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Abstract

Recent years have witnessed a big convergence
of language, vision, and multi-modal pretrain-
ing. In this work, we present mPLUG-2 , a
new unified paradigm with modularized design
for multi-modal pretraining, which can benefit
from modality collaboration while addressing
the problem of modality entanglement. In con-
trast to predominant paradigms of solely relying
on sequence-to-sequence generation or encoder-
based instance discrimination, mPLUG-2 intro-
duces a multi-module composition network by
sharing common universal modules for modality
collaboration and disentangling different modal-
ity modules to deal with modality entanglement.
It is flexible to select different modules for dif-
ferent understanding and generation tasks across
all modalities including text, image, and video.
Empirical study shows that mPLUG-2 achieves
state-of-the-art or competitive results on a broad
range of over 30 downstream tasks, spanning
multi-modal tasks of image-text and video-text un-
derstanding and generation, and uni-modal tasks
of text-only, image-only, and video-only under-
standing. Notably, mPLUG-2 shows new state-
of-the-art results of 48.0 top-1 accuracy and 80.3
CIDEr on the challenging MSRVTT video QA
and video caption tasks with a far smaller model
size and data scale. It also demonstrates strong
zero-shot transferability on vision-language and
video-language tasks. Code and models will be
released in https://github.com/X-PLUG/mPLUG-
2.
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Figure 1. A brief illustration of the new paradigm with modularized
design for building multi-modal foundation model.

1. Introduction

Large-scale pre-trained foundation models have been an
emerging paradigm for a wide range of artificial intelligence
(AI) fields, across language (Devlin et al., 2018; Brown et al.,
2020), vision (Dosovitskiy et al., 2020; Liu et al., 2021b) and
multi-modality (Radford et al., 2021; Yu et al., 2022; Wang
et al., 2022e). With the broad success of Transformer archi-
tecture (Vaswani et al., 2017), recent years have featured a
trend toward the big convergence of language, vision and
multimodal pre-training (Yu et al., 2022; Wang et al., 2022¢;
Alayrac et al., 2022). One line along this trend proposes to
unify the tasks and modalities with a unified sequence-to-
sequence generation framework such as TS (Raffel et al.,
2020), OFA (Wang et al., 2022d) and Flamingo (Alayrac
et al., 2022). On the other hand, BERT (Devlin et al., 2018),
Florence (Yuan et al., 2021) and BEIT-3 (Wang et al., 2022e)
models all the tasks as instance discrimination, and adopt
the pure encoder-based architecture.

The predominant foundation models propose to share the
same single network for multi-modality (Alayrac et al.,
2022) to leverage the information from modality collab-
oration. However, the strategy will suffer from the issue of
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Table 1. A system-level comparison between mPLUG-2 and existing foundation models in terms of various uni-modal and multi-
modal downstream tasks. ’Cls.” denotes the classification. "Det.” and ’Seg.” are the short for "Detection” and ”Segmentation” tasks
respectively. ”VG” stands for visual grounding task. Our mPLUG-2 is capable of supporting both uni-modal (i.e., CV and NLP) and
multi-modal (i.e., Image-Text and Video-Text) downstream tasks simultaneously with the help of modularization.

Computer Vision Natural Language Processing Image-Text Video-Text
Method Image Cls.  VideoCls. Det. Seg TextCls. QA  Summarization | Retrieval QA  Captioning VG | Retrieval QA  Captioning
BEIT-3 v v v v v v
EVA s v s v
CLIP v v v
ALBEF v v v
BLIP v v v v v
VATT s v v
Florence v v v v v v
CoCa v v v v v v
VideoCoCa v
Flamingo v v v v v v
GIT2 v v v v v v
FLAVA ' v v v
OFA v v v v v v v
OmniVL v v v v v v v v
mPLUG 2.0 v v v v v v v v v v v v v

modality entanglement due to the large variance of different
modality tasks. The challenge is that multiple modalities
may interfere with each other (Huang et al., 2022b), espe-
cially when there are many modalities and tasks. It is dif-
ficult for a single-module foundation model to balance the
gain of modality collaboration and the influence of modality
entanglement on a large number of downstream tasks across
multiple modalities.

To alleviate the challenge, in this work, we introduce a
new unified paradigm of multi-modal foundation models, as
shown in Figure 1. It features a module-based network de-
sign considering both the modality collaboration and modal-
ity entanglement, where mPLUG-2 designs certain shared
functional modules to encourage the modality collabora-
tion, while reserving modality-specific modules to tackle
the problem of modality entanglement. Different modules
are then jointly trained effectively on both the uni-modal
and multi-modal datasets according to the task’s module de-
sign. As a result, different modules can be flexibly selected
and combined for the large number of uni-modal and cross-
modal understanding and generation tasks accordingly. The
details of the supported downstream tasks are given in Ta-
ble 1. To the best of our knowledge, the proposed method
tackles the largest number of different kinds of downstream
tasks across text, image and video.

Specifically, we design a unified dual-vision encoder mod-
ule by disentangling spatial and temporal representations,
where video inputs share the standard Transformer module
with image inputs for modeling spatial information and an
extra local temporal modeling module is used for temporal
relation modeling on video-related tasks. Then a novel uni-
versal layers module is introduced to serve as a pivot across
different modalities, where vision and language modali-
ties are projected to the common language-guided seman-
tic space by sharing self-attention modules. Besides, an
extra cross-attention module is used to fuse the universal
vision representation with the original fine-grained vision

representation. The detailed module design is shown in Fig-
ure 2. Finally, different modules of mPLUG-2 are jointly
pre-trained with task and modality instructions (Wang et al.,
2022d) on both uni-modal and cross-modal tasks. During
inference, mPLUG-2 can select different modules for vari-
ous uni-modal and cross-modal tasks with the modularized
Transformer architecture. The selected modules for different
tasks can be found in Table 2 in Appendix.

We evaluate the new unified paradigm of mPLUG-2 on
over 30 challenging uni-modal and cross-modal understand-
ing and generation benchmarks and it achieves state-of-the-
art or competitive results with a similar model size and
data scale. Equipping with the module-based network de-
sign, mPLUG-2 can be also easily extended to additional
tasks by selecting and adding modules. Notably, mPLUG-2
shows new state-of-the-art results of 48.0 top-1 accuracy
and 80.3 CIDEr on the challenging MSRVTT video QA and
video caption tasks, respectively. mPLUG-2 also demon-
strates strong zero-shot transferability on vision-language
and video-language tasks.

2. Related Work

Vision-only Foundation Models ConvNets (Szegedy et al.,
2017; He et al., 2015) have long been the main stream vi-
sual architecture before the emergence of vision transformer
(a.k.a. ViT) (Dosovitskiy et al., 2020). Due to the superior
capacity of Transformer network, ViT stands out in vari-
ous downstream tasks (Carion et al., 2020; Xu et al., 2022).
Apart from scaling up the naive ViT architecture with large-
scale dataset such as JFT-3B (Zhai et al., 2021), SwinV2-G
(Liu et al., 2021a) extends the original ViT with hierarchical
architectures. In addition, EVA (Fang et al., 2022a) distills
the multi-modal knowledge to scale up ViT by leveraging
unlabeled images with the large-scale pre-trained image-text
model (e.g. CLIP (Radford et al., 2021)). Recently, Intern-
Image (Wang et al., 2022f) revitalizes the convolutional



mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image and Video

Generation Tasks 1 D
j '

Shared Decoder Module T

[ FFN }

[ Cross-Attention ]

[ Self-Attention ]

Multimodal |
Tasks

Fusion Module

FFN

D i
/o
= [
Ea [
Spatial HE
Self-Attention ;o [mE
D i |
/

“ Local Temporal
Modeling

xN Image Modality: = Video Modality: &

Y

2]

Cm/m' .
i Local Temporal Features

m-O-a-ave
‘rame ame T

Text-aware Visual Feature 15

mm|

Ps

Self-Attention
e
[ Universal Layers Module
Text Encoder T T
i
Dual-vision ! Text

Encoder
Self-Attention T

N
v
Shared
FEN )

A baseball player holding a | “
bat on a field. a7 Shared
Text Image Video Self-Attention —)
(a) mPLUG-2 Framework  —

Text Feature WO

Learnable Queries

Q= {a1o. o}

Figure 2. The overall framework and module details of mPLUG-2 .

neural networks with deformable convolution and achieves
the state-of-the-art performance on various vision down-
stream tasks. Besides, InternVideo (Wang et al., 2022g)
extends to video tasks by assembling two large video mod-
els with both generative and discriminative self-supervised
video learning.

Language-only Foundation Models Inspired by the suc-
cessful practice of the BERT (Devlin et al., 2018) in natural
language understanding, a massive large-scale language
foundation models are proposed for natural language pro-
cessing. BART (Lewis et al., 2020) is a denoising autoen-
coder like BERT but with encoder-decoder architecture
which shows effectiveness for both text generation and com-
prehension tasks. Apart from BERT-series methods (Devlin
etal., 2018; Lewis et al., 2020; Liu et al., 2019), there are nu-
merous other effective architectures and pre-training objec-
tives. T5 (Raffel et al., 2020) introduce a unified framework
that covers all text-based language tasks into a text-to-text
format. GPT-3 (Brown et al., 2020) is an auto-regressive
language foundation model which includes 175 billion pa-
rameters, and shows strong performance on many NLP tasks
under the few-shot and zero-shot settings.

Vision-Language Foundation Models Benefiting from a
large number of image/video-text pairs in the Internet, the
emergence of vision-language foundation models can sub-
sume vision-language pre-training. The success of CLIP
(Radford et al., 2021) and ALIGN (Jia et al., 2021) indi-
cates that the model pre-trained with simple contrastive

objectives on noisy image-text pairs can generate power-
ful vision-language representation. Moreover, ALBEF (Li
et al., 2021b), BLIP (Li et al., 2022¢) and mPLUG (Li et al.,
2022a) extend the task with multi-modal text completion
and text generation for auxiliary learning. On the other
hand, some foundation models are built through task uni-
fication. For instance, Florence (Yuan et al., 2021) unifies
the contrastive objectives that can leverage both vision and
vision-language data. BEiT-3 (Wang et al., 2022¢) ascribe
the pre-training task to mask data modeling in terms of text,
vision, and vision-language. SimVLM (Wang et al., 2021b),
OFA (Wang et al., 2022d), and CoCa (Yu et al., 2022) per-
form the generative pre-training for vision-language under-
standing and generation. Moreover, some methods (Li et al.,
2023; Ye et al., 2023) leverage the large language model for
image-language understanding and generation. Different
from predominant foundation models, mPLUG-2 introduces
a new modularized transformer framework, which can lever-
age different compositions of modules for both uni-modal
and cross-modal tasks by both sharing common universal
modules and disentangling modality-specific ones to address
the problem of modality entanglement.

3. Method

3.1. Overall Framework

As shown in Figure 2, mPLUG-2 consists of a dual-vision
encoder module for image and video, a text encoder mod-
ule, a universal layers module that serves as a multi-modal
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Table 2. The modules for each downstream task.

Input Modules
Tasks Text Image Video | TextEnc Image Enc  Video Enc  Universal Layers  Fusion Layers  Text Dec  Image Dec  Video Dec
Video-Text Retrieval v v v v v v
Video-Text Question Answering v v v v v v v
Video-Text Captioning v v v v v v v
Image-Text Retrieval v v v v v v
Image-Text Question Answering v v v v v v v
Image-Text Captioning v v v v v v v
Visual Grounding v v v v v v v
Video Classification v v v
Image Classification v v v
Image Detection v v v
Image Segmentation v v v
Text Classification v v v
Text Question Answering v v v
Text Summarization v v v v
pivot shared by all tasks, a multi-modal fusion module and a spatial representation as:
shared decoder module for uni-modal and cross-modal gen-
. . . n n—1 n—1
eration. We first use two uni-modal encoders which encode Vip = LN(LT(V" )+ V"), (H
image/video and text separately to represent the inherent V&, = LN(SA(VEY + vt )
)
information of the individual modality. For image/video, we
' O V" = LN(FFN(VEs) + VEa), 3)

adopt the dual-vision encoder to encode visual features with
spatial modeling and local temporal modeling. Then, the
visual and linguistic representations are fed into the univer-
sal module separately, which consists of multiple universal
layers. Each universal layer projects different modalities to
shared semantic space for cross-modal alignment while pre-
serving the original representation of different modalities.
The output of universal layers is applied to conduct uni-
modal discrimination tasks. For cross-modal tasks, an addi-
tional fusion module will be applied to produce cross-modal
representations. Finally, the uni-modal and cross-modal
representations can be incorporated as input to a shared
Transformer decoder for various generation tasks, which
facilitates multi-task pre-training and transfer learning. The
modules for different downstream tasks are summarized in
Table 2.

Dual-vision Encoder Module To capture the visual infor-
mation of various vision modalities, we propose dual-vision
encoder to model image and video simultaneously. Spe-
cially, we split the image and video frames into a sequence
of L non-overlapping visual tokens. Every sequence of vi-
sual tokens with learnable spatial position embeddings and
an extra [CLS] token constitute an input visual sequence.
However, modeling the completed visual sequences leads
to difficulty in spatio-temporal learning without large-scale
video pre-training (Li et al., 2022e; Wang et al., 2022a;b).
To alleviate this problem, we decouple the visual representa-
tion into the spatial and temporal representation separately
by introducing temporal locality. As illustrated in Figure
2(b), we leverage the self-attention (SA) layer and feed-
forward layer (FFN) in the Transformer block for spatial
modeling, and propose a novel local temporal modeling
module (LT) to model the temporal dependency among the

where LN is short for layer normalization. The local tempo-
ral modeling module captures the correlation among patches
with the same spatial locations through multi-group fusion
formulated as:

n nn n—1 Tx S
V' = ReLU(Ay¢y (V")) € R okel
LT(V"_l) = ¢"(Concat[V]";--- ; V&]),

“
&)

where ¢7(-) and " (-) are linear transformation functions.
Ay is the learnable temporal relation parameter, which is
instantiated as a convolution kernel. 7" and C' are number
of frames and size of hidden state. GG indicates the number
of groups, and C'oncat denotes concatenation function. By
using multi-group fusion, the model is able to learn rich tem-
poral information from distinctive representation subspaces
at different temporal locations. As a result, except the local
temporal module, the dual-vision encoder module enables
weight sharing for images and videos, which effectively and
efficiently learns the spatial and temporal representation.

Text Encoder Module For the text encoder module, we
use BERT (Devlin et al., 2018) as the text encoder, which
transforms the input text and an extra [CLS] token into a
sequence of text embeddings. The embedding of [CLS]
token is used to summarize the input text.

Universal Layers Module To benefit from modality col-
laboration, we propose the universal layers to model the
vision and language modalities in the shared semantic space
while preserving the original representation of the different
modalities. Before the universal module, we take a variable
number of image or video features V¥ from the dual-vision
encoders as input to produce a fixed number k of visual
tokens V = {v1,va, ..., v} to reduce the computational
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complexity of universal layers. In the 74, universal layer,
the visual tokens Vi1 and the text representation W~ 1 are
fed to the shared self-attention layers to align semantics,
and then the visual tokens are injected into the original vi-
sual feature space by the cross-attention layer to keep the
original representation.

Vi =LN(SAV™hH +Vih (6)
Wia = LN(SAW™H + W) )
Véa = LN(CA(VEa, V") + V) (®)

Vi = LN(FFN (Vi) + Vi) )
W' = LN(FFN(Wi 4) + Wi 1) (10)

Then [V; W] is fed into the next universal layer repeat-
edly to get the final common image and text representation.
Finally, the output of the universal layers [V; W?9] are com-
bined with the original representations [V ~; W] by the
cross-attention layer for the text-aware visual and visual-
aware text representation, where S, N, M are the layers
of universal module, dual-vision encoder and text encoder
respectively.

Fusion Module To effectively capture the cross-modal in-
teraction between vision and language modalities, we use
the fusion module as in ALBEF (Li et al., 2021b), which
is composed of a stack of Transformer blocks with cross-
attention layers. Specifically, the fusion module takes the
text embeddings from the universal layers module as the
input. Then, the text-aware vision embedding cross-attends
to the visual-aware text embeddings in language-shared
common space. By cascading the Transformer blocks with
cross-attention layers, fusion module is able to yield multi-
modal vision-language representations.

Shared Decoder Module To empower the model with the
capability of generation, a shared decoder module is intro-
duced to enable the model to generate text with both uni-
modal and multi-modal information. In detail, the shared
decoder module is a Transformer decoder with arbitrary
inputs. For example, image captioning only requires the
visual features, while the multi-modal features are used for
visual question answering. By taking different types of
input, our shared decoder module can adapt to a variety
of tasks with text generation. The shared decoder module
facilitates multi-task pre-training and transfer learning.

3.2. Unified Pre-training Objectives

We jointly train the multiple modules of mPLUG-2 with the
following three objectives.

Language Loss For the text encoder module, we use
Masked Language Modeling (MLM) as in BERT (Devlin
et al., 2018) to learn the text representation. We randomly
mask 15% tokens in the text and the model is asked to pre-
dict these masked tokens with the context representations.

Multi-modal Loss For the cross-modal module, we employ
the Cross-modal Matching Losses (CML) as in ALBEF (Li
et al., 2021b), which consists of Vision-language Matching
(VLM) and Vision-language Contrastive Learning (VLC).

Instruction-based Language Model Loss Following
Flamingo (Alayrac et al., 2022) and OFA (Wang et al.,
2022d), we adopt the Instruction-based Language Model
Loss to unify various generation tasks. We use handcrafted
instructions to discriminate tasks and modalities, which
include Video/Image-Text Pairs, Video/Image Captioning,
Video/Image Question Answering, Text Generation, etc.

4. Experiment
4.1. Training Setup

Pre-training Datasets Following previous works (Li et al.,
2021b; 2022a), we pre-train our model with the same pop-
ular image-text datasets with 14M images including MS
COCO (Lin et al., 2014), Visual Genome (Krishna et al.,
2017), Conceptual Captions 3M (Sharma et al., 2018), Con-
ceptual Captions 12M (Changpinyo et al., 2021), and SBU
Captions (Ordonez et al., 2011). For video-text datasets,
we adopt the web-sourced video dataset WebVid-2M (Bain
et al., 2021a) with 2.5M video-text pairs. The text datasets
consists of WikiCorpus (Devlin et al., 2018) (about 20GB)
and cleaned common crawl (about 350GB). The collection
and cleaning method of the latter is generally the same as
that used in c4 (Raffel et al., 2020). The implementation
details of pre-training can be found in the Appendix.

4.2. Main Results

We evaluate the new unified paradigm of mPLUG-2 on over
30 benchmarks including vision-language tasks (e.g. multi-
modal retrieval, question answering and captioning) (Xu
et al., 2016; 2017; Chen & Dolan, 2011), language-only
tasks (e.g. text classification, question answering and sum-
marization) (Wang et al., 2018; Rush et al., 2015a), and
vision-only tasks (e.g. image classification and video action
recognition) (Deng et al., 2009; Kay et al., 2017). Spe-
cially, the vision-language benchmarks can be categorized
as image-text parts and video-text parts. Details of these
datasets can be found in the Appendix.

4.2.1. MULTI-MODAL TASKS

Text-to-video Retrieval We compare mPLUG-2 with sev-
eral state-of-the-art methods on MSRVTT (Xu et al., 2016),
DiDeMo (Anne Hendricks et al., 2017) and LSMDC
(Rohrbach et al., 2015) datasets. The results are summarized
in Table 3. We can observe that mPLUG-2 outperforms the
previous SoTA methods on most of the datasets. In par-
ticular, our method yields 5.7% lift in terms of R@1 on
LSMDC datasets compared with HiTeA, which indicates
that the proposed model can leverage the temporal informa-
tion presented in fruitful movie clips through the proposed
local temporal modeling module in the dual-vision encoder.
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Table 3. Performance comparison on text-to-video retrieval. All results are reported on R@1/R@5/R@10.

MSRVTT DiDeMo LSMDC

Method #PTData | R@l R@5 R@10 | R@l R@5 R@I0 | R@l R@5 R@I10
Frozen (Bain et al., 2021b) M 31.0 59.5 70.5 31.0 59.8 72.4 15.0 30.8 39.8
BridgeFormer (Ge et al., 2022)  5M 37.6 64.8 75.1 37.0 62.2 73.9 17.9 354 44.5
Singularity (Lei et al., 2022) M 36.8 65.9 75.5 474 75.2 84.0 - - -
LAVENDER (Li et al., 2022¢) 30M 37.8 63.8 75.0 474 74.7 824 222 43.8 53.5
All-in-one (Wang et al., 2022a)  283M 379 68.1 77.1 32.7 61.4 73.5 - - -
OmniVL (Wang et al., 2022b) 18M 47.8 74.2 83.8 52.4 79.5 85.4 - - -
HiTeA (Ye et al., 2022) 17M 46.8 71.2 81.9 56.5 81.7 89.7 28.7 50.3 59.0
mPLUG-2gase 17M 483 75.0 83.2 52.3 80.8 87.5 25.5 458 55.8
mPLUG-2 17M 53.1 77.6 84.7 56.4 79.1 85.2 344 55.2 65.1

Table 4. Performance comparison on video question answering.
Accuracy is reported for evaluation. mPLUG-2 creates a new state-
of-the-art video question answering results on MSRVTT-QA and
TGIF-FrameQA with open-vocabulary generation.

Method #PT Data | MSRVTT-QA  MSVD-QA  TGIF-FrameQA
JustAsk (Yang et al., 2021a) 69M 41.5 46.3 -
LAVENDER (Li et al., 2022¢) 30M 45.0 56.6 735
All-in-one (Wang et al., 2022a) 283M 46.8 48.3 66.3
MERLOT (Zellers et al., 2021) 180M 43.1 - 69.5
OmniVL (Wang et al., 2022b) 18M 44.1 51.0 -
HiTeA (Ye et al., 2022) 1™ 459 553 732
GIT (Wang et al., 2022¢) 800M 432 56.8 72.8
GIT2 (Wang et al., 2022¢) 12.9B 45.6 58.2 74.9
FrozenBiLM (Yang et al., 2022) 10M 47.0 54.8 68.6
VideoCoCa (Yan et al., 2022) 3B 46.0 56.9 -
InternVideo (Wang et al., 2022g)  12M 47.1 555 722
Flamingo (Alayrac et al., 2022) 2.3B 47.4 - -
mPLUG-2pase 17™M 46.3 553 72.6
mPLUG-2 17M 48.0 58.1 75.4

Video Question Answering Table 4 summarizes the video
question answering results on MSRVTT-QA (Xu et al.,
2017), MSVD-QA (Xu et al., 2017), and TGIF-FrameQA
(Jang et al., 2017). It can be observed that mPLUG-2 outper-
forms all the existing foundation models on MSRVTT-QA
and TGIF-FrameQA by a large margin, and it also attains
the comparable result with big foundation models GIT2
(Wang et al., 2022c) on MSVD-QA even using significantly
smaller amount of pre-trained data. In particular, mPLUG-2
achieves absolute improvement 0.6% on MSRVTT and 0.5%
on TGIF-FrameQA. Furthermore, mPLUG-2g,,. achieves
the comparable results compared to the large models (i.e.,
VideoCoCa and GIT2) with smaller model size.

Video Captioning Table 55 compares mPLUG-2 with ex-
isting methods on video captioning datasets MSRVTT and
MSVD. As shown in the table, although pre-trained on
less data, mPLUG-2 derives the significant improvement on
MSRVTT dataset and comparable performance on MSVD
dataset. On MSRVTT Caption, our method surpasses SoTA
method VideoCoCa (Yan et al., 2022) and GIT2 (Wang
et al., 2022¢) by 4.4% on CIDEr and 3.0% on BLEU @4.
Moreover, we can notice mPLUG-2 outperforms HiTeA
with the same amount of pre-training data, which shows
that mPLUG-2 is able to generate stronger video-language
representation.

Visual Grounding We compare mPLUG-2 with existing
state-of-the-art methods on visual grounding datasets in-
cluding RefCOCO (Yu et al., 2016), RefCOCO+ (Yu et al.,
2016) and RefCOCOg (Mao et al., 2016). Table 7 shows
that mPLUG-2 achieves comparable performance to the
state-of-the-art methods. Our method achieve 0.97% abso-
lute improvement compared with the second best method
on RefCOCO “testB” split without using object detection
data for pre-training. Queries in “testB” split can refer to
various visual concepts but only people in “testA”. The im-
provement demonstrates that the introduction of universal
layers can help model the visual concepts in the image.

Image-Text Retrieval We evaluate mPLUG-2 on image-
text retrieval datasets MSCOCO and Flickr30k. As shown
in Table 6, both mPLUG-2g,,. and mPLUG-2 achieves com-
parable or better performance than state-of-the-art methods.
Florence (Yuan et al., 2021) and BLIP (Li et al., 2022c) use
0.9B and 129M data for pre-train respectively. In contrast,
our mPLUG-2 only requires 17M data. It demonstrates that
mPLUG-2 is data-efficient.

Visual Question Answering We report the performance of
mPLUG-2 on visual question answering test sets. mPLUG-
2 surpasses state-of-the-art method Florence (Yuan et al.,
2021) 0.95% on test-dev and 0.77% on test-std. The scale
of the pre-trained data used in our model is 89.11% less
than that in Florence. It shows that our mPLUG-2 can learn
multi-modal representations efficiently and effectively.

Image Captioning We compare mPLUG-2 with existing
state-of-the-art methods on MSCOCO (Lin et al., 2014).
Following (Li et al., 2020b), we train mPLUG-2 on the
COCO Caption with cross-entropy loss and test on the same
Karpathy split. As shown in Table 9, our mPLUG-2 achieves
new SoTA results on COCO Caption. Moreover, our method
achieves competitive results with big foundation models,
such as LEMON (Hu et al., 2021) and BLIP (Li et al., 2022c)
which use more than nearly 10x amount of pre-training data.
Specifically, our mPLUG-2 outperforms BLIP on COCO
caption by an obvious 1.2 point margin on BLEU@4, and 1
point on CIDEr.
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Table 5. Performance comparison on video captioning. B@4: BLEU@4; M: METEOR; R: ROUGE-L; C: CIDEr.

MSRVTT MSVD
Method #PT Data | B@4 M R C B@4 M R C
UniVL (Luo et al., 2020) 136M 422 282 612 499 - - - -
SwinBERT (Lin et al., 2022) - 419 299 62.1 538 582 413 775 1206
CLIP4Caption (Tang et al., 2021) - 46.1 307 637 577 - - - -
MV-GPT (Seo et al., 2022) 69M 489 387 640 60.0 - - - -
LAVENDER (Li et al., 2022¢) 30M - - - 60.1 - - - 150.7
HiTeA (Ye et al., 2022) 17M 492 307 650 65.1 710 453 814 1469
VideoCoca (Yan et al., 2022) 3B 53.8 - 68.0 732 - - - -
GIT (Wang et al., 2022c) 0.8B 538 329 677 739 | 795 51.1 873 180.2
GIT2 (Wang et al., 2022c) 12.9B 548 331 682 759 822 523 887 1854
mMPLUG-2gae 17 522 321 669 724 693 451 819 1482
mPLUG-2 17M 578 349 701 803 750 484 853 1658

Table 6. Performance comparison on image-text retrieval. All results are reported on R@1/R@5/R@10.

MSCOCO (5K test set) Flickr30K (1K test set)
TR IR TR IR

Method #PT Data | R@1 R@5 R@10 R@1 R@5 R@I0|R@] R@5 R@I10 R@1 R@5 R@I0
E2E-VLP (Xu et al.) 4M - - - - - - 862 97.5 9892 736 924 96.0
UNITER (Chen et al., 2020) 4M 657 88.6 938 529 799 88.0 | 873 980 992 756 941 96.8
OSCAR (Li et al., 2020b) 4M 70.0 91.1 955 540 80.8 885 - - - - - -
UNIMO (Lietal, 2020a) 4M - - - - - - 894 989 998 780 942 97.1
VLMo (Wang et al., 2021a) 4M 782 944 974 606 844 910 [ 953 999 1000 845 973 98.6
ALIGN (Jia et al., 2021) 1.8B 770 935 969 599 833 898 [953 99.8 1000 849 974 98.6
ALBEEF (Li et al., 2021b) 14M 776 943 972 607 843 905 | 959 99.8 1000 856 97.5 989
Florence (Yuan et al., 2021) 0.9B 81.8 952 - 632 857 - 972 999 - 879 98.1 -
BLIP (Li et al., 2022¢) 129M 824 954 979 65.1 863 918 | 974 998 999 87.6 97.7 99.0
mPLUG-2p,e 17 812 956 981 653 869 924 | 969 100.0 100.0 882 978 99.0
mPLUG-2 17M 825 957 980 657 871 926 | 972 1000 100.0 88.1 97.6 99.1

Table 7. Evaluation results on visual grounding (ReferCOCO
and ReferCOCOg). We use the accuracy @0.5 (a prediction is
right if the IoU between the grounding-truth box and the predicted
bounding box is larger than 0.5) to measure model performance.

RefCOCO RefCOCOg

Model val testA  testB  val-u  test-u
UNITER (Chen et al., 2020) 81.41 87.04 74.17 7486 75.77
VILLA (Gan et al., 2020) 82.39 87.48 7484 76.18 76.71
MDETR (Kamath et al., 2021) 86.75 89.58 81.41 81.64 80.89
UNICORN (Yang et al., 2021b)  88.29 90.42 83.06 83.44 83.93
OFALarge (Wang et al., 2022d)  90.05 92.93 8526 84.54 85.20
mPLUG-2 90.33 92.80 86.05 84.70 85.14

4.2.2. LANGUAGE ONLY TASKS

Natural Language Understanding We evaluate mPLUG-
2 on 6 tasks of the GLUE benchmark (Wang et al., 2018)
for natural language understanding. Table 10 shows that
mPLUG-2 achieves comparable performance to the state-of-
the-art natural language and multimodal pretrained models
including RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2021b). Our method with DeBERTa achieves improvement
compared with DeBERTa (He et al., 2021b) on three tasks,
which also demonstrates the effectiveness of universal mod-
ules for modality collaboration.

Natural Language Generation We evaluate mPLUG-2 on
Gigaword abstractive summarization (Rush et al., 2015b)
for natural language generation. As shown in Table 11,
mPLUG-2 achieves the comparable result with the state-of-
the-art models.

Table 8. Performance comparison on visual question answering.
Accuracy is reported for evaluation.

Method #PT Data | test-dev  test-std
UNITER (Chen et al., 2020) iM 72.70 7291
UNIMO (Li et al., 2020a) iM 73.79 74.02
E2E-VLP (Xu et al.) iM 73.25 73.67
OSCAR (Li et al., 2020b) iM 73.16 73.44
ALBEF (Li et al., 2021b) iM 74.54 74.70
BLIP (Li et al., 2022¢) 14M 77.54 77.62
SimVLM (Wang et al., 2021b) 1.8B 80.03 80.34
Florence (Yuan et al., 2021) 0.9B 80.16 80.36
OFALarge (Wang et al., 2022d)  18M 80.30 80.50
VLMo (Wang et al., 2021a) - 79.94 79.98
GIT (Wang et al., 2022¢) 0.8B 78.56 78.81
mPLUG-2pge 17"M 79.27 79.32
mPLUG-2 17M 81.11 81.13

4.2.3. VISION ONLY TASKS

Video Action Recognition Video action recognition is the
most representative of video understanding since it requires
the model to understand the spatio-temporal cues revealed in
the video. Table 12 summarizes the performance of different
approaches on Kinetics 400, Kinetics 600, and Kinetics
700 datasets. Our mPLUG-2 surpasses the most of SoTA
methods. For example, compared with Florence pre-trained
on 900M vision-text pairs, mPLUG-2 improves the Top-1
accuracy by 1.9% on Kinetics 600 and 0.6% on Kinetics
400. Meanwhile, we can notice that the performance of
mPLUG-2 is better than OmniVL with similar amount of
pre-training data, which shows the effectiveness of the dual-
vision encoder module for video representation learning.
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Table 9. Performance comparison on image captioning. B@4:
BLEU@4; M: METEOR; R: ROUGE-L; C: CIDEr.

Table 11. Experimental results on Gigaword abstractive sum-
marization. We report performance on the ROUGE evaluation.

COCO Caption

Method #PT Data | B@4 M C S
Encoder-Decoder 12M - - 110.9 -
E2E-VLP (Xu et al.) 4M 36.2 - 117.3 -
VinVL (Zhang et al., 2021b) 5.65M 385 304 1308
OSCAR (Li et al., 2020b) 6.5M - - - -
LEMON;,¢c (Hu et al., 2021) 200M 40.6 304 1357 235
BLIP (Li et al., 2022¢) 129M 40.4 - 136.7 -
mPLUG-2 17M 41.6 309 137.7 237

Table 10. Experimental results on the GLUE benchmark.

Model SST-2 RTE MRPC QQP MNLI QNLI
Multimodal Pretrained Baseline Models

VisualBERT (Li et al., 2019) 894 566 719 894  81.6 87.0

UNITER (Chen et al., 2020) 89.7 556 69.3 89.2  80.9 86.0

VL-BERT (Su et al., 2019) 89.8 557  70.6 89.0 812 86.3

VIIBERT (Lu et al., 2019) 904 537 69.0 886 799 83.8

LXMERT (Tan & Bansal, 2019)  90.2 572 69.8 753 804 84.2
Uni-Perceiver (Zhu et al., 2021) 90.2 643 86.6 87.1 81.7 89.9
SimVLM (Wang et al., 2021b) 909 639 752 904 834 88.6

FLAVA (Singh et al., 2021) 909 57.8 814 904 803 873
UNIMO (Li et al., 2020a) 96.8 - - - 89.8 -

OFA (Wang et al., 2022d) 96.6 91.0 917 925 902 94.8

Natural-Language-Pretrained SOTA Models

BERT (Devlin et al., 2018) 932 704 88.0 913 86.6 923
RoBERTa (Liu et al., 2019) 964 86.6 909 922 902 93.9
XLNet (Yang et al., 2019) 97.0 859  90.8 923 90.8 94.9
ELECTRA (Clark et al., 2020) 969 88.0 90.8 924 909 95.0
DeBERTa (He et al., 2021b) 968 883 919 923 911 95.3
mPLUG-2p4e 935 852 873 913 876 93.2
mPLUG-2 95.1 88.0 90.1 927 902 94.5
mMPLUG-2peperta 962 894 921 92.6  90.8 94.8

Image Classification We further evaluate the performance
of mPLUG-2 in terms of image classification on ImageNet-
1K. As we can see in Table 13, We can see that mPLUG-2
achieves comparable results or even surpass the SoOTA meth-
ods on ImageNet- 1K without using the ImageNet data for
pre-training. Besides, to effectively evaluate the robustness
and generalization ability of mPLUG-2 , we perform the
evaluation on 5 ImageNet variants (i.e. IN-V2, IN-Real.,
IN-Adversarial, IN-Rendition, and IN-Sketch). Following
standard evaluation procedure (Fang et al., 2022a), all these
models are first fine-tuned on the original ImageNet-1K
training set and directly tested on the 6 variants without
further fine-tuning. As shown in Table 13, mPLUG-2 not
only achieves the highest accuracy on ImageNet-1K vali-
dation set but also obtains the relative small gap (i.e., A}),
which reflects the excellent robustness and generalization
capability of mPLUG-2 with the help of the universal layer
module by learning language-shared representation.

4.3. Discussion

Impact of Instruction-based Learning The instructional-
based learning is able to distinguish different types of tasks
with specific instructions. Table 14 demonstrates the effec-
tiveness of instructional-based learning. In the table, we
can observe that instructional-based learning improves the
performance of retrieval and question answering by at least

Gigaword
Model ROUGE-1 ROUGE-2 ROUGE-L
BERTSHARE (Rothe et al., 2020)  38.13 19.81 35.62
MASS (Song et al., 2019) 3873 19.71 35.96
UniLM (Dong et al., 2019) 38.45 19.45 35.75
PEGASUS (Zhang et al., 2020) 39.12 19.86 36.24
ProphetNet (Qi et al., 2020) 39.55 20.27 36.57
UNIMO (Li et al., 2020a) 39.71 20.37 36.88
OFA (Wang et al., 2022d) 39.81 20.66 37.11
mPLUG-2 39.65 20.67 36.89

Table 12. Comparison with the state-of-the-art on video action
recognition under fine-tuning settings.

Kinetics 400 Kinetics 600 Kinetics 700
Method Top-1  Top-5 | Top-1  Top-5 | Top-1  Top-5
TimeSformer-L (Bertasius et al., 2021) 80.6 94.7 82.2 95.6 - -
ViViT-H (Arnab et al., 2021) 84.8 95.8 85.8 96.5
VideoSwin-L (Liu et al., 2022b) 84.9 96.7 86.1 97.3
OmniVL (Wang et al., 2022b) 79.1 94.5 - -
TokenLearner (Ryoo et al., 2021) 85.4 96.3 86.3 97.0
VATT (Akbari et al., 2021) 82.1 95.5 83.6 96.6 -
MoViNet (Kondratyuk et al., 2021) 81.5 - 84.8 - 79.4
Florence (Yuan et al., 2021) 86.5 97.3 87.8 97.8 - -
CoVeR (Zhang et al., 2021a) 86.3 97.2 87.9 97.8 78.5 94.2
mMPLUG-2pase 83.6 96.0 86.7 972 74.6 91.2
mPLUG-2 87.1 971.7 89.8 98.3 80.4 94.9

Table 13. Comparison with state-of-the-art methods in terms
of robustness and generalization capability evaluation on
ImageNet-1K variants. We test the model on various ImageNet-
1K validation set without any further fine-tuning. ”Avg.” indicates
the average Top-1 accuracy on 6 different ImageNet-1K variants.
”A,” stands for the gap between averaged Top-1 accuracy of 6
variants and the accuracy of original ImageNet-1K validation (the
lower the better).

Method IN-IK  IN-V2  IN-Real  IN-Adv. IN-Ren. IN-Ske. Avg. Ay
ConvNeXt (Liu et al., 2022a) 87.5 71.7 90.5 70.8 67.0 53.7 745 | 13.0
SwinV2-G (Liu et al., 2021a) 87.5 77.3 90.2 73.9 67.7 523 74.8 127
MAE (He et al., 2021a) 87.8 79.2 90.3 76.7 66.5 50.9 752 | 12.6
DeiT3 (Touvron et al., 2022) 87.7 79.1 90.2 79.2 70.6 54.9 77.0 | 10.7
Eff-L2-NS (Tan & Le, 2019) 88.4 80.5 90.6 84.8 74.7 47.6 71.8 10.6
OFA (Wang et al., 2022d) 85.6 - - - - - - -

mPLUG-2 88.5 78.1 89.5 73.2 75.6 61.2 77.7 | 10.7

Table 14. Evaluation of the proposed instructional-based learn-
ing on downstream tasks. For retrieval task, we report the average
of Recall@1, Recall@5, and Recall@10. For QA and caption task,
Top-1 Accuarcy and CIDEr are reported.

Instruction | MSRVTT-Ret. MSVD-QA  MSRVTT-Cap.
72.8 54.1 71.8
v 73.5 (+0.7) 55.3 (+1.2) 72.4 (+0.6)

Table 15. Evaluation of different temporal modeling modules
in the dual-vision encoder module. For retrieval task, we report
the average of Recall@1, Recall@5, and Recall@10. For QA and
caption task, Top-1 Accuarcy and CIDEr are reported.
Temporal Module MSRVTT-Ret. MSVD-QA  MSRVTT-Cap.
Temporal Self-Attention 70.3 55.1 71.1

Temporal Convolution 714 (+1.1) 55.0 71.7 (+0.6)
Local Temporal Modeling 73.5 (+3.2) 55.3 (+0.2) 724 (+1.3)

0.7% and 1.2% in Average Recall and accuracy respectively.
With the help of instructional-based learning, mPLUG-2 is
capable of utilizing the different modules when different
instructions are used to boost the performance.



mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image and Video

Table 16. Evaluation of the impact of universal layer in terms of boosting vision task’s performance.

Method ImageNet CIFAR10 CIFAR100 Cars DTD SUN Food101 Average
CLIP-ViT-L/14 86.2 98.6 922 91.6 81.9 80.7 94.4 89.4
+Universal Layers | 86.6 (+0.4) 993 (+0.7) 93.1(+0.9) 944 (+2.8) 85.1 (+3.2) 804 (-04) 954 (+1.0) | 90.6 (+1.2)
Modality Gap ||| w/o Universal Layer: 0.811 Modality Gap ||A|| with Universal Layer: 0.760
Table 17. Evaluation of the impact of the universal layer in o IR, o Visiond

terms of boosting language and vision-language task’s perfor-

mance.
Model | SST2 RTE MRPC QQP MNLI QNLI | VQA test-dev
BERT e 91.7 714 863 908 843 893 78.6
+Joint Training 925 823 866 906 862 921 78.9
+Universal Layers | 93.5 852 873 913 876 93.2 79.3

= AP £

A man has parachuted into a grassy field A couple of zebras and a giraffe
in a grassy field.

MR et |

A person is standing inside of a An air plane painted in camouflage
fire damaged hotel room next to another plane

W YA

Two people are crossing the street as they are Blue and white quilt under the dog.
heading towards the stop sign.

Figure 3. Grad-CAM visualizations for latent queries in the univer-
sal layers.

Impact of Local Temporal Modeling Module To validate
the effectiveness of our proposed local temporal modeling
module in the dual-vision encoder, we conduct experiments
with the different temporal modeling structures. Specially,
we have tried out the temporal self-attention and temporal
convolution for comparison. The results are summarized
in Table 15. We can notice that the local temporal model-
ing module outperforms temporal self-attention module by
introducing modeling temporal locality. Meanwhile, with
the help of the multi-group fusion mechanism, the local
temporal modeling module can learn the diverse tempo-
ral representations in distinctive representation subspaces
while the temporal convolution is restricted in the same
temporal representation spaces, thus leading to the better
performance.

Impact of Universal Layer To validate the effectiveness
of our proposed universal layer module, we ablation this
module for all uni-modal and multi-modal tasks. As shown
in Table 16 and Table 17, we set Row 1/2/2 as the baseline of
the vision/language/vision-language task in this experiment,
respectively. We can find that compared with the baseline
the shared universal layer is beneficial for all modality tasks
by encouraging collaboration between modalities.

In Figure 5, we visualize the Grad-CAM on the cross-
attention map in the first universal layer. For each sample,
we present two cross-attention maps that attend to differ-

UMAP,

-0.9 -0.8 0.7 -0.6 -0.5 -04 -0.3 -0.2
UMAP,

~0.85 ~0.80 ~0.75 ~0.70 —0.65 ~0.60 ~0.55 ~0.50
UMAP,

Figure 4. The UMAP visualization of generated vision and lan-
guage embeddings from pre-trained mPLUG-2 . The black lines
refer to vision-language pairs.

ent visual concepts. The results show that the universal
layer can encourage modality collaboration and modality
entanglement between visual patch features and language
features by attending the areas of various visual concepts in
the image.

Universal Layer for Modality Collaboration Here we in-
vestigate the influence of universal layer in terms of modality
collaboration. We randomly sample some vision-language
pairs, and sketch the UMAP visualization of the generated
embeddings from pre-trained mPLUG-2 in the Figure 4.
We can observe that with the help of universal layer, the
distance between vision and text samples are more closer
instead of solely two concentrated clusters. Besides, we
quantitatively compute the modality gap ||A|| (Liang et al.,
2022), where the A is the difference between the center of
vision embeddings and text embeddings. It can be observed
that the model with universal layer would encourage the
collaboration between vision and language modalities thus
yielding lower modality gap compared to the model without
universal layer.

5. Conclusion

This paper presents mPLUG-2 , a new unified paradigm
with modularized design for building multi-modal founda-
tion models. mPLUG-2 introduces a module-based network
design that shares common universal modules for modality
collaboration and disentangles modality-specific modules to
address the problem of modality entanglement. Experimen-
tal results show that the new unified paradigm of mPLUG-2
can achieve strong performances on a broad range of over
30 tasks across the text, image and video modalities. It is
also easy to extend mPLUG-2 to more tasks by selecting
and adding modules.
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Table 18. System-level comparisons with the state-of-the-art results on COCO dataset for object detection and instance segmenta-
tion. We report the standard boudning box AP (APy.;) and mask AP (AP,,qsk). The detector are Cascade Mask R-CNN (Cascade),
Dynamic Head (DyHead), Hybrid Task Cascade (HTC), and its extension (HTC++).

Method Detector | APpox  APmask
Mask R-CNN (He et al., 2017) - 46.3 40.1
DETR (Carion et al., 2020) - 449 33.0
Pix2seq (Chen et al., 2021) - 45.0 -
Copy-Paste (Ghiasi et al., 2021) Cascade 57.0 48.9
Swin-L (Liu et al., 2021b) HTC++ 58.0 50.4
CBNetV2 (Liang et al., 2021) HTC 59.6 51.8
GLIP (Li et al., 2021c) DyHead 60.8 -
SwinV2-L (Liu et al., 2021a) HTC++ 60.2 52.1
Florence (Yuan et al., 2021) DyHead 62.0 -
mPLUG-2 Cascade 46.9 40.6

Table 19. Zero-shot evaluation on text-to-video retrieval. All results are reported on R@1/R@5/R@10.

MSRVTT DiDeMo LSMDC
Method #PTData | R@l R@5 R@I0 | R@l R@5 R@10 | R@l R@5 R@I0
Frozen (Bain et al., 2021b) M 18.7 39.5 51.6 21.1 46.0 56.2 9.3 22.0 30.1
ALPRO (Li et al., 2021a) 5M 24.1 44.7 55.4 23.8 473 57.9 - - -
Singularity (Lei et al., 2022) M 28.4 50.2 59.5 36.9 61.6 69.3 - -
VIOLET (Fu et al., 2021) 183M 25.9 49.5 59.7 235 49.8 59.8 - -
Florence (Yuan et al., 2021) 900M 37.6 63.8 72.6 - - - - -
mPLUG (Li et al., 2022a) 14M 38.1 59.2 68.2 - - - - - -
HiTeA (Ye et al., 2022) 17M 34.4 60.0 69.9 432 69.3 79.0 18.3 36.7 442
OmniVL (Wang et al., 2022b)  18M 42.0 63.0 73.0 40.6 64.6 74.3 - - -
mPLUG-2 1™ 47.1 69.7 79.0 45.7 71.1 79.2 24.1 43.8 52.0

Table 20. Zero-shot evaluation on video question answering. Accuracy is reported.

Method #PT Data | MSRVTT-QA  MSVD-QA
Just Ask (Yang et al., 2021a) 6OM 2.9 7.5
LAVENDER (Li et al., 2022¢) M 4.5 11.6
MERLOT Reserve (Zellers et al., 2021) 1B 5.8 -
FrozenBiLM (Yang et al., 2022) 10M 6.4 11.7
BLIP (Li et al., 2022c¢) 129M 19.2 35.2
mPLUG (Li et al., 2022a) 400M 21.1 37.2
HiTeA (Ye et al., 2022) M 21.7 37.4
mPLUG-2 17M 43.8 55.3

A. More Results

A.1. Detection and Segmentation

We evaluate the object detection and instance segmentation performance of mPLUG-2 on COCO dataset (Lin et al., 2014),
which is widely used for object-level detection and segmentation with 80 common categories. Table 18 reports the results
on COCO dataset. We observe that mPLUG-2 outperform typical state-of-the-art resnet-based detection methods (e.g.,
DETR (Carion et al., 2020) and Pix2seq (Chen et al., 2021)). There is a performance gap between foundation model
optimized for computer vision (e.g., Florence (Yuan et al., 2021) and Swin-Transformer (Liu et al., 2021b)) and mPLUG-2 .
Note that mPLUG-2 does not pre-trained with vision only task and data. Lower performance than models pre-trained on
ImageNet is to be expected.

A.2. Zero-Shot Transferability

Text-to-Video Retrieval For testing the transferability of pre-trained mPLUG-2 , we conduct the zero-shot evaluation on
Text-to-Video Retrieval and the results are summarized in Table 19. We can find that mPLUG-2 obtains SoTA results on
both MSRVTT, DiDeMo and LSMDC datasets, and outperforms previous methods by a large margin, such as 5.1 point of
R@1 on the MSRVTT dataset. The results prove that our mPLUG-2 has excellent zero-shot transferability.
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Figure 5. Grad-CAM visualizations for latent queries in the universal layers.

Video Question Answering We testing the transferability of pre-trained mPLUG-2 on Video QA and the results are
summarized in the Table 20. It can be observed that mPLUG-2 achieves the best zero-shot performance on both MSRVTT-
QA and MSVD-QA datasets, which demonstrates the strong zero-shot transferability of our model under the help of
universal module and instructional-based learning.

A.3. Visualization of Universal Layer

In Figure 5, we visualize the Grad-CAM on the cross-attention map in the first universal layer. For each sample, we present
two cross-attention maps that attend to different visual concepts. The results show that the universal layer can encourage
modality collaboration and modality entanglement between visual patch features and language features by attending the
areas of various visual concepts in the image.

A.4. Visual Grounding

Visualization We visualize several cases of visual grounding task in Figure 6. The first row shows that our mPLUG-2 can
understand various visual concepts and their relationships. It also can make fine-grained alignment between vision and
language. The second row presents several failure cases. In the first sample, “trunk” is an ambiguous which result in a
incorrect prediction. In the second sample, mPLUG-2 fail to recognize the blurred “donut”. In the thrid sample, mPLUG-2
does not realize the left and right are reversed in a mirror and predict the “left” item.

B. Implementation Details
B.1. Pre-training

Our models are implemented in the PyTorch framework (Paszke et al., 2019). In detail, we instantiate the text encoder
with BERT (Devlin et al., 2018) model pre-traiend on Wikipedia and Bookcorpus (Zhu et al., 2015). The visual encoder is
initialized from CLIP-ViT (Radford et al., 2021) pre-trained on 400M noisy image-text pairs. For the base size of model
namely mPLUG-2g,. , we use the ViT-B/16 for vision encoder and BERT-Base (Devlin et al., 2018) as the text encoder
as well as the text decoder. For mPLUG-2 , we scale up the vision and text encoders with ViT-L/14 (Dosovitskiy et al.,
2020) and BERT-Large (Devlin et al., 2018) respectively. C' = 768 and C' = 1024 for mPLUG-2p,,. and mPLUG-2 . We
set S = 2 for universal layers for the good empirical performance, and choose G = C for multi-group mechanism in the
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trunk second left donut the item in his left hand

Figure 6. The visualization of visual grounding task. Green denotes the ground-truth box and red denotes the predicted bounding box.

local temporal modeling module empirically. The number of layers for fusion module is set to 3 for mPLUG-2g,. and 6 for
mPLUG-2 , while the number of shared decoder layer is set to 12 for both mPLUG-2g,s. and mPLUG-2 . We pre-train the
model for 30 epochs with the total batch size of 1024 on 8 NVIDIA A100 GPUs for mPLUG-2g,,. and batch size of 512 on
16 NVIDIA A100 GPUs. We use AdamW (Loshchilov & Hutter, 2019) optimizer with the weight decay factor 0.02 and
betas (0.9, 0.98) for stabilizing the learning. The learning rate is firstly warmed up to [, in the first 5000 iterations then
decays following the cosine annealing schedule. I7,,,, is set to le-4 for mPLUG-2g,, and 5e-5 for mPLUG-2 . During the
pre-training, we randomly crop the images and video frames into 224 x 224 resolution and sparsely sample 4 frames for
each video while preserving their order in-between. For vision-text contrastive learning, the queue size and the momentum
coefficient are set to 65,536 and 0.995 respectively.

B.2. Downstream Tasks

B.2.1. VISION ONLY TASKS

Video Action Recognition We first train mPLUG-2 on the Kinetics-710 dataset (Li et al., 2022d) for 40 epochs which is
the combination of Kinetics-400, Kinetics-600 and Kinetics-700 by removing the videos represented in the validation and
test sets. Specially, the base learning rate is set to le-5 for mPLUG-2g,,. and 5e-6 for mPLUG-2 with batch size 256 and
128 respectively. Then fine-tuning on Kinetics-400, Kinetics-600, and Kinetics-700 individually for 5 epochs with the same
learning rate and batch size.

Image Classification We finetune mPLUG-2 for 30 epochs with the learning rate of 6e-5 and a batch size of 4096. We use
the RandomCrop, HorizontalFlip, RandAug and RandErase transformations for data augmentation.

Object Detection and Segmentation We keep the same setting as EVA (Fang et al., 2022b) to train mPLUG-2 on object
detection and segmentation tasks. The different is that we do not pre-train mPLUG-2 on Object365 (Shao et al., 2019)
before fine-tuning on MSCOCO.

B.2.2. LANGUAGE ONLY TASKS

Natural Language Understanding Following (Wang et al., 2022d), we select the best hyperparameters in a suitable range
for fine-tuning. We tune the training epochs among 5, 7, 10, learning rate among 3e-5, Se-5, 6e-5, 7e-5, 1e-4, batch size
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among 32, 64, 128. We report the best performance on the development set for each task.

Natural Language Generation Following (Wang et al., 2022d), we finetune mPLUG-2 for 50,000 steps with a learning
rate of 3e-5 and a batch size of 256. During reference, we beam size with 5 and max generation length with 512.

B.2.3. VIDEO-TEXT MULTI-MODAL TASKS

For all video-language downstream tasks, we resize video frames to 224 x 224. During fine-tuning, we randomly sample 12
frames for text-to-video size video frames, 16 frames for video question answering and video captions. We perform uniform
sampling during inference. We use RandomCrop with minimum ratio 0.5 and HorizontalFlip with 0.5 probability for data
augmentation.

Text-to-Video Retrieval We train mPLUG-2g,,, and mPLUG-2 on the training set of MSRVTT/DiDeMo/LSMDC for 10
epochs with a learning rate of 2e-5 and batch size of 192.

Video Question Answering We train mPLUG-2g,,. and mPLUG-2 on the training set of MSRVTT-QA/MSVD-QA/TGIF-
FrameQA for 10 epochs with a learning rate of 2e-5 and batch size of 128.

Video Captioning For the video caption task, we use a prefix prompt "What does the video describe?” to improve the
quality of generated captions. We set the same training parameters for both the MSRVTT and MSVD datasets. Specifically,
we fine-tune mPLUG-2g,;. and mPLUG-2 with cross-entropy loss on the training set for 10 epochs with a learning rate of
2e-5 and a batch size of 128. Then, we perform CIDEr optimization for extra 5 epochs with a learning rate of le-6 and a
batch size of 16. Finally, we evaluate the test set with a beam size of 5 and max generation length of 25.

B.2.4. IMAGE-TEXT MULTI-MODAL TASKS

We resize image frames to 336/576/384/336 for the retrieval/vqa/captioning/grounding tasks. We use ResizedCrop with
a minimum ratio of 0.5 and HorizontalFlip with 0.5 probability for data augmentation. We perform center crop during
inference.

Image-Text Retrieval We train mPLUG-2 on the training set of MSCOCO/Flickr30K for 8 epochs with a learning rate of
le-5 and batch size of 512.

Visual Question Answering We train mPLUG-2g,,. on the VQA dataset for 8 epochs with a learning rate of 3e-5 and
batch size of 512.

Image Captioning For the image caption task, we use a prefix prompt “What does the image describe ?” to improve the
quality of generated captions. we first fine-tune mPLUG-2 with cross-entropy loss on COCO training set for 5 epochs with a
learning rate of 1e-5 and a batch size of 256. Then we evaluate on the COCO Caption Karpathy validation split and reuse
it to predict the Nocaps validation set directly. During inference, we use beam search with a beam size of 5 and set the
maximum generation length as 25.

Visual Grounding We first train the model with RefCOCO series datasets with a learning rate of 2e-5 for 120 epochs. Then
we continue fine-tuning the model on each dataset with a learning rate of 2e-6 epochs for 30 epochs. We limit the query
length to 20/40 for RefCOCO and RefCOCOg, respectively.

B.3. Dataset Description
Text-to-Video Retrieval We evaluate mPLUG-2 on three popular text-to-video retrieval datasets including MSRVTT (Xu

et al., 2016), DiDeMo (Anne Hendricks et al., 2017), and LSMDC (Rohrbach et al., 2015).

e MSRVTT consists of 10K YouTube sourced videos with 200K text descriptions. Following (Li et al., 2022¢; Luo et al.,
2022; Huang et al., 2022a), the dataset is divided into 9K and 1K videos for training and testing.

* DiDeMo consists of 10K videos from Flickr and each video with 4 descriptions. Following (Li et al., 2022b; Ma et al.,
2022; Li et al., 2022¢), we concatenate all descriptions of a video as a paragraph, and evaluate the paragraph-to-video
retrieval performance. The dataset is separated into 8K for training, 1K for validation and 1K videos for test.
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e LSMDC consists of 118,081 video clips from 202 movies. Following the standard splits from (Rohrbach et al., 2015),
the dataset is divided into 101K and 1K videos for training and testing.

Video Question Answering We evaluate mPLUG-2 on three popular video question answering datasets including MSRVTT-
QA (Xu et al., 2017) MSVD-QA (Xu et al., 2017), and TGIF-FrameQA (Jang et al., 2017).

* MSRVTT-QA is based on the MSRVTT dataset (Xu et al., 2016). The QA pairs are automatically generated by from
the descriptions. This benchmark composed of 243K open-ended questions over 10K videos.

* MSVD-QA is based on the MSVD datasets (Chen & Dolan, 2011) with automatically generated QA pairs. It consists
2K videos with 47K questions.

* TGIF-FrameQA collects the answerable with just a single frame in the video, and is divided into training set with 35K
questions and test set with 14K questions.

Video Captioning We use MSRVTT (Xu et al., 2016) and MSVD (Chen & Dolan, 2011) for video captioning evaluation.

* MSRVTT is composed of 10K videos with 20 captions per video as described above. We take the same data split as
text-to-video retrieval task.

* MSVD contains 1970 YouTube short video clips. Following the standard splits from (Lin et al., 2022; Li et al., 2022e¢),
we separate the dataset into 1,200 train, 100 validation and 670 test videos.

Visual Question Answer We evaluate our method on the VQA 2.0 dataset (Agrawal et al., 2017).

¢ VQA 2.0 is a dataset containing open-ended questions about images and at least 3 questions (5.4 questions on average)
per image. It contains 83k/41k/81k images for training/validation/test.

Image-Text Retrieval Two popular image-text retrieval benchmarks, COCO (Lin et al., 2014) and Flickr30K (Plummer
et al., 2015) are used to evaluate the model. We adopt the widely-used Karpathy split (Karpathy & Fei-Fei, 2015) for both
COCO and Flickr30K.

¢ COCO has over 330k images and 5 independent human generated captions are be provided for each image. It contains
113k/5k/5k images for training/validation/testing.

* Flickr30K contains 31k images from Flickr, each image with 5 human annotated sentences. It contains 29k/1k/1k
images for training/validation/testing.

Image Captioning We evaluate our method on COCO (Lin et al., 2014) datasets.
* COCO takes the same data split as the image-text retrieval task.

Natural Language Understanding To verify the natural language understanding ability of our mPLUG-2 , we select 6
language understanding datasets from GLUE (Wang et al., 2018) benchmark, including both single-sentence classification
tasks and sentence-pair classification tasks.

¢ SST-2 The Stanford Sentiment Treebank consists of sentences from movie reviews and human-annotated sentiment.
The task is to predict the sentiment of a given sentence.

* RTE The Recognizing Textual Entailment dataset comes from a series of annual textual entailment challenges.

¢ MRPC The Microsoft Research Paraphrase Corpus consists of a corpus of sentence pairs collected from online news
sources, with human annotations for whether the sentences in the pair are semantically equivalent.
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* QQP The Quora Question Pairs dataset is a collection of question pairs from the community question-answering
website Quora. The task is to predict whether a pair of questions are semantically equivalent.

e MNLI The Multi-Genre Natural Language Inference Corpus consists of sentence pairs (premise, hypothesis) with
textual entailment annotations. The task is to predict the entailment between the premise and the hypothesis.

* QNLI The Stanford Question Answering Dataset is a question-answering dataset, where one of the sentences in the
paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The
task is to determine whether the context sentence contains the answer to the question.

Natural Language Generation We use Gigaword dataset (Rush et al., 2015a) for text summarization task to verify the
natural language generation ability of our mPLUG-2 .

¢ Gigaword Headline-generation on a corpus of article pairs from Gigaword consisting of around 4 million articles. It
contrains 3803957, 189651 and 1951 samples for training/validation/testing.

Video Action Recognition We adopt three popular benchmarks Kinetics 400/600/700 dataset (Kay et al., 2017) to evaluate
our model.

The videos in these three benchmarks are collected from YouTube. Each video clip lasts around 10 seconds and is
labeled with a single action class. The videos include human-object interactions such as playing instruments, as well as
human-human interactions such as shaking hands and hugging.

* Kinetics 400 consists of 240K training videos and 20K validation videos that span 400 human action categories.
 Kinetics 600 consists of 392K training videos and 30K validation videos spanning 600 action categories.

 Kinetics 700 consists of 545K training videos and 35K validation videos spanning 700 action categories.

Image Classification We evaluate performance of mPLUG-2 in terms of image classification on ImageNet-1K (Deng et al.,
2009).

* ImageNet-1K contains 1.28M training images and 50K validation images from 1,000 classes.
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