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Abstract

Wireless communication is in strong demand for
high throughput and high reliability, while dy-
namic scenarios bring challenges to these de-
mands. Prediction of network states estimates
the future state of the varying channel, which
could provide the necessary information for the
receiving terminal to adjust transmission strate-
gies accordingly. We propose a transformer-based
model called ULTRA to predict the network states.
In the proposed model, self-attention is exploited
to pursue features between variates, and a trend
extractor is introduced to pursue local and global
temporal features. We implement comprehensive
experiments and an ablation study. The results
with real-world data demonstrate that our model
outperforms state-of-the-art models.

1. Introduction
With the development of 5G, many applications such as
high definition video calls and AR/VR become possible
(Andrews et al., 2014). In dynamic scenarios, due to factors
such as base station handovers and fluctuations in channel
quality, there is significant uncertainty in bandwidth and la-
tency (Zhang et al., 2017). This is especially true in complex
urban environments, where phenomena such as multi-path
propagation and nonlinear sight (NLOS) propagation make
wireless signals vulnerable to fading and interference (Rap-
paport et al., 2017). In addition, high-speed mobility and
frequent handovers can cause delays and packet loss. Fore-
casting network states in dynamic scenarios helps to adapt
the transmission strategy (Yin et al., 2015).

In recent years, numerous deep learning models have been
developed for forecasting network states. Long Short-Term
Memory (LSTM), a variant of recurrent neural networks,
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was employed in (Schmid et al., 2019) to enable location-
independent throughput prediction. The study in (Raca
et al., 2020) further investigated throughput prediction using
LSTM, in conjunction with other machine learning algo-
rithms such as Random Forest (RF) and Support Vector
Regression (SVR). In (Yue et al., 2017), the performance of
LSTM was evaluated against K-Nearest Neighbors (KNN),
SVR, Ridge Regression, RF, and ARIMA using the dataset
introduced in (Elsherbiny et al., 2020). Moreover, the spatio-
temporal variability of network throughput was modeled in
(Qu et al., 2020) through a hybrid architecture combining
LSTM and Convolutional Neural Networks (CNN).

Following the introduction of the Transformer framework
(Vaswani et al., 2017), several Transformer-based models
have been proposed for time series prediction tasks. In-
former (Zhou et al., 2021) employs the attention mechanism
to capture dependencies across time steps and utilizes a
multi-layer perceptron (MLP) to extract inter-variable fea-
tures. Subsequent works, such as (Zhang & Yan, 2023;
Zhou et al., 2022; Wu et al., 2021), build upon Informer by
introducing enhanced attention mechanisms aimed at captur-
ing more precise temporal relationships. However, a recent
finding (Zeng et al., 2023) indicates that simple MLP-based
models can outperform these complex Transformer-based ar-
chitectures, as the attention mechanism may not effectively
capture temporal order. iTransformer (Liu et al., 2023) ad-
dresses this limitation by inverting the input dimensions
and applying the attention mechanism along the variable
dimension.

Previous studies (Yin et al., 2015; Sun et al., 2016; Qiao
et al., 2022) have primarily focused on forecasting through-
put, treating it as a univariate network state prediction task.
This work proposes a Transformer-based model designed
to forecast multivariate network states. Drawing inspiration
from iTransformer, we employ the attention mechanism to
capture inter-variable dependencies and adopt the UNet ar-
chitecture (Ronneberger et al., 2015) for temporal feature
extraction. Originally developed for image segmentation,
UNet leverages multi-level convolutional layers to extract
semantic information across multiple scales. Given the pres-
ence of both slow and fast fading phenomena in network
states, UNet is well-suited for capturing temporal features
over varying time scales. The main contributions of this
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Figure 1. System overview

paper are summarized as follows:

• Development of the Transformer-based architecture
ULTRA for multi-variant network states prediction,
utilizing the attention mechanism to extract variant
features of network states.

• Design of the one-dimension UNet as the extractor of
multi-period temporal features of network states.

• Comprehensive performance evaluation and abla-
tion study through experiments with real-world data,
demonstrating ULTRA’s capability to reduce predic-
tion error by 5%.

2. System Model
A real-time video communication (RTVC) system using
the RTCP protocol is considered as shown in Figure 1. Al-
though RTVC is a two-orientation process, we might as well
consider a one-orientation communication first. Communi-
cating devices are labeled as device A and device B. In a
time slot, device A sends a few packets to device B which
records states of the channel, such as throughput, latency
and jitter. The information contained in the time slot is
very limited. However, the history network states stored in
device B provide sufficient information to forecast states
in a future time window. Then device B sends the fore-
casting states back to device A, which would help device 1
develop intelligent transmission strategies in the following
time slots.

At each time slot, the receiver records the network states.
The history network states is denoted as st ∈ RN1×T1 ,
where N1 is the number of variates and T1 is the length
of the history observation slots. Forecast network states
is indicated as ŵt ∈ RN2×T2 and ground truth is denoted

as wt ∈ RN2×T2 , where N2 is the number of variates and
T2 is the length of future observation slots. The forecast
network states is a function of the history network states
ŵt = gθ(st). The optimization target is to minimize the∑Tm

t=1 ∥wt − ŵt∥2, where Tm is the number of samples.
This is a high-dimensional regression problem from one
matrix to another. Consequently, the efficient design of
gθ(·) should take into account the characteristics of the state
matrix.

3. Method
Network state forecasting is to find a mapping from history
states to future states. Extraction of temporal and variate fea-
tures is the key process of the model. Given the assumption
that temporal features and variate features are independent,
it is reasonable to connect two feature extractors in series.
The model architecture is consisted of the transformer mod-
ule and the UNet module, which is shown in Figure 2.

3.1. Transformer Module

There is no order in variates of network states so the vari-
ates could be treated as a set. Experiments and analysis in
(Zeng et al., 2023) demonstrate that forecasting output of
Transformer is not susceptible to the order of series input.

Therefore, the extractor of variate features adopts the
encoder-only architecture of Transformer (Vaswani et al.,
2017), including embedding, attention, feed-forward net-
work (FFN) and layernorm blocks. The embedding block
converts the series of the same variate to the tokens H =
[h1, . . . ,hN ] ∈ RN×D by MLP, where N is the the number
of variate and D is the embedding length. The self-attention
module works on the dimension of variate and utilizes lin-
ear projections to get queries, keys and values Q,K,V ∈
RN×dk , where dk is the projected dimension. Each score
map is formulated as A = QK⊤/

√
dk ∈ RN×N which

presents the multivariate correlations between paired variate
tokens. Highly correlated variate will be more weighted
for the next representation interaction with values V. The
FFN is leveraged on the series representation of each vari-
ate token by applying MLP and the layer normalization is
applied to the series representation of individual variate in
our model.

3.2. UNet Module

From the temporal perspective of network states, short-term
fluctuation is always violent and long-term trend is more
moderate, which is caused by fast fading and slow fading.
A single-scale convolution kernel fails to extract short-term
and long-term features at the same time.

The extractor of temporal features adopts multi-level archi-
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Figure 2. The architecture of ULTRA

tecture of UNet (Ronneberger et al., 2015) which contains
down-convolution (DC) and up-convolution (UC). The shal-
low layers of DC are applied to extract locally temporal
features like fluctuation and the deep layers are applied
to extract globally temporal features such as periods and
trends. In each layer there are multiple convolution kernels
to ensure diversity of representation. UC is a restoration
of the forecasting network states by levels. Due to lost of
features in DC as a down-sampling process, feature fusion
is implemented by concatenating and convolution. Notablly,
all convolution layers in the UNet module is one-dimension.
Consequently, weights are shared for series representation
of different variates in the same layer.

4. Experiments
4.1. Dataset

We select smart phone as the communication device to col-
lect communication data in mobile scenarios. We keep one
device in doors and keep the other device in mobility. These
two devices are in real-time video communications and stay
in 5G network. The dataset includes the traces of network
state information and the information set is denoted as Z.
network states information (throughput, latency and jitter)
is input of all methods. Due to the discrepancy of sam-
pling rate between the communication module and sensors,
the dataset unifies the sampling rate as 0.5 per second and
consists of 120 thousand samples.

4.2. Experimental details

The proposed model has been tested on the collected dataset.
It consists of a training set, a validation set and a test set
with the proportions of 70%, 20% and 10% data. We have
selected 3 network state forecasting methods as comparison,

Models ULTRA iTransformer Informer LSTM

Metric MSE MAE MSE MAE MSE MAE MSE MAE
SV

F
12 0.137 0.200 0.146 0.211 0.240 0.285 0.174 0.229
24 0.232 0.262 0.251 0.274 0.328 0.315 0.253 0.271
36 0.290 0.292 0.291 0.293 0.408 0.358 0.303 0.298
48 0.358 0.327 0.351 0.319 0.428 0.355 0.361 0.325

M
V

F

12 0.258 0.225 0.284 0.244 0.455 0.402 0.292 0.257
24 0.335 0.269 0.357 0.283 0.487 0.406 0.354 0.300
36 0.378 0.295 0.403 0.311 0.523 0.442 0.392 0.319
48 0.409 0.310 0.437 0.323 0.532 0.435 0.409 0.311

Count 14 2 0 0

Table 1. Full forecasting results

including iTransformer, Informer and LSTM. Then we do
ablation studies to demonstrate the effectiveness of feature
extractors of our model.

Inputs of the models are pre-processed as zero-mean nor-
malized time series. We set the forecasting length T in grid,
i.e., {12, 24, 36, 48} × 0.5s. We use MSE and MAE as the
evaluation metric, where MSE is the optimization objective
and MAE presents the the gap between prediction and the
ground truth more intuitively. All the models are trained
and tested on Nvidia GeForce RTX 3090 GPUs.

4.3. Results

To verify the performance of our model comprehensively,
we compare the proposed model ULTRA with three bench-
marks in both single-variate forecasting (SVF) and multi-
variate forecasting (MVF). The benchmarks include two
transformer-based models and a conventional RNN-based
model. SVF only requires the extractor of temporal features
and MVF requires both extractors. The results are shown in
Table 1. The forecast error of Informer is much higher than
that of LSTM, which shows that the self-attention mecha-
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(a) ULTRA (b) iTransformer (c) LSTM

Figure 3. Presence of prediction results.

nism is not suitable to be deployed directly on the temporal
dimension of network states. MSE of ULTRA is lower than
iTransformer by 5% and the MAE of ULTRA is lower than
iTransformer by 3.7%, which presents our model as state of
the art.

Models ULTRA iTrans+conv MLP+UNet MLP+conv

Metric MSE MAE MSE MAE MSE MAE MSE MAE

M
V

F

12 0.258 0.225 0.261 0.228 0.306 0.248 0.290 0.245
24 0.335 0.269 0.348 0.277 0.341 0.276 0.350 0.278
36 0.378 0.295 0.390 0.298 0.380 0.296 0.389 0.299
48 0.409 0.310 0.418 0.312 0.416 0.311 0.419 0.316

Count 8 0 0 0

Table 2. Ablation study

To validate the rational business of ULTRA components,
we provide detailed ablation studies by experiments of re-
placing components. The transformer block is replaced by
MLP and the UNet block is replaced by convolution layers
with single-scale kernel. The results are listed in Table 2.
ULTRA that utilizes the attention mechanism on the variate
dimension and UNet structure on the temporal dimension
generally achieves the best performance.

The presence of prediction results are shown in Figure 3.
Future network states of 24 time slots is forecast with the
history network states of past 96 time slots. The predicted
receiving bitrate is selected for presence. The results show
that ULTRA is able to predict not only the slow rising trend
but also the short-term fluctuation. As a comparison, predic-
tion of short-term fluctuation is weakness of iTransformer
and LSTM could not predict the trend well.

Space and time consumption is always a concern of
Transformer-based models. In the transformer block, the
complexity of the embedding layer is O(nmd), where
n,m, d separately denote the variate number, the look-back
length and the embedding length of input. The complexity
of attention is O(n2d). In the UNet block, the complexity
of the convolution layers is O(kn2d), where k denotes the

Figure 4. Consumption analysis

kernel number. Therefore, the total complexity of ULTRA
is O(nd((k + 1)d+m)) which is related to the dimension
of input and parameters of the neural network. We record
the average sizes and reference time of each model given the
same input as shown in Figure 4. ULTRA get improved per-
formance at the cost of rise of the model size and reference
time. However, space and time consumption of ULTRA is
still on a low level (1.18Mb and 15ms per sample).

5. Conclusion
In this work, we have studied the characteristics of network
states in mobile video calls. We propose a transformer-
based model (ULTRA) for the long-term prediction of net-
work states. Specifically, we exploit self-attention for vari-
ant feature extraction and one-dimensional UNet for tem-
poral feature extraction. Experimentally, we demonstrate
our model’s ability to reduce prediction errors by 5% and
achieve the SOTA level. Furthermore, we show the compu-
tation cost and inference efficiency of ULTRA.
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