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ABSTRACT

This paper introduces a novel approach to solving multi-block nonconvex com-
posite optimization problems through a proximal linearized Alternating Direction
Method of Multipliers (ADMM). This method incorporates an Increasing Penal-
ization and Decreasing Smoothing (IPDS) strategy. Distinguishing itself from
existing ADMM-style algorithms, our approach (denoted IPDS-ADMM) impos-
es a less stringent condition, specifically requiring continuity in just one block
of the objective function. IPDS-ADMM requires that the penalty increases and
the smoothing parameter decreases, both at a controlled pace. When the asso-
ciated linear operator is bijective, [IPDS-ADMM uses an over-relaxation stepsize
for faster convergence; however, when the linear operator is surjective, IPDS-
ADMM uses an under-relaxation stepsize for global convergence. We devise a
novel potential function to facilitate our convergence analysis and prove an oracle
complexity O(e~?3) to achieve an e-approximate critical point. To the best of our
knowledge, this is the first complexity result for using ADMM to solve this class
of nonsmooth nonconvex problems. Finally, some experiments on the sparse PCA
problem are conducted to demonstrate the effectiveness of our approach. [H

1 INTRODUCTION

We consider the following multi-block nonconvex nonsmooth composite optimization problem:
n n
min Y [fi(xi) + hi(xi)], st ) Aixi] = b, (1)
i=1 i=1
where b € R™¥1 A; € R™*di x; ¢ R%>¥! and i € [n] £ {1,2,...,n}. We assume
fi(-) : REX1 s (—00, 00) is differentiable and potentially nonconvex for all i € [n]. The function
hi(-) : R4>1 y (—o0, 00] is assumed to be closed, proper, lower semi-continuous, and poten-
tially nonsmooth. While h,,(-) is convex, we do not require convexity for h;(-) for i € [n — 1].
Additionally, we assume the nonconvex proximal operator of h;(-) is easy to compute for all ¢ € [n].

Problem (1) has a wide range of applications in machine learning. The function f;(-) plays a cru-
cial role in handling empirical loss, including neural network activation functions (Liu et al.| 2022}
Zeng et al., 2021 |Wang et al.| |2019a); Huang et al.| [2019). Incorporating multiple nonsmooth reg-
ularization terms h;(-) enables diverse prior information integration, including structured sparsity,
low-rank, binary, orthogonality, and non-negativity constraints, enhancing regularization model ac-
curacy. These capabilities extend to various applications such as sparse PCA, overlapping group
Lasso, graph-guided fused Lasso, and phase retrieval.

» ADMM Literature. The Alternating Direction Method of Multipliers (ADMM) is a versatile
optimization tool suitable for solving composite constrained problems as in Problem (I)), which
pose challenges for other standard optimization methods, such as the accelerated proximal gradient
method (Nesterovl, |2003) and the augmented Lagrangian method (Zeng et al., 2022} Lu & Zhang,
2012; Zhu et al.,|2023)). The standard ADMM was initially introduced in (Gabay & Mercier, |1976)),
and its complexity analysis for the convex settings was first conducted in (He & Yuan, |2012; Mon-
teiro & Svaiter, [2013). Since then, numerous papers have explored the iteration complexity of
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Table 1: Comparison of existing ADMM approaches for solving the nonconvex problem in Problem
(I). cvx: convex. NC: nonconvex. LCONT: Lipschitz continuous. WC: weakly convex. RWC:
restricted weakly convex. IF: the constraint set is non-empty. I: A, is identity. SU: A,, is surjective
with Apin (A, AT) > 0. IN: A, is injective with Apin(ATA,,) > 0. BI: A, is bijective (both
surjective and injective). IM: Im([A1, Ao, ..., Ay—1]) € Im(A,) with Im being the image of the
matrix.

Reference Optimization Probl and Main A ptions c lexity | Par ter o
Blocks | Functions f;(-) and h;(-)* Matrices A;

(He & Yuan|[2012) n=2 cvx: fi,hi,Vi € [2] F OH? [o=1

(LT & Pong[2015) n=2 NC: hy, fo; f1i =0;hy =0 SU O(c?) o=1

(Yang et al.|2017) © n=3 CVX: hy, f3;NC: hoy f1 = fo=0hg =0 I O(c?) o€el,2)
| (Yashtini][2022) n=2 NC: f12], hy1a3 2 =0 BI O(e7?) o€ (0,1)
| (Yashtini/|2021) n>2 WC: flin—1)s ham—1] =0 hn =0 BI, IM O(e7?) o€ (0,1)
| (Wang et al.|2019b) n>2 RWC: Ay n—1]; b =0 IN, IM O(e7?) o=
| (Bot & Nguyen|[2020) | n =2 NC: Ay n]s Sty J1 =05 he =0 I O(e?) o€l,2)
| (Bot et al.|2019) n=2 NC: A, Jiuns /1 =0, ha =0 SU O(e7?) o€ (0,1)
| (Huang et al.]2019} n>2 CVX: Ay nps P =0 BI O(e7?) oc=1
[ (Li et al.|[2022)7 n=2 NC: f1,h1; CVX: ha; fo = 0; LCONT: hy # 0 I O(e ™ o=

This work n>2 NC: 1,01, f[1,n); CVX: An; LCONT: fp, by # 0 | BI O(e79) o€(l,2)

This work n>2 NC: hj1.n—1]s Jl1,n]; CVX: fin; LCONT: fy, by # 0 | SU O(e79) 0,1)

Note a: h,, = 0 denotes that the n-th block has no non-smooth part, making the objective function smooth.
Note b: The iteration complexity relies on the variational inequality of the convex problem.

Note c: We adapt their application model into our optimization framework in Equation with (L, S, Z) =
(x1,%2,X3), as their model additionally requires the linear operator for the first two blocks to be injective.
Note d: This paper studies manifold optimization with a fixed large penalty and small stepsize.

ADMM in diverse settings. These settings include acceleration through multi-step updates (Pock:
& Sabach, [2016; [Li et al., |2016; [Ouyang et al.| [2015; [Shen et al.| [2017; [Tran Dinh} 2018)), asyn-
chronous updates (Zhang & Kwok, |2014), Jacobi updates (Deng et al., | 2017), non-Euclidean prox-
imal updates (Gongalves et al., 2017b), and extensions to handle more specific or general functions
such as strongly convex functions (Nishihara et al., [2015} [Lin et al., 2015a; |Ouyang et al.| |2015)),
nonlinear constrained functions (Lin et al.| 2022a), and multi-block composite functions (Lin et al.,
2015b; | Xu et al., 2017). For a comprehensive overview, refer to (Lin et al.,|2022b).

» Nonconvex ADMM. Compared to the classical subgradient methods (L1 et al., 2021} Davis &
Drusvyatskiyl 2019) and Smoothing Proximal Gradient Methods (SPGM) (Bohm & Wright, 2021}
Yuanl 2024), designed for general nonconvex optimization, ADMM-type methods potentially offer
faster convergence, enhanced parallelization, and greater numerical stability. However, the conver-
gence analysis of the nonconvex ADMM is challenging due to the absence of Fejér monotonicity in
iterations. In the past decade, significant research has focused on exploring various nonconvex AD-
MM variants (Li & Pong,|2015;Hong et al.,|2016;[Yang et al.,[2017). (Li & Pong} 2015) establishes
the convergence of a class of nonconvex problems when a specific potential function associated with
the augmented Lagrangian satisfies the Kurdyka-t.ojasiewicz inequality. (Yang et al.,2017)) analyzes
ADMM variants for solving low-rank and sparse optimization problems. (Hong et al., 2016) inves-
tigates ADMM variants for nonconvex consensus and sharing problems. Some researchers have
examined ADMM variants under weaker conditions, such as restricted weak convexity (Wang et al.,
2019b), restricted strong convexity (Barber & Sidky, |2024), and the Hoffman error bound (Zhang
& Luo, 2020). However, existing methods typically assume the smoothness of at least one block.
In contrast, our approach only requires continuity in one block of the objective function, achieved
through an Increasing Penalization and Decreasing Smoothing (IPDS) strategy.

» Over-Relaxed and Under-Relaxed ADMM. Prior studies have analyzed ADMM using either
under-relaxation stepsizes o € (0, 1), or over-relaxation stepsizes o € [1,2), for updating the dual
variable. This contrasts with earlier approaches that employed fixed values such as 1 or the golden
ratio (/5 + 1)/2. In nonconvex settings, most existing works require that the associated matrix
of the problem be bijective (Gongalves et al., 2017aj [Yang et al., 2017} [Yashtini, 2022} 2021} Bot
& Nguyen, 2020). However, the work of (Bot et al.l |2019) demonstrates that ADMM can still
be applied when the associated matrix is surjective, provided that an under-relaxation stepsize is
employed. Inspired by these findings, our work shows that when the associated linear operator is
bijective, IPDS-ADMM uses an over-relaxation stepsize for faster convergence. In contrast, when
the linear operator is surjective, we employ under-relaxation stepsizes to achieve global convergence.
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» Other Works on Accelerating ADMM. Significant research has focused on accelerating AD-
MM for nonconvex problems. (Zhang & Kwokl 2014) considers asynchronous distributed ADMM
for consensus optimization. (Franca et al., 2018} |[Hien et al., 2022) explore momentum or inertial
strategies to enhance the performance of ADMM. (Huang et al.,|2019; Bian et al.,|2021; [Liu et al.,
2020) apply variance-reduced stochastic gradient descent to finite-sum problems.

» Existing Challenges. We consider the linearly constrained optimization problem in Problem (T,
which involves (n — 1) potentially nonsmooth, nonconvex, and non-Lipschitz composite functions
h;(+) for i € [n — 1], and one convex, nonsmooth composite function h,(-). Existing ADMM-
type methods cannot solve this problem, as they require at least one of the composite functions to
be smooth (i.e., h,(-) = 0). In the special case where n = 2, A,, = I, hy(-) is the indicator
function of orthogonality constraints, and h,(x,) = p||x2|1 with p > 0, the Riemannian ADMM
(RADMM) algorithm (Li et al.| [2022) can solve Problem (EI) However, it cannot handle linearly
constrained problems, particularly when A, is bijective or surjective. Importantly, RADMM results
in suboptimal iteration complexity. A comparison of existing nonconvex ADMM approaches is
provided in Table[l]

» Our Contributions. Our main contributions are summarized as follows. (i) We introduce IPDS-
ADMM to solve the nonconvex nonsmooth optimization problem as in Problem (T). This approach
imposes the least stringent condition, specifically requiring continuity in only one block of the ob-
jective function. It employs an Increasing Penalization and Decreasing Smoothing (IPDS) strategy
to ensure convergence (See Section [3). (if) IPDS-ADMM achieves global convergence when the
associated matrix is either bijective or surjective. We establish that IPDS-ADMM converges to an
e-critical point with a time complexity of O(1/€®) (See Section ). (iii) We have conducted exper-
iments on the sparse PCA problem to demonstrate the effectiveness of our approach. (See Section

).

» Assumptions. Through this paper, we impose the following assumptions on Problem (TJ).
Assumption 1.1. Each function f;(-) is L;-smooth for all i € [n] such that |V f;(x;) — V fi(X;)|| <
Li|x; — x;|| holds for all x; € RY* and x; € RY>L. This implies that |f;(x;) — fi(%;) —
(Vfi(k:),x; — ;)| < &t||x; — %13 (¢f Lemma 1.2.3 in (Nesterov, [2003)).

Assumption 1.2. The functions fy,(-) and h,(-) are Lipschitz continuous with some constants C'y
and Cy, satisfying ||V fr,(x5)|| < C and ||0hn(x,,)|| < Ch, for all Xy,

Assumption 1.3. We define A = X\ (AL AY), A = Nin(ALAT), N = \uin(ATA,). Either of
these two conditions holds for matrix A,,:

a) Condition BI: A,, is bijective (i.e., A = X' > 0), and it holds that k = X/ < 2.

b) Condition SU: A,, is surjective (i.e., A > 0, and X' could be zero).

Assumption 1.4. Given any constant B >0, welet © £ infx, x,  x, vy [fi(xi) + hi(x:)] +
B>, Aix;] — b||3. We assert that ©' > —c.

Assumption 1.5. For all i € [n], the proximal operator Prox; (x;; i) = minys 5%} —x;13+hi(x})
can be computed efficiently and exactly for any given x; € RY*! and 1 > 0.
Assumption 1.6. If Y7, [fi(x;) + hi(x;)] < 400, it follows that ||x;|| < +oc for all i € [n].

Assumption 1.7. For any i € [n), if the vector x; € RY*1 is bounded, then the set Prox;(x;; j1) is
also bounded for all i € (0, 00).

Remarks. (i) Assumption [I.T]is commonly used in the convergence analysis of nonconvex algo-
rithms. (i) Assumption [I.2]imposes a continuity assumption only for the last block, allowing other

blocks of the function h; (xi);:ll to be nonsmooth and non-Lipschitz, such as indicator functions of
constraint sets. It ensures bounded (sub-)gradients for f,,(-) and h,,(-), a relatively mild requirement
that has found use in nonsmooth optimization (Li et al., [2022; 2021; [Huang et al., 2019; Bohm &
Wright, 2021)). (iii) Assumption@] demands a condition on the linear matrix A; for the last block
(¢ = n), while leaving A; unrestricted for ¢ € [n — 1]. (iv) Assumption ensures the well-
defined nature of the penalty function associated with the problem, as has been used in (Gongalves
et al.,|2017a)). Furthermore, Assumptioncan be satisfied if Y- | [f;(x;) + hi(x;)] > —oc0. (v)
Assumption [I.3]is frequently employed in nonconvex ADMM frameworks (Li & Pong, 2015} [Bof
et al.,|2019). Common examples of functions h;(x;) arising in practical applications include those
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discussed in (Gong et al., 2013), ¢, regularization, ¢; /2 regularization (Zeng et al., 2014)), and in-
dicator functions of cardinality constraints, matrices with orthogonality constraints (Lai & Osher,
2014)), and matrices with rank constraints, among others. (vi) Assumptions @] and are used to
guarantee the boundedness of the solution.

» Notations. We define [n] £ {1,2,...,n} and x £ x[,] £ {x1,X2,...,X,}. Forany j > i, we
denote xy; j 2 X, Xit 1y x;}. We define Apin(M) and Apax (M) as the smallest and largest
eigenvalue of the given matrix M, respectively. We denote || A;|| as the spectral norm of the matrix
A;. We denote Ax = Y% | Ajx;, and [[x* — x5 = YI, [|x;" — x;[|3. Further notations and
technical preliminaries are provided in Appendix [A]

2  MOTIVATING APPLICATIONS

Many machine learning and data science models can be formulated as Problem (I). Below, we
present two examples, with additional applications provided in Appendix [B]

» Sparse PCA. Sparse PCA (Chen et al., [2016; [Lu & Zhang| 2012) Sparse PCA focuses on i-
dentifying a subset of informative variables with sparse loadings to enhance interpretability and
reduce model complexity. It is formulated as: miny, g 7= [D—=DVVT|Z+p|V|, st. V €

M £ {V|VTV = I}, where D € R™*4 is the data matrix, and p > 0. Introducing an ad-
ditional variable Y, this problem can be formulated as: miny y 5D — DVVT|Z + || V|, +
tm(Y),s.t. =Y +V = 0. It corresponds to Problem (1) with x; = vec(Y), x2 = vec(V),
fAilx) = 0, hi(x1) = wn(Y), fa(x2) = 55D = DVVT|, ho(x2) = pl[V]1. A1 = —L,
A, =1, b = 0, and Condition BI.

» Structured Sparse Phase Retrieval. Sparse phase retrieval (Duchi & Ruan, 2018)) aims to
recover a sparse signal from the magnitudes of linear measurements. By incorporating addition-
al linear constraints, recovery accuracy can be further improved. The problem is formulated as:
miny [|[(Gv)© (Gv) —zH%—l—p'||v1H1, s.t. Dv > 0, where p > 0, G € R"*4 z ¢ R™ D € R™*,
with D being surjective that DD ' > 0. Introducing a new variable y, this problem can be formu-
lated as: miny y [|[(Gv) ® (Gv) — 2|3 + p||[v[1 + t>0(y), s.t.y — Dv = 0. This corresponds to
Problemwith X1 =y, X2 =V, fi(x1) =0, h1(x1) = t>0(y), f2(x2) = 5[ (GV)®(Gv)—b||3,
ha(x2) =p|v|l1, A1 =1, Ay = =D, b = 0, and Condition SU.

3 THE PROPOSED IPDS-ADMM ALGORITHM

This section describes the proposed IPDS-ADMM algorithm for solving Problem (1), featuring with
using a new Increasing Penalization and Decreasing Smoothing (IPDS) strategy.

3.1 INCREASING PENALTY UPDATE STRATEGY

We employ an increasing penalty update strategy that is crucial to our algorithm. A natural choice
for this penalty update rule is to use functions from the ¢, family. Throughout this paper, we consider
the following penalty update rule {3'}$2, for any given parameters &,d,p € (0,1):

B' =1 +€t7), B0 = Ln/(3M). 2)
Here, L,, and ) are defined in Assumption and Assumption respectively.

We obtain the following useful lemma regarding the penalty update rule.

Lemma 3.1. (Proof in Appendix Given §,0,p € (0,1), assume Formulation (E]) is used to
choose {Bt}5°,. We have: (a) B¢ < BT < (14 &)BY, (b) L, < 5B

Remarks (i) The increasing penalty update strategy is closely coupled with the decreasing smooth-
ing strategy and the diminishing stepsize approach in the literature. These strategies are frequently
employed in subgradient methods (Li et al [2021)), smoothing gradient methods (Bohm & Wright,
20215 /Sun & Sunl 2023 |Lei Yang, 2021)), penalty decomposition methods (Lu & Zhang),2013)), and
stochastic optimization algorithms like ADAM (Kingma & Bal 2015} |Chen et al.} 2022), but are less
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commonly utilized in ADMM frameworks. We examine this approach within ADMM but limit our
discussion to specific form and condition as in Formulation H (ii) The condition 8° > L,,/(6)\)
in Formulation (Z) essentially mandates that the initial penalty value be sufficiently large. This
condition can be automatically satisfied since an increasing penalty update is used. (iii) The result
B < (1+¢)Btin Lemmaimplies that the penalty parameter grows, but not excessively fast,
with a constant £ to prevent rapid escalation.

3.2 DECREASING MOREAU ENVELOPE SMOOTHING APPROACH

IPDS-ADMM is built upon the Moreau envelope smoothing technique (Li et al., 2022} [Zeng et al.,
2022;|Sun & Sun, 2023;Bohm & Wright, |2021)). Initially, we provide the following useful definition.
Definition 3.2. The Moreau envelope of a proper convex and Lipschitz continuous function h(u) :
RIXL s R with parameter 11 € (0, 00) is defined as h(u; 1) = miny cgax1 h(v) + i”v —ulj.

We offer some useful properties of Moreau envelop functions.

Lemma 3.3. (Beck, 2017, Chapter 6) Suppose the function h(u) is Cp,-Lipschitz continuous and
convex w.r.t. u. We have: (a) The function h(u; u) is Cp-Lipschitz continuous w.r.t. u. (b) The
Sunction h(u; p) is (1/p)-smooth w.rt. u, and its gradient can be computed as: V h(u; p1) = i(u -

Proxp, (u; 1)), where Proxy, (u; u) = arg miny, h(v)—|—ﬁ||v—u\|§. (¢)0 < h(u)—h(u; ) < FuC3.

Lemma 3.4. (Proof in Appendix Assuming 0 < jp < py and fixing u € R, we have:

h(ujpa)—h(uspr) 1,12
0= == <20k

Lemma 3.5. (Proof in Appendixm) Assuming 0 < po < py and fixing u € R, we have:
IV h(a; pn) =V h(u; po)l| < (52 = 1) - Ch.

Lemma 3.6. (Proof in Appendlx-) IC.4) Given constants {c, u, p}, we consider the convex problem in
problem X, = argminy, hy,(Xn; 1) + 5%, — c||3. We have: (a) X, = 1+up(ux” + pc), where
X, = argming, hn(%,) + % - %, — c||2 = Prox,(c;u+ 1/p). (b) p(c — %X,,) € Oh(%y,).
(c) ||xn — Xn|| < pCh.

P
1+pp

Remark 3.7. (i) Lemmas and [3.5] are derived using standard convex analysis techniques and
play a key role in analyzing the proposed IPDS-ADMM algorithm. (ii) Lemma [3.6]is essential for
establishing the iteration complexity of Algorithm |l| in reaching a critical point. The results of
Lemmal[3.6|are analogous to those of Lemma 1 in (Li et al}[2022).

3.3 THE PROPOSED IPDS-ADMM ALGORITHM

This subsection provides the proposed IPDS-ADMM algorithm. Initially, we consider the following
alternative optimization problem:

Mily, x,,.. %, Pn(Xi; @) + [Z?;ll hi(xi)] + [Z?:l fi(xi)], s.t. [Z?:l Aix;] = b, (3)

where y1 — 0, and hy, (X3 1) 2 mingegan <1 h(v)+5; [ v—xu|[3 is the Moreau envelope of hy, (x5 )

with parameter y. Lemma [3.3|confirms that A, (X, 1) is a (1/41)-smooth function assuming h, (-)
is convex. We present the augmented Lagrangian function for Problem (3)), as follows:

L%, B, 1) 2 (03 1) + {3072, hilxi)} + G(x, 23 8), )
where G(x, z; ) is differentiable and defined as:
G(x,2;8) £ 30, filxs) + ([0, Aixi] = b,2) + 5[0, Aixi] = b|3.

Here, pu € (0,00), 8 € (0,00), and z € R™*! are the smoothing parameter, the penalty parameter,
and the dual variable, respectively. We employ an increasing penalty and decreasing smoothing

update scheme throughout all iterations ¢t = {0,1,...,00} with 3% — +o00 and u' o % — 0.
Notably, the function G(x?, z'; 3?) is Li-smooth w.x.t. x; for all i € [m], where Lt = L, + 5| A;]|3.
For notation simplicity, for all i € [n], we denote g} = V., G(x ﬁ i1 X6 X[y 025 ) as the

gradient of G(x,z'; ') w.r.t. x; at the point x!.
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In each iteration, we select suitable parameters {3%, u'} and sequentially update the variables
(x1,X2,...,Xp,%). We employ the proximal linearized method to cyclically update the vari-
ables {x1,X2,...,X,}. Specifically, we update each variable x; by solving the following sub-
problem for all i € [n]: x;™' ~ argmin, cpa;«: E(xf17i_1],xi,xfi+17n],zt; B, ut). To address
the x;-subproblem, we employ a proximal linearized minimization strategy for all ¢« € [n — 1]:

. o, L!
x/T1 € argming, hi(x;) + =

; — xt3 + (x; — x!, 8!, 2! 8")). However, for the final
block of the problem, we consider a subtly different proximal linearized minimization strategy:

. 0oL} .. .
X:;‘rl = argminy, hn(xn;,ut) + 2 Xn — x| ||2 <XTL - Xfu gf) Importantly’ We assign 01

to blocks [1,n — 1] and 65 to block n. Our algorithm updates the dual variable z’ using either an
under-relaxation stepsize o € (0, 1) or an over-relaxation stepsize o € [1,2).

Z25n

Algorithm 1: IPDS-ADMM: The Proposed Proximal Linearized ADMM for Problem (T).

Choose suitable parameters {p, £, d} and {o, 61, 2} using Formula (5) or Formula (@)
Initialize {x°,z°}. Choose % > L,,/(6)).

for ¢t from 0 to 7" do

S1) IPDS Strategy: Set B = 3°(1 + £tP), ut = 1/(\6Y).

We define g¢ £ V,,G(x 1[51+11 1]7x§7x1+1n],z 5)

82) x!*! € argming, hi(x1) + (x1 — x4, %) 48 5 L |lx1 — x4 |3

0,Lt
2

83) x4t € arg miny, ho(x2) + (xo — x4, g5) + | x2 — x5||3

01L!

1tn—1

[n—1 = %7, 4113
S5) x!*t € argming,, hy(x,; 1) + (xp, — x5, 8L) + |x,, — x!||3. It can be solved using

Lemmaas xtrl = 1+1W(Uf,+1 + ppc), where x4 = Prox,, (c; u + 1/p), u = ut,

p = 0oLt andc—x L/

n’

S6) z' ! = z' + aﬁt([zj: ixH] =)

S4) x“‘l1 € argming, _, hp—1(Xp—1) + (Xn_1 — x5, _1, gn 0+
05L
2 n|

end

We present IPDS-ADMM in Algorithm I} and have the following remarks.

Remark 3.8. (i) Algorithm || can be viewed as a generalized cyclic coordinate descent method
applied to the augmented Lagrangian function in Equation (4)). (ii) The Moreau envelope smooth-
ing technique has been used in the design of augmented Lagrangian methods (Zeng et al.| |2022),
ADMMSs (Li et al.| 2022} Yuan, |2025), and minimax optimization (Zhang et al., |2020). Howev-
er;, these algorithms typically utilize constant penalties, whereas we adopt an Increasing Penaliza-
tion and Decreasing Smoothing (IPDS) strategy to improve the iteration complexity of RADMM (Li
et al.| [2022), reducing it from O(1/€*) to O(1/€3). (iii) Algorithm|l\is a fully splitting algorithm,
where each step reduces to computing a proximal operator. For the first (n — 1) blocks, we have:
x!t € Prox;(xt — g!/p;1/p), where p = 60,Lt. For the last block, Lemma.can be applied to
compute the proxlmal operator of the smoothed functlon hi (Xp; 1) using the proximal operator of
the original function h,,(xp,). (lv) The point X1 in Step S5) ofAlgorlhtm | plays a crucial role.
As will be seen later in Theorem the point (x4, x5,... xt | %t z'), rather than the point
(xt,xb, ..., xt_q,xt,2"), will serve as an approximate critical point of Problem (1) in our com-
plexity results. (v) RADMM (Li et al., 2022) uses a fixed large penalty parameter O (1 €) and a fixed
small smoothing parameter O(¢) to achieve an e-approximate critical point. However, this leads to
overly conservative step sizes for the primal and dual updates, potentially hindering the algorithm’s
practical performance. (vi) We apply the smoothing strategy only to the last block to bound the dual
variables via the primal ones. This leverages the Lipschitz continuity of the smoothed function to
estimate % |zt*1 — 2|3 and construct a suitable potential function. (vii) Some may be concerned
that using an increasing penalty could cause the parameter to grow excessively fast. However, by
setting £ < 1, we ensure that 31 < (1+ €)Y, meaning the penalty grows very slowly in practice.
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3.4 CHOOSING SUITABLE PARAMETERS {p,{,0} AND {0, 61,62}

Selecting appropriate parameters {p,&,0} and {o, 01,02} is essential to ensuring the global con-
vergence of Algorithm [T} In our theoretical analysis and empirical experiments, we suggest the
following choices for {p, £, 0} and {c, 0;,6-}:

BI:p=1,£€(0,00),6€(0,5(2-1)),0€[1,2),00 = 1.01,0, = 455° + 5l (5)
SU : p_l :6:0-0010—10192—15 (6)

Here, 0 £ 6woy K, 01 2 (1\170|)2’ andw =14 = = + 0. Notably, ¢ in H depends on (£, 0, 0).

Remark 3.9. (i) We obverse from (@) that the parameters {£,0,0} is inversely proportional to
the condition number k. Such settings are partly consistent with those in (Bot et al.| [2019) (refer
to Lemma 5 in (Bot et all 2019)). (ii) Introducing the relaxation parameter o € (0,2) enables
handling cases where the matrix is surjective. Specifically, when the matrix is bijective, we can use
an over-relaxation step size for faster convergence, whereas for surjective matrices, the algorithm
requires conservative step sizes to ensure global convergence.

4 GLOBAL CONVERGENCE

This section establishes the global convergence of Algorithm|I]

We begin with a high-level overview of the proof strategy. First, using the Lagrangian function, we
derive sufficient decrease conditions for the four parameter sets: primal variables, dual variables, the
penalty parameter, and the smoothing parameter. Next, using the first-order optimality conditions
and dual update rules, we bound the difference in dual variables using primal by the difference in
primal variables. Lastly, we show that the tail error term related to the smoothing parameter is
constant, establishing the summability of the sequence linked to a potential function.

We provide the following three useful lemmas.

Lemma 4.1. (Proof in Appendix A Sufficient Decrease Property) Fixes = { and ey = 16, — 1.
Letes € R. Forallt > 1, we have:

£+ O — O < (§ — 0+ e) - LIk —x3 + ellat — 23, 9

-1
where EM1 £ [eq 3T L Ixi ™ — x3] + el ) — x5 + G2t — Zt||2
Furthermore, © £ L(x',z"; B!, u') + 3Chpt, LL = L + B']|A4 |3, andw 21+ 5 +0¢

Lemma 4.2. (Proof in Appendix|D.2] First-Order Optimality Condition) Assume o E (O, 2). For all
t > 1landi € [n — 1], we have the following results.

(@) Letw!™ € Oh;(x' T4V f;(x}), and ul™ £ ;L (x!H! —xt)— ﬂtAiT[Z?:i Aj(xz*l—xg-)].
It holds that: 0 = oAz + AT (z'*! — z!) + crwvt'H +outtt,

(b) Let witt & Vh, (xiT1 pt) + V£ (x!), and uft! 2 Qf(xtH — x!), where Q! 2 0,L4T —
BEATA,,. It holds that: 0 = c Azt + AT (z e+l zt) + 0'\Wt+1 +oultt,

(c) We have the following two different identitles.

BI:A (z" —2")=(1—-0)(AL(z" — 2" ")) +o (u, —u’' +wl, —wit!). ®)
(S
Aqt+1 At ct
SU : A;rl(zt+1 —z)+oult =1 —o)(A (zt -z + oup) + o(oul, + wl, — W:;H). 9)
Sqi+1 st 2t

Lemma 4.3. (Proof in Appendix|D.3) For all t > 0, we have: (@) L%, < B'A(1 +6); (b) |Q!] <
BAq, where g £ 02(1+0) = X'/A: (¢) [[upt ]| < gAB* [l — x|l

We provide convergence analysis of Algorithm [Tjunder two conditions: Condition BI using Formu-
lation , and Condition SU using Formulation @) We define ©% £ L(x!,z'; 8%, u') + 1Cput,

andw £ 1+ % + o&. We define o £ Az and 02 £ ﬁ, where o € (0,2). We
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construct a sequence associated with the potential (or Lyapunov) function for different Conditions
BI and SU as follows:

BI: © =0} + 222 . L|a'|3 + 252 - L (Lalx}, — i | + lub|)?. (10)
\/ \w—/ ~—~—
24 Lt 2y ARt

SU: ©' =0 + 2522 - Zrfla’||5 + %52 - Jr (Lallxs, — x5 || + ofun|)?. (a1
e N——
£ B\ 2y Lpt

4.1 ANALYSIS FOR CONDITION BI

We provide a convergence analysis of Algorithm [T] under Condition BI, where A,, is a bijective
matrix. We assume an over-relaxation stepsize is used with o € [1, 2).

The subsequent lemma uses Equation (8) to establish an upper bound for the term %5 ||zt +t — 2|3,

Lemma 4.4. (Proof in Appendix|D.4] Bounding Dual Using Primal) We define w as in Lemma
Forallt > 1, we have:
Soellz™t =23 <O — O + XLy lIx — x5 + U, (12)

1

where x £ (8 + 02 + 026 — 1/k)2, 0 £ 6wok, Of = aAl + bBY, and Ut £ C? é’t : (Hu —1)2
Here, {a, A',b,B'} are defined in Equation (10).

Assume Equation (5)) is used to choose {p, &, 8, 7, 01, 62 }. We have the following lemma.
Lemma4.5. (Proofin Appendix We define {x, o} in Lemma We have the following results:

(a) It holds that 1 = 101 — 1 > 0, and e £ 6, — 5 — x > 0.
(b) Forallt > 1, we have £tT1 < ©f — O + Ut

4.2 ANALYSIS FOR CONDITION SU

We provide a convergence analysis of Algorithm [ under Condition SU, where A, is a surjective
matrix. We assume an under-relaxation stepsize is used with o € (0, 1).

The following lemma utilizes Equation (EI) to establish an upper bound for the term - ||z 1 —z¢||3.

ot
Lemma 4.6. (Proof in Appendix|D.6] Bounding Dual Using Primal) We define w as in Lemma
Forallt > 1, we have:

saellz ™t =23 < O — O + - L [Ixi — x5 + U, (13)

where X é 2n . fo2q? + 362 + 3(0 + 09)*}, ¢ = 65 + 620, O £ aA' + bB!, and U' £
1)2. Here, {a, A, b, B!} are defined in Equation .

CRh - (2
Assume Equation @ is used to choose {p, &, d, 0,07, 02}. We have the following lemma.
Lemma 4.7. (Proofin Appendix@) We define x in Lemma[.6] We have the following results:

(@) It holds that £1 = 501 — 5 > 0, and e £ 63 — 5 — x > 0.

(b) Forallt > 1, we have. 5”1 < Ot —ettl 4 Ut

4.3 CONTINUING ANALYSIS FOR CONDITIONS BI AND SU

Using Assumption we show that ©' is consistently lower-bounded by the following lemma.
Lemma 4.8. (Proofin Appendix For all t > 1, there exists a constant © such that ©* > ©.

The following lemma shows that both (3=, , U) and (3_;°, £/1) are always upper-bounded.

Lemma 4.9. (Proofin Appendix@) We define Ut as in Lemma or Lemma We define € as
in Lemma We have:
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(a) There exists a universal positive constant U such that Ztoil Ut < U.

(b) Letting € £ O — O + U, we have: Y ;2 EFTL < €.
The following lemmas are useful to provide upper bounds for the dual and primal variables.
Lemma 4.10. (Proof in Appendix For all t > 1, there exist constants {Z, Z } such that
gellz'l3 < Z, and 3772, g |2 — 2|3 < Z.
Lemma 4.11. (Proofin Appendix We have ||x!™|| < +oo forall i € [n).

Finally, we have the following theorem regrading to the global convergence of IPDS-ADMM.
Theorem 4.12. (Proof in Appendix[D.12)) We have the following results.

(@ S, Izt — 2|3+ ||Bt(x* — x')||3 < K BT, where K > 0 is some constant.

(b) There exists an index t with t < T such that ||zt — 2*(]3 + || B (x*! — xP)||3 < KTﬁT
Remark 4.13. (i) With the choice BT = O(TP) with p € (0,1), we observe & £ ||zt+! — z!||3 +
| Bt (x* Y — x)||3 = O(TP~Y), indicating convergence of &' towards 0. (ii) In light of Theorem

a reasonable stopping criterionforAlgorithmis |zt — 2t 4 || BE(x*H — xP)|| < €, where
€ > 0 is a user-defined parameter.

4.4 ITERATION COMPLEXITY

We now establish the iteration complexity of Algorithm [T} We first restate the following standard
definition of approximated critical points.

Definition 4.14. (e-Critical Point) We define Crit(%,z) = |Ax — b|| + Y1, dist(0, V f;(X;) +
Ohi(%;) + Alz). A solution (%, z) is an e-critical point if it holds that:

Crit(x,z) < e.

We obtain the following iteration complexity results.

Theorem 4.15. (Proof in Appendix ) We define q' = {x,x5,...,xt,_;,%I,}. Let the sequence
{q*,2*}L_, be generated by Algorithm|l| For all p € (0, 1), we have:

LT Crit(q!t, 21 < O(T®=D/2) 4 O(T ). (14)

In particular, with the choice p = 1/3, we have % SO, Crit(qith, 2ty < O(T~Y/3). In other
words, there exists t < T such that: Crit(q'*t!,z'*) < ¢, provided that T > O(1/¢€).

Remark 4.16. (i) Minimizing the worst-case complexity of the right-hand side of Inequality
w.rt. p yields: arg min,e o,y max(—p,(p —1)/2) = 1/3. Thus, choosing p = 1/3 achieves the
optimal trade-off between the two terms, resulting in the best complexity bounds. (ii) To the best
of our knowledge, this represents the first complexity result for using ADMM to solve this class of
nonsmooth and nonconvex problems. Remarkably, we observe that it aligns with the iteration bound
found in smoothing proximal gradient methods (Bohm & Wright, |2021)).

4.5 ON THE BOUNDEDNESS AND CONVERGENCE OF THE MULTIPLIERS

Questions may arise regarding whether the multipliers z* in Algorithm [1| are bounded, given that
llzt||3 < Zpj¢, as stated in Lemma We argue that the bounedness of the multipliers is not

z! A

an issue. We propose the following variable substitution: = 2! for all t. Consequently, we
ﬂt

can implement the following update rule to replace the dual variable update rule of Algorithm [T}

zit = it\/% + \/% -o(Ax!*! — b). Additionally, z’ should be replaced with /3 - 2¢ in

the remaining steps of Algorithm [I] Importantly, such a substitution does not essentially alter the
algorithm or our analysis throughout this paper.

We have the following results for the new multipliers 2°:
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Lemma 4.17. (ProofinAppendix We have: (a)Vt > 0, ||2'||3 < Z; (b) Y72, |l2tT =23 <
27 + Z. Here, {Z, Z} are bounded constants defined in Lemma

Remark 4.18. Thanks to the variable substitution, the new multiplier ||2*|| is bounded and conver-
gent with (min!_, |71 — 2¢[3) < L S°L | |2t — 23 < O(1/7).

5 EXPERIMENTS

This section assesses the performance of IPDS-ADMM in solving the sparse PCA problem, as
shown in Section[2l

» Compared Methods. We compare IPDS-ADMM against three state-of-the-art general-purpose
algorithms that solve Problem (I) (i) the Subgradient method (SubGrad) (Li et al., 2021 [Davis
& Drusvyatskiyl [2019), (i) the Smoothing Proximal Gradient Method (SPGM) (Bohm & Wright,
2021)), (iii) the Riemannian ADMM with fixed and large penalty (RADMM) (Li et al.| |[2022).

» Experimental Settings. All methods are implemented in MATLAB on an Intel 2.6 GHz CPU
with 64 GB RAM. We incorporate a set of 8 datasets into our experiments, comprising both
randomly generated and publicly available real-world data. Appendix Section |E| describes how
to generate the data used in the experiments. For for IPDS-ADMM, we set (8%, p,&,5,0) =
(50p,1/3,0.5,1/4,1.01). The relaxation parameter o is set to be around the golden ratio 1.618,
as suggested by (Li et al., 2016). The penalty parameter for RADMM is set to a reasonably large
constant 3 = 100p. We fix » = 20 and compare objective values for all methods after running 7"’
seconds, where T” is reasonably large to ensure the proposed method converges. The corresponding
MATLAB code is available on the author’s research webpage.

- =-IPDS—ADMM| N, - - IPDS—ADMM| % - == IPDS—ADMM]| ‘" === IPDS-ADMM|
=52 RADMM [, S == RADMM =, == RADMM ‘:’ Sem, =22 RADMM
“ == =SPGM Lo M |---sPGM % M. |me-spoM =+ m.["==SPGM
B s, s, [ SubGrad s == SubGrad o W = == SubGrad @ e =+= SubGrad
P S = £ W, . b L =
g 10w 0 5 I i, g ~,
= e ., Sl - 5 Z107 ST \‘ o,
o B . RN Ve o L SRR o . ~
- - bt [ *, S ) "
el b ) -, -
T Smgg R e R w “ . ~
H e e el i ey Tom -
- - ey LT e L T T N S
- e LT LY - -
- - —pon - - o mmrane e R I T S BN T -
5 10 1 20 0 5 10 15 20 5 10 15 20 5 10 15 20
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(a) randn-1500-500 (b) randn-2500-500 () mnist-1500-780 (d) mnist-2500-780

Figure 1: Convergence curves of methods for sparse PCA with p = 100 and 8° = 505.

» Experiment Results. The experimental results depicted in Figure[I] offer the following insights:
(¥) Sub-Grad tends to be less efficient in comparison to other methods. (if) SPGM, utilizing a variable
smoothing strategy, generally demonstrates slower performance than the multiplier-based variable
splitting method. This observation corroborates the widely accepted notion that primal-dual methods
are typically more robust and quicker than primal-only methods. (iif) The proposed IPDS-ADMM
generally attains the lowest objective function values among all methods examined.

Due to space constraints, detailed experiment results are provided in Appendix Section

6 CONCLUSIONS

In this paper, we introduce IPDS-ADMM, a proximal linearized ADMM that uses an Increasing
Penalization and Decreasing Smoothing (IPDS) strategy for solving general multi-block noncon-
vex composite optimization problems. IPDS-ADMM operates under a relatively relaxed condition,
requiring continuity in just one block of the objective function. It incorporates relaxed strategies
for dual variable updates when the associated linear operator is either bijective or surjective. We
increase the penalty parameter and decrease the smoothing parameter at a controlled pace, and in-
troduce a Lyapunov function for convergence analysis. We also derive the iteration complexity of
IPDS-ADMM. Finally, we conduct experiments to demonstrate the effectiveness of our approaches.

10
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Appendix

The organization of the appendix is as follows:

Appendix [A] covers notations, technical preliminaries, and relevant lemmas.
Appendix [B|provides additional motivating applications.

Appendix [C] contains proofs related to Section 3]

Appendix [D]offers proofs related to Section [4]

Appendix [E] includes additional experiments details and results.

A NOTATIONS, TECHNICAL PRELIMINARIES, AND RELEVANT LEMMAS

A.1 NOTATIONS

We use the following notations in this paper.
e [n]: {1,2,...,n}.
A
® XIX = {X1,X2,...,Xp} = X[
° X[i’j]l X1i,4] £ {Xi7 Xit1y Xi425 e ey Xj}, wherej > 1.
o Li:L! = L; + B||A;||3. Note that the function G(x, z*; 8?) is Lt-smooth w.r.. x;.
N =izopnz € R, where o € (0,2). Refer to Lernma
o 0y 0y 2 L'l) € R, where o € (0, 2). Refer to Lemma

o(1—|1—o]|
x| = [lxll2 = v/ (x,%).

e (a,b) : Euclidean inner product, i.e., (a,b) = > a;b;.

e ||x||: Euclidean norm:

e AT : the transpose of the matrix A.

e x;: the i-th block of the vector x € R(ditdzt..4dn)x1 with x, € Rdix1,

e )\: the largest eigenvalue of the matrix A, AT.

e )\: the smallest eigenvalue of the matrix A,LAI.

e )\': the smallest eigenvalue of the matrix AIAH.

e |A]]: the spectral norm of the matrix A.

e I,.: 1. € R™™", Identity matrix; the subscript is omitted sometimes.

e 1o(x) : Indicator function of a set  with 1 (x) = 0 if x € 2 and otherwise +oco.

e vec(V) : Vector formed by stacking the column vectors of V with vec(V) € RY *"",

e mat(x) : Convert x € R(@ "> into a matrix with mat(vec(V)) = V with mat(x) € R* *""

A

o dist(2,€Y) : distance between two sets with dist(, Q') £ infyeq weq [|[W — W]

A.2 TECHNICAL PRELIMINARIES

We present some tools in non-smooth analysis including Fréchet subdifferential, and limiting
(Fréchet) subdifferential (Mordukhovich, 2006; [Rockafellar & Wets., [2009; Bertsekas), [2015). For
any extended real-valued (not necessarily convex) function F' : R" — (—o0, +0o0], its domain is
defined by dom(F) £ {x € R" : |F(x)| < +o0}. The Fréchet subdifferential of F' atx € dom(F),

denoted as DF (x), is defined as

OF(x) £ {v e R": lim inf £@=F)-(va=0) > gy

Z—X Z#X lz—x]
The limiting subdifferential of F'(x) at x € dom(F) is defined as:

OF(x) £ {v e R": Ix* = x, F(x*) = F(x),v* € OF (x*) — v,Vk}.
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Note that dF(x) C dF (x). If F(-) is differentiable at x, then dF(x) = dF (x) = {VF(x)} with
VF(x) being the gradient of F'(-) at x. When F'(-) is convex, 0F(x) and OF(x) reduce to the

classical subdifferential for convex functions, i.e., JF(x) = OF(x) = {v € R" : F(z) — F(x) —
(viz—x) >0,Vz € R"}.

A.3 RELEVANT LEMMAS

We present several useful lemmas, each independent of context and specific methodology.
Lemma A.1. (Pythagoras Relation) For any vectors a € R”, b € R"”, ¢ € R", we have:
slla=bl3 = 3le=bl} = zla-cl3+(b-cc-a).
slPlz = zlle=bl3 = 3lcll3+ (b-c,c).
Lemma A.2. Assume o € (0,2). Letb™ = ca+ (1 —o0)b, whereb™ € R", b € R", and a € R™.
We have:
b+ 3 < o1 [lall3 + o2 (b3 - [6+113),

[1—o]

A o A
where 01 = T=Ti=on® and o9 = S(=Ti—o])"

Proof. Part (a). When o = 1, we have 01 = 1, 05 = 0, and b™ = a. The conclusion of this lemma
clearly holds.

Part (b). We now focus on the case when o # 1. Noticing |1 — o] # 0and 1 — |1 — o| # 0, we
rewrite bt = (1 — o)b + oa into the following equivalent equality

b* = (1—[1—o])- =52 +[1— o] =P

o| *

Using the fact that the function || - ||3 is convex and |1 — | € (0, 1), we derive the following results:

1-0)b
b3 < (L= —ol) I=fasl3+11 —of - =213

< i alB 11— ol bl
Subtracting (|1 — | - |b*||2) from both sides of the above inequality, we have:
(1= [1 = oD I3 < 7=F— - lall3 + L = o|(Ib]3 — [b*[3).
Dividing both sides by (1 — |1 — o]), we have:
o 1—0o
b*13 < == llal3 + sassy (1613 — IIb*[3)-

Using the definition of o1 and o2, we finish the proof of this lemma.

Lemma A.3. Welett > 1, and g € (0,1). We have: %(t +1)7 —

Proof. Welet h(t) £ (t +1)7 — 1 — %19.

Initially, we prove that f(q) £ 2?7 — 2 —1 > O forall ¢ > 0. Given Vf(q) = 2¢log(2) — § >
201log(2) — 3 = 0.1931 > 0, the function f(g) is increasing for all ¢ > 0. Combining with the fact
that f(0) = 0, we have: f(q) > 0 forall ¢ > 0.

We derive the following inequalities:
@ @ ®
Vh(t) = qtt (5T = 4 Z g {20 = gy > gt {25 - 4 >0,

where step @ uses ttl < 2and ¢g—1 < 0; step @ uses 29 > g + 1 for all ¢ > 0; step ® uses
1 — ¢ > 0. Therefore, h(t) is an increasing function.

Finally, noticing that (1) = 27 — 1 — 2 > 0, we conclude that h(t) > 0 forall ¢ > 1.
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Lemma A.4. Weletp € (0,1) and t > 1. We have: (t + 1)P — P < ptP~1.

Proof. We notice that h(t) = t? is concave for all t > 1 and p € (0, 1) since Vh(t) = pt?~! and
V2h(t) = p(p — 1)tP~2 < 0. Tt follows that: Yo,y > 1,h(y) — h(z) < (y — 2, Vh(x)). Letting
x=tandy=t+1,forallt > 1andp € (0,1), we have: (t + 1)P — t? < ptP~ T

O
Lemma A.5. We letp € (0,1). We have: Y52, (W2 < o

tP —

Proof. We have:

t+1pt7’
S0 (Lt Zsmee 4 yapea g o2 S

2
where step @ uses Lemmaandp SListep@uses Y oy 5 <D0 = <2 O

7(1=p)
1-p °

Lemma A.6. We letp € (0,1). We have: 177 < S 77 <

Proof. We define h(z) = 2~ and g(z) = 152" 7. Clearly, we have: Vg(z) = h(z).

By employing the integral test for convergence we obtain: f z)dzr < Z w1 h(t) < h(1)+
J 1T h(zx)dx.

®
Part (a). We have: Zthl P > f1T+1 o Pdy 2 g(T+1)—g(1) = ﬁ(T—H)l’p—f > 1iri-p,

where step © uses Vg(z) = h(x) = 277; step @ uses Lemmawith g=1—pandt=T.
Part (b). We have: 1 t72 < h(1) + [ Pdz 2 1+ ¢(T) —g(1) = 1+ =)' — =

1-p
T(ll_p; < Til_p , where step @ uses h(1) = 1, and Vg(z) = h(z) = 27P.

O

Lemma A.7. Let o € (0,2), and '™ — |1 — ole® < op’ forall t > 1. We have: et < e! +

o3 maxi_| p', where o3 = =7 € [1,00).

Proof. Given o € (0,2), we define o, £ |1 — o] € [0, 1).
We derive the following results:
t=1, e?
t=2 €3
t=3, et

0'*61 + (fpl
0'*62 + 0p2 < erl + J*apl + cfp2
3

Q)
VAN VANRVAN

o€’ + ap3 < ai’el + Ufapl + U*O'p2 + op

IN -

o
t="T, e't! o’ +opt <olel +oy ol .

Therefore, we have:

T+1 T,1 T T —i,i
€ +UZZ‘:1U* p

) T »
el + J{maxz;l P HY i Uz '}

el + o{max’_, p'}

IN® NS N

1—0,?

where step @ uses o < 1; step @ uses the fact that:

T T—i _ T—1 1 0 _
Zi:la* _U* +"'+U*+U*_

2https ://en.wikipedia.org/wiki/Integral_test_for_convergence
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Lemma A.8. Assume r € [1,2), 6 € (0,3(2 —1)). Forany o > 0, we define

FO)=60—1—0o(6+6+65—1/r)>

) n 1/k—6
We have f(0) > 81—9, where 0 = m + QT

Proof. Initially, given € [1,2),6 € (0, 5(2 — 1)), we have:

1 1/k—6
I o, (15)

Setting the gradient of f(6) w.r.t. 0 yields: 1 —20(6 4+ 60+ 6 —1/x)(1 +0) = 0. It follows that the

solution § = m + % is the maximizer of the concave function f(#). We have:
FO) 2 -1 —0(6+0y+350, —1/k)?
_ 1 1/k—46 1
—  4(1+9)2e + S+1 T 2
S 1
2 4(146)2%0 +0
S 1
S (CESVEILE
@
1
Z 8797

where step @ uses the definitions of f(6) and 0; step @ uses the first Inequality in ; step @ uses
the fact that § < %; step @ uses 4 x (1+1/3)? < 8.

O

B ADDITIONAL MOTIVATING APPLICATIONS

» Robust Sparse Regression. Robust sparse regression (Liu et al., 2019) utilizes the ¢1-norm of
the residuals to ensure robustness against outliers while enforcing sparsity via £y-norm constraints to
identify key variables. The problem is formulated as: miny |GV — 2|1, s.t. v € Q = {v|||v]jo <

$}, where $ > 0 is an integer, G € R™*4, and z € R™. By introducing a new variable y, this
problem can be formulated as: miny y to(v) + ||yll1, s.t. — Gv +y = —z. It corresponds to
Problem (1) with x; = v, X2 =y, fi(x1) = fa(x2) = 0, h1(x1) = ta(v), ha(x2) = ||y|1, and
A; = -G, A; =1, b = —z, and Condition BI.

» Dual Principal Component Pursuit. Dual principal component pursuit (Tsakiris & Vidall
2018)) is used primarily in subspace clustering and outlier detection, aiming to robustly represen-
t data structures across different subspaces in the presence of noise and outliers. The problem
is formulated as: miny ||[GV|j21,s.t. V € Q £ {V|VTV = I}, where G € R™*9, and

1Yll2,1 = >, Y (4,:)|. By introducing a new variable Y, this problem can be formulated as:

miny,y to(V) + ||[Y]|2,1, s. t. =GV +Y = 0. It corresponds to Problem (I)) with x; = vec(V),
X9 = VGC(Y), fl(xl) = fQ(Xl) = O, hl(Xl) = LQ(V), hQ(Xg) = ||Y 2,1, and A1 = —G,
A5 =1, b =0, and Condition BI.

» Robust Low-Rank Approximation. Robust low-rank approximation (Candes et al.| [2011) us-
es the /1-norm of the residuals to ensure robustness against outliers while imposing a low-rank
constraint on the solution matrix The problem is formulated as: miny |G(V) — z[|, s.t. V =
{V|rank(V) < §}, where $ > 0 is an integer, G(+) : R*" s R™_ and z € R™. By introducing a
new variable y, this problem can be formulated as: minvy y to (V) +|ly|l1, s.t. —G(V)+y = —z.
It corresponds to Problem (1)) with x; = vec(V), x3 =y, f1(x1) = fa(x1) =0, h1(x1) = ta(V),
ha(x2) = ||¥|l1, A1x1 = —G(V), A3 =1, b = —2, and Condition BIL.

C PROOFS FOR SECTION[3]

C.1 PROOF OF LEMMA[31]

Proof. Consider the update rule 3¢ = 3° + B9¢tP, where p € (0, 1).
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Part (a).We have:

B gt gt L BOg((t 4+ 1) — 1) — £8° < 06 — 8% =0,

where step @ uses the update rule 3¢ = 3° + BO&tP; step @ uses the fact that the function h(t) £
(t + 1)P — P is monotonically decreasing w.r.t. ¢ that: h(t) < h(0) =1

o
Part (b).We derive: L,, < 85\ < B8\, where step @ uses 3¢ > 3°.

O
C.2 PROOF OF LEMMA[34]
Proof. We letu € R? be a fixed constant vector. We assume 0 < jip < fi1.
We define: h(u; 1) = miny h(v) + m”v —ul|3, and h(u; u2) = miny h(v) + %”V —ul)3.
We define p; 2 Prox;, (u; i1) £ arg miny, h(v) + EHV —ull3.
We define po 2 Prox, (u; i2) 2 arg miny, h(v) + %Hv —ull3.
We let g1 € Oh(Proxy,(u; 1)), and g € Oh(Proxy, (u; p2)).
Initially, by the optimality of p; = Proxy (u; 1) and pa = Proxy, (u; u12), we obtain:
u — p1 € pu10h(Proxy(u;u1)) = p1g1, (16)
u — p2 € p0h(Proxy(u; ua)) = pogs. (17)
Part (a). We now prove that 0 < % We have:
h(wypn) = h(wpz) = gillu=pall3 = 5 llu = p2)l3 + h(p1) — h(p2)
S sl pill = sl - pall o+ (o1 pevs)
®

gl — 2 llg2ll3 + (nog2 — mig1, 1)
—%||g1||§ - %2”%2”3 + 112(g2,81)

IN®

—2lgll5 — 2 llgal3 + pa(g2, 1)

= —2g—al3 <0,
where step @ uses the definition of h(u;u); step @ uses the convexity of h(:); step @ uses the
optimality of p; £ Proxy, (u; 1) and ps 2 Proxy, (u; p12) as in (16) and ; step @ uses pp < fi1.

Part (b). We now prove that W <1 C’2 We have:

h(u; po) — h(u; pn) s llw=p23 = 5= lu = pi[5 + h(p2) — h(p1)

S Alu-pal— g fu—pil+ (b2 prog)
I I

[€)) .

2 gl — B gl + (g — oo, 82)

C g3 g2 4 g (g )

@

S gl - gl

®

S H1—p2 Mz 02

where step @ uses the definition of h(u; u) step @ uses the convex1ty of h ; step @ uses the
optimality of p; = Proxh(u; p1) and ps = Proxy(u; o) as 1n ) and (17); step @ uses the
inequality that: ff||g1H2 (g1,82) < %||g2||§ forallg;,gs € Rdx step@uses lga|l < Cp. O
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C.3 PROOF OF LEMMA [3.3]

Proof. We let u be a fixed constant vector. We assume 0 < o < fi1.
We define: h(u; 1) 2 mingcgax: h(v) + i”v —ull3.

We define: Proxy, (u; 1) £ arg ming cgax1 h(v) + i”v —ull3.

Using Claim (b) of Lemma we establish that i (u; ) is smooth w.r.t. u, and its gradient can be
computed as:

Vh(u;p) = p~*(u — Proxy, (u; ).

We examine the following mapping H(v) £ v(u— Prox, (u; )) with H(v) : R — R™. We derive:

v+9)(u—Prox u;L —v(u—Prox u;l
= lim(S*)()( Eadl n( U+§)) ( n U))

limg_yo H(v+5g—7{(v)

Ly Proxs (uw: L
= lims_o bu-(vtd) proxh(l}’“” Proxn(iy) — - Proxj, (u; 2).
Therefore, the first-order derivative of the mapping H (v) w.r.t. v always exists and can be computed
as V,H(v) = u — Prox;(u; 1), leading to:

HH(Q:%U,)H < |lu = Proxy (u; %)”

Yo, v’ > 0,
Letting v = 1/p; and v’ = 1/ o, we derive:

Vh(wipn ) —Vh(u s @ @
! (|1;u371/u(2\ #2)l < Jlu — Proxy, (w; )| = pa | Oh(Proxs (w; 161))|| < i1 C,

where step @ uses the optimality of Proxp, (u; 1) that 0 € Oh(Proxy (u; p)) + i(Proxh(u; ) —u)
for all u; step @ uses the Lipschitz continuity of h(-). We further obtain:

IV A(a; p1) = Vh(u; p)|| < 1/p1 — 1/ p2| - 11Ch = (pa/p2 — 1) - Ch.

C.4 PROOF OF LEMMA[3.6]

Proof. The proof of this lemma is similar to that of Lemma 1 in (L1 et al.,|2022). For completeness,
we include the proof here.

We consider the following strongly convex problems:

X, = argminh,(x,;p)+ 5%, — c|3
& (Xp,X,) = arg min hn(in) + ﬁ”xn - in”% + %HXn - CH%
We have the following first-order optimality conditions:
0 = i(in—)v(n)—kp(in —c) (18)
0 € Ohu(Rn) + 4 (Xn —Xn). (19)
Part (a). Using , we obtain: xX,, = Wlﬂa(ii” + pc). Plugging this equation into yields:

0 € Ohn(%n) + 5 (Xn — 1755 (5 %n + pc))
= Ohp(Xn) + 2= (X, — C).
The inclusion above implies that:

% — .

N|—=

X, = argmin h,(X,) +
Xn

Part (b). We derive:
®
—p(%n —€) £ (%, — %) € Dy (%),
where step @ uses (I8); step @ uses (19).
Part (c). Using (19), we have: X,, — X, = —pdhy,(X,,). This leads to [|%,, — Xy, || < uCh.
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D PROOFS FOR SECTION [4]

D.1 PROOF OF LEMMA [£.1]

Proof. Part (a). We now focus on sufficient decrease for variables {x1,Xa, ..., X,_1}. We define
o} = G(Xfiz‘l—ﬂ’xfﬂ X{ip1,0 2581 —G(x t1+zl 1 X X1, 255 BY) +hi(x t+1)—hi(x§),where
i€n—1].
Noticing the function G(x! 1 1]y Xis X [1 1] 25 z'; B') is Li-smooth w.r.t. x; for the ¢-th iteration, we
have:
G( E:l 1]’ Xt+1vxfz’+1 n]» zt5 5t) - G(xﬁi_il—l] X17X[1+1 n] 7ﬂ )
S <X§+1 - Xia inG( IE1+711 1]’ Xfﬁx[erl n) 75t>> 2 ||Xt+1 - X§||2' (20)
Given xﬁ“ is the minimizer of the following optimization problem:
f1Lt
t+1 € argmlnm hz(xz) + < i X V G( [1 n— 1]v 14,_1 n]a aﬁt» 1 Xf”%
The optimality of x' ™ leads to:
7] t
R — ha(x) + (= xt, Vi GOt 2 8) < —2ExH - xt[13. 1)
Combining equations (20) and (ZT)), we derive the following expressions:
@ < (5 %) Lillx - {3,
Telescoping the above inequality over i from 1 to (n — 1) leads to:
S < G - G Lk - 3
Therefore, we obtain:
n—1
Ly xn, 2 B nt) = Lx 2" 85 07) < 07005 — %) - L= = xllB). 22)

Part (b). We now focus on sufficient decrease for variable {x,}. Noticing the function
G(xtt | Xn, z'; B') is L -smooth w.r.t. x,, for the ¢-th iteration, we have:

[1,;n—1
G(xffh Xt 2' 8Y) = Gx( )y, 2t 87)
< (b - x, Vi G xh 2 BY) + kG - X2 (23)

Since Ay, (x,,; ') is convex, we have:

B (X5FY 1) = B (x5 1)

< <x;+1—xt+1 Vhn (x0H 5 )
LT =X SV G X, 2t 8) — 0oLl (xT - X)), (24)

where step @ uses the the first-order optimality condition of x.+! that:
0 = Vha (x5 ) + Vi, Gl Ly 23 69) o+ L] (7 = xh).
Adding Inequalities (23) and (24) together, we have:
hﬂ( fz+17:u ) hn(X;,,LL )+G( t1+717, 1] t+17 7515) ( )E;rifl]axfwzt;ﬁt)
Lot — xt 13 — Bt ! — x4
= (3= 02) Ll —x 3.
This results in the following inequality:

LOx 28 55 pt) = LOx g x, 25 8 00) < (5 = 62) - Ll = x5, (25)
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Part (c). We now focus on sufficient decrease for variable {z}. We have:

L(Xt+1a Zt+1; Bt7 /’Lt) - ‘C(Xt+1? Zt; ﬂta :ut)
= (Ax!"T! — b,z — 2t)
2 <%ﬂt(zt+1 o Zt)’zt—&-l - Zt>
= el -, 26)

where step @ uses 2! = z + o8 (Ax"T! — b) with Ax'TH £ 377 | A;x!H
Part (d). We now focus on sufficient decrease for variable {}. We have:
L2 L ) — £ 2 B )

t4+1 t
(P = Z)Ax"* — b3

2
@ t41 t
= (G = Plig @ =2l
@ t t
1+
< (- D)l -2l
= 5 omllEtt =23, @7)

where step @ uses z' 7! = z¢ + 03¢ (Ax**! — b); step @ uses Lemma[3.1]that B+ < (1 + €).
Part (e). We now focus on sufficient decrease for variable {y}. We have:
L(xtHL, gL Bty (L gt gLt
o (o 1) = (3 1)
30" = ), (28)
where step @ uses Lemma|3.4
Combining Inequalities (22), (23), (26), (27), and (28), we have:
LA B ) — L2 B )
< ISEHG = %) Lk = X3 + (5 = 62) - LhlIxt = xI3

=1 2
(1+55) - szt = 2|5 + FCu(p' — ') (29)

IN©

g
We define ©f, £ L(x',2"; 5", 1) + §Chpil, 3 £ €, 61 2 361 — 5. and €71 £ S|z —2'|[3 +
ealh | — x5 + 0 375 LElxi — x5, We have:
gt reit-ef
< (3= Oxte) Lhxi —xb3+ (14 55 +0€) - opella™ — 21|13

D.2 PROOF OF LEMMA [£.2]

Proof. For any i € [n], we define ut* £ ;L1 [x! ™! — x!] — BAT T, Aj(x§+1 —x%)], and let
with € Ohy(xITh) + V £i(xh).

We notice that xf“ is the minimizer of the following problem:

. 6L:
x!/T € argming, “5t|x; — xt|2 + hi(x;) + (x; — xt, inG(X'[ff:il_H,x‘[&im]’ 2t B1).

Using the necessary first-order optimality condition of the solution xﬁ“, we have:
Vo GG gy X025 8°) € —0Ri(x(1) — OLH(xH! — xi). (30)

22



Published as a conference paper at ICLR 2025

Using the definition of the function G(x,2;8) = (X]_, Ajxj]—b,z) + g >0 Ayx;]—bll5+
> i=1 fi(x;), we have:

Vi Gx( iy X{i )0 2" 8

Vi) + ATz + BPAT{I ) Ayxit] + 2] Ayxt] — b}

Vix)) + Alz' + BPAT{AX = b+ 7, A (x) — )]}

e

Vii(xt) + Alz' + 2AT (2 —2') + BPAT{Y7_, A (xt — [T}, 31)

where step @ uses the update rule of z/+1 that z/+1 — z! = o84(3"1" | A;x!™' — b). Combining
the Equalities (30) and (31), we obtain the following result:
0 € Ghi(x?l) + 01L§ [X§+1 - Xi] + Vfl(Xz)
+ATz! + BPATT A (G — xT ]+ JAT (2~ 2)

1

Using the definition of w/™" and u!** for all i € [n], we have: 0 = w!™' + ul* + ATz! +

LAT (2" — z'). Multiplying both sides by o € (0,2), for all ¢ > 0, we have:

0=ow/t +oATz! + Al (2! — 2*) + oul . (32)

Given that ¢ can take on any integer value, for all ¢ > 1, we derive:
0=ow!+oAlz"" 1+ Al(z! — z'71) + oul. (33)

Combining Equality (32) and Equality (33)), for all ¢ > 1, we have:
ATz —2') = (1 —-0)A] (z' —2'7) — o(w!T —w!) —o(ui™! —ul) (34)

In view of @]) we let ¢ = n and arrive at the following two distinct identities:

BI:AJ(z —2') = (1 - o) (AL(z' —2'™) +o (u}, — ult +wl, — wif!).
—_——

Lot+1 Aot ct
SU :Al(zt+1 —zh) + mufl+1 =(1- cr)(A;(zt - ztfl) +oul) +o(oul, + wk — ijl).

Ay A A
Ao tt1 Lt =c¢t

D.3 PROOF OF LEMMA [4.3]
Proof. We denote Qf 2 0,Lf T — B*ATA,, € Rdixdi,

We assume AT A, has the singular value decomposition ATA,, = UTdiag(A)U, where U ¢
Rdixdi )\ ¢ Rdix1 and UTU = UUT = I14,. Here, diag() denotes a diagonal matrix with A as
the main diagonal entries.

Part (a). We derive:

o

Ly £ Lo + BA < BEAG +1), (35)
where step @ uses Lemmathat L, < 88N
Part (b). We have:

ABT- (021 +6) = X/N),
—_— ——
£q
where step @ uses ||6oL: T — SPAT A, || = |[UTdiag(:Lh — BIA)U|| = [|02Lh — BN |oo; step @
uses the fact that ||p — x||0c = max(p — x) = p — min(x) whenever p > max(x) for all p and x;
step @ uses Inequality (35).

Part (c). Given uf™ £ Q'(x}t! — x!) as presented in Lemma we have: |[ult]| < ||Q! -
x5t = x| < gAB It —x .

©)
Q] 2 [165LY, — B*A|loe 2 GoLL, — min(B°A) <

O
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D.4 PROOF OF LEMMA [£.4]

L o s _ |1-0|
PVOOf: For any o S [1,2),We define g1 = m, and 02 = m

We define wit! = Vh,, (x0T ut) + Vi, (xE).

We define aft! 2 AT(z!*! — z), and ¢! £ u!, — u’! + w! — witl
We define a = “32, and A’ = %Hatﬂg

We define b = 2471, and B £ 4 (Ly||x], — x| + [[uf, ).

We define U* £ Cﬁ—%b : (“;1 —1)2

First, we bound the term ||c?||. For all £ > 1, we have:

lef]] = lw}, — wit! +uf, —ult!
@
< I Vha(x5 5 1) = Vha (x5 1D+ IV fa(x7,) = Vi (DI + [[uf, — upt|
@
< VR (xits p) = Vi (xp nf =)+ Lalxt, — x|+ Jug, — upt|
= I Vha(xi5 1) = Vi (3 1) + Vhn (55 1°) = Vi (x5 07|
L [Ixh, — x|+ g, — it
® t—1
=S Xy — X, v h n || Xy _Xn_ U, U, ’
< el =+ (B = 1O+ Lallx, — x|+ ([, || + [lugt

(36)

where step @ uses the triangle inequality; step @ uses the fact that f,,(x) is L,,-smooth; step ® uses

Lemma[3.3]and Lemma[3.3]
Second, we bound the term $7 |lct||3. For all t > 1, we have:
s o3
2t 112
@ t—1 _
< B Gl = xpll + [lugtD? + 352 Ch (B — 1%+ 354 (Lallxs, — x|+ (g ])?
Aut LBt
@ o
= BEGE I = xpll + lugtD? 4+ (Lnllxgtt = xq )l + up D} + U + b(B* — B
® _
< B o((0+ A8 Rk — xb[)? + U+ b(B — B
= 6woik(d+q)2 AB'-|IxET — xP |3 + Ut + b(BF — BT
| ——
£x
@
< xbpllxitt = x5 4+ U+ b(BF — B, 37)

where step @ uses Inequality@and the fact that (a + b+ ¢)? < 3a® + 3b% + ?102 foralla,b,c € R;
step @ uses the definitions of {b, BY, U'}; step @ uses Lemmathat: ﬁ < AP, L, < 0AB, and

[ < QPN -l = x| < gAB![lxf" — x[|: step @ uses B'A < L, £ A+ L.

Finally, we derive the following inequalities for all ¢ > 1:

)
2 -2} < el AT - 23 = s al]3
@
< ge(Lal3 - & a3 + eI

By
2o L aff -2 - ghr et + 2t - et

@
< A gt A
—_———
LAt
@
< a(AT = AT XL |IXET — x5+ U 4 b(B — BT,
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where step @ uses A[[z[|3 < ||A]z|3 for all z; step @ uses Lemma[A.2with b = a’, b* = a'*!,
and a = ¢! that:

e lla™ Iz < g (a3 — a13) + FHle'13;

step @ uses — 4 < — =1 step @ uses Inequality (37).
B B

O
D.5 PROOF OF LEMMA [£.3]
Proof. We definee; = 16, — 1 ande; £ 6, — 1 — x.
We define f(02) = (02 — 3) — 0(6 + 02 + 605 — 1/k)%, and x £ o(0 + 02 + 020 — 1/k)>.
We define ©f £ 0% + ©',, where O, £ Al + bBY.
We define £+ £ [ey 377 L |xH — xt[13] + eol, x5! — x4 |13 + S¢[|2+" — 2|3,
Part (a). With the choice #; = 1.01, it clearly holds that ey £ 16, — £ > 0.
Using Lemmawith 0 = 02, we have f(02) > g > 0, leading to e £ £ (62— %) —x>0.
Part (b). Using Lemmas .1 and[#.4] we derive the followmg two respective inequalities:
e HOIT -0 < (J-faben) L —xtB+ -2 O9)
sl =25 < ef — e 4l = x5+ U (39)
Adding Inequalities (38) and (39) together, we have:
£+ O 0" — U <L =X B {5 — 02+ 22 +x} =0,
where step @ uses the definition of e2 £ 6, — 1 — .
O

D.6 PROOF OF LEMMA [£.6]

Proof. Forany o € (0,1), we define 0, 2 Gz and o2 £ ﬁ

We define wit! = Vh,, (xiFL ut) + V£, (xE).
We define a‘t! & AT(z!*! — zt) + oul, and ¢! £ ouf, + w!, — witl.

Wedeﬁneaﬁm and A! £ %HatH%

We define b £ %71 and B! £ Bi( nllxt — xt7H| 4 ofjud |)2

t 1

ut

We define U* £ C;;;b (B —1)2

First, we bound the term ||ct||. For all t > 1, we have:

|| = [|wh, — wit! + oul|
2 t+1 t—1 t
< VR (X5 1t) = Vi (b 1D+ [V fu(x5) = VI (xED] + o[l
@
< N Vha(X5T 1) = Vhi (X 17|+ L|lxh, — x5 + ofJul,|
= [[Vhu(x, t“ (') = Vhe (X 1) + Vhi (X 1) = Vhe (x5 17|+ L|[xf, = x5 + of[ul,|
&)
< LG = x|+ (B — 1)Ch + Lallx, — x|+ ofjud (40)

where step @ uses the triangle inequality; step @ uses the fact that f,(x) is L,,-smooth; step @ uses
Lemma[3.3]and Lemma
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Second, we bound the term 2 37 7 |lud |13 + gthctHQ For all ¢ > 1, we have:

S st + Z et l3

AB¢ AB¢
@ t—l _
< SElmE I+ S el = b)) + S (M — 1)2CR + S8 (L, — x|+ o |
Ut LBt
= 25 A RS + 30 lxa = x40 )% 4 3(Lallx, — x4l + ofluptt )} + U + b(B" — BY)
® -2
< 22 N8 { 247 +302+ 300+ 0 X — x4 I3+ U + b(B' — B
@ _
< 25 {077 4367 + 3(0 + 09)’} AB x5+ U+ b(B' — BT
2x
®
< xc-Lulixptt = xplls + U + 0(BF - B, 1)

where step @ uses Inequality and the fact that (a+b+c¢)? < 3a%+3b% +3c? forall a, b, c € R;
step @ uses the definitions of {b, B, Ut}; step ® uses |[ul || < [|QF||||x5H —xt, || < BtAq|xiH —
xt || and L,, < AB'S, as has been shown respectively in Lemma [4.3|and Lemma as well as the
fact that # = BtAS; step @ uses Kk = X/A, and the fact that oy = % when o € (0,1); step ® uses
BN <LL 2 BN+ Ly,

Finally, for all £ > 1, we derive:

el — )3
< ealATET -2
2 g L™ - out3
S % (et + )
< % qgat3— Bt + 3+ 22 fut 3
€ Zmat3 2 gl + 2% ot 3 + 2 ut 3
2l
LaAt
< Al — gAMLY xEH |2+ U + BBY — bBEH,

where step @ uses the fact that \[|x (|3 < ||A)x||3 for all x; step @ uses the definition of a‘*!; step
@ uses the inequality ||a + b||3 < 2||al|3 + 2||b||2 for all a and b; step @ uses Lemmawith

b =a!, bt =att! and a = ¢! that

a3 < g’z + g dlall; — ™ 3);

aﬁt
step ® uses —% < - Btﬂ and o1 = L when o € (0,1); step ® uses Inequality .

O]

D.7 PROOF OF LEMMA [4.7]]
Proof. We define £ £ [ey 3700 LE|Ix( ! — x![13] + ol x5! — x4 |13 + Stz — 213,
We define ©! £ ©) + ©',, where O}, £ aA’ + bB'.
Part (a). We assume { = § = 0 = £, where ¢ € (0,1). We have:

w 2 1+£=2 (42)

N )
q = 0346056 <05+ Osc. 43)
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where step @ uses 0 = ¢/k < csince k > 1. We further obtain:

gs £ 0y — 5 — 51522 + (5 +0q)* + 6%}

g

Ve

o3~ {3 4 (et ca)” + %)
0 — 3 —12e{3* + (1 +¢)* + 1}

0 — % — 12@% + (14 60 + 02¢)* + 1}

0.02,

®
>
®
>
o < ¢ 0 < ¢ step @ uses [@3)); step @ uses the choice ¢ = 0.01 and

where step @ uses (42),
0> = 1.5.
Part (b). Using Lemmas .1 and [4.6] we derive the following two respective inequalities:

EM O -0 < (502 +e2) - LhlxpT =l + Jgllztt - 23,

o3t
Sarllzt =23+ et — e < xLlIxt x5+ U

— n

Adding the two inequalities above together leads to:

EH 4O — 0 U < LL i =3 {3 — b2+ e+ X} 20,

where step @ uses the definition of ¢; L9, — % - X

O
D.8 PROOF OF LEMMA [£.§]
Proof. The proof of this lemma closely resembles that of Theorem 6 in (Bot et al.,[2019).
We denote © = @' — 1°C?, where @' is defined in Assumption
Initially, for all ¢ > 1, we have:
ot 2 L(x', 2" B pt) + $Cput + aA + DB
S L(xt a8t
= bl )+ {SE5 i)} + Sy fi(x)) + (Ax' —boz) + A b
> 00+ (I B+ (S G} + (AX' —b2) + 4[| Ax' — b3
S (Ax'— bty 1O —0C2, (44)
N

20

where step @ uses the definition of ©7; step @ uses $Cpu’ + aA® + bB' > 0; step @ uses the
definition of £(x?, z!; 8¢, ') in Equation (E[); step @ uses 0 < hy, (1) — hy,(u; ) < puC? as shown
in Lemma and the fact that p* < 1%; step ® uses Assumption|1.4

We now conclude the proof of this lemma through contradiction. Suppose that there exists £y > 1
such that ©% < ©. We derive the following inequalities:

S0 -0) = [Zrle-0)+ 2, (e -9)
[ (O — )]+ (T +1 — t) - max)—, (6 — ©)

IN® IA

[0 — )]+ (T+1—ty) - (O — ), (45)

where step @ uses ©F < O for all t > t,. We closely examine Inequality . As tg is finite,
the sum Z?:_ll(@t — ©) is upper bounded. Considering the negativity of the term (% — ©), we
deduce from Inequality {@3):

My e Y (O — 0) = —c0. (46)
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Meanwhile, for all ¢ > 1, the following inequalities hold:

@
®t _Q Z 0.5%71 <Zt _Zt_lazt>
@ — —
2 gkl - gl + et - 2
®
> o lwllZ' 5 — m=ll= 5 + 03,

where step @ uses Inequality and z' T = z' + 0Bt (Ax!T!
relation in Lemma step @ uses 51171 > %

Telescoping Inequality over t from 1 to 7', we have:

T
2i1(0'=0) > oo {gr 2" 3 — wll2°l3) >
The finiteness of the right-hand-side in (48] contradicts with (46).
Therefore, we conclude that ©f > © for all ¢ > 1.

D.9 PROOF OF LEMMA [4.9]

Proof. We define U £ 3C2 % 70

(47)

— b); step @ uses the Pythagoras

— 550 12°13- 48)

We define Ut 2 €21 . (K" — 1)2, where 8¢ = BO(1 + £17), it o o

h Bt
Part (a). Letting 7" € [1, c0), we obtain:

ut

T t
+ Y (g — 1)

T ytt @ T t 1
Zt:l(l#t -1 = Zt:l(%—lyz(ﬁ*—ly
2otar -1+ DN -1
® 2
(t+1)P —£tP
< 14y, Genoen
@ P_4P
S 1+Zt 1( t+1t)p t )2
®
< 1+2

(49)

where step @ uses ! o Blt; step @ uses 31 = BO(1 + £1P); step @ uses the definition of 3¢ =

BY 4 BUELP; step @ uses
‘We further obtain:
50 L1 @
S, U < Chgo A2, (B = 1)?} <3C7

where step @ uses 3t > 3°; step @ uses Inequality .

ey < (avyes step ® uses Lemma

Part (b). For both conditions BI and SU, we have from Lemmas (4.3)) and {#.7):

gt—i—l S (_)t _ (_)t—',-l + Ut.

Telescoping this inequality over ¢ from 1 to 7', we have:

©) — —_
Sttt <ol et 4y <ol -9+ TU2E, (50)

where step @ uses Lemma [4.8that ©¢ > © for all ¢, and Lemmal[4.9]
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D.10  PROOF OF LEMMA 4,10

Proof. Given o € (0,2), we define 03 =

We define wi! £ Vh,, (x5! ut

We define uHt £ Qf (x4 —

)+ Vfn(xE).

ﬁ S [1, OO)

x!), where Q* = 0,L1 T — BATA,,.

We define Z £ X(%Xﬂzl 13 + 203CF 4 20307% + 03q2xg). We define Z 2 € /es.

First, we have:

max(? {[lw, 13}

where step @ uses ||a + b3 < 2||a||3 + 2|/b||3, and Assumption[1.2}

Second, we have:

o'} 1
maxizl{y

w3}

®
< 207 +2C%

IN® IN® NS

P*AE,

max(Z, {[| Vi (1,

0 1
max;2, {F

Qxi"

w) + Va3

- x,)[3}
max}® {57 (gAB")?[[x; " — x,[13}

AT AL = x5}

(G

(52)

where step @ uses ||Q!|| < "Aq for all ¢ > 0, as shown in Lemmal4.3} step @ uses A < Li, 2

BiX+ Ly; step @ uses € > Y72

Part (a). Using Lemma[4.2[b), we have:
(1 o O') Ath o O'{ t+1 + ut+1}

For all ¢ > 1, we have:
ALz < |1 -

1A 213

<
®
<
®
<
®
<

AT t+1

(|ATz|| + o3 maxf;

3{\|z"||3 + o3 max'_

n

35t{ﬁo/\”z1“2 + o3 maxiz, g1

Ll wit |2 4 o3 maxiz

Z+1 ||2 + 03 maxl 1

Bt.3. {%anlug +203CF + 203CF + 03q

1 gt > 2:21 gt > 2:21 ol |5 — x4 [I3.

of - [AZ || + o {|lwy | + [l
Applying Lemmawith et 2 ||ATz!|| and p?

P+ )

1y

1

L ui+ 3}

PrEY,

27

2 ||whH || + |Juftl], for all £ > 1, we obtain:

where step @ use (a + b + ¢)? < 3(a® + b2 +c2), Assumptlonthat |ALlI3 < X; step @ uses
B < B for all i < t; ® uses Inequalities (51)) and (52). This further leads to

Part (b). We have:

Z A 5/5>

1213 < XHAZZt”z =

1
A

- AZB

where step @ uses Lemmab); step @ uses the definition of £+ £

ealp [l —x (13 +

%2

F1 _

z!||% in Lemma

29

%2+ -

1
Zt— gt 2 e 221 2

z'|3,

2 e S0 LYt -

xt|13]+

O



Published as a conference paper at ICLR 2025

D.11 PROOF OF LEMMAF.TT]

Proof. Weleto € (0,2).

First, we derive the following inequalities:

<Axt+1 _ b7Zt+1> — %< t+1 Zt,Zt+1>
@
= %{Bin 27U — e llz' 3 + gellz T — 213}
>~ llZ 3, (53)

where step @ uses the Pythagoras relation in Fact[A.1]
In view of Lemmas and given £ “+1 > 0 forall i > 1, we have:

0 < ®i _ @i-‘rl +Uz
Telescoping this inequality over ¢ from 1 to £, we have:
) —
0<O! —ettl ¢ Z:Zle <el-et 4+ T,

where step @ uses Lemma b). For all t > 1, we derive the following results:

e'+U > o't
D og g aatt 4Bt
) L(xtHL gt g+l iy 4 %Chut—l-l + gAtH! 4 pBiHL
S A 4 (AxT - b + T AXH b3
HIT (Y + b (G ) + S0t aAHL 4 B
2SR (k] + (AT = b, — Lyt
®
> WA (] — g llztf - uttCR
®
> S AGE) + b)) - k] - 260CF,

where step @ uses the definition of ©'*!; step @ uses uses the definition of @tL“ in Lemma
step ® uses the definition of £(x!*1, z!+1; gL, 1+1) in ; step @ uses %HHAX’”r1 b||% >0,
LCLp T+ aAT 4B > 0, and the fact that h,, (x5, p*1) > hy (x5) = 2 T1CF; step ®
uses Inequality ( . step ® uses p! < pO for all ¢.

We further obtain:

S AT + (] < 01+ T+ |23 + 340C3

<
®
< o0,

where step @ uses the boundedness of % ||zt||3 for all t > 0, as shown in Lemma According
to Assumption we have ||x! || < +oc forall i € [n].

O

D.12 PROOF OF THEOREM 4,12

Proof. We define K = where K’ £ min{min(e;,2)A? e3}, and A £ min?_, ||A4].

K”

We define £ £ [e1 3777 Lflxi ™ — x 3] + oL lIxi — x5 + S|zt — 23,
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Part (a). We have:

£ > e
2T e S L — 3]+ ol — L3 + 52t — 213)
S Tl S SIB X))+ e 18— XL + ell2 — 213
STl X A — x3]+ eaAZ8 (T — )3 + 22T — 213}
S KX I8 — X + 2t — 22}

l®

T
g K {1 = <3 + (|2 — 213},

where step @ uses Lemma (b); step @ uses the definition of £F1; step @ uses BT > B¢
3 X t 112 ..

for all t < T step @ uses % = %U‘A”“z > ||AlI3 > A?; step ® uses the definition of

K’ & min{min(ey,e2)A% e3}; step ® uses S, [|xiT! — xt||2 = ||x**+! — x!||2. Therefore, we

obtain:

=

S I8 =X + 2+ - 213} < 567 = BT
Part (b). By dividing both sides of the above inequality by T', we obtain:

KgT T
B > 25 I8 = x| + 124 — 23}

> ming_, {[| B8 (x"! = x")[I3 + |2+ — 213}

We conclude that there exists an index # with £ < T such that ||z+! — 2%||2 + || 8% (x*+! — x¥)||2 <
Kg7T
—.

O

D.13 PROOF OF THEOREM 4. 15l

To prove this theorem, we first provide the following lemma.

Lemma D.1. We define ' = {x},x},... x! _|,x'}. We have:

(@ |Aq"*! —b| <oz — 2| + c2(8") 71

(b) dist(0, Ohn, (X5,11) 4V, fo (1) +AT2 ) < 5]zt =2t || +ea || B (" —x) | +5 (7).
() Yo7y dist(0,0hi(x[ 1) + Vi, fu(x™h) + ATzt ) < cgl|zt+! — 2! + 7| (x T = x1)).

Here, 1 = %ﬁo o =A%, c3=(1— %)K c1 = qgA+ g—g cs = Lé—g" ce = (1— %)K(nfl), and
cr = Lvé(lfl + 91([3—% +A)+ KQ(n — 1). Furthermore, A & max?_, || A;

,and L & max?_, L;.

Proof. We define A £ max?_, ||A;||, and L = max?_, L;.

We define uft! = 6, LE(x( " —x!) — BPAT[Y T, Ay (x5! —xb)] with i € [n —1].
We define ult £ Qf (x4 — x!)) with QF £ 6,LLT — B*ATA,,.

Part (a). We have:

lAq! bl = [0, AT = AnxiH + ALK b
< IS, AT = bl| + A (= x|
@ —
< |Ax!* —b|| +AuC),

2 A _C
= I -2l + A,
®
A C _
< ol -t + A (87,
\/ W_/
A s

31



Published as a conference paper at ICLR 2025

where step @ uses [|A,|| < A and Lemma[3.6c); step @ uses z'+! = z' + lo(Ax'*! — b), and
step ® uses 30 < Bt

= 5,\ﬂf’
Part (b). We first have the following inequalities:
IV fa(x) = VG = IVFa(x) = VGG + Via(x™) = VA&

< V() = VARG IV falxit) = V]

[©)

< Lallxp" = x|+ Lall55 = x|

@

< Lallxpt = x4+ Lopt Gy,

®

< Ln”Xf:rl - X;” + Ln (6)\ Ch Btv (54)
—_———

where step @ uses the fact that fn(xp) is L,-smooth; step @ uses Lemma [3.6) uc) that: ||xLH! —
xEH | < putCh; step ® uses pt = 2

gt
‘We further obtain:
dist(0, Oh, (X5H1) + V(3 + ATzt

= 0sLh (et — x5 + V (k) + ATz

2 0oLl (- Gl — xGTY) + VAETY) + AT

2 (0aLh, - BPATAL) (X, — x5 + V(R = Via(x) + (1— 2)AT (2 — 21)]

< QUK = x4 (1= LJAT (2 = 2| 4 [V fu(R) — ¥ fu(x)]

S (1= LA = g 4 QK — X+ [V (R = V£

S (1= DA =t + g+ Lk} 810, — x| + S, (55)
Loy Ay

where step @ uses the optimality condition as shown in Lemma b) that:
p(ct —xE) € Oh, (X4, with p = OaLL;
step @ uses ¢! = x!, — & /p as shown in Algorithm|[I} step ® uses the fact that:
= Vin(x) + Ajz + S A (2 = ) + BLAT A (x], - X,

step @ uses the definition of Q 2 0,L!T — BATA,,, asin Lemma step ® uses ||A,|| < A;
step ® uses || Q|| < BAq as shown in Lemma Inequality , and the fact that 30 < .

Part (c). We first have the following inequalities:

SIS 2 IO —xt) — BATISS, A (T = x|

< 0 L = x|+ B ) AT A (xET - x) |

¢ n |t t+1 ot tAZ (0 t+1 ot

< Oy(maxp_y L) S0 Ik — x| 4+ BPAT (n — 1) |xH — x|

@ .

< Oy (max? L)vn — I)|xtt — xt| 4+ A% (n — 1)]|B4(xt — b))

@ — _ _

< O(E +R) B - x|+ A (n - DB - x|

= {0:(& +R) + A7 (n— 1)} B - XY, (56)

L
where step @ uses the definition of uﬁ“ forall i € [n — 1]; step @ uses A = max!__
uses Y7~ ||xtJr1 Xt < v/n = T[|x"T! —x"||; step @ uses L} = L; + 5| A;|5 < ﬁ L’ +BtA<
B + BYAfor all i.
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We have the following results:

Yoo dist(Oha(xI) + VA(xIT) + ATzt

@ n—
= D 1||(1—1)A1-T(zt+1—z‘f)_vfi( t,)_ w4 VA ()|
< XIS A - AT = 2|+ T IV = VAT gt
@ A —
< (1= DARm-1) 2 - 2 + BV T8 — x|+ T [ult
—
Lo
® T
= coll2™ =2l + (BG4 ) 18— x|,
—
Lc,

where step @ uses Part (@) in Lemma[4.2] that:
i€n—1], 0h(x{T) 5 —ult — ATz' — LAT(Z" —2) — Vf(xh);

step @ uses ||A;|| < A, f;(x;) is Li-smooth, L; < L, and 8° < 3%; step ® uses Inequality .

O
Now, we proceed to prove the theorem.
Proof. We define Crit(x,z) £ |[Ax —b|| + Y1, dist(0, V f;(x;) + Ohi(x;) + A z).
We define g* £ {x},x5,...,xt_;, %!}
First, we deduce from Theorem {.12(a) that
KGT > S 2 =2+ 8 - x)]3
o T
> or (T 2 =2t + |80 (T — <))
where step @ uses the inequality [|a[|3 > 5+ (||al|1)? for all a € R?T". This leads to:
Sicalllz =2t + (18" = x|} < VBT 2T = O(Tw+072), (57)

Second, using lemma D] for all ¢ > 0, we have:

Crit(qtﬂ7 th)

< (ep ezt |z =2t + (ca +er) ||BEIT = xB)|| + (e +e5)(BY) 7 (58)
N—_——— —_—— ~———
éd] éd2 édB
We further derive:
% E;‘ll Crit(qtt!, zt+1)
T T _

7 max(dy, d2) Yo, _o {27 — 2t + |8 (T = x|} + B 3o (8!
O(TP=172) + &S (5!
o112 O,

Here, step @ uses Inequalitym; 58t step @ uses Inequality (57); step ® uses 3¢ = O(tP), and the fact
that Zt 1P < T( 1fp € (0,1) (refer to Lemma i

IN® IN® |INe

In particular, with the choice p = 1/3, we have: & >°[_ Crit(q't!,z7) < O(T~1/3).
O
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D.14 PROOF OF LEMMA [£.17]
Proof. We let \;;7 £ 7t for all t.

Initially, we derive:

t [} 1 P

221(1 -\ F%—T )2 = Z:il(l Y, 1+5J(rfj-1)p)2

@ o >

< Y= a)?

_ oo {(t+1)P/2—tP/2}2

= t=1 (t+1)P

® 0 {B‘t(p/Z—l)]ﬁ

< o1 Qtf

@ o (=2

S %Zt:l L tp

®

< 1/2, (59

where step @ uses ¢ = B°(1 + &tP) for all t > 0; step @ uses 1+1;(rfﬁ),, < g(ff:)p; step @ uses
Lemmathat (t+ 1)17/2 — /2 < gt(”/zfl) forallt > 1and & € (0,1); step @ uses p < 1 and

2
A < Ti;step@®uses Y0 & =T <2,

T
Part (a). We have: |22 = ||\;Z?||§ = %Hztﬂg < Z < +oo, where the last step uses Lemma
4. 101

Part (b). We have:

N ~ @ t+1 t
SE a2 SR 2 - 2l
t+1_  t 1 1
= Ztoil ”z\/[TJrzl ,Zt(W,W)||%
S N T 3 2 (e — A3
< 23 Szt 2=z VB 2
[€) t
< 23 FllEttt =23+ 230, R -/ 55) - 213
@ t
< 2K+ a3 02 (1 -/ 55)?
® 1
< 2Kzz+2Z§a

where step @ uses the definition \;;? £ ! for all t; step @ uses |la — b||2 < 2||a||2 + 2||b||%; step
@ uses ﬁ < %; step @ uses >, %Hz“r1 —z!||3 < K. as shown in Lemma step ® uses

Inequality , and %Hztﬂg < Z as shown in Lemmam
O
E ADDITIONAL EXPERIMENT DETAILS AND RESULTS

We offer further experimental details in Sections [E-I] and [E2] and include additional results in

Section[E3]

E.1 DATASETS

We incorporate four datasets in our experiments, including both randomly generated data and pub-
licly available real-world data. These datasets serve as our data matrices D € R™*? The
dataset names are as follows: ‘TDT2-rh-d’, ‘sector-ri-d’, ‘mnist-rn-d’, and ‘randn-rh-d’. Here,
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randn(m, n) refers to a function that generates a standard Gaussian random matrix with dimensions

m x n. The matrix D € R™*4 is constructed by randomly selecting 71 examples and d dimension-
s from the original real-world dataset (http://www.cad.zju.edu.cn/home/dengcai/
Data/TextData.html.https://www.csie.ntu.edu.tw/~cjlin/libsvm/). We
normalize each column of D to have a unit norm and center the data by subtracting the mean.

E.2 PROJECTION ON ORTHOGONALITY CONSTRAINTS

When h(x) = tpq(mat(x)) with Q@ = {V | VTV = I}, computing the proximal operator reduces
to the following optimization problem:

X € arg miny 4[|x — x'|3, s.t. mat(x) e M £ {V|VTV =1}.

This is the nearest orthogonality matrix problem, and the optimal solution can be computed as
% = vec(UVT), where mat(x’) = UDiag(s)UT is the singular value decomposition of the matrix
mat(x’). Please refer to (Lai & Osher, 2014).

E.3 ADDITIONAL EXPERIMENT RESULTS

We present the convergence curves of the compared methods for solving sparse PCA with varying
p = {1,10,100,1000} and 3° = {10p, 505, 1005, 500/}, as shown in Figuresto Please refer
to Table for the mapping between (p, 3°) and the corresponding convergence curves. The results
demonstrate that the proposed IPDS-ADMM consistently outperforms the other methods in terms
of speed for solving the sparse PCA problem, particularly for the ranges p = {1, 10,100, 1000} and
50 = {505, 1005}.

Table 2: The mapping between (p, 3°) and the corresponding convergence curves for sparse PCA.

| 105 100p 5005
p=1 Figure Figure
p=10 Figure E Figure @
p =100 Figure Figure
p = 1000 Figure Figure|16)
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Figure 7: Convergence curves of methods for sparse PCA with p = 10 and 3° = 50p.
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Figure 11: Convergence curves of methods for sparse PCA with p = 100 and 5% = 50p.
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Figure 13: Convergence curves of methods for sparse PCA with 5 = 100 and 3° = 500.
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Figure 14: Convergence curves of methods for sparse PCA with p = 1000 and 3° = 10p.
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Figure 15: Convergence curves of methods for sparse PCA with 5 = 1000 and 3° = 505.
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Figure 16: Convergence curves of methods for

5_ 10
Time (seconds)

(f) TDT2-3000-500

5_ 10
Time (seconds)

(g) sector-1500-500

5_ 10
Time (seconds)

(h) sector-2500-500

sparse PCA with p = 1000 and 3° = 100.
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Figure 17: Convergence curves of methods for sparse PCA with 5 = 1000 and 3° = 5005.
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