8)

Feature Vanishing. When feature shrinking is severe enough, some features in the polysemantic
dimensions even vanish and can rarely recovered by an SAE. In Example 2, the second and third
dimensions of the SAE-recovered feature xm vanish completely, making xm have even less effective
dimensions than xp.

Example 2 (Feature Vanishing). Suppose nm = n = 3, np = 2, x = (0.7, 0.5, 0.3)⊤, and

Wp =

[
0

√
3/2 −

√
3/2

1 −1/2 −1/2

]
. Then we have xp = Wpx = (0.1

√
3, 0.3)⊤, but

xm = σ(W⊤
p Wpx) = σ

([ 1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1

][
0.7
0.5
0.3

])
=

[
0.3
0
0

]
. (9)

4.2 SAE FULL RECOVERY UNDER EXTREME SPARSITY

Despite the disappointing theoretical conclusion in Section 4.2, in this part, we propose one possible
explanation for why SAEs do work well in some real-life cases, that is, the sparsity of the ground
truth monosemantic features is the key to SAE feature recovery.
Theorem 2 (Optimality under extreme sparsity). Let LSAE be defined in equation 4. For nm ≥ n,
and the columns of Wp have non-positive interferences, if S → 1, then we have W ∗

m = I∗(Wp,0)
⊤ ∈

argminWm LSAE(Wm;xp), where I∗ is formed by swapping row i with row j ̸= i of the identity
matrix. Accordingly, we have I∗σ(W ∗

mxp) = x for arbitrary x.

Theorem 2 shows that when the ground truth feature x is extremely sparse and the hidden dimension
nm is large enough, W⊤

p is the optimal solution to SAEs in the sense of zero-padding and row-
reordering. Note that in Theorem 2, the columns of Wp are only required to have non-positive
interferences, which follows from Elhage et al. (2022b) and is much weaker than the digon/polygon
geometry condition required in Theorem 1. By such a solution, under the extreme sparsity condition
S → 1, the SAE-recovered features can fully recover the ground truth monosemantic feature x.
Intuitively, under extreme sparsity, x becomes 1-sparse with probability nearly 1, and feature shrinking
and feature vanishing do not happen to 1-sparse features.

Moreover, in Theorem 3, we show that when S → 1, the solution derived in Theorem 2 is unique.
Theorem 3 (Uniqueness). Let LSAE be defined in equation 4. For nm = n and the columns
of Wp have non-positive interferences, if S → 1, then W ∗

m = I∗W⊤
p is the unique solution to

argminWm
LSAE(Wm;xp).

4.3 A REWEIGHTED REMEDY FOR SAE FEATURE RECOVERY UNDER GENERAL SPARSITY

As we show in previous sections, SAEs fail to recover ground truth monosemantic features under
general sparsity conditions. In this section, by taking a closer look, we show that this is largely
because the SAE loss is not a direct reconstruction of the ground truth monosemantic feature x.
Instead, it reconstructs the polysemantic xp = Wpx because the ground truth x is unknown. In
this case, the superposition matrix Wp could mistakenly match the reconstructed polysemantic
feature x̃p = W⊤

mxm with xp even if the reconstructed monosemantic features xm do not match the

5
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ground truth x. Specifically, in this section, we first identify a gap between the SAE loss and the
reconstruction loss of ground truth x, and then we discuss how a reweighting strategy narrows the
gap and enhances the ground truth reconstruction.

4.3.1 THE GAP BETWEEN SAE RECONSTRUCTION AND GROUND TRUTH RECONSTRUCTION

We first of all consider an ideal case, where we are allowed to directly reconstruct the ground truth
monosemantic features x. Without loss of generality, we assume nm = n, and define the ground
truth reconstruction loss of x as

LGT(Wm;x) = Ex∥x− xm∥2 = Ex∥x− σ(Wmxp)∥2 = Ex∥x− σ(WmWpx)∥2. (10)

Then by comparing LSAE and LGT, we derive the theoretical gap between the two losses.
Theorem 4 (Gap between LSAE and LGT). Let LSAE and LGT be defined in equation 4 and
equation 10, respectively. Then when Wm = W⊤

p , we have

LSAE(Wm;xp)− LGT(Wm;x) =[x− σ(W⊤
p Wpx)]

⊤(W⊤
p Wp − In×n)[x− σ(W⊤

p Wpx)]. (11)

Theorem 4 shows that the gap between the SAE loss LSAE(Wm;xp) and the ground truth reconstruc-
tion loss LGT(Wm;x). Note that according to Theorem 1, we consider the gap when the SAE loss
reaches its optimal, i.e., Wm = W⊤

p . The gap term depends on two terms, i.e., the gap between
ground truth x and the recovered feature xm = σ(W⊤

p Wpx) and the gap between W⊤
p Wp and the

identity matrix In×n. On the one hand, the gap term goes to zero if the features are perfectly recovered
by an SAE. For instance, by Theorem 2, when x is extremely sparse, we have x = σ(W⊤

p Wpx) and
therefore the gap vanishes. On the other hand, in general cases where SAEs fail to perfectly recover
the ground truth x, i.e., x ̸= σ(W⊤

p Wpx), the gap term depends largely on W⊤
p Wp − In×n, which

unfortunately cannot be reduced because for SAEs, Wp is given as an input rather than learned.

4.3.2 ADAPTIVELY REWEIGHTED SPARSE AUTOENCODERS (WSAES)

As one possible solution to narrow the gap shown in Theorem 4, we propose the reWeighted Sparse
AutoEncoders (WSAEs) with adaptive weights according to the polysemantic level of each dimension.
Specifically, given weights γi > 0, i ∈ [np], we define the WSAE loss as

LWSAE(Wm;xp) = Exp
∥Γ[xp −W⊤

mReLU(Wmxp)]∥22, (12)
where Γ = diag(γ1, . . . , γnp).
Theorem 5 (Gap between LWSAE and LGT). Let LWSAE and LGT be defined in equation 12 and
equation 10, respectively. Then when Wm = W⊤

p , we have

LWSAE(Wm;xp)− LGT(Wm;x) = [x− σ(WmWpx)]
⊤(W⊤

p Γ⊤ΓWp − In×n)[x− σ(WmWpx)].

(13)

Theorem 5 shows the gap between a reweighted SAE loss LSAE(Wm;xp) and the reconstruction loss
of the ground truth features LGT(Wm;x, xp). Compared with Theorem 4 where W⊤

p Wp − In×n

is fixed, when features are not perfectly recovered, i.e., x ̸= σ(WmWpx), the gap in Theorem 5 is
adjustable w.r.t. the weight matrix Γ. That is, given a properly chosen Γ, we can effectively narrow
the gap term in equation 13 and thus gain a better reconstruction of the ground truth features x. As a
special case, when the weight matrix Γ is an identity matrix (uniform weights), the gap of WSAEs in
Theorem 5 degenerates to that of SAEs shown in Theorem 4.

Then we discuss how to select proper weights to narrow the gap term in equation 13. Specifically, we
focus on the polysemantic level of each dimension. Observe that

W⊤
p Γ⊤ΓWp − In×n =

 γ2
1 − 1 · · · γ2

1W
⊤
p,[:,1]Wp,[:,n]

· · · · · ·
γ2
nW

⊤
p,[:,n]Wp,[:,1] · · · γ2

n − 1

 . (14)

Then according to equation 14, for the relatively monosemantic dimensions with almost zero off-
diagonal interference terms, we should assign weights near 1 to reduce γ2

i − 1, whereas for the
relatively polysemantic dimensions, we should assign smaller weights to primarily reduce the off-
diagonal negative interferences. In short, for WSAE reconstruction, we assign larger weights to the
relatively monosemantic dimensions and smaller weights to the relatively polysemantic dimensions.

6
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Figure 3: Validation experiments of WSAE ground truth reconstruction on synthetic data. (a) Ground
truth reconstruction error LGT, where WSAE has lower error compared with SAE when the sparsity
level S is low. (b) Reconstruction error on the non-sparse dimensions of the ground truth monoseman-
tic features, showing a greater error gap between WSAE and SAE. (c) The reconstruction error of the
polysemantic features xp, where the errors of the two methods are comparable. (d) Monosemanticity
measured by per-dimensional variance, where WSAE features are more monosemantic compared
with SAE features when the sparsity level is low.

5 VALIDATION EXPERIMENTS

In this section, we conduct numerical experiments to validate our theoretical findings. In Section
5.1, we conduct validation experiments on synthetic data with known ground truth features. We
validate that 1) SAEs in general fail to achieve full feature recovery unless the ground truth features
are extremely sparse (Sections 4.1 and 4.2), and 2) our reweighting strategy can improve ground
truth reconstruction when the sparsity level is low (Section 4.3). In Section 5.2, we conduct real-data
experiments on both pretrained language and vision models to validate the effectiveness of our
reweighted strategy in enhancing feature monosemanticity.

5.1 VALIDATION EXPERIMENTS THROUGH SYNTHETIC DATA

Data Generation. We follow the toy model settings in Elhage et al. (2022b). Specifically, the
polysemantic features are generated by equation 1 described in Section 3, where the superposition
matrix Wp is learned by reconstructing the ground truth x with a ReLU output model. We set the
ground truth monosemantic feature dimension n = 200 and input polysemantic feature dimension
np = 20 to generate polysemantic embeddings and then attempt to extract monosemantic features
with SAEs trained on frozen polysemantic embeddings. When analyzing the influence of input
sparsity, we set S ∈ [0, 1] the sparse factor, and let xi = 0 with a probability S, and xi ∼ U(0, 1]
with probability 1− S, for i ∈ [n].

Setups. For both SAE and WSAE, we adopt ReLU activation function, and set the hidden dimension
as nm = n = 200 (10 times the input dimension). For the weight selection in WSAE, we treat Wp as
unknown, and use the per-dimensional variance of xp as a proxy for monosemanticity. Specifically,
let si denote the variance of xp in the i-th dimension. Then given a tunable parameter α > 0, we
set the weights as γi = sαi . As we find that the experimental results are relatively robust against the
choice of α, we set α = 1 for the experiments.
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Figure 2: Monosemanticity (mea-
sured by the average activated fea-
tures) of SAE features increases
with increasing sparsity of ground
truth monosemantic features.

Validation of SAE feature recovery. We validate the theoret-
ical results in Sections 4.1 and 4.2 that SAEs in general fail to
achieve full feature recovery unless the ground truth features
are extremely sparse. Specifically, under different sparsity lev-
els S ∈ [0, 1], we measure the monosemanticity of SAE latents
by the average number of ground-truth features activated in the
same SAE dimension (with more details shown in Appendix
B.3). If the SAE successfully recovers monosemantic features,
each latent should be activated by only a small number of input
features. As shown in Figure 2, we observe a clear decrease in
the average number of activated features (indicating a signifi-
cant improvement in the monosemanticity) with increased input
sparsity. This empirical result aligns well with our theoretical
findings that SAEs fully recover ground truth monosemantic
features only when the sparsity level is extreme.
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Validation of WSAE ground truth reconstruction. We validate the theoretical discussions in
Section 4.3 that WSAE features have better ground truth reconstruction than SAE features when the
sparsity level of ground truth features is low. Specifically, we respectively measure the reconstruction
loss of ground truth monosemantic features LGT defined in equation 10, the reconstruction loss of
polysemantic features LSAE and LWSAE defined in equation 4 and equation 12, and the monoseman-
ticity level measured by per-dimensional variance (where larger per-dimensional variance indicates
higher monosemanticity), respectively. In Figure 3, when the sparsity level of the ground truth
features is relatively low, we show that the WSAE-recovered features have better reconstruction of the
ground truth monosemantic features x compared with SAE-recovered features, whereas maintaining
a comparable reconstruction of the polysemantic features xp. Specifically, WSAE has a lower ground
truth reconstruction error compared to SAE (Figure 3(a)), and if we evaluate only on the non-sparse
dimensions of the ground truth x, the advantage of WSAE over SAE under low sparsity becomes
more significant (Figure 3(b)). These empirical findings well verify the theoretical discussions in
Section 4.3 that a proper weight selection can narrow the gap between WSAE reconstruction error
and ground truth reconstruction error. In addition, in Figure 3(c), we show that the SAE and WSAE
reconstruction errors of the polysemantic features xp are comparable, indicating that WSAEs do
not lie far away from the Pareto-frontier of sparsity and reconstruction. In Figure 3(d), we show
that when sparsity is relatively low, WSAE features have better monosemanticity than SAE features,
indicating better recovery of the ground truth monosemantic features.

5.2 EMPIRICAL EVALUATION OF REWEIGHTED SAES THROUGH REAL DATA

In this section, we evaluate the effectiveness of our proposed strategies on real-world datasets. We
evaluate on both pretrained language models and vision models.

5.2.1 EXPERIMENTS ON LANGUAGE MODELS

Setups. We use Pythia-160M (Biderman et al., 2023) as the frozen language model backbone and
train sparse autoencoders (SAEs) on its internal activations. The latent dimension of the SAE is set to
32 times the input dimension, and we employ Top-k activation (k = 32) in the latent layer of SAEs.
Guided by the theoretical analysis, we compare two training objectives: a standard reconstruction loss
with uniform weights, and a weighted reconstruction loss that emphasizes monosemantic features.

In real-world settings, we cannot directly access the ground-truth monosemanticity of features.
Nonetheless, several surrogate metrics have been proposed to evaluate monosemanticity. For instance,
Wang et al. (2024a) uses variance within each feature dimension as a surrogate while Paulo et al.
(2024) introduces the auto-interpretability score, which leverages large language models to summarize
whether the features activated in the same dimension are semantically similar. In our experiments,
we use the variance as the metric when assigning weights, due to its computational simplicity. As
discussed in Wang et al. (2024a), monosemantic neurons have high deviation of activation value and
low frequency of activation, so higher variance indicates stronger monosemanticity. Specifically, we
let si denote the variance of activations in the SAE latent dimension i. We set the weights as γi = sαi
for i ∈ [np], where α > 0 is a tunable parameter. When α increases, the reconstruction loss assigns
more weights to the reconstruction of monosemantic features.

On the other hand, for the evaluation of SAE latents, we use the auto-interpretability score (Paulo
et al., 2024) as it is more accurate to assess monosemanticity. To compute the score for a given
SAE latent dimension, we first identify the top-activated samples for that dimension. A large
language model (e.g., Llama3.1-8B Touvron et al. (2023)) is then used to generate a natural language
summary describing the shared characteristics of these samples. In the next step, another language
model is prompted with the generated summary to predict whether additional samples in the dataset
would activate the given SAE dimension. The prediction accuracy serves as the auto-interpretability
score: higher accuracy indicates that the activated samples in the dimension are semantically similar,
reflecting stronger monosemanticity. More details can be found in Appendix B.

Results. As shown in Table 1, assigning greater weight to the reconstruction of monosemantic
features leads to a significant improvement in the monosemanticity of SAE latents, yielding an
average 3.8% gain in auto-interpretability score when α = 1. The improvements are consistent
across SAEs trained on different layers of backbone models. We also note that the improvement is
more significant when the baseline SAE already exhibits relatively strong monosemanticity. These
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Table 1: Auto-interpretability scores (%) of SAEs trained following different layers (0-11) of Pythia-
160M with original SAE and weighted SAE loss. SAEs trained with weighted SAE loss obtain higher
auto-interpretability scores (i.e., stronger monosemanticity) across different situations.

0 1 2 3 4 5 6 7 8 9 10 11

Original SAE 74.7 74.1 76.7 77.8 78.5 79.5 79.3 77.8 74.6 75.6 71.6 72.5
Weighted SAE (α=0.5) 75.4 77.6 76.4 77.9 79.3 79.6 79.8 77.4 78.6 79.3 76.1 72.6
Gains +0.7 +3.5 -0.3 +0.1 +0.8 +0.1 +0.5 -0.4 +4.0 +3.7 +4.5 +0.1
Weighted SAE (α=1) 77.2 78.9 81.3 84.6 83.9 83.3 83.9 79.6 81.5 77.6 72.4 73.5
Gains +2.5 +4.8 +4.6 +6.8 +5.4 +3.8 +4.6 +1.8 +6.9 +2.0 +0.8 +1.0

empirical findings further support our theoretical insight in Section 4.3 that reweighting SAE with
monosemanticity level can enhance the recovery of the monosemantic features. As a supplement,
we also conduct experiments with an alternative Top-k realization and with the Llama model. The
results are shown in Appendix B.1.

5.2.2 EXPERIMENTS ON VISION MODELS

Original SAE Weighted SAE 
( = 0.5)

Weighted SAE 
( = 1)
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Figure 4: Semantic consistency (%)
of SAEs trained on the embeddings
of ResNet-18 with original SAE and
weighted SAE loss.

In addition to language models, we also evaluate our strat-
egy on SAEs trained following pretrained vision back-
bones. As noted by (Wang et al., 2024b), features learned
by current vision pertaining paradigms, such as contrastive
learning, are often highly polysemantic, making it difficult
to select monosemantic dimensions. Consequently, we
adopt Non-negative Contrastive Learning (NCL) (Wang
et al., 2024b) to pretrain the backbone, as it can simulta-
neously obtain monosemantic and polysemantic features.

Specifically, we pretrain a ResNet-18 with NCL on
ImageNet-100, and subsequently train SAEs on the
learned representations. During the training process of
SAEs, we set the latent dimension to 16384 and use the
topK sparse autoencoder with k = 16. When evaluating
monosemanticity, we follow Wang et al. (2024b) and use
semantic consistency as the metric, which calculates the
proportion of top-activated samples that belong to their most frequent class along each dimension. As
the higher semantic consistency indicates stronger monosemanticity, we respectively train SAEs with
uniform weights and more weights on the dimension with higher semantic consistency. Specifically,
denote βi as the semantic consistency of the i-th dimension, and we set the weights as γi = βα

i for
i ∈ [np], where α > 0 is a tunable parameter. In Figure 4, we observe that assigning greater weight to
the reconstruction of monosemantic features leads to a notable improvement in semantic consistency
(monosemanticity) of SAE latents. These results further validate both our theoretical analysis and the
effectiveness of the proposed weighting strategy.

6 CONCLUSION

In this paper, we establish a theoretical framework to reveal the inherent limits of SAEs to recover
ground-truth monosemantic features. Specifically, based on a closed-form theoretical solution, we
show that standard SAEs inevitably suffer from feature shrinking and vanishing, preventing full
recovery except when the true features are extremely sparse. To enhance feature recovery in the
low sparsity situations, we introduced a a simple yet effective strategy called reWeighted Sparse
Autoencoder (WSAE) and propose a theoretical weight-selection rule. Validation experiments on both
synthetic and real data confirm our theory and demonstrate that WSAEs can enhance monosemanticity
and interpretability of features learned. We note that the proposed WSAE serves as just one exemplar
remedy, and our theoretical framework has the potential to motivate further methodological advances
(e.g. alternative matrix designs to close the loss gap) aimed at overcoming the fundamental feature-
recovery limits of SAEs.
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A PROOFS

Without loss of generality, we consider the ReLU sparse activation function for proofs, i.e. σ(x) =
ReLU(x) = x1[x > 0]. Note that for other activation functions such as TopK or Jump-ReLU, the
theoretical results are similar because they are based on the ReLU function form. Specifically, we have
Jump-ReLU(x, c) = ReLU(x− c) and Top-k(x) = ReLU(x− x(k+1)1) + x(k+1)H(x− x(k+1)1),
where H(x) := 1[x ≥ 0] denotes the Heaviside function, x(k+1) denotes the (k + 1)-th largest
element of x, and 1 denotes the all-one vector. The sparse activation functions have a general form
σ(x) = ReLU(x− c) + b and the general gradient form ∂σ(x)

∂x = H(x− c).

Also note that when I∗ is formed by swapping row i with row j ̸= i of the identity matrix I , if W⊤
p

is a solution to the SAE loss minimization, then I∗W⊤
p is also a solution because

LSAE(I
∗W⊤

p ;xp) = Ex∥Wpx− (I∗W⊤
p )⊤σ(I∗W⊤

p Wpx)∥2

= Ex∥Wpx−Wp(I
∗)⊤I∗σ(W⊤

p Wpx)∥2

= Ex∥Wpx−Wpσ(W
⊤
p Wpx)∥2

= LSAE(W
⊤
p ;xp), (15)

where the second last equation holds because (I∗)⊤I∗ = I . In the following, we will not repetitively
prove this point in the proofs of Theorem 1, 2, and 3.

A.1 PROOFS RELATED TO SECTION 4.1

Proof of Theorem 1. By definition, we have

LSAE(Wm;xp)

= Ex

∑
i∈[np]

[Wp,[i,:]x−W⊤
m,[:,i]σ(WmWpx)]

2

= Ex

∑
i∈[np]

[Wp,[i,:]x−
∑
k∈[n]

W⊤
m,[k,i]σ(

∑
j∈[np]

Wm,[k,j]Wp,[j,:]x)]
2. (16)

For u ∈ [n], v ∈ [np], we have

∂LSAE

∂Wm,[u,v]
= Ex

{
− 2[Wp,[v,:]x−W⊤

m,[:,v]σ(WmWpx)]σ(Wm,[u,:]Wpx)

− 2
∑

i∈[np]

[Wp,[i,:]x−W⊤
m,[:,i]σ(WmWpx)]Wm,[u,i]H(Wm,[u,:]Wpx)Wp,[v,:]x

}
, (17)

where H(·) denotes the Heaviside function. Observe that for non-zero x, ∂LSAE

∂Wm,[u,v]
= 0 if and only if

Ex[Wp,[i,:]x−W⊤
m,[:,i]σ(WmWpx)] = 0. (18)

When Wm = W⊤
p , because the columns of Wp form digons/polygons, we have W⊤

p Wp being a
block diagonal matrix, with block B1 = Im×m for the m (0 ≤ m ≤ np) monosemantic dimensions
and blocks

Bj =

[
1 −1/(pj − 1) · · · −1/(pj − 1)

· · ·
−1/(pj − 1) −1/(pj − 1) · · · 1

]
(19)

for the polysemantic dimensions, where pj is the number of ground truth monosemantic features
entangled in the j-th block. Then we have

σ(WmWpx) = σ

(Im×m 0 · · · 0
0 B2 · · · 0

· · ·
0 0 · · · Bb

x

)
=

 σ(x[1:m])
σ(B2x[m+1:m+pj ])

· · ·
σ(Bbx[n−pb+1:n])

 . (20)
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Denote Pj = m+
∑

1<l≤j pl and note that

Exσ(Bjx[Pj−1+1:Pj ]) =

Exσ(xPj−1+1 − 1
pj−1

∑
Pj−1+1<l≤Pj

xl)

· · ·
Exσ(xPj − 1

pj−1

∑
Pj−1+1≤l<Pj

xl)

 . (21)

For i ∈ [pj ], we have

Exσ
(
xPj−1+i −

1

pj − 1

∑
Pj−1+1≤l≤Pj ,l ̸=i

xl

)
= Ex

(
xPj−1+i −

1

pj − 1

∑
Pj−1+1≤l≤Pj ,l ̸=i

xl

∣∣∣xPj−1+i >
1

pj − 1

∑
Pj−1+1≤l≤Pj ,l ̸=i

xl

)
· P
(
xPj−1+i >

1

pj − 1

∑
Pj−1+1≤l≤Pj ,l ̸=i

xl

)
:= µPj−1+i. (22)

Because xi’s are i.i.d., we have µPj−1+1 = · · · = µPj−1+pj
:= µj . Denote µ = Exxi, 1 =

(1, . . . , 1)⊤ as the all-one vector, and 0 = (0, . . . , 0)⊤ as the all-zero vector. Then we have

ExWpσ(Bjx[Pj−1+1:Pj ]) = WpExσ(Bjx[Pj−1+1:Pj ]) = Wp

 µ1m

µ21p2

· · ·
µb1pb

 =

 µ1m

µ20p2

· · ·
µb0pb

 =

[
µ1m

0n−m

]
,

(23)

where the second last equation holds because the columns of Wp form digons/polygons.

Therefore, when Wm = W⊤
p , we have equation 18 holds because

WpExx−Wpσ(WmWpx) = µWp1−
[

µ1m

µj0n−m

]
= µ

[
1m

0n−m

]
−
[
µ1m

0n−m

]
= 0, (24)

i.e., W⊤
p ∈ argminWm

LSAE(Wm;xp).

A.2 PROOFS RELATED TO SECTION 4.2

Proof of Theorem 2. When Wm = (Wp,0)
⊤, we have

LSAE(Wm;xp) = Ex∥Wpx− (Wp,0)σ(

[
W⊤

p

0

]
Wpx)∥2

= Ex∥Wpx−W⊤
p σ(W⊤

p Wpx)∥2. (25)

When S → 1, we have

LSAE(Wm;xp)

=

n∑
u=1

SnL(Wm;Wp, x = 0) +

n∑
u=1

Exu
C1

nS
n−1(1− S)L(Wm;Wp, x = xueu) + o(1− S)

= 0 + nSn−1(1− S)

n∑
u=1

ExuL(Wm;Wp, x = xueu) + o(1− S)

= nSn−1(1− S)

n∑
u=1

ExuL(Wm;Wp, x = xueu)

= nSn−1(1− S)

n∑
u=1

Exu
∥Wp,[:,u] −W⊤

p σ(W⊤
p Wp,[:,u])∥2. (26)

When the superposed dimensions have negative interferences as discussed in Elhage et al. (2022b),
i.e., W⊤

p,[:,i]Wp,[:,j] ≤ 0 for i ̸= j, we have LSAE(Wm;xp) = 0 = minWm LSAE(Wm;xp).
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Also note that for TopK or JumpReLU activations, feature recovery under potential positive in-
terference is also possible. For example, for top-k activation, when 1 < k ≤ nm − p, where
p := maxi∈[n] |{j ∈ [n] : W⊤

p,[:,i]Wp,[:,j] < 0}|, we have Top-k(W⊤
p Wp,[:,u]) = eu, and correspond-

ingly LSAE(Wm;xp) = 0 = minWm
LSAE(Wm;xp).

Proof of Theorem 3. Then by definition, we have

LSAE(Wm;xp)

= Ex∥Wpx−W⊤
mσ(WmWpx)∥22

= Ex[Wpx−W⊤
mσ(WmWpx)]

⊤[Wpx−W⊤
mσ(WmWpx)]

= Exx
⊤W⊤

p Wpx− 2x⊤W⊤
p W⊤

mσ(WmWpx)

+ σ(WmWpx)
⊤WmW⊤

mσ(WmWpx)

= Exx
⊤W⊤

p Wpx− 2

np∑
q=1

nm∑
j=1

x⊤W⊤
p,[q,:]Wm,[j,q]σ(

np∑
i=1

Wm,[j,i]Wp,[i,:]x)

+

nm∑
j=1

np∑
q=1

σ(

np∑
i=1

Wm,[j,i]Wp,[i,:]x)Wm,[j,q]

nm∑
s=1

Wm,[s,q]σ(

np∑
t=1

Wm,[s,t]Wp,[t,:]x). (27)

If S → 1, by equation 26, we have

LSAE(Wm;xp) = nSn−1(1− S)

n∑
u=1

ExuLu(Wm;Wp, xu), (28)

where for u ∈ [n] and xu > 0, by equation 27, we denote

Lu(Wm;Wp, xu)

:= x2
uW

⊤
p,[:,u]Wp,[:,u] − 2x2

u

np∑
q=1

nm∑
j=1

Wp,[q,u]Wm,[j,q]σ(

np∑
i=1

Wm,[j,i]Wp,[i,u])

+ x2
u

nm∑
j=1

np∑
q=1

σ(

np∑
i=1

Wm,[j,i]Wp,[i,u])Wm,[j,q]

nm∑
s=1

Wm,[s,q]σ(

np∑
t=1

Wm,[s,t]Wp,[t,u]). (29)

Then for k ∈ [nm] and l ∈ [np], by equation 26, we have

∂Lu(Wm;Wp, xu)

∂Wm,[k,l]

= −2x2
uWp,[l,u]σ(

np∑
i=1

Wm,[k,i]Wp,[i,u])

− 2x2
u

np∑
q=1

Wp,[q,u]Wm,[k,q]H(

np∑
i=1

Wm,[k,i]Wp,[i,u])Wp,[l,u]

+ x2
u

np∑
q=1

H(

np∑
i=1

Wm,[k,i]Wp,[i,u])Wp,[l,u]Wm,[k,q]

nm∑
s=1

Wm,[s,q]σ(

np∑
t=1

Wm,[s,t]Wp,[t,u])

+ x2
uσ(

np∑
i=1

Wm,[k,i]Wp,[i,u])

nm∑
s=1

Wm,[s,l]σ(

np∑
t=1

Wm,[s,t]Wp,[t,u])

+ x2
u

nm∑
j=1

σ(

np∑
i=1

Wm,[j,i]Wp,[i,u])Wm,[j,l]σ(

np∑
t=1

Wm,[k,t]Wp,[t,u])

+ x2
u

nm∑
j=1

np∑
q=1

σ(

np∑
i=1

Wm,[j,i]Wp,[i,u])Wm,[j,q]Wm,[k,q]H(

np∑
t=1

Wm,[k,t]Wp,[t,u])Wp,[l,u]

14
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= 2x2
u

np∑
q=1

H(

np∑
i=1

Wm,[k,i]Wp,[i,u])Wp,[l,u]Wm,[k,q]

·
[ nm∑
s=1

Wm,[s,q]σ(

np∑
t=1

Wm,[s,t]Wp,[t,u])−Wp,[q,u]

]
+ 2x2

uσ(

np∑
i=1

Wm,[k,i]Wp,[i,u])
[ nm∑
s=1

Wm,[s,l]σ(

np∑
t=1

Wm,[s,t]Wp,[t,u])−Wp,[l,u]

]
. (30)

Observe that ∂Lu(Wm;Wp,xu)
∂Wm,[k,l]

= 0 for k ∈ [nm] and l ∈ [np] holds if and only if

nm∑
s=1

Wm,[s,l]σ(

np∑
t=1

Wm,[s,t]Wp,[t,u]) = Wp,[l,u] (31)

for l ∈ [np], or equivalently

Wp,[:,u] = W⊤
mσ(WmWp,[:,u]) (32)

Wp = W⊤
mσ(WmWp). (33)

When nm = n and the superposed dimensions have negative interferences as discussed in Elhage
et al. (2022b), i.e., W⊤

p,[:,i]Wp,[:,j] ≤ 0 for i ̸= j, for arbitrary Wp ∈ Rnp×n, the unique solution is
Wm = W⊤

p (see the following for details).

For a special example, if Wp = I2×2, equation 33 becomes I = W⊤
mσ(Wm), and we observe that

Wm = W⊤
p = I is a solution. Then if Wm ̸= I2×2, we can have a decomposition that

Wm = I + E1 − E2 +D, (34)

where E1 and E2 are off-diagonal with non-negative elements on mutually exclusive positions, and
D is a diagonal matrix. Then equation 33 becomes

I = (I + E1 − E2 +D)⊤σ(I + E1 − E2 +D)

= (I + E1 − E2 +D)⊤σ(I + E1 +D)

= I + E⊤
1 − E⊤

2 +D⊤ + E1 + E⊤
1 E1 − E⊤

2 E1 +D⊤E1 +D + E⊤
1 D − E⊤

2 D +D⊤D

= I + (2D +D2 + E⊤
1 E1) + (E⊤

1 − E⊤
2 + E1), (35)

where the last equation holds because E⊤
2 E1 = D⊤E1 = E⊤

2 D = 0. Note that 2D +D2 + E⊤
1 E1

is diagonal and E⊤
1 − E⊤

2 + E1 is off-diagonal, so there has to hold that 2D +D2 + E⊤
1 E1 = 0

and E2 = E1 +E⊤
1 . Let E1 =

[
0 ε1
ε2 0

]
with ε1, ε2 ≥ 0. Then there has to hold E2 = E1 +E⊤

1 =[
0 ε1 + ε2

ε1 + ε2 0

]
, which contradicts with that E1 and E2 have non-negative elements on mutually

exclusive positions if ε1 or ε2 > 0. Therefore, it has to be E1 = E2 = 0, and accordingly D = 0.
That is, we prove that Wm = I is the unique solution to I = W⊤

mσ(Wm), and that Wm = W⊤
p is

the unique solution to equation 33 for all Wp.

A.3 PROOFS RELATED TO SECTION 4.3

Proof of Theorem 4. By definition, we have

LSAE(Wm;xp) = Ex∥Wpx−W⊤
mσ(WmWpx)∥2

= Ex∥Wp[x− σ(WmWpx)] + (Wp −W⊤
m)σ(WmWpx)∥2

= Ex∥Wp[x− σ(WmWpx)]∥2 + ∥(Wm −W⊤
p )⊤σ(WmWpx)∥2

+ 2σ(WmWpx)
⊤(Wm −W⊤

p )Wp[x− σ(WmWpx)]. (36)
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The first term of equation 36 can be further decomposed into

∥Wp[x− σ(WmWpx)]∥2

= [x− σ(WmWpx)]
⊤W⊤

p Wp[x− σ(WmWpx)]

= [x− σ(WmWpx)]
⊤[x− σ(WmWpx)]

+ [x− σ(WmWpx)]
⊤(W⊤

p Wp − In×n)[x− σ(WmWpx)]

= ∥x− σ(WmWpx)∥2

+ [x− σ(WmWpx)]
⊤(W⊤

p Wp − In×n)[x− σ(WmWpx)]. (37)

Combining equation 36, equation 37, and that Wm −W⊤
p = 0 finishes the proof.

Proof of Theorem 5. By definition, we have

LWSAE(Wm;xp) = Ex∥Γ[Wpx−W⊤
mσ(WmWpx)]∥2

= Ex∥ΓWp[x− σ(WmWpx)] + Γ(Wp −W⊤
m)σ(WmWpx)∥2

= Ex∥ΓWp[x− σ(WmWpx)]∥2 + ∥Γ(Wm −W⊤
p )⊤σ(WmWpx)∥2

+ 2σ(WmWpx)
⊤(Wm −W⊤

p )Γ⊤ΓWp[x− σ(WmWpx)]. (38)

The first term of equation 38 can be further decomposed into

∥ΓWp[x− σ(WmWpx)]∥2

= [x− σ(WmWpx)]
⊤W⊤

p Γ⊤ΓWp[x− σ(WmWpx)]

= [x− σ(WmWpx)]
⊤[x− σ(WmWpx)]

+ [x− σ(WmWpx)]
⊤(W⊤

p Γ⊤ΓWp − In×n)[x− σ(WmWpx)]

= ∥x− σ(WmWpx)∥2

+ [x− σ(WmWpx)]
⊤(W⊤

p Γ⊤ΓWp − In×n)[x− σ(WmWpx)]. (39)

Combining equation 38, equation 39, and that Wm −W⊤
p = 0 finishes the proof.

B EXPERIMENTS DETAILS

B.1 ADDITIONAL EXPERIMENTS

Alternative realization for Top-k. We conduct additional validation experiments for Section 5.2.1
with an alternative realization of the Top-k activation. Specifically, the Top-k dimensions are selected
by decomposing the dimensions into k groups and choosing the Top-1 activated dimensions in each
group. This realization could largely enhance the computational efficiency by allowing parallel
computing. The results are shown in Table 2. The results show that compared with SAE features,
WSAE features obtain higher auto-interpretability scores (i.e., stronger monosemanticity) across
different situations.

Table 2: Auto-interpretability scores (%) of SAEs trained following different layers (9-11) of Pythia-
160M with original SAE and weighted SAE loss.

9 10 11

Original SAE 69.0 61.8 56.3
Weighted SAE (α = 1) 71.5 63.7 59.0
Gains +2.5 +1.9 +2.7

Evaluation on Llama. As a supplement to Section 5.2.1, we also conduct additional experiments on
Llama-3-8B and present the last-layer results in Table 3. The results show that compared with SAE
features, WSAE features obtain higher auto-interpretability scores (i.e., stronger monosemanticity)
across different situations.
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Table 3: Auto-interpretability scores (%) of SAEs trained following last layer of Llama-3-8B with
original SAE and weighted SAE loss.

Original SAE Weighted SAE Gain

41.6 63.6 +22.0

B.2 COMPUTE RESOURCES

For the experiments on toy models in Section 4, we conduct experiments on an NVIDIA 3090 GPU
with 24GB of memory. The training and evaluation of a toy model takes around 30 minutes. For
the experiments on language models in Section 5.1, we conduct experiments on an NVIDIA A100
GPU with 40GB of memory. The training of a sparse autoencoder takes around 24 hours, and the
evaluation needs 10 minutes. While for experiments on vision models in Section 5.2, we conduct
experiments on two NVIDIA 3090 GPUs with 24GB of memory. The training of a sparse autoencoder
takes around 12 hours, and the evaluation needs 5 minutes.

B.3 AVERAGE ACTIVATED FEATURES

For a sample x ∈ Rn, we perform n encodings, each time isolating a single input feature. Specifically,
for the i-th encoding, we construct xi = (0, · · · , xi, · · · , 0), where only the i-th feature is retained.
This yields n SAE latent representations {h(xi)}ni=1, each corresponding to the activation induced by
a single input feature. We then calculate the total activation values across different samples in each
SAE latent dimension. For example, for j-th dimension in SAE latents, we define M i

j =
∑

x hj(x
i)

representing the cumulative activation from the i-th input feature. If the value M i
j exceeds a threshold,

we consider the j-th SAE latent to be activated by the i-th input. Finally, we compute the average
number of input features that activate each SAE latent dimension. We note that if the SAE successfully
recovers monosemantic features, each latent should be activated by only a small number of input
features.

B.4 AN AUTOINTERPRETATION PROTOCOL

The autointerpretability process consists of five steps and yields both an interpretation and an
autointerpretability score:

1. On each of the first 50,000 lines of OpenWebText, take a 64-token sentence-fragment, and
measure the feature’s activation on each token of this fragment. Feature activations are
rescaled to integer values between 0 and 10.

2. Take the 20 fragments with the top activation scores and pass 5 of these to GPT-4, along
with the rescaled per-token activations. Instruct GPT-4 to suggest an explanation for when
the feature (or neuron) fires, resulting in an interpretation.

3. Use GPT-3.56 to simulate the feature across another 5 highly activating fragments and 5
randomly selected fragments (with non-zero variation) by asking it to provide the per-token
activations. While the process described in Bills et al. (2023) uses GPT-4 for the simulation
step, we use GPT-3.5. This is because the simulation protocol requires the model’s logprobs
for scoring, and OpenAI’s public API for GPT-3.5 (but not GPT-4) supports returning
logprobs.

4. Compute the correlation of the simulated activations and the actual activations. This
correlation is the autointerpretability score of the feature. The texts chosen for scoring a
feature can be random text fragments, fragments chosen for containing a particularly high
activation of that feature, or an even mixture of the two. We use a mixture of the two unless
otherwise noted, also called ‘top-random’ scoring.

5. If, amongst the 50,000 fragments, there are fewer than 20 which contain non-zero variation
in activation, then the feature is skipped entirely.
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