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Abstract

Supervised learning approaches for causal discovery from observational data often1

achieve competitive performance despite seemingly avoiding explicit assumptions2

that traditional methods make for identifiability. In this work, we investigate CSIvA3

[1], a transformer-based model promising to train on synthetic data and transfer4

to real data. First, we bridge the gap with existing identifiability theory and show5

that constraints on the training data distribution implicitly define a prior on the test6

observations. Consistent with classical approaches, good performance is achieved7

when we have a good prior on the test data, and the underlying model is identifiable.8

At the same time, we find new trade-offs. Training on datasets generated from9

different classes of causal models, unambiguously identifiable in isolation,10

improves the test generalization. Performance is still guaranteed, as the ambiguous11

cases resulting from the mixture of identifiable causal models are unlikely to occur12

(which we formally prove). Overall, our study finds that amortized causal discovery13

still needs to obey identifiability theory, but it also differs from classical methods14

in how the assumptions are formulated, trading more reliance on assumptions on15

the noise type for fewer hypotheses on the mechanisms.16

1 Introduction17

Causal discovery aims to uncover the underlying causal relationships between variables of a system18

from pure observations, which is crucial for answering interventional and counterfactual queries when19

experimentation is impractical or unfeasible [2, 3, 4]. Unfortunately, causal discovery is inherently20

ill-posed [5]: unique identification of causal directions requires restrictive assumptions on the class21

of structural causal models (SCMs) that generated the data [6, 7, 8]. These theoretical limitations22

often render existing methods inapplicable, as the underlying assumptions are usually untestable or23

difficult to verify in practice [9].24

Recently, supervised learning algorithms trained on synthetic data have been proposed to overcome25

the need for specific hypotheses, which restrains the application of classical causal discovery methods26

to real-world problems [1, 10, 11, 12, 13]. Seminal work from Lopez-Paz et al. [10] argues that27

this learning-based approach to causal discovery would allow dealing with complex data-generating28

processes and would greatly reduce the need for explicitly crafting identifiability conditions a-priori:29

despite this ambitious goal, the output of these methods is generally considered unreliable, as no30

theoretical guarantee is provided. A pair of non-identifiable structural causal models can be associated31

with different causal graphs G ≠ G̃, while entailing the same joint distribution p on the system’s32

variables. It is thus unclear how a learning algorithm presented with observational data generated from33

p would be able to overcome these theoretical limits and correctly identify a unique causal structure.34

However, the available empirical evidence seems not to care about impossibility results, as these35

methods yield surprising generalization results on several synthetic benchmarks. Our work aims to36

bridge this gap by studying the performance of a transformer architecture for causal discovery through37
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the lens of the theory of identifiability from observational data. Specifically, we analyze the CSIvA38

(Causal Structure Induction via Attention) model for causal discovery [1], focusing on bivariate graphs,39

as they offer a controlled yet non-trivial setting for the investigation. As our starting point, we provide40

closed-form examples that identify the limitations of CSIvA in recovering causal structures of linear41

non-Gaussian and nonlinear additive noise models, which are notably identifiable, and demonstrate the42

expected failures through empirical evidence. These findings suggest that the class of structural causal43

models that can be identified by CSIvA is inherently dependent on the specific class of SCMs observed44

during training. Thus, the need for restrictive hypotheses on the data-generating process is intrinsic45

to causal discovery, both in the traditional and modern learning-based approaches: assumptions on46

the test distribution either are posited when selecting the algorithm (traditional methods) or in the47

choice of the training data (learning-based methods). To address this limitation, we theoretically and48

empirically analyze when training CSIvA on datasets generated by multiple identifiable SCMs with49

different structural assumptions improves its generalization at test time. In summary:50

• We show that the class of structural causal models that CSIvA can identify is defined by the51

class of SCMs observed through samples during the training. We reinforce the notion that52

identifiability in causal discovery inherently requires assumptions, which must be encoded53

in the training data in the case of learning-based approaches.54

• To overcome this limitation, we study the benefits of CSIvA training on mixtures of causal55

models. We analyze when algorithms learned on multiple models are expected to identify56

broad classes of SCMs (unlike many classical methods). Empirically, we show that training57

on samples generated by multiple identifiable causal models with different assumptions on58

mechanisms and noise distribution results in significantly improved generalization abilities.59

Closely related works and their relation with CSIvA. In this paper, we study amortized inference60

of causal graphs, i.e. optimization of an inference model to directly predict a causal structure from61

newly provided data. This is the first work that attempts to understand the connection between62

identifiability theory and amortized inference, while several algorithms have been proposed. In the63

context of purely observational data, Lopez-Paz et al. [10] defines a distribution regression problem64

[14] mapping the kernel mean embedding of the data distribution to a causal graph, while Li et al.65

[11] relies on equivariant neural network architectures. More recently, Lippe et al. [12] and Lorch66

et al. [13] proposed learning on interventional data, in addition to observations (in the same spirit as67

CSIvA). Despite different algorithmic implementations, the target object of estimation of most of68

these methods is the distribution over the space of all possible graphs, conditional on the input dataset69

(similarly, the ENCO algorithm in Lippe et al. [12] models the conditional distribution of individual70

edges). This justifies our choice of restricting our study to the CSIvA architecture (despite this71

being a clear limitation), as in the infinite observational sample limit, these methods approximate the72

same distribution. Methods necessarily requiring interventional data [15, 16, 17], and learning-based73

algorithms unsuitable for amortized inference [18, 19, 20, 21, 22] are out of the scope of this work.74

2 Background and motivation75

We start introducing structural causal models (SCMs), an intuitive framework that formalizes causal76

relations. Let X be a set of random variables in R defined according to the set of structural equations:77

Xi := fi(XPAG
i
, Ni), ∀i = 1, . . . , k. (1)

Ni ∈ R are noise random variables. The function fi is the causal mechanism mapping the set of direct78

causes XPAG
i

of Xi and the noise term Ni, to Xi’s value. The causal graph G is a directed acyclic79

graph (DAG) with nodes X = {X1, . . . , Xk}, and edges {Xj → Xi : Xj ∈ XPAG
i
}, with PAGi80

indices of the parent nodes of Xi in G. The causal model induces a density pX over the vector X .81

2.1 Causal discovery from observational data82

Causal discovery from observational data is the inference of the causal graph G from a dataset83

of i.i.d. observations of the random vector X . In general, without restrictive assumptions on the84

mechanisms and the noise distributions, the direction of edges in the graph G is not identifiable, i.e.85

it can not be found from the population density pX . In particular, it is possible to identify only a86
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Markov equivalence class, which is the set of graphs encoding the same conditional independencies87

as the density pX . To clarify with an example, consider the causal graph X1 → X2 associated88

with a structural causal model inducing a density pX1,X2 . If the model is not identifiable, there89

exists an SCM with causal graph X2 → X1 that entails the same joint density pX1,X2
. The set90

{X1 → X2, X2 → X1} is the Markov equivalence class of the graph X1 → X2, i.e. the set of all91

graphs with X1, X2 mutually dependent. Clearly, in this setting, even the exact knowledge of pX1,X2
92

cannot inform us about the correct causal direction.93

Definition 1 (Identifiable causal model). Consider a structural causal model with underlying graph G94

and pX joint density of the causal variables. We say that the model is identifiable from observational95

data if the density pX can not be entailed by a structural causal model with graph G̃ ̸= G.96

We define the post-additive noise model (post-ANM) as the causal model with the set of equations:97

Xi := f2,i(f1,i(XPAG
i
) +Ni), ∀i = 1, . . . , d, (2)

with f2,i invertible map and mutually independent noise terms. When f2,i is a nonlinear function,98

the post-ANM amounts to the identifiable post-nonlinear model (PNL) [8]. When f2,i is the identity99

function and f1,i nonlinear, it simplifies to the nonlinear additive noise model (ANM)[7, 23], which100

is known to be identifiable, and is described by the set of structural equations:101

Xi := f1,i(XPAG
i
) +Ni. (3)

If, additionally, we restrict the mechanisms f1,i to be linear and the noise terms Ni to a non-Gaussian102

distribution, we recover the identifiable linear non-Gaussian additive model or LiNGAM [6]:103

Xi =
∑

j∈PAG
i

αjXj +Ni, αj ∈ R. (4)

2.2 Motivation and problem definition104

Causal discovery from observational data relies on specific assumptions, which can be challenging to105

verify in practice [9]. To address this, recent methods leverage supervised learning for the amortized106

inference of causal graphs [1, 10, 11, 12, 13, 16, 24], optimizing an inference model to directly107

predict a causal structure from a provided dataset. While these approaches aim to reduce reliance on108

explicit identifiability assumptions, they often lack a clear connection to the existing causal discovery109

theory, making their outputs generally unreliable. We illustrate this limitation through an example.110

Example 1. We consider the CSIvA transformer architecture proposed by Ke et al. [1], which can111

learn a map from observational data to a causal graph. The authors of the paper show that, in the in-112

finite sample regime, the CSIvA architecture exactly approximates the conditional distribution p(·|D)113

over the space of possible graphs, given a dataset D. Identifiability theory in causal discovery tells us114

that if the class of structural causal models that generated the observations is sufficiently constrained,115

then there is only one graph that can fit the data within that class. For example, consider the case116

of a dataset that is known to be generated by a nonlinear additive noise model, and let p(·|D,ANM)117

be the conditional distribution that incorporates this prior knowledge on the SCM: then p(·|D,ANM)118

concentrates all the mass on a single point G∗, the true graph underlying the D observations. Instead,119

in the absence of restrictions on the structural causal model, all the graphs in a Markov equivalence120

class are equally likely to be the correct solution given the data. Hence, p(·|D), the distribution121

learned by CSIvA, assigns equal probability to each graph in the Markov equivalence class of G∗.122

Our arguments of Example 1 are valid for all learning methods that approximate the conditional123

distribution over the space of graphs given the input data [1, 10, 11, 12, 13], and suggest that these124

algorithms are at most informative about the equivalence class of the causal graph underlying the125

observations. However, the available empirical evidence does not seem to highlight these limitations,126

as in practice these methods can infer the true causal DAG on several synthetic benchmarks. Thus, fur-127

ther investigation is necessary if we want to rely on their output in any meaningful sense. In this work,128

we analyze these "black-box" approaches through the lens of established theory of causal discovery129

from observational data (causal inference often lacks experimental data, which we do not consider).130

We study in detail the CSIvA architecture [1] (see Appendix A), a variation of the transformer neural131

network [25] for the supervised learning of algorithms for amortized causal discovery. This model is132

optimized via maximum likelihood estimation, i.e. finding Θ that minimizes −EG,D[ln p̂(G|D; Θ)],133
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where p̂(G|D; Θ) is the conditional distribution of a graph G given a dataset D parametrized by Θ.134

We limit the analysis to CSIvA as it is a simple yet competitive end-to-end approach to learning causal135

models. While this is clearly a limitation of the paper, our theoretical and empirical conclusions136

exemplify both the role of theoretical identifiability in modern approaches and the new opportunities137

they provide. Additionally, it fits well within a line of works arguing that specifically transformers138

can learn causal concepts [26, 27, 28] and identify different assumptions in context [29].139

3 Experimental results through the lens of theory140

In this section, we present a comprehensive analysis of causal discovery with transformers and its141

relation to the theoretical boundaries of causal discovery from observational data. We show that142

suitable assumptions must be encoded in the training distribution to ensure the identifiability of the143

test data, and we additionally study the effectiveness of training on mixtures of causal models to144

overcome these limitations, improving generalization abilities.145

3.1 Experimental design146

We concentrate our research on causal models of two variables, causally related according to one of the147

two graphs X → Y , Y → X . Bivariate models are the simplest non-trivial setting with a well-known148

theory of causality inference [7, 8, 23], but also amenable to manipulation. This allows for compre-149

hensive training and analysis of diverse SCMs and facilitates a clear interpretation of the results.150

Datasets. Unless otherwise specified, in our experiments we train CSIvA on a sample of 15000151

synthetically generated datasets, consisting of 1500 i.i.d. observations. Each dataset is generated ac-152

cording to a single class of SCMs, defined by the mechanism type and the noise terms distribution. The153

coefficients of the linear mechanisms are sampled in the range [−3,−0.5]∪[0.5, 3], removing small co-154

efficients to avoid close-to-unfaithful effects [30]. Nonlinear mechanisms are parametrized according155

to a neural network with random weights, a strategy commonly adopted in the literature of causal dis-156

covery [1, 9]. The post-nonlinearity of the PNL model consists of a simple map z 7→ z3. Noise terms157

are sampled from common distributions and a randomly generated density that we call mlp, previously158

adopted in Montagna et al. [9], defined by a standard Gaussian transformed by a multilayer perceptron159

(MLP) (Appendix B.2). We name these datasets mechanism-noise to refer to their underlying causal160

model. For example, data sampled from a nonlinear ANM with Gaussian noise are named nonlinear-161

gaussian. More details on the synthetic data generation schema are found in Appendix B.2. All data162

are standardized by their empirical variance to remove opportunities to learn shortcuts [31, 32, 33].163

Metric and random baseline. As our metric we use the structural Hamming distance (SHD), which164

is the number of edge removals, insertions or flips to transform one graph to another. In the context165

of bivariate causal graphs with a single edge, this is simply an error count, so correct inference corre-166

sponds to SHD = 0, and an incorrect prediction gives SHD = 1. Additionally, we define a reference167

random baseline, which assigns a causal direction according to a fair coin, achieving SHD = 0.5 in ex-168

pectation. Each architecture we analyze in the experiments is trained 3 times, with different parameter169

initialization and training samples: the SHD presented in the plots is the average of each of the 3 mod-170

els on 1500 distinct test datasets of 1500 points each, and the error bars are 95% confidence intervals.171

We detail the training hyperparameters in Appendix B.1. Next, we analyze our experimental results,172

starting by investigating how well CSIvA generalizes on distributions unseen during training.173

3.2 Warm up: is CSIvA capable of in and out-of-distribution generalization?174

In-distribution generalization. First, we investigate the generalization of CSIvA on datasets175

sampled from the structural casual model that generates the train distribution, with mechanisms and176

noise distributions fixed between training and testing. We call this in-distribution generalization. As177

a benchmark, we present the performance of several state-of-the-art approaches from the literature178

on causal discovery: we consider the DirectLiNGAM, and NoGAM algorithms [34, 35], respectively179

designed for the inference on LiNGAM and nonlinear ANM generated data1. The results of Figure 1180

1The causal-learn implementation of the PNL algorithm could not perform better than random on our
synthetic post-nonlinear data, and we observed that this was due to the sensitivity of the algorithm to the variance
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Figure 1: In-distribution generalization of CSIvA trained and tested on data generated according to the same
structural causal models, fixing mechanisms, and noise distributions between training and testing). As baselines
for comparison, we use DirectLiNGAM on linear SCMs and NoGAM on nonlinear ANM (we use their causal-
learn and dodiscover implementations). CSIvA performance is clearly non-trivial and generalizing well.

show that CSIvA can properly generalize to unseen samples from the training distribution: the majority181

of the trained models present SHD close to zero and comparable to the relative benchmark algorithm.182

Out-of-distribution generalization. In practice, we generally do not know the SCM defining the183

test distribution, so we are interested in CSIvA’s ability to generalize to data sampled from a class184

of causal models that is unobserved during training. We call this out-of-distribution generalization185

(OOD). We study OOD generalization to different noise terms, analyzing the network performance186

on datasets generated from causal models where the mechanisms are fixed with respect to the187

training, while the noise distribution varies (e.g., given linear-mlp training samples, testing occurs188

on linear-uniform data). Orthogonally to these experiments, we empirically validate CSIvA’s OOD189

generalization over different mechanism types (linear, nonlinear, post-nonlinear), while leaving the190

noise distribution (mlp) fixed across test and training. In Figure 2a, we observe that CSIvA cannot191

generalize across the different mechanisms, as the SHD of a network tested on unseen causal mech-192

anisms approximates that of the random baseline. Further, Figure 2b shows that out-of-distribution193

generalization across noise terms does not work reliably, and it is hard to predict when it might occur.194

Implications. CSIvA generalizes well to test data generated by the same class of SCMs used195

for training, in line with the findings in Ke et al. [1], which validates our implementation and196

training procedure. However, it struggles when the test data are out-of-distribution, not generated197

by causal models with the same mechanisms and noise terms it was trained on. While training on198

a wider class of SCMs might overcome this limitation, it requires caution. The identifiability of199

causal graphs indeed results from the interplay between the data-generating mechanisms and noise200

distribution. However, as we argue in our Example 1, the class of causal models that a supervised201

learning algorithm can identify is generally not clear. In what follows, we investigate this point and202

its implications for CSIvA, showing that the identifiability of the test samples can be ensured by203

imposing suitable assumptions on the class of SCMs generating the training distribution.204

3.3 How does CSIvA relate to identifiability theory for causal graphs?205

The CSIvA algorithm does not make structural assumptions about the causal model underlying the206

input data. This implies that the output of this method is unclear: as CSIvA targets the conditional dis-207

tribution p(·|D) over the space of graphs, in the absence of restrictions on the functional mechanisms208

scale. So we report the plot of Figure 1c without benchmark comparison. We remark that the point of this
experiment is not to make any claims on CSIvA being state-of-the-art but to validate that the performance we
obtain in our re-implementation is non-trivial. This is clear for PNL, even without comparison.
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Figure 2: Out-of-distribution generalisation. We train three CSIvA models on data sampled from SCMs with
linear, nonlinear additive, and post-nonlinear mechanisms; and noise fixed mlp noise distribution. In Figure
(a) we test across different noise distributions, with test mechanisms fixed from training. In Figure (b) we test
each network on different mechanisms and fixed mlp noise. CSIvA struggles to generalize to unseen causal
mechanisms and often displays degraded performance over new noise distributions.

and the distribution of the noise terms, the causal graph X → Y is indistinguishable from Y → X ,209

as they are both equally likely to underlie the joint density pX,Y generating the data. As we discuss in210

Example 1, the graphical output of the trained architecture could at most identify the equivalence class211

of the true causal graph. Yet, our experiments of Section 3.2 show that CSIvA is capable of good in-212

distribution generalization, often inferring the correct DAG at test time. We explain this seeming con-213

tradiction with the following hypothesis, which motivates the analysis in the remainder of this section.214

Hypothesis 1. The class of structural causal models that can be identified by CSIvA is defined by the215

class of structural causal models underlying the generation of the training data.216

To support and clarify our statement, we present the following example, adapted from Hoyer et al. [7].217

Example 2. Consider the causal model Y = f(X) + N, where f(X) = −X and pX , pN are218

Gumbel densities pX(x) = exp(−x− exp(−x)) and pN (n) = exp(−n− exp(−n)). This model219

satisfies the assumptions of the LiNGAM, so it is identifiable, in the sense that a backward linear220

model with the same distribution does not exist. However, in this special case, we can build a221

backward nonlinear additive noise model X = g(Y ) + Ñ with independent noise terms: taking222

pY (y) = exp(−y − 2 log(1 + exp(−y))) to be the density of a logistic distribution, pÑ (ñ) =223

exp(−2ñ − exp(−ñ)) and g(y) = log(1 + exp(−y)); we see that pX,Y can factorize according224

to two opposite causal directions, as pX,Y (x, y) = pN (y − f(x))pX(x) = pÑ (x − g(y))pY (y).225

Given a dataset D of observations from the forward linear model, causal discovery methods like226

DirectLiNGAM [34] can provably identify the correct causal direction X → Y , assuming that227

sufficient samples are provided. Instead, the behavior of CSIvA seems hard to predict: given that228

the network approximates the conditional distribution p(·|D) over the possible graphs, for D with229

arbitrary many samples we have p(X → Y |D) = p(Y → X|D) = 0.5. On the other hand, given230

the prior knowledge that the data-generating SCM is a linear non-gaussian additive noise model, we231

have p(X → Y |D,LiNGAM) = 1, because the LiNGAM is identifiable. In this sense, the class232

of structural causal models that CSIvA correctly infers appears to be determined by the structural233

causal models underlying the generation of the training data. Under our Hypothesis 1, training CSIvA234

exclusively on LiNGAM-generated data is equivalent to learning the distribution p(·|D,LiNGAM),235

such that the network should be able to identify the forward linear model, whereas it could only infer236

the equivalence class of the causal graph if its training datasets include observations from a nonlinear237

additive noise model.238

The empirical results of Figure 3a show that CSIvA behaves according to our hypothesis: when239

training exclusively occurs on datasets {Di,→}i generated by the forward linear-gumbel model of240

Example 2, the network can identify the causal direction of test data generated according to the same241

SCM. Similarly, the transformer trained on datasets {Di,←}i from the backward nonlinear model242

of the example can generalize to test data coming from the same distribution. According to our claim,243

instead, the network that is trained on the union of the training samples {Di,→}i ∪ {Di,←}i from244

the forward and backward models (50:50 ratio in Figure 3a) displays the same test SHD (around245

0.5) as a random classifier assigning the causal direction with equal probability.246
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Figure 3: Experiments on identifiability theory. In Figure (a) we test the performance on linear-Gaussian data.
Models are trained with different ratios of samples from linear and nonlinear SCMs with Gaussian noise terms.
The validation results showcase that the networks were trained successfully. Figure (b) shows the SHD of models
trained on different ratios of linear and nonlinear invertible data of Example 2. CSIvA behaves according to
identifiability theory, failing to predict on linear Gaussian models and invertible data (50:50 ratio).

Further, we investigate CSIvA’s relation with known identifiability theory by training and testing the247

architecture on data from a linear Gaussian model, which is well-known to be unidentifiable. Not248

surprisingly, the results of Figure 3b show that none of the algorithms that we learn can infer the249

causal order of linear Gaussian models with test SHD any better than a random baseline.250

Implications. Our experiments show that CSIvA learns algorithms that closely follow identifiability251

theory for causal discovery. In particular, while the method itself does not require explicit assumptions252

on the data-generating process, the chosen training data ultimately determines the class of causal253

models identifiable during inference. Notably, previous work has argued that supervised learning254

approaches in causal discovery would help with "dealing with complex data-generating processes and255

greatly reduce the need of explicitly crafting identifiability conditions a-priori", Lopez-Paz et al. [10].256

In the case of CSIvA, this expectation does not appear to be fulfilled, as the assumptions still need257

to be encoded explicitly in the training data. However, this observation opens two new important258

questions: (1) Can we train a single network to encompass multiple (or even all) identifiable causal259

structures? (2) How much ambiguity might exist between these identifiable models?260

3.4 A low-dimensions argument in favor of learning from multiple causal models261

Example 2 of the previous section shows that elements of distinct classes of identifiable structural262

causal models, such as LiNGAM and nonlinear ANM, may become non-identifiable when we263

consider their union. In this section, we show that in the class of post-additive noise models given264

by equation (2) (obtained as the union of the LiNGAM, the nonlinear ANM, and the post-nonlinear265

model), the set of distributions that is non-identifiable is negligible. Our proposition extends the266

results of Hoyer et al. [7], which are limited to the case of linear and nonlinear additive noise models,267

and Zhang and Hyvärinen [8], which provides the conditions of identifiability of the post-ANM268

without bounding the set of non-identifiable distributions.269

Let X,Y be a pair of random variables generated according to the causal direction X → Y and the270

post-additive noise model structural equation:271

Y = f2(f1(X) +NY ), (5)

where NY and X are independent random variables, and f2 is invertible. If the SCM is non-272

identifiable, the data-generating process can be described by a backward model with the structural273

equation:274

X = g2(g1(Y ) +NX), (6)

NX independent from Y , and g2 invertible. We introduce the random variables X̃, Ỹ , such that the275

forward and backward equations can be rewritten as276

Y = f2(Ỹ ), Ỹ := f1(X) +NY ,

X = g2(X̃), X̃ := g1(Y ) +NX .
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Figure 4: Mixture of causal mechanisms. We train four models on samples from structural casual models with
different mechanism types. We compare their test SHD (the lower, the better) against networks trained on
datasets generated according to a single type of mechanism. The dashed line indicates the test SHD of a model
trained on samples with the same mechanisms as test SCM. Training on multiple causal models with different
mechanisms (mixed bars) always improves performance compared to training on single SCMs.

We note that this implies that the following invertible additive noise models on X̃, Ỹ hold:277

Ỹ = hY (X̃) +NY , hY := f1 ◦ g2, (7)

X̃ = hX(Ỹ ) +NX , hX := g1 ◦ f2. (8)

Proposition 1 (Adapted from Hoyer et al. [7]). Let pNY
, hX , hY be fixed, and define νY := log pNY

,278

ξ := log pX̃ . Suppose that pNY
and pX̃ are strictly positive densities, and that νY , ξ, f1, f2, g1, and279

g2 are three times differentiable. Further, assume that for a fixed pair hY , νY exists ỹ ∈ R s.t. ν′′Y (ỹ−280

hY (x̃))h
′
Y (x̃) ̸= 0 is satisfied for all but a countable set of points x̃ ∈ R. Then, the set of all densities281

pX̃ of X̃ such that both equations (5) and (6) are satisfied is contained in a 2-dimensional space.282

Implications. Our result is closely related to Theorem 1 of Hoyer et al. [7], which we simply283

generalize to the post-ANM. Intuitively, it says that the space of all continuous distributions such that284

the bivariate post-ANM is non-identifiable is contained in a 2-dimensional space. As the space of285

continuous distributions of random variables is infinite-dimensional, we conclude that the post-ANM286

is generally identifiable, which suggests that the setting of Example 2 is rather artificial. Our results287

provide a theoretical ground for training causal discovery algorithms on datasets generated from288

multiple identifiable SCMs. This is particularly appealing in the case of CSIvA, given the poor OOD289

generalization ability observed in our experiments of Section 3.2.290

3.5 Can we train CSIvA on multiple causal models for better generalization?291

In this section, we investigate the benefits of training over multiple causal models, i.e. on samples292

generated by a combination of classes of identifiable SCMs characterized by different mechanisms293

and noise terms distribution. Our motivation is as follows: given that our empirical evidence294

shows that CSIvA is capable of in-distribution generalization, whereas dramatically degrades the295

performance when testing occurs out-of-distribution, it is thus desirable to increase the class of296

causal models represented in the training datasets. We separately study the effects of training over297

multiple mechanisms and multiple noise distributions and compare the testing performance against298

architectures trained on samples of a single SCM.299

Mixture of causal mechanisms. We consider four networks optimized by training of CSIvA on300

datasets generated from pairs (or triples) of distinct SCMs, with fixed mlp noise and which differ in301

terms of their mechanisms type: linear and nonlinear; nonlinear and post-nonlinear; linear and post-302

nonlinear; linear, nonlinear and post-nonlinear. The number of training datasets for each architecture is303

fixed (15000) and equally split between the causal models with different mechanism types. The results304

of Figure 4 show that the networks trained on mixtures of mechanisms all present significantly better305

test SHD compared to CSIvA models trained on a single mechanism type. We find that learning on306

multiple SCMs improves the SHD from ∼0.5 to ∼0.2 both on linear and nonlinear test data (Figures307

4a and 4b), and even better accuracy is achieved on post-nonlinear samples, as shown in Figure 4c.308
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(c) PNL test data

Figure 5: Mixture of noise distributions. We train three networks on samples from SCMs with different noise
terms distributions and fixed mechanism types: linear, nonlinear, and post-nonlinear. We present their test SHD
(the lower, the better) on data from SCMs with the mechanisms fixed with respect to training, and noise terms
changing between each dataset. Training on multiple causal models with different noises (all distributions bars)
always improves performance compared to training on single SCMs with fixed mlp noise (only mlp bars).

Mixture of noise distributions. Next, we analyze the test performance of three CSIvA networks309

optimized on samples from structural causal models that have different distributions for their noise310

terms, while keeping the mechanism types fixed. Figure 5 shows that training over different noises311

(beta, gamma, gumbel, exponential, mlp, uniform) always results in a network that is agnostic with312

respect to the noise distributions of the SCM generating the test samples, always achieving SHD < 0.1,313

with the exception of datasets with mlp error terms (0.2 average SHD on nonlinear and pnl data).314

Implications. We have shown that learning on mixtures of SCMs with different noise term dis-315

tributions and mechanism types leads to models generalizing to a much broader class of structural316

causal models during testing. Hence, combining datasets generated from multiple models looks317

like a promising framework to overcome the limited out-of-distribution generalization abilities of318

CSIvA observed in Section 3.2. However, it is easier to incorporate prior assumptions on the class of319

causal mechanisms (linear, non-linear, post-non-linear) compared to the noise distributions (which are320

potentially infinite). This introduces a trade-off between amortized inference and classical methods321

for causal discovery: for example, RESIT, NoGAM, and CAM [23, 35, 36] algorithms require no322

assumptions on the noise type, but only work for a limited class of mechanisms (nonlinear).323

4 Conclusion324

In this work, we investigate the interplay between identifiability theory and supervised learning325

for amortized inference of causal graphs, using CSIvA as the ground of our study. Consistent326

with classical algorithms, we demonstrate that good performance can be achieved if (i) we have327

a good prior on the structural causal model generating the test data (ii) the setting is identifiable.328

In particular, prior knowledge of the test distribution is encoded in the training data in the form329

of constraints on the structural causal model underlying their generation. With these results, we330

highlight the need for identifiability theory in modern learning-based approaches to causality, while331

past works have mostly disregarded this connection. Further, our findings provide the theoretical332

ground for training on observations sampled from multiple classes of identifiable SCMs, a strategy333

that improves test generalization to a broad class of causal models. Finally, we highlight an interesting334

new trade-off regarding identifiability: traditional methods like LiNGAM, RESIT, and PNL require335

strong restrictions on the structural mechanisms underlying the data generation (linear, nonlinear336

or post-nonlinear) while generally being agnostic relative to the noise terms distribution. Training337

on mixtures of causal models instead offers an alternative that is less reliant on assumptions on the338

mechanisms, while incorporating knowledge about all possible noise distributions in the training data339

is practically impossible to achieve. We leave it to future work to reproduce our analysis on a wider340

class of architectures, as well as extending our study to interventional data with more than two nodes.341
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A Learning to induce: causal discovery with transformers471

A.1 A supervised learning approach to causal discovery472

First, we describe the training procedure for the CSIvA architecture, which aims to learn the dis-473

tribution of causal graphs conditioned on observational and/or interventional datasets. We omit474

interventional datasets from the discussion as they are not of interest to our work. Training data are475

generated from the joint distribution pG,D between a graph G and a dataset D. First, we sample a set476

of directed acyclic graphs {Gi}ni=1 with nodes X1, . . . , Xd, from a distribution pG . Then, for each477

graph we sample a dataset of m observations of the graph nodes Di = {xj
1, . . . , x

j
d}mj=1, i = 1, . . . , n.478

Hence, we build a training dataset {Gi,Di}ni=1.479

The CSIvA model defines a distribution p̂G|D(·; Θ) of graphs conditioned on the observational data
and parametrized by Θ. Given an invertible map G 7→ A from a graph to its binary adjacency matrix
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representation of d × d entries (where Aij = 1 iff Xi → Xj in G), we consider an equivalent
estimated distribution p̂A|D(·; Θ), which has the following autoregressive form:

p̂A,D(A|D; Θ) =

d2∏
l=1

σ(Al; ρ = fΘ(A1, . . . , Al−1,D)),

where σ(·; ρ) is a Bernoulli distribution parametrized by ρ. ρ itself is a function of fΘ defined by the480

encoder-decoder transformer architecture, taking as input previous elements of the matrix A (here481

represented as a vector of d2 entries) and the dataset D. Θ is optimized via maximum likelihood482

estimation, i.e. Θ∗ = argminΘ −EG,D[ln p̂(G|D; Θ)], which corresponds to the usual cross-entropy483

loss for the Bernoulli distribution. Training is achieved using stochastic gradient descent, in which484

each gradient update is performed using a pair (Di, Ai), i = 1 . . . , d. In the infinite sample limit,485

we have p̂G|D(·; Θ∗) = pG|D(·), while in the finite-capacity case, it is only an approximation of the486

target distribution.487

A.2 CSIvA architecture488

In this section, we summarize the architecture of CSIvA, a transformer neural network that can learn489

a map from data to causally interpreted graphs, under supervised training.490

Transformer neural network. Transformers [25] are a popular neural network architecture for491

modeling structured, sequential data data. They consist of an encoder, a stack of layers that learns492

a representation of each element in the input sequence based on its relation with all the other493

sequence’s elements, through the mechanism of self-attention, and a decoder, which maps the learned494

representation to the target of interest. Note that data for causal discovery are not sequential in their495

nature, which motivates the adaptations introduced by Ke et al. [1] in their CSIvA architecture.496

CSIvA embeddings. Each element xj
i of an input dataset is embedded into a vector of dimension-497

ality E. Half of this vector is allocated to embed the value xj
i itself, while the other half is allocated498

to embed the unique identity for the node Xi. We use a node-specific embedding because the values499

of each node may have very different interpretations and meanings. The node identity embedding500

is obtained using a standard 1D transformer positional embedding over node indices. The value501

embedding is obtained by passing xj
i , through a multi-layer perceptron (MLP).502

CSIvA alternating attention. Similarly to the transformer’s encoder, CSIvA stacks a number of503

identical layers, performing self-attention followed by a nonlinear mapping, most commonly an504

MLP layer. The main difference relative to the standard encoder is in the implementation of the505

self-attention layer: as transformers are in their nature suitable for the representation of sequences,506

given an input sample of D elements, self-attention is usually run across all elements of the sequence.507

However, data for causal discovery are tabular, rather than sequential: one option would be to unravel508

the n×d matrix of the data, where n is the number of observations and d the number of variables, into509

a vector of n · d elements, and let this be the input sequence of the encoder. CSIvA adopts a different510

strategy: the self-attention in each encoder layer consists of alternate passes over the attribute and511

the sample dimensions, known as alternating attention [37]. As a clarifying example, consider a512

dataset {(xi
1, x

i
2)}ni=1 of n i.i.d. samples from the joint distribution of the pair of random variables513

X1, X2. For each layer of the encoder, in the first step (known as attention between attributes),514

attention operates across all nodes of a single sample (xi
1, x

i
2) to encode the relationships between515

the two nodes. In the second step (attention between samples), attention operates across all samples516

(x1
k, . . . , x

n
k ), k ∈ {1, 2} of a given node, to encode information about the distribution of single node517

values.518

CSIvA encoder summary. The encoder produces a summary vector si with H elements for each519

node Xi, which captures essential information about the node’s behavior and its interactions with other520

nodes. The summary representation is formed independently for each node and involves combining521

information across the n samples. This is achieved with a method often used with transformers that522

involves a weighted average based on how informative each sample is. The weighting is obtained523

using the embeddings of a summary "sample" n + 1 to form queries, and embeddings of node’s524

samples {xj
i}nj=1 to provide keys and values, and then using standard key-value attention.525
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Hypeparameter Value
Hidden state dimension 64
Encoder transformer layers 8
Decoder transformer layers 8
Num. attention heads 8
Optimizer Adam
Learning rate 10−4

Samples per dataset (n) 1500
Num. training datasets 15000
Num. iterations < 150000
Batch size 5

Table 1: Hyperparameters for the training of the CSIvA models of the experiments in Section 3.

CSIvA decoder. The decoder uses the summary information from the encoder to generate a526

prediction of the adjacency matrix A of the underlying G. It operates sequentially, at each step527

producing a binary output indicating the prediction Âi,j of Ai,j , proceeding row by row. The decoder528

is an autoregressive transformer, meaning that each prediction Âi,j is obtained based on all elements529

of A previously predicted, as well as the summary produced by the encoder. The method does not530

enforce acyclicity, although Ke et al. [1] shows that in cyclic outputs genereally don’t occur, in531

practice.532

B Training details533

B.1 Hyperparameters534

In Table 1 we detail the hyperparameters of the training of the network of the experiments. We define535

an iteration as a gradient update over a batch of 5 datasets. Models are trained until convergence,536

using a patience of 5 (training until five consecutive epochs without improvement) on the validation537

loss - this always occurs before the 25-th epoch (corresponding to ≈ 150000 iterations). The batch538

size is limited to 5 due to memory constraints.539

B.2 Synthetic data540

In this section, we provide additional details on the synthetic data generation, which was performed541

with the causally2 Python library [9]. Our data-generating framework follows that of Montagna542

et al. [9], an extensive benchmark of causal discovery methods on different classes of SCMs.543

Causal mechanisms. The nonlinear mechanisms of the PNL model and the nonlinear ANM model544

are generated by a neural network with one hidden layer with 10 hidden units, with a parametric545

ReLU activation function. The network weights are randomly sampled according to a standard546

Gaussian distribution. The linear mechanisms are generated by sampling the regression coefficients547

in the range [−3,−0.5] ∪ [0.5, 3].548

Distribution of the noise terms. We generated datasets from structural causal models with the549

following distribution of the noise terms: Beta, Gamma, Gaussian (for nonlinear data), Gumbel,550

Exponential, and Uniform. Additionally, we define the mlp distribution by nonlinear transformations551

of gaussian samples from a guassian distribution centered at zero and with standard deviation σ552

uniformly sampled between 0.5 and 1. The nonlinear transformation is parametrized by a neural553

network with one hidden layer with 100 units, and sigmoid activation function. The weights of the554

network are uniformly sampled in the range [−1.5, 1.5]. We additionally standardized the output of555

each mlp sample by the empirical variance computed over all samples.556

Data are standardized with their empirical variance, which removes the presence of shortcuts which557

could be learned by the network, notably varsortability [32] and score-sortability [33].558

2https://causally.readthedocs.io/en/latest/
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B.3 Computer resources559

Our experiments were run on a local computing cluster, using any and all available GPUs (all560

NVIDIA). For replication purposes, GTX 1080 Ti’s are entirely suitable, as the batch size was set561

to match their memory capacity, when working with bivariate graphs. All jobs ran with 10GB of562

RAM and 4 CPU cores. The results presented in this paper were produced after 145 days of GPU563

time, of which 68 were on GTX 1080 Ti’s, 13 on RTX 2080 Ti’s, 11 on A10s, 19 on A40s, and 35564

on RTX 3090s. Together with previous experiments, while developing our code and experimental565

design, we used 376 days of GPU time (for reference, at a total cost of 492.14 Euros), similarly split566

across whichever GPUs were available at the time: 219 on GTX 1080 Ti’s, 38 on RTX 2080 Ti’s, 18567

on A10s, 63 on RTX 3090s, 31 on A40s, and 6 on A100s.568

C Further experiments569

We present our experimental results on one further question, to help clarify the results in the main text570

of the paper. Our aim is to understand when to make tradeoffs between computational resources, and571

having models that have been trained on a wider variety of SCMs. We compare training on multiple572

SCMs to single-SCM training, when all models see the same amount of training data from each SCM573

type as a non-mixed model (i.e. a mixed network trains on 15, 000 linear datasets and 15, 000 PNL574

datasets, instead of 15, 000 divided between the two SCM types).575

In the main text of this paper, we compare neural networks trained on a mix of structural causal576

models (e.g. noise distributions, or mechanism types), to models trained on a single mechanism-noise577

combination, where all models have the same amount of training data, 15, 000 datasets. In mixed578

training, we split these evenly, so a "lin, nl" model is trained on 7, 500 datasets from linear SCMs, and579

7, 500 from nonlinear SCMs. Our results in this framework are promising, and show that for many580

combinations of SCM types, we can train one model instead of two, and achieve good progress, while581

making a 50% savings on training costs. However, if our training budget is high/unlimited, we should582

also ask whether there is a downside to mixed training - can we achieve the same performance as a583

model trained on a single SCM type? Fig. 6 shows good results in this direction - the models trained584

with the same number of datasets per SCM type as an unmixed model had similar (or even better,585

for PNL data) performance as the un-mixed model trained on the same SCM type as the test data.586

These mixed models are also significantly more useful than having 2 or 3 separate models per SCM587

type, as they have good across-the-board performance. However, if we used the same computational588

resources to train 3 separate networks (one for each mechanism type) and wanted to use them for589

causal discovery on a dataset with unknown assumptions, we would be left with the rather difficult590

task of deciding which model to trust.
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(b) Nonlinear test data
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(c) PNL test data

Figure 6: Mixtures of causal mechanisms, with varying amounts of training data. We train eight models on
samples from structural casual models with different mechanisms. Four (in purple), were trained on 15, 000
samples for each SCM type (so the "lin,nl" model saw 30, 000 samples in total, and the "all" model saw 45, 000),
and the other four (blue) are the same as in Fig. 4, and were trained on 15, 000 samples in total, evenly split
between the SCM types they were trained on. We compare their test SHD (the lower, the better) against networks
trained on datasets generated according to a single type of mechanism. The dashed line indicates the test SHD of
a model trained on samples with the same mechanisms as the test SCM. Training on multiple causal models with
different mechanisms (mixed bars) always improves performance compared to training on single SCMs.
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D Theoretical results and proofs592

Before stating the proof of Proposition 1, we show under which condition the pair of random593

variables X,Y satisfies the forward and backward models of equations (5), (6): this is relevant for594

our discussion, as the proof of Proposition 1 consists of showing that this condition is almost never595

satisfied.596

Notation. We adopt the following notation: νX := log pNX
, νY := log pNY

, ξ := log pX̃ , η :=597

log pỸ , and π := log pX̃,Ỹ .598

Theorem 1 (Theorem 1 of Zhang and Hyvärinen [8]). Assume that X,Y satisfies both causal599

relations of equations (5) and (6). Further, suppose that pNY
and pX̃ are positive densities on the600

support of NY and X̃ respectively, and that νY , ξ, f1, f2, g1, and g2 are third order differentiable.601

Then, for each pair (x̃, ỹ) satisfying ν′′Y (ỹ − hY (x̃))hY (x̃) ̸= 0, the following differential equation602

holds:603

ξ′′′ = ξ′′
(
h′′Y
h′Y

− ν′′′Y h′Y
ν′′Y

)
+

ν′′′Y ν′Y h
′′
Y h
′
Y

ν′′Y
− ν′Y (h

′′
Y )

2

h′Y
− 2ν′′Y h

′′
Y h
′
Y + ν′Y h

′′′
Y ,

and hX is constrained in the following way:604

1

h′X
=

ξ′′ + ν′′Y (h
′
Y )

2 − ν′Y h
′′
Y

ν′′Y h
′
Y

, (9)

where the arguments of the functions have been left out for clarity.605

Proof of Theorem 1. We demonstrate separately the two statements of the theorem.606

Part 1. Given that equations (5) and (6) hold, this implies that the forward and backward models607

on X̃, Ỹ of equations (7) and (8) are also valid, namely that:608

Ỹ = hY (X̃) +NY ,

X̃ = hX(Ỹ ) +NX .

These are the structural equations of two causal models, associated with the forward X̃ → Ỹ and
backward Ỹ → X̃ graphs, respectively. Applying the Markov factorization of the distribution
according to the forward direction, we get:

pX̃,Ỹ (x̃, ỹ) = pỸ |X̃(ỹ|x̃)pX̃(x̃) = pNY
(ỹ − hY (x̃))pX̃(x̃),

which implies609

π(x̃, ỹ) = νY (ỹ − hY (x̃)) + ξ(x̃), (10)
for any x̃, ỹ. Similarly, the Markov factorization on the backward model implies:610

π(x̃, ỹ) = νX(x̃− hX(ỹ)) + η(ỹ). (11)

From (11), we have that:611

∂2

∂x̃2
π(x̃, ỹ) = ν′′X(x̃− hX(ỹ))

∂2

∂x̃∂ỹ
π(x̃, ỹ) = −ν′′X(x̃− hX(ỹ))h′X(ỹ),

which implies612

∂

∂x̃

(
∂2

∂x̃2π(x̃, ỹ)
∂2

∂x̃∂ỹπ(x̃, ỹ)

)
= 0. (12)

Computing the same set of partial derivatives from (10), we find:613

∂2

∂x̃2
π(x̃, ỹ) = ν′′Y (ỹ − hY (x̃))(h

′
Y (x̃))

2 − ν′Y (ỹ − hY (x̃))h
′′
Y (x̃) + ξ′′(x̃)

∂2

∂x̃∂ỹ
π(x̃, ỹ) = −ν′′Y (ỹ − hY (x̃))h

′
Y (x̃).
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from which follows:614

∂

∂x̃

(
∂2

∂x̃2π(x̃, ỹ)
∂2

∂x̃∂ỹπ(x̃, ỹ)

)
= −2h′′Y +

ν′Y h
′′′
Y

ν′′Y h
′
Y

− ξ′′′

ν′′Y h
′
Y

+
ν′′′Y ν′Y h

′′
Y

(ν′′Y )
2

− ν′Y (h
′′
Y )

2

ν′′Y (h
′
Y )

2
+

ξ′′ν′′′Y h′′Y
(ν′′Y )

2ν′′Y (h
′
Y )

2

= 0.

where we drop the input arguments for conciseness. The equality with 0 is given by the equality with615

(12). Manipulating the above expression, the first claim follows.616

Part 2. Next, we prove the constraint derived on hX . To do this, we exploit the fact that Ỹ is617

independent of NX , which implies the following condition [38]:618

∂2

∂ỹ∂nx
log p(ỹ, nx) = 0, (13)

for any (ỹ, nx). According to equations (7), (8), we have that:619

Ỹ = hY (X̃) +NY ,

NX = X̃ − hX(Ỹ ),

such that we can define an invertible map Φ : (ỹ, nx) 7→ (x̃, nY ). It is easy to show that the Jacobian
of the transformation has determinant |JΦ| = 1, such that

p(ỹ, nY ) = p(x̃, nY ),

where (x̃, nY ) = Φ−1(ỹ, nX). Thus, being X̃,NY independent random variables, we have that:

log p(ỹ, nX) = log p(x̃) + log p(nY ) = ξ(x̃) + νY (nY ).

Given that X̃ = hX(Ỹ ) +NX , we have that

∂2

∂ỹ∂ñX
log p(x̃) = ξ′′h′X ,

while NY = Ỹ − hY (X̃) implies

∂2

∂ỹ∂ñX
log p(nY ) = −ν′′Y h

′
Y + ν′′Y h

′
X(h′Y )

2 − ν′Y h
′
Xh′′Y ,

such that
log p(x̃, nY ) = ξ′′h′X +−ν′′Y h

′
Y + ν′′Y h

′
X(h′Y )

2 − ν′Y h
′
Xh′′Y ,

which must be equal to zero, being equal to the LHS of (13). Thus, we conclude that

1

h′X
=

ξ′′ + ν′′Y (h
′
Y )

2 − ν′Y h
′′
Y

ν′′Y h
′
Y

,

proving the claim.620

D.1 Proof of Proposition 1621

Proof. Under the hypothesis that equations (5), (6) hold, i.e. when the data generating process satisfy622

both a forward and a backward model, by Theorem 1 we have that:623

ξ′′′(x̃) = ξ′′(x̃)G(x̃, ỹ) +H(x̃, ỹ), (14)

where624

G(x̃, ỹ) =

(
h′′Y
h′Y

− ν′′′Y h′Y
ν′′Y

)
,

H(x̃, ỹ) =
ν′′′Y ν′Y h

′′
Y h
′
Y

ν′′Y
− ν′Y (h

′′
Y )

2

h′Y
− 2ν′′Y h

′′
Y h
′
Y + ν′Y h

′′′
Y .
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Define z := ξ′′′, such that the above equation can be written as z′(x̃) = z(x̃)G(x̃, ỹ) + H(x̃, ỹ).625

given that such function z exists, it is given by:626

z(x̃) = z(x̃0)e
∫ x̃
x̃0

G(t,y)dt
+

∫ x̃

x̃0

e
∫ x̃
t̂

G(t,y)dtH(t̂, y)dt̂. (15)

Let ỹ such that ν′′Y (ỹ − hY (x̃))h
′
Y (x̃) ̸= 0 holds for all but countable values of x̃. Then, z is

determined by z(x̃0), as we can extend equation (15) to all the remaining points. The set of
all functions ξ satisfying the differential equation (14) is a 3-dimensional affine space, as fixing
ξ(x̃0), ξ

′′(x̃0), ξ
′′(x̃0) for some point x̃0 completely determines the solution ξ. Moreover, given

νY , hX , hY fixed, ξ′′ is specified by (9) of theorem 1, which implies:

ξ′′ =
ν′′Y h

′
Y

h′X
+ ν′Y h

′′
Y − ν′′Y (h

′
Y )

2,

which confines ξ solutions of (14) to a 2-dimensional affine space.627
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NeurIPS Paper Checklist628

1. Claims629

Question: Do the main claims made in the abstract and introduction accurately reflect the630

paper’s contributions and scope?631

Answer: [Yes]632

Justification: Supervised learning models in causal discovery do not provide connections633

with the known identifiability theory. In the abstract, we present this open problem, and634

highlight our main empirical findings and how they connect to the theory of identifiability in635

causality. The content of the paper (mostly Section 3) unravels the abstract claims in all of636

their details.637

Guidelines:638

• The answer NA means that the abstract and introduction do not include the claims639

made in the paper.640

• The abstract and/or introduction should clearly state the claims made, including the641

contributions made in the paper and important assumptions and limitations. A No or642

NA answer to this question will not be perceived well by the reviewers.643

• The claims made should match theoretical and experimental results, and reflect how644

much the results can be expected to generalize to other settings.645

• It is fine to include aspirational goals as motivation as long as it is clear that these goals646

are not attained by the paper.647

2. Limitations648

Question: Does the paper discuss the limitations of the work performed by the authors?649

Answer: [Yes]650

Justification: We discuss the limitations of our work in Section 1, paragraph "Closely related651

works and their relation with CSIvA", regarding the use of CSIvA as our only architecture652

for the experiments. Additionally, in the same paragraph, we remark that the scope of this653

study is limited to the context of causal discovery on observational data. Finally, in Section654

2.2, we discuss our choice of limiting the empirical study to the case of bivariate graphs.655

Guidelines:656

• The answer NA means that the paper has no limitation while the answer No means that657

the paper has limitations, but those are not discussed in the paper.658

• The authors are encouraged to create a separate "Limitations" section in their paper.659

• The paper should point out any strong assumptions and how robust the results are to660

violations of these assumptions (e.g., independence assumptions, noiseless settings,661

model well-specification, asymptotic approximations only holding locally). The authors662

should reflect on how these assumptions might be violated in practice and what the663

implications would be.664

• The authors should reflect on the scope of the claims made, e.g., if the approach was665

only tested on a few datasets or with a few runs. In general, empirical results often666

depend on implicit assumptions, which should be articulated.667

• The authors should reflect on the factors that influence the performance of the approach.668

For example, a facial recognition algorithm may perform poorly when image resolution669

is low or images are taken in low lighting. Or a speech-to-text system might not be670

used reliably to provide closed captions for online lectures because it fails to handle671

technical jargon.672

• The authors should discuss the computational efficiency of the proposed algorithms673

and how they scale with dataset size.674

• If applicable, the authors should discuss possible limitations of their approach to675

address problems of privacy and fairness.676

• While the authors might fear that complete honesty about limitations might be used by677

reviewers as grounds for rejection, a worse outcome might be that reviewers discover678

limitations that aren’t acknowledged in the paper. The authors should use their best679
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judgment and recognize that individual actions in favor of transparency play an impor-680

tant role in developing norms that preserve the integrity of the community. Reviewers681

will be specifically instructed to not penalize honesty concerning limitations.682

3. Theory Assumptions and Proofs683

Question: For each theoretical result, does the paper provide the full set of assumptions and684

a complete (and correct) proof?685

Answer: [Yes]686

Justification: Proposition 1 is proved in detail in Appendix D.1, which is based on Theorem687

1 of Zhang and Hyvärinen [8], which we report in the Appendix together with its proof. We688

do not provide an explicit sketch of the proof of our Proposition 1 in the main text, as we689

already detail the intuition behind it in the content of Section 3.3.690

Guidelines:691

• The answer NA means that the paper does not include theoretical results.692

• All the theorems, formulas, and proofs in the paper should be numbered and cross-693

referenced.694

• All assumptions should be clearly stated or referenced in the statement of any theorems.695

• The proofs can either appear in the main paper or the supplemental material, but if696

they appear in the supplemental material, the authors are encouraged to provide a short697

proof sketch to provide intuition.698

• Inversely, any informal proof provided in the core of the paper should be complemented699

by formal proofs provided in appendix or supplemental material.700

• Theorems and Lemmas that the proof relies upon should be properly referenced.701

4. Experimental Result Reproducibility702

Question: Does the paper fully disclose all the information needed to reproduce the main ex-703

perimental results of the paper to the extent that it affects the main claims and/or conclusions704

of the paper (regardless of whether the code and data are provided or not)?705

Answer: [Yes]706

Justification: We have specified our data generation methods in Appendix B.2, as well707

as the CSIvA method (which is a previously published model) in Appendix A, and our708

hyperparameters for training in Appendix B.1. We will also release our implementation of709

CSIvA, our data generation code (which is a thin wrapper around the causally https:710

//causally.readthedocs.io/en/latest/ Python library), and our experimental code.711

Guidelines:712

• The answer NA means that the paper does not include experiments.713

• If the paper includes experiments, a No answer to this question will not be perceived714

well by the reviewers: Making the paper reproducible is important, regardless of715

whether the code and data are provided or not.716

• If the contribution is a dataset and/or model, the authors should describe the steps taken717

to make their results reproducible or verifiable.718

• Depending on the contribution, reproducibility can be accomplished in various ways.719

For example, if the contribution is a novel architecture, describing the architecture fully720

might suffice, or if the contribution is a specific model and empirical evaluation, it may721

be necessary to either make it possible for others to replicate the model with the same722

dataset, or provide access to the model. In general. releasing code and data is often723

one good way to accomplish this, but reproducibility can also be provided via detailed724

instructions for how to replicate the results, access to a hosted model (e.g., in the case725

of a large language model), releasing of a model checkpoint, or other means that are726

appropriate to the research performed.727

• While NeurIPS does not require releasing code, the conference does require all submis-728

sions to provide some reasonable avenue for reproducibility, which may depend on the729

nature of the contribution. For example730

(a) If the contribution is primarily a new algorithm, the paper should make it clear how731

to reproduce that algorithm.732
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(b) If the contribution is primarily a new model architecture, the paper should describe733

the architecture clearly and fully.734

(c) If the contribution is a new model (e.g., a large language model), then there should735

either be a way to access this model for reproducing the results or a way to reproduce736

the model (e.g., with an open-source dataset or instructions for how to construct737

the dataset).738

(d) We recognize that reproducibility may be tricky in some cases, in which case739

authors are welcome to describe the particular way they provide for reproducibility.740

In the case of closed-source models, it may be that access to the model is limited in741

some way (e.g., to registered users), but it should be possible for other researchers742

to have some path to reproducing or verifying the results.743

5. Open access to data and code744

Question: Does the paper provide open access to the data and code, with sufficient instruc-745

tions to faithfully reproduce the main experimental results, as described in supplemental746

material?747

Answer: [Yes]748

Justification: We will release our implementation of CSIvA, our data generation code749

(which is a thin wrapper around the causally https://causally.readthedocs.io/750

en/latest/ Python library), and our experimental code.751

Guidelines:752

• The answer NA means that paper does not include experiments requiring code.753

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/754

public/guides/CodeSubmissionPolicy) for more details.755

• While we encourage the release of code and data, we understand that this might not be756

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not757

including code, unless this is central to the contribution (e.g., for a new open-source758

benchmark).759

• The instructions should contain the exact command and environment needed to run to760

reproduce the results. See the NeurIPS code and data submission guidelines (https:761

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.762

• The authors should provide instructions on data access and preparation, including how763

to access the raw data, preprocessed data, intermediate data, and generated data, etc.764

• The authors should provide scripts to reproduce all experimental results for the new765

proposed method and baselines. If only a subset of experiments are reproducible, they766

should state which ones are omitted from the script and why.767

• At submission time, to preserve anonymity, the authors should release anonymized768

versions (if applicable).769

• Providing as much information as possible in supplemental material (appended to the770

paper) is recommended, but including URLs to data and code is permitted.771

6. Experimental Setting/Details772

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-773

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the774

results?775

Answer: [Yes]776

Justification: Yes, we provide these details in Section 3.1 and Appendix B.777

Guidelines:778

• The answer NA means that the paper does not include experiments.779

• The experimental setting should be presented in the core of the paper to a level of detail780

that is necessary to appreciate the results and make sense of them.781

• The full details can be provided either with the code, in appendix, or as supplemental782

material.783

7. Experiment Statistical Significance784

21

https://causally.readthedocs.io/en/latest/
https://causally.readthedocs.io/en/latest/
https://causally.readthedocs.io/en/latest/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: Does the paper report error bars suitably and correctly defined or other appropriate785

information about the statistical significance of the experiments?786

Answer: [Yes]787

Justification: For each plot, we provide error bars in the form of 95% confidence intervals788

computed on 1.5k points (hence, it’s reasonable to apply the central limit theorem to argue789

that the confidence intervals are valid).790

Guidelines:791

• The answer NA means that the paper does not include experiments.792

• The authors should answer "Yes" if the results are accompanied by error bars, confi-793

dence intervals, or statistical significance tests, at least for the experiments that support794

the main claims of the paper.795

• The factors of variability that the error bars are capturing should be clearly stated (for796

example, train/test split, initialization, random drawing of some parameter, or overall797

run with given experimental conditions).798

• The method for calculating the error bars should be explained (closed form formula,799

call to a library function, bootstrap, etc.)800

• The assumptions made should be given (e.g., Normally distributed errors).801

• It should be clear whether the error bar is the standard deviation or the standard error802

of the mean.803

• It is OK to report 1-sigma error bars, but one should state it. The authors should804

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis805

of Normality of errors is not verified.806

• For asymmetric distributions, the authors should be careful not to show in tables or807

figures symmetric error bars that would yield results that are out of range (e.g. negative808

error rates).809

• If error bars are reported in tables or plots, The authors should explain in the text how810

they were calculated and reference the corresponding figures or tables in the text.811

8. Experiments Compute Resources812

Question: For each experiment, does the paper provide sufficient information on the com-813

puter resources (type of compute workers, memory, time of execution) needed to reproduce814

the experiments?815

Answer: [Yes]816

Justification: We provide all details on our computer resources in Appendix B.3.817

Guidelines:818

• The answer NA means that the paper does not include experiments.819

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,820

or cloud provider, including relevant memory and storage.821

• The paper should provide the amount of compute required for each of the individual822

experimental runs as well as estimate the total compute.823

• The paper should disclose whether the full research project required more compute824

than the experiments reported in the paper (e.g., preliminary or failed experiments that825

didn’t make it into the paper).826

9. Code Of Ethics827

Question: Does the research conducted in the paper conform, in every respect, with the828

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?829

Answer: [Yes]830

Justification: We do not believe any of the concerns in the Code of Ethics apply to our work.831

Guidelines:832

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.833

• If the authors answer No, they should explain the special circumstances that require a834

deviation from the Code of Ethics.835

22

https://neurips.cc/public/EthicsGuidelines


• The authors should make sure to preserve anonymity (e.g., if there is a special consid-836

eration due to laws or regulations in their jurisdiction).837

10. Broader Impacts838

Question: Does the paper discuss both potential positive societal impacts and negative839

societal impacts of the work performed?840

Answer: [NA]841

Justification: Our work is about assessing and studying pre-existing causal discovery models.842

As we release no new model, there is no societal impact that could be caused by our work.843

Guidelines:844

• The answer NA means that there is no societal impact of the work performed.845

• If the authors answer NA or No, they should explain why their work has no societal846

impact or why the paper does not address societal impact.847

• Examples of negative societal impacts include potential malicious or unintended uses848

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations849

(e.g., deployment of technologies that could make decisions that unfairly impact specific850

groups), privacy considerations, and security considerations.851

• The conference expects that many papers will be foundational research and not tied852

to particular applications, let alone deployments. However, if there is a direct path to853

any negative applications, the authors should point it out. For example, it is legitimate854

to point out that an improvement in the quality of generative models could be used to855

generate deepfakes for disinformation. On the other hand, it is not needed to point out856

that a generic algorithm for optimizing neural networks could enable people to train857

models that generate Deepfakes faster.858

• The authors should consider possible harms that could arise when the technology is859

being used as intended and functioning correctly, harms that could arise when the860

technology is being used as intended but gives incorrect results, and harms following861

from (intentional or unintentional) misuse of the technology.862

• If there are negative societal impacts, the authors could also discuss possible mitigation863

strategies (e.g., gated release of models, providing defenses in addition to attacks,864

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from865

feedback over time, improving the efficiency and accessibility of ML).866

11. Safeguards867

Question: Does the paper describe safeguards that have been put in place for responsible868

release of data or models that have a high risk for misuse (e.g., pretrained language models,869

image generators, or scraped datasets)?870

Answer: [NA]871

Justification: The data and models in this paper do not have high risk for misuse.872

Guidelines:873

• The answer NA means that the paper poses no such risks.874

• Released models that have a high risk for misuse or dual-use should be released with875

necessary safeguards to allow for controlled use of the model, for example by requiring876

that users adhere to usage guidelines or restrictions to access the model or implementing877

safety filters.878

• Datasets that have been scraped from the Internet could pose safety risks. The authors879

should describe how they avoided releasing unsafe images.880

• We recognize that providing effective safeguards is challenging, and many papers do881

not require this, but we encourage authors to take this into account and make a best882

faith effort.883

12. Licenses for existing assets884

Question: Are the creators or original owners of assets (e.g., code, data, models), used in885

the paper, properly credited and are the license and terms of use explicitly mentioned and886

properly respected?887

Answer: [Yes]888

23



Justification: We cite the authors of all papers we build our work on. Additionally, we889

provide the URL to all previously existing code we rely on, which is available in the form of890

public GitHub repository under MIT license.891

Guidelines:892

• The answer NA means that the paper does not use existing assets.893

• The authors should cite the original paper that produced the code package or dataset.894

• The authors should state which version of the asset is used and, if possible, include a895

URL.896

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.897

• For scraped data from a particular source (e.g., website), the copyright and terms of898

service of that source should be provided.899

• If assets are released, the license, copyright information, and terms of use in the900

package should be provided. For popular datasets, paperswithcode.com/datasets901

has curated licenses for some datasets. Their licensing guide can help determine the902

license of a dataset.903

• For existing datasets that are re-packaged, both the original license and the license of904

the derived asset (if it has changed) should be provided.905

• If this information is not available online, the authors are encouraged to reach out to906

the asset’s creators.907

13. New Assets908

Question: Are new assets introduced in the paper well documented and is the documentation909

provided alongside the assets?910

Answer: [Yes]911

Justification: As our work is an analysis of pre-existing methods of causal discovery, we do912

not release new assets other than the code strictly needed for reproducing our experimental913

results. This code is attached to this submission to facilitate the reproducibility of our914

results. All the documentation necessary for reproducing our results is provided in the main915

manuscript.916

Guidelines:917

• The answer NA means that the paper does not release new assets.918

• Researchers should communicate the details of the dataset/code/model as part of their919

submissions via structured templates. This includes details about training, license,920

limitations, etc.921

• The paper should discuss whether and how consent was obtained from people whose922

asset is used.923

• At submission time, remember to anonymize your assets (if applicable). You can either924

create an anonymized URL or include an anonymized zip file.925

14. Crowdsourcing and Research with Human Subjects926

Question: For crowdsourcing experiments and research with human subjects, does the paper927

include the full text of instructions given to participants and screenshots, if applicable, as928

well as details about compensation (if any)?929

Answer: [NA]930

Justification: We do not work with human subjects or crowdsourcing.931

Guidelines:932

• The answer NA means that the paper does not involve crowdsourcing nor research with933

human subjects.934

• Including this information in the supplemental material is fine, but if the main contribu-935

tion of the paper involves human subjects, then as much detail as possible should be936

included in the main paper.937

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,938

or other labor should be paid at least the minimum wage in the country of the data939

collector.940

24

paperswithcode.com/datasets


15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human941

Subjects942

Question: Does the paper describe potential risks incurred by study participants, whether943

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)944

approvals (or an equivalent approval/review based on the requirements of your country or945

institution) were obtained?946

Answer: [NA]947

Justification: We do not work with human subjects or crowdsourcing.948

Guidelines:949

• The answer NA means that the paper does not involve crowdsourcing nor research with950

human subjects.951

• Depending on the country in which research is conducted, IRB approval (or equivalent)952

may be required for any human subjects research. If you obtained IRB approval, you953

should clearly state this in the paper.954

• We recognize that the procedures for this may vary significantly between institutions955

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the956

guidelines for their institution.957

• For initial submissions, do not include any information that would break anonymity (if958

applicable), such as the institution conducting the review.959

25


	Introduction
	Background and motivation
	Causal discovery from observational data
	Motivation and problem definition

	Experimental results through the lens of theory
	Experimental design
	Warm up: is CSIvA capable of in and out-of-distribution generalization?
	How does CSIvA relate to identifiability theory for causal graphs?
	A low-dimensions argument in favor of learning from multiple causal models
	Can we train CSIvA on multiple causal models for better generalization?

	Conclusion
	Learning to induce: causal discovery with transformers
	A supervised learning approach to causal discovery
	CSIvA architecture

	Training details
	Hyperparameters
	Synthetic data
	Computer resources

	Further experiments
	Theoretical results and proofs
	Proof of Proposition 1


