Towards Understanding the Optimization Landscape
of GRPO and its Variants

Samyak Jain ** 5 Ayush Agrawal®~”  Navin Goyal”
*UC Berleley, OMILA, “Université de Montréal, UMicrosoft Research India

Abstract

GRPO has achieved impressive success in the landscape of reasoning models. How-
ever, the motivation behind its origins along with the reasons for its effectiveness
remain elusive. In this work, we fill some of the gaps and demonstrate that in
on-policy setting, GRPO’s optimization can be viewed as a weighted combina-
tion of maximization of likelihood for correct rollouts and minimization for the
incorrect ones. This finding gives a different perspective about the optimization
landscape of GRPO. Motivated by this, we analyze the positive and negative part
of GRPO’s objective function independently, and find that their global minima
correspond to undesired solutions. While optimization of the positive term leads to
entropy minimization and length collapse, optimizing for the negative term leads to
entropy maximization and length explosion. Using this lens, we show the presence
of instability in on-policy training of some recent algorithmic advances trying to
simplify GRPO’s objective. However, despite the presence of bad global minima
in GRPO’s objective function, it doesn’t converge to either of them. We identify
design choices in GRPO’s advantages that aid convergence of GRPO to good
minima. We also demonstrate the effectiveness of using clipping in stabilizing the
optimization process, thereby preventing training instabilities even when training
only for minimizing the likelihood of incorrect rollouts.

1 Introduction

Reinforcement learning with verifiable rewards (RLVR) has shown impressive improvements in the
reasoning abilities of Large Language Models (LLMs) on tasks like maths, coding, etc. DeepSeek-Al
(2025); Jaech et al. (2024); Team et al. (2025). These improvements are a result of advancements in
the capabilities of the base models, along with development of improved RL algorithms like GRPO
(Shao et al., 2024) and PPO (Schulman et al., 2017b). It is interesting that merely using rewards at the
end of model’s prediction (output verifiable rewards) is sufficient to observe non-trivial improvements
in reasoning abilities of LLMs. This observation has led to a large adoption of outcome reward models
(ORMs) in the community resulting in increased popularity of RL finetuning methods like GRPO.
As aresult several modified versions of GRPO have been proposed recently, aiming to improve the
training efficiency and generalization of RL-finetuned models.

Amongst these alternatives, a few of them have tried simplifying GRPO’s objective function. For
instance, (Xiong et al., 2025) demonstrated that very simple algorithm RAFT (and its enhancement
RAFT++) that trains only on the correct rollouts give performance comparable with GRPO. On
the other hand, Zhu et al. (2025) demonstrated that minimizing the likelihood only on the incorrect
rollouts performs comparably to GRPO while improving model’s output diversity. Additionally,
Samineni et al. (2025) demonstrated that a simple combination of the positive and negative losses
as described above, also leads to performance similar to GRPO. A few of the recently proposed
alternatives have also tried modifying the clipping mechanisms in GRPO (MiniMax, 2025; Ahmadian
et al., 2024). Similarly, Zheng et al. (2025); Zhao et al. (2025¢) modify GRPO’s objective function
by considering importance sampling at sequence level. All these methods amongst several others
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Figure 1: Illustrative diagram demonstrating the loss landscape of RLVR methods: (a) The
loss landscape consists of different critical solutions C'py,, Cny, and Cpr, where Cpy, represents
the minimum entropy solution, Cyy, represents the maximum entropy solution, and Cpy, leads to
improved performance of the model. (b) GRPO stabilizes the model against converging to bad critical
solutions C'py, and Cyy,, by controlling the magnitude of the gradient as shown by the length of the
arrows, and the illustration of the model in its function space is shown by the dark circle.

(Chen et al., 2025a; Lanchantin et al., 2025) aim to simplify GRPO’s objective function and they
have successfully demonstrated their effectiveness on certain datasets and base models. These results
point to the lack of motivation about different design choices in GRPO’s objective function.

Another line of works modifies the definition of advantages and rewards in GRPO: Chen et al. (2025b);
Mahdavi et al. (2025); Zhou et al. (2025); Liu et al. (2025); Zhao et al. (2025b); Kang et al. (2025);
Arora & Zanette (2025); He et al. (2025); Prabhudesai et al. (2025); Xiao et al. (2025); Hao et al.
(2025); Fan et al. (2025); Yu et al. (2025); Shafayat et al. (2025); Arnal et al. (2025). In particular,
Prabhudesai et al. (2025) show that using GRPO in unsupervised RL setting by minimizing model’s
entropy could lead to improved performance. On the other hand, Wang et al. (2025b) demonstrated
that maximization of entropy could also lead to improved performance. These contrasting results
have created confusion within the community, highlighting a need to understand the optimization
landscape of GRPO and related simplified objective functions.

In this work, we primarily focus on understanding the role of algorithmic advancements in enabling
improvements in reasoning abilities of LLMs. For this, we first try to understand the motivation
behind each of the design choices used in GRPO’s objective function, where we find that several
of them lack adequate motivation. We first highlight the lack of motivation behind using clipping
in GRPO’s objective function by tracing back the origins of clipping proposed in PPO (Schulman
et al., 2017b), which had its motivation grounded in policy improvement guarantee shown in TRPO
(Schulman et al., 2017a). Thus we begin by analyzing GRPO’s objective function in on-policy setting,
and adding different design choices to reconstruct its actual objective function. In the on-policy
setting, we demonstrate how several approximations inherently made by GRPO in comparison to
PPO, simplify its learning process to a reweighted version of maximization and minimization of
likelihood on the correct and incorrect rollouts respectively. Using this perspective, we analyze the
loss on samples with correct and incorrect answers separately, and characterize the properties of
their corresponding critical solutions. Let us term the critical solutions corresponding to maximizing
and minimizing the likelihood for positive (correct) and negative (incorrect) samples respectively as
Cpr, and Cxr, (as shown in Fig. 1 (a)). Empirically, we observe that converging to either of these
minimas results in degraded performance, where training on the correct rollouts leads to collapse of
entropy and length of model’s outputs, and training on the incorrect rollouts leads to explosion of
entropy and length of model’s outputs. As GRPO’s gradients can be considered a weighted mixture
of the gradients of these losses, we aim to understand the reweighting mechanism which prevents
GRPO from converging to either of the two bad solutions. As shown in Fig. 1 (b), we find that the
advantages in GRPO help in reducing the norm of gradients when the model comes closer to either
of the minimas in its function space, while increasing the norm of the gradient in the direction of
farther away critical point.

Specifically, we find that the on-policy versions of the algorithms in Zhu et al. (2025); Xiong et al.
(2025) are prone to instability and collapses, as explained by convergence to Cpy, and Cc¢y, above
(these works focus their evaluations in off-policy setting without discussing the on-policy vs. off-
policy distinction). However, utilizing clipping, makes the training stable for these methods, even
though there is no policy improvement guarantee as in case of TRPO. Overall this indicates the
critical role played by clipping in enabling off-policy learning to become more stable than on-policy,



even in cases where the algorithms do not maximize a strict lower bound on the value function of the
states in MDP, and therefore do not enjoy any policy improvement guarantee as in case of TRPO.

Designing more stable and robust RLVR methods is important from a practical viewpoint, and in an
attempt to improve training stability of existing methods in on-policy setting, we find that utilizing
normalization at token level could be helpful. We further explain the reasons behind this, thereby
providing a new perspective on using token level normalization instead of sequence level, which
has recently gained traction in the community as well Yu et al. (2025); Liu et al. (2025); Yue et al.
(2025b). To summarize, our key contributions are:

* We provide a new view on GRPO as a reweighted version of maximization and minimization of
likelihood for correct and incorrect samples.

e We characterize the properties of the critical solutions of the two minimas corresponding to
maximization and minimization of likelihood for correct and incorrect samples, respectively.

* We show that clipping and utilizing token level normalization help off-policy training become
more stable against collapsing as opposed to on-policy settings for different variations of GRPO.

* We demonstrate the key role played by the advantages used in GRPO in stabilizing the training.

We defer the detailed discussion of related work and background to Appendix A and B respectively.

2 Understanding the origins of GRPO

We consider an episodic MDP given by the tuple (S, A, P, 7, y), where S is a set of states and A, is a
set of actions allowed for a given state s;. We assume same action set for all states gives us A;, =
As, =...= A, = A. The policy is parametrized by 6 and defined as 7g : R? — [0, 1]V, where v is the
cardinality of A and d is the dimension of the input. Denote by P : S x A x S — R the transition
probability matrix, by r; the reward given by the environment at time stamp ¢. Let the process be
episodic and always start from a state s;. We can now define the advantage function (A, (s, at))
for our policy 7g: Ar(st,at) = qr(St,at) — v (8t) = qr(Se,a1) — Zai mo(alst)gr(st, a;), where
= (8¢, a;) represents the Q-value function calculated at state s; and for action a;.

While the above formulation can be used for general MDPs, in the case of language models we get a
special MDP: The input prompt ¢ denotes the starting state given by s;. An action refers to prediction
of the next token and a state is obtained by appending the predicted token (i.e. s; = (¢, a1, ..., az—1)).
Given the current state, the next state is deterministically determined by the action. A response is a
set of actions given by a = (a1, as, ..., ar), where the prediction of end of sequence (EOS) token
determines the end of episode. We use verifiable rewards given at the end of the episode, where
correct prediction results in a reward score of one, and an incorrect prediction results in zero reward.
We will now derive GRPO using PPO as the base method, where PPO’s objective function is:
d . mo(a|st) mo(at|st)

J(0,9)= E [ _To\%e15t)
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where 7y and 7y, represent the current and the old policy utilized for sampling the rollouts. PPO
utilizes generalized advantages (A (s¢, a;)) which are motivated from TD learning (Sutton, 1988).
Training of the policy can be done in either off-policy or on-policy setting. In the on-policy setting
the same model is used for training and generating the rollouts (i.e., mg,,, = 7y), whereas in the
off-policy setting an older version of our current policy is utilized for generating the rollouts.

Ar(sg,ap),clip( y1—€,14€)Ar(se,ai)] (1)

GRPO builds on Eq. 1 and modifies the calculation of advantages. It approximates a) the computation
of Q-value functions (Q(s¢, a;)) by a single rollout, which results in an unbiased estimator with high
variance. b) It also assumes that the Q-value and the value functions (V' (s;)) are the same for all the
states in a rollout, where the value function is calculated by generating rollouts only at the starting
state (s1). This gives

Ar(g,a) = Ax(s1,a1) W= A (s, ar) = Q(s1,a1) = V(s1) =" r(a) = V(s1)=r(a) = V(q)

(@)
GRPO also divides A (s¢+1, a¢+1) by the standard deviation of the rewards for the sampled trajecto-
ries which lacks desired motivation. Using the highlighted assumptions, we can now rewrite Eq. 1 in
the following way:

K= E S omin T A i T 16 1+ Al O
alq
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as recent works: Zhou et al. (2025); Hu et al. (2025) have shown that using GRPO without the
KL divergence results in faster convergence and improved performance. In eq. 3, GRPO further
approximates the value function using a group of a few rollouts.

a)

where /Lr(q, a) = ?;(d)_v(q))Q Note that we do not incorporate the KL terms here

2.1 On-policy GRPO and iterated MLE

GRPO was motivated by PPO which in turn was obtained by modification of TRPO (Schulman et al.,
2017a) whose history goes further back. However, the conceptual underpinnings of GRPO become
somewhat obscured because of this long chain. We elaborate this further. TRPO enjoys a policy
improvement guarantee in each iteration, by formalizing a constrained maximization of a strict lower
bound on the value function, where the constraint ensures that the policy remains in close proximity
of the old policy. PPO further proposes clipping as a heuristic to realize the constraint in practice.
This led PPO enhance training stability of deep RL methods including the on-policy ones. However,
due to the approximations detailed in Sec. 2, GRPO and its simplified versions no longer maximize a
strict lower bound on the value function of the states in MDP in every iteration. This means that in an
iteration some states might increase their value function while others might decrease it. As a result,
there is no policy improvement guarantee, which fades away the motivation to utilize clipping, as
used in PPO. This motivates us to unwrap different design choices in GRPO, and analyze their role in
stabilizing training. Thus we start by investigating GRPO in the on-policy setting. First, we find that
on-policy version of GRPO can be considered as an arguably simple and natural algorithm we call
iterated MLE. Consider the following simple iterated maximum likelihood optimization algorithm:
in each iteration, sample a prompt ¢, and then sample the rollouts a for this prompt. We form an
expression for likelihood by taking the positive sign for a having the correct outcome and the negative
sign for a having the incorrect outcome (specified by A512"(q, a) taking values +1 and —1, resp.).

|al

IMEGg = E Y AT g ) loglr(a]s)] 4)
0 O;i+a E |i|ASig“(q a)Vl:g[q (t:l|s =0;+a E %A“gn(q a) Vro(asls:)
it1 = 0 r ) Tolat|St)| = U; ™ Q) —————
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In the case of GRPO we can write the gradients for Eq. 3 in the on-policy setting (79 = 7g,,,) as:

|al
« Vwe(at|5t)
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t=1
By comparing Eq. 5 with Eq. 6, it is clear that we can consider GRPO as doing reweighted version

of iterated MLE, where the reweighing of gradients is done at sample level with weight given by
7|A"‘(aq"“)| . Importantly, note that the sign of A, (q,a) agrees with A%8"(q, a).

Note that when compared with classic on-policy methods like Reinforce, the key difference here
is that in case of GRPO, the reweighting mechanism acts at sample level, where as in traditional
on-policy objectives reweighting (using advantages) is done at token level. This distinction precisely
occurs due to approximations inherently adopted by GRPO as discussed in Sec. 2. Further, this
distinction inhibits GRPO from maximizing a strict lower bound of the true value functions of the
states in the MDP. In summary, we have:

Takeaway 1

In the on-policy setting, GRPO behaves like reweighted iterated MLE.

With this new perspective, we will now try to uncover the role the reweighting mechanism and
clipping used in GRPO’s objective function. But first we define our experimental setup below.

3 Experimental setup

To make our findings robust across different settings, we apply various RLVR finetuning methods
(GRPO, Lpy,, Ln1, Lor, PPO) on several training datasets: SimpleRL (Zeng et al., 2025), Count-



down (Pan et al., 2025), Numina-Math (LI et al., 2024), and Numina-Math Hard which we specially
crafted ourselves by filtering the prompts in Numina-Math that fail at Pass@2 when evaluated using
Qwen2.5-7B (Qwen et al., 2025). More datasets details are in App. L. We also use multiple models:
Qwen2.5-7B, Qwen2.5-7B-Instruct, and Llama3.1-8B-Instruct (Grattafiori et al., 2024). In most
of the paper we plot the evolution of accuracy on train set of corresponding runs. The reader will
notice that some of the plots are missing; the corresponding experiments had not been completed
due to limited compute. Of course we are concerned about the test accuracy and we show in Table 1
that high train accuracy correlates with high test accuracy even across datasets different from the
training dataset. For test set we use Math 500 (Hendrycks et al., 2021) , GSM8K (Cobbe et al., 2021),
Minerva-Math (Lewkowycz et al., 2022), College-Math (col, 2024), OlympiadBench (He et al., 2024),
and Gaokao-2023 (Zhang et al., 2024). Many of our plots involve a single model trained on multiple
datasets (varying datasets), the base model in these plots is Qwen2.5-7B. Similarly, we have plots for
varying base models for a fixed dataset SimpleRL. Ideally, one would try all combinations of datasets
and models; this however is computationally infeasible. Experiments are run only once because of a
large number of experiments. We use 8 rollouts per prompt, batch size of 128 prompts, training batch
size of 128 x 8 samples for on-policy training, and 32 x 8 samples for off-policy training. For most
other hyperparameters we use the default settings from VeRL (Sheng et al., 2024).

4 Unwrapping GRPO

In this section, we will perform several ablations on the design choices of GRPO to highlight the
key ingredients behind GRPO’s success. The ablations include training only on the correct rollouts
or the incorrect ones, the use of advantages, on-policy and off-policy training with clipping. Since
GRPO can be considered as a reweighted version of likelihood maximization and minimization on
rollouts with correct and incorrect outputs respectively, we start by writing the empirical expectation
of GRPO’s objective function in Eq. 3 decomposed according to whether the response a to ¢ has the
correct outcome or not.

uy; at|5f) . 7T9(at|5t)
0,q ———A.(q,a),clip(———————~,1 —¢,1+¢
J(6.q) = |A+|+M|§j‘|§j (.), clip( )
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where AT corresponds to the set of correct rollouts, and A~ refers to the set of incorrect rollouts.
Thus, AT U A~ = A, where all the rollouts are sampled from 7y_,. Note that a € AT implies
Ar(g,a) > 0,and a € A~ implies A,(g,a) < 0. To ablate the use of advantages in GRPO, we
replace the advantages in equation 7 with their signs. (This gives a version of GRPO that’s similar to
iterated MLE but with clipping.) Let us name the objective corresponding to the set A™ as Positive
Likelihood (— Lpr,) and the objective corresponding to the set A~ as Negative Likelihood (—Lnr,).

In the on-policy setting, where w9 = mg_,,, these objectives simplify further as follows:

WICED) Vormg(at|st)
Low (6, . VoL —0
pu(f0)= |A+|Z|a|Z s Vb= Y |Z m—PRPY ®

aEA+ Bola eyt
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We note that the objective functions above have been analyzed in prior works Zhu et al. (2025); Xiong
et al. (2025), where the authors indeed find them to be stable. This further motivates us to analyze
these objectives in detail. We characterize the minimizers of the two objective functions. We first
do this in an idealized setup where the response a consists of only one token and moreover we use
the expectation instead of the empirical mean used in the expressions for Lpy, and Ly, above. We
suggest that the minimization of Lpy, and Lyy, leads to the problem of minimizing and maximizing
the entropy of the distribution of a, resp. Note that in Eq. 4, by decomposing the expectation into two
parts according to the correctness of the response a, we can express the objective as the difference of



the entropies (denoted by H') on the two distributions of the two parts:

LIMLE(qu) = Pr[Airign(Q7a) = 1}H[’/T9(a|q, A:_ign(q’ a’) = 1}_
Pr[AS®"(q,a) = —1]H[mp(alq, ASE" (g, a) = —1] (10)

Note also from Egs. 8 and 9 that the gradients of Lpr, and Lyr, have the same form as that of
L™LE in Eq. 5. Now it’s well known that the entropy of a probability distribution on a finite set
is maximized for the uniform distribution and is minimized when the distribution is concentrated
on a single point. From the above facts we infer that for the idealized case, Lpj, is minimized by a
distribution concentrated on a single token, and Ly, is minimized by the uniform distribution.

The experimental setup we study differs from the idealized setup above in the following ways: the
number of tokens in the response is not limited to 1, and moreover only the empirical mean is used
in the loss computation. Next, we hypothesize a generalization of the above idealized solution.
Assuming that the cardinality of sets A~ and A™ is large enough, the global minima corresponding
to Eq. 8 and Eq. 9 are given by:

1
IV

where |V| represents the size of the vocabulary. Some further justifications are presented in App. K.

When we also drop the assumption of working with the full expectation and work with the empirical

mean, we get the emprically realizable versions of the above solutions which we call Cpr, and Cnr,.
We will see below that empirically these have properties similar to their idealized counterparts:

Spr, : me(ag|s;) = 1Va € AT andt < |a|;  Snr : me(ass) Va € A” and t < |a|, (11)

Cpr: Entropy: Leads to minimum entropy of the model. Output Length: As the solution doesn’t
depend on the output length, the model can learn a shortcut by predicting the answer directly without
the reasoning traces. Stability: Highly stable as the same mean has low variance as compared to
population even for sample sizes of one. Refer to App. K for more discussion.

Cn1: Entropy: Leads to maximum entropy of the model. Output Length: Leads to longer sequence
length as the probability for predicting the end of sequence token also becomes close to ﬁ Stability:

Highly unstable as the sample mean has large variance with respect to population mean. This is
because we are sampling from a uniform distribution. Refer to App. K for more discussion.

Both the solutions Cpy, and Cyy, results in undesired behaviors. We demonstrate the same below.

4.1 On-Policy Learning

Training is performed to minimize Lpy, and Ly, and the evolution of accuracy on train set is shown
in Figs. 2 (a, b) and 2 (c, d) respectively. We validate our results across different models as well as
datasets. As observed in these plots the model indeed learns Cpy, and Cyp, when trained on their
corresponding objective functions. In addition to the sudden drop in model’s performance, we also
observe significant decease and increase in length of model’s entropy when optimizing Lp1, and Lyt
respectively (See Fig. 10). The drop in entropy is accompanied by a drop in length of model’s outputs,
whereas increase in model’s entropy leads to an increase in the length of model’s outputs (See Fig. 9).
Note that these observations are in accordance with Setlur et al. (2025), He et al. (2025). However, in
this work, we move a step further, and investigate the stability and characterization of the solutions
learned when collapse occurs, which we discuss next.

It is evident from comparison of PL and NL on QwenlIT 7B in Fig. 2 (c, d) that the stability of the
minima corresponding to Lpy, and Ly, differ significantly from each other. C'py, is very stable and
as a result the model doesn’t escape it once learned. Thus, we do not observe sudden jumps after the
collapse, and the traces remain similar in nature as shown in Fig. 14(a). Here, the model indeed learns
the shortcut by outputting the final answer directly without any chain of thoughts. On the other hand,
the critical solution corresponding to Cyy, is not stable, and the model tends to escape it. This is
evident from the traces in Fig. 14, 15, which change their nature very quickly and this is also followed
by sudden changes in model’s performance. The model sometimes quickly regains its performance
(as shown in Fig. 15), while sometimes it is not able to retain its performance, but instead learns to
output almost all constant tokens (as evident from traces shown in Fig. 15 (3), Fig. 14(b) (3)).

The observed instability is a result of using a few rollouts, which leads to a high variance of sample
mean as compared to population mean of Eq. 9. Note that this is not the case with C'py, as it will have
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Figure 2: On-Policy Experiments: Comparison between the evolution of training accuracy for PL
and GRPO (a, ¢) and NL and GRPO (b, d). Utilizing PL (a, ¢) and NL (b, d) losses leads to collapses
across different datasets (a, b) and models (c, d).
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Figure 3: Off-Policy with Clipping Experiments: Comparison between the evolution of training
accuracy for on- and off-policy PL (a, c¢) and on- and off-policy NL (b, d). Utilizing clipping with
off-policy either delays or prevents the collapses observed in on-policy training.
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low variance with respect to population mean even for single sample sizes. As a result, Cxy, won’t
have zero gradient, despite having a low value of loss. In fact, the norm of gradients here becomes
extremely large (as shown in Fig. 11 (b,d)), which makes the model converge into the solution space
of functions outputting random tokens with high likelihood. This results in small gradient norms
(even for small sample sizes). We summarize our findings in this section below:

Takeaway 2

e Lpy, minimization leads to collapse: the model converges to a bad critical solution
characterized by sudden loss of entropy and length of model’s outputs.

e LN minimization also leads to collapse: explosion of entropy followed by a sudden
increase in length of model’s outputs. However this solution is not stable.

4.2 Off-Policy Learning

Tracing back to our motivation for investigating different design choices of GRPO, here we try to
unwrap the role of clipping. As highlighted in Sec. 2.1, clipping is known to induce stability in PPO,
but GRPO and its simplified versions do not maximize a strict lower bound on the value function of
the states in MDP. Thus, there is no guarantee that utilizing clipping in off-policy setting would lead
to policy improvement. This leads to unclear motivation to use clipping with GRPO and its simplified
variants. To understand this, we perform experiments same as Sec. 4.1 in the off-policy setting, with
and without the use of importance sampling and clipping in Fig. 3 and Fig. 7 respectively.

Generally, off policy learning is known to be more unstable than on-policy in scenaiors where we
utilize function approximations and bootstrapping (deadly triad (Sutton & Barto, 2018)), which we
indeed observe in Fig.7, where off-policy setting makes the training even more unstable and leads to
faster collapses. Next, we analyze the effect of incorporating importance sampling with clipping in
Fig. 3. We find that, the collapses disappear and the training becomes stable. We also find that the
stability observed on incorporating clipping is significantly better than the on-policy setting. This
highlights that use of clipping remains crucial to induce stability in simplified objectives of GRPO:
(Zhu et al., 2025; Xiong et al., 2025). Next, we dive into investigating if clipping indeed helps in
improving stability of GRPO, which we expect to be helpful based on these results.

We find that using GRPO in on-policy setting remains significantly stable and on-par with GRPO in
off-policy setting with clipping, (See Fig. 2). This highlights that clipping is not the key ingredient
which helps in stabilizing GRPO, as opposed to other algorithms like PPO Schulman et al. (2017b),
and other simplified versions of GRPO: Zhu et al. (2025); Xiong et al. (2025). This is somewhat
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Figure 4: Understanding the role of advantages in GRPO: GRPO is robust against collapses in
on-policy setting when compared with CL (a, b). In case of off-policy setting GRPO indeed collapses
but the collapse is delayed as compared to CL (c, d). However, when using clipping, we observe CL
to also become stable (e). This highlights the enhanced stability achieved due to clipping.

surprising, as even though the optimization of GRPO can be considered as reweighted combination
of the gradient descent corresponding to Lpy, and Lyy, with bad critical points, it remains stable.
Therefore, understanding the reweighting mechanism of GRPO becomes imperative.

4.3 Understanding the reweighting mechanism of GRPO

Now we will analyze the effect of combining the two losses Lpr, and Ly, in an effort to move closer

S . . + - .
to GRPO’s objective function. Let us define the combined loss as Lo, = %. Using

the characteristics defined for the two critical solutions in Sec. 4, we show that the two critical
solutions Cpy, and Cy, discussed above, are critical solutions of Lo, as well (See App. K for more
details).. To analyze if the model converges to either of them, we train the policy to optimize L¢,.
Comparing Fig. 4 (a, b) with Fig. 2, it is clear that in on-policy setting, optimizing Lo, leads to
enhanced stability as compared to optimizing Lpy, or Ly, alone. However, using L, still ends
up collapsing (in most cases) if the training is continued for longer time. Similar results hold for
off-policy setting without using clipping and importance sampling (See Fig. 4 (c, d)). But on using the
reweighting mechanism in GRPO, the training becomes stable and almost never collapses. Similarly,
in off-policy setting when not utilizing clipping and importance sampling, the collapse is delayed
(See Fig. 4 (c, d)). This highlights the implicit stabilizing mechanism induced by the reweighting
given by advantages in GRPO’s optimization. We try to uncover this mechanism below.

To explain the mystery behind GRPO’s enhanced stability, we revert back to analyzing the role
of advantages used in GRPO. Advantages reweigh the gradients for the 7*" rollout by multiplying
r(a)=V(q)
anrgold(a\q)(r(&)—V(Q))2 :
the norm of the gradients reduces when the model enters into a space close to either of the critical
solutions Spy,, Sy . If the model enters very close to C ., it will start generating very high entropy
solutions, which will likely become incorrect. Or else if the model comes very close to C'py, it will
completely loose diversity in its generation (i.e. all rollouts will become same). In both the cases, the
gradients will become zero in expectation for the incorrect answers or the same solutions respectively.
However, for the few correct or diverse solutions (with different correctness as compared to other
same solutions), the gradients will become relatively very large in magnitude. This will prevent the
model to traverse further into the direction of the closeby critical solutions. The use of advantages
therefore helps in stabilizing GRPO and prevents it from collapsing into either of the two bad critical

solutions. We summarize this finding below:

them with the following quantity: A.(q,a’) = Here we will show that

Takeaway 3

The use of advantages in GRPO aids the optimization process by preventing it from converging
to the critical solutions for Lpy, and Ly, thereby stabilizing training.

S Improving Stability

Having analyzed the key design choices in GRPO’s objective function, there is yet another recent
development related to modifying loss normalization. We dive deeper into this design choice here.
DAPO (Zhou et al., 2025) and Dr GRPO (Liu et al., 2025) highlighted that dividing the gradients by
the sequence length of the rollouts introduces a length bias, which could lead to training instabilities.
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Figure 5: Token normalization improves training stability: (a) Using token normalization with
CL enhances stability. (b) The training performance on SimpleRL and Numina datasets is similar to
GRPO. (c, d) Using token level normalization with PL. and NL results in improved training stability.

This makes the model prefer outputting longer reasoning chains, which leads to decreased training
efficiency and also introduces training instabilities. In this section, we provide a deeper explanation
about how introducing token level normalization as proposed in these works helps improve training
stability. For this, we first analyze Lo, with token level normalization, which yields the following
objective function:

|al |al
mo(at|st) mo(ag|st)

T AT (X 2 edod ™ 2 Zmtads)) 2
where T represents the maximum possible sequence length. We compare TNCL, GRPO, and CL
for on-policy setting in Fig. 5 (a, b) and Table 1. Improved stability of using token normalization
with CL is clearly evident. Note that although, TNCL is not as stable as GRPO, but in cases where
collapse is observed, it is significantly delayed as compared to CL. We also observe delayed collapse
when minimizing Lpy, and Lyt, individually but with token level normalization (See Fig. 5 (c, d)).
To understand the cause behind the enhanced stability, we dive deeper into characterizing the critical
solutions Spy, and Sy, and find that they change their form on using token level normalization:

Spr : ma(ats:) = 1Vt< lal, la| + |q| = T,VYa € A" (13)

Lrnen(8,q) =

Sy ma(at|s) = Vt <lal,la| =1,Va € A~ (14)

V]
where |V| represents the size of the vocabulary. Refer to App. K for more details. Clearly, for the
solutions Sp; and S, the length of rollouts is in contrast with the desired distribution of mg. A
high entropy, uniform distribution of 7y naturally prefers longer outputs but the desired length for the
optimal loss is unity. On the other hand, skewed distribution in case of S%; will prefer shorter output
length, but the desired solution requires longer outputs. This conflict indeed makes it difficult for
the model to converge to S, and S}, which in-turn leads to improved stability. This is clearly
evident by looking at the rollouts generated on using token normalization with PL, NL, and CL in
Fig. 17(a), 17(b), and 18 respectively. The nature of rollouts has also changed when compared to not
using normalization (See Fig. 14(a), 17, and 15). These results provide a new lens explaining the
increased effectiveness of using token level normalization, which has recently gained traction (Yu
et al., 2025; Liu et al., 2025; Yue et al., 2025b).

Takeaway 4

Token level normalization creates a conflict between the properties of the critical solutions
corresponding to minimization and maximization of entropy and the length of rollouts. This
prevents the model from converging to them, thereby enhancing training stbility.

6 Conclusion

In this work, we unwrap GRPO’s objective function and through rigorous experiments on multiple
models and datasets, we discover instability and collapses in the training algorithms proposed in
recent works in on-policy setting and further present the reasons for it. Next, we demonstrate how the
advantages used in GRPO help in overcoming this instability, making it stable in on-policy settings.
We note that due to limited access to compute our results are focused on the academically feasible
setting of models up to a size of 8B and open-source datasets. It would be interesting to analyze how
clipping helps induce stability, especially in cases where there is no policy improvement guarantee.
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A Related Works

A.1 LLM reasoning

Explicit efforts towards improving the reasoning abilities of language models via RLVR started
primarily with the advent of DeepSeek R1 (DeepSeek-Al, 2025), which demonstrated that utilizing
verifiable outcome reward models (ORMs) could lead to significant improvements in performance of
language models on tasks like maths and coding. Prior to this, GPT4 O1 (Jaech et al., 2024) also
attracted a lot of interest within the community, however until DeepSeek R1, many were skeptical
about ORMs. Given the demonstrated effectiveness of ORMs by DeepSeek R1, we consider the
same sparse reward setting in this work. Another distinct characteristic highlighted by DeepSeek
R1 was the emergence of long chain of thoughts with cognitive behaviors like self correction when
performing RLVR fine-tuning. It was further argued that emergence of such behaviors helped in
improving the reasoning abilities of the model Gandhi et al. (2025); Setlur et al. (2025). Gandhi et al.
(2025) also demonstrated similar behaviors being learned in smaller models when being trained on
more synthetic tasks like countdown. Some of the recent works: Setlur et al. (2025); He et al. (2025);
Wang et al. (2025a); Qu et al. (2025) have argued that improvements observed on performing RLVR
are driven by two mechanisms: 1) sharpening of existing skills 2) chaining of basic skills existing in
the pretrained model. While the former helps in exploitation, the latter aids in exploration. However,
the extent of contribution of these mechanisms towards improving model’s performance remains
unclear as highlighted by some recent works: Wu et al. (2025); Yue et al. (2025a); Zhao et al. (2025a).
These works argue against the chaining hypothesis, by highlighting reduction in pass@n performance
of the RL tuned model when compared with the base model. Nevertheless, since DeepSeek R1 used
GRPO as its preference learning objective function, GRPO has been believed as one of the major
contributor behind the emergence of cognitive behaviors and improved reasoning abilities. However,
the motivation behind the origins and several design choices of GRPO is still obscure. This motivates
us to deeply understand the inner working and motivation behind different design choices of GRPO.

A.2 Algorithms for RL reasoning

Motivated by the effectiveness of GRPO, many follow up works have further proposed simplified
versions of GRPO, often leading to similar or slightly improved performance (Zheng et al., 2025; Zhu
et al., 2025; Zhao et al., 2025c; MiniMax, 2025; Chen et al., 2025a; Ahmadian et al., 2024; Xiong
et al., 2025; Samineni et al., 2025). Reinforce++ (Xiong et al., 2025) demonstrated that training only
on the correct rollouts gives very similar performance when compared with GRPO, thereby proposing
a simpler alternative to GRPO. On the other hand, Zhu et al. (2025) demonstrated that minimizing
the likelihood only on the incorrect rollouts gives similar performance as compared to GRPO while
improving model’s output diversity. Additionally, Samineni et al. (2025) demonstrated that a simple
combination of the positive and negative losses as described above, also leads to performance similar
to GRPO. Similarly, MiniMax (2025); Ahmadian et al. (2024) modify the clipping mechanisms
in GRPO, thus leading to the same objective function as GRPO in the on-policy setting. Zheng
et al. (2025); Zhao et al. (2025¢) modify the GRPO’s objective function by considering importance
sampling at sequence level, which also leads to the same objective function as GRPO in on-policy
setting. All these methods aim to simplify GRPO’s objective function and they have successfully
demonstrated their effectiveness on certain datasets and base models. These results clearly question
the lack of motivation about different design choices in GRPO’s objective function.

Recently a plethora of works have also tried using different reward functions Prabhudesai et al.
(2025); Kang et al. (2025); Zhao et al. (2025b); Shafayat et al. (2025); Shao et al. (2025); Aggarwal &
Welleck (2025), while utilizing GRPO for optimization. A few of them including Shao et al. (2025),
have recently demonstrated improvements on utilizing GRPO with spurious rewards like format based
rewards, thereby highlighting the importance of formatting. Surprisingly these improvements continue
to persists even on using random rewards Shao et al. (2025). Prabhudesai et al. (2025) highlighted
that using negative Shannon entropy as the reward could also lead to improved performance. On the
other hand, contrastingly Wang et al. (2025b) demonstrated that maximization of entropy could also
lead to improved performance. These results therefore have created confusion within the community,
highlighting a need to understand the optimization landscape of GRPO and related simplified objective
functions.

Another line of work has shown that the widely adopted preference learning method PPO gives
sub-optimal performance when used for RLVR (Kazemnejad et al., 2024; Xiong et al., 2025). This
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additionally makes it important to understand the reasons which make GRPO superior to PPO in the
reasoning landscape. Now we will describe the background essential to understand the origins of
GRPO and dive further into understanding the motivation and utility of different design choices of
GRPO.

B Background

In this section, we will discuss the background and motivation behind different preference opti-
mization methods namely REINFORCRCE (Williams, 1992; Sutton et al., 1999), PPO (Schulman
et al., 2017b), and GRPO (Shao et al., 2024). Let us consider an episodic MDP given by the tuple
(S, A, P,r,v), where S is a set of states, Ay is a set of actions allowed for a given state s, and A
is the set of A,. Here the policy is parametrized by 6 and defined as 7wy : R? — [0, 1]V, where v
represents the number of classes and d is the dimension of the input. Let each episode start at the
state sg. Denote by P : S x A x S — R the transition probability matrix, by 7, the reward given by
the environment at time stamp ¢, and by + the discounting factor. Let us assume that the process is
episodic and always starts from a state so. Given this, we can now define the value function for our
policy my:

Uﬂe(so) = ZW(CL‘So)qﬂ.(S,a) (15)
Here ¢ (s, a) represents the Q-value function defined as E[G¢|a, s|, where Gy = ry + 11 + ... +
Y™ 74n, Where sy, is the terminal state. The objective here is the maximize the value function for
our policy, while updating the policy. Using the policy gradient theorem Sutton et al. (1999), we have
the following:

Vovr, x Z (s) Z qr(s,a)Vemg(als) (16)

Here, 11(s) represents the relative frequency of visiting the state s by the agent on following the policy
my. We can further simplify the above expression in the following way:

ZN ZQW (5,a)Vmg(als) ZQW (s,a)Vmg(als)] = Es anmy [qry (5,a)V log(mg(als))]
’ (17)
0141 =01 + Es gromy [qr, (8, 0)V 1og(ma(als))] (18)

Here o represents the learning rate. In practice, monte-carlo sampling is performed to get an
unbiased estimate of the expectation. It is trivial to show that we can rewrite Eq. 18 as 6,1 = 0, +
aFs o[(qr(s,a)—vx(s))Vlog(mg(als))] because ) vr(s)Vmg(als)] = 0 and therefore subtracting
this term from Eq. 16 won’t add any bias. Let us call ¢.(s,a) — v:(s) as the advantage function
denoted by A, (s,a). Thus we get the following update:

Oip1 =0+ E [Ax(s,a)Vioglmy(als)]] (19)

s,a~Tg

The monte carlo approximation of the above equation for a single rollout gives us the standard
reinforce algorithm, which is given by

|al

Opp1 = ‘ | Z (8K, ax)V log[mg(ak|sk)]] (20)

In contrast to reinforce, the motivation behind deriving PPO is a bit different. Due to limited scope of
this work, we discuss the high level idea behind PPO’s derivation below. PPO is motivated from Trust
Region Policy Optimization (TRPO) (Schulman et al., 2017a), which tries to maximize a lower bound
on the true policy’s value function while guaranteeing that the policy improves in every iteration.
To guarantee this, the approximated policy needs to remain within some proximity of the original
policy. This leads to a constrained optimization problem, where KL divergence between the true
and approximated policy is constrained. However, in practice the strict constrained optimization
problem is difficult to optimize and therefore PPO makes an approximation of using clipping in order
to enforce the closeness constraint. However, this results in the loss of any improvement guarantees
and the selection of clipping hyperparameters are left to the users based on empirical evidence. Thus
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the utility of clipping in case of PPO remains unclear. The objective function of PPO is given as:

lal
J(0,q) = — minMAﬂs,a ,cli M,l—e,l €)Ar(st,a
00 = E o Tl 20y Ty Am (o0 a0 (™ ey 16 1V An s ad)
2D
where 7y and 7y, represent the current and the old policy utilized for sampling the rollouts. ¢
represents the input prompt and a represents a single rollout generated by the model. PPO utilizes
generalized advantages which are motivated from temporal difference learning Sutton (1988), which
is based on unbiased approximation of the g-value functions using value function of future states.
The generalized advantages used in PPO are given by

Arp(st,at) = —vp(se) + 1o +yreps + 72 + oo £ T i 4T b0 (57)

=0 +YA0¢p1 + .o + (’y)\)Tftfl(ST,l where 0; =1 + YV (si41) — V(se), A=1 (22)

PPO uses a value network to predict the value functions. This value network is in-turn trained using
the ground truth rewards obtained for the rollouts generated during training.

GRPO (Shao et al., 2024) has followed the footsteps of PPO, and simply replaced the calculation of
advantages via monte carlo samplings. However, there are several approximations which undergo
here, which we describe in Sec. 2.

C Off-policy for PPO, unsupervised RL, and noisy rewards

Building on our preliminary evidence supporting the enhanced stability of off-policy training in
Fig. 3, we further investigate the robustness of this observation on other RLVR methods including
CL, PPO (Schulman et al., 2017b), unsupervised RL (Prabhudesai et al., 2025), and GRPO with
noisy rewards. As shown in Fig. 4 (e), using off-policy setting with clipping and importance sampling
makes the training of combined loss stable, while it remains unstable in on-policy setting. Similarly,
as demonstrated in Fig. 6 (b), we find that training Qwen2.5-7B with unsupervised RL by simply
minimizing entropy as proposed in Prabhudesai et al. (2025) collapses quickly in on-policy setting.
These results corroborate with our findings about Zhu et al. (2025) and Xiong et al. (2025).

Next, we craft an adversarial setting, where we utilize incorrect rewards for 25% of the rollouts.
This leads to calculation of incorrect advantages in GRPO, thereby prompting instability in training
as the gradients don’t become zero even when all the outputs are correct or incorrect. We observe
GRPO to remain in on-policy setting, as well off-policy setting with clipping (See Fig. 6 (a)). Finally,
we investigate the stability of the popularly used preference learning method PPO (Schulman et al.,
2017b) in RLVR setting. As shown in Fig. 6 (c, d), PPO collapses in on-policy setting for a few
datasets and models, but it remains stable in off-policy setting (more details in Appendix E).

The above results highlight an imperative role played by clipping in stabilizing the training on
varying datasets, models, and training algorithms. However, GRPO still remains stable in on-policy
setting. We note that we do not have a complete understanding about the mechanism which helps
clipping stabilize the training. However, preliminary results indicate that clipping reduces the norm
of the gradients as shown in Fig. 12. We hypothesize that this happens because clipping makes the
gradients zero precisely when the model becomes extremely confident or extremely uncertain about
its prediction, thereby preventing large deviations from the base model used for sampling rollouts.
This prevents updates which could lead to collapse or explosion of model’s entropy. Understanding
the mechanisms used by clipping to induce training stability is an interesting future direction. We
now highlight the main takeaway from this discussion below.

D Instability in Off-Policy Setting

We observed in the main paper in Fig. 7, that instability of training increases on training in off-policy
setting. To understand this in detail, we revert back to Eq. 9, and find that a small value of 7y should
lead to larger norm of gradients, thereby expediting collapse. To confirm that this is indeed the case,
we analyze the evolution of difference between the probability of sampling the ground truth tokens
from the old policy 7g_,, and the current policy 7y (denoted by Amy) in Fig. 13. We observe that
ATy increases over the course of training, and becomes significantly large at the time of collapse.
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Figure 6: Instability of PPO, Noisy GRPO, and Prabhudesai et al. (2025) in on-policy setting: (a)
Instability in training is observed for GRPO when using noisy rewards in on-policy setting. However,
the training becomes stable in off-policy setting on using clipping. (b) Prabhudesai et al. (2025)
undergoes collapse in on-policy as well as off-policy setting. (c) PPO undergoes collapses on training
using Numina Hard and experiences instability when training on Countdown. But, its training remains
stable on SimpleRL across different models (d).
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Figure 7: Off-Policy training without clipping and without importance sampling: Comparison
between the evolution of training accuracy for PL (Off-Policy) and PL (On-Policy) (a, c) and NL
(Oftf-Policy) and NL (On-Policy) (b, d). Off-Policy training expedites the onset of collapses.

E Case Study on PPO

We note that the instability of PPO demonstrated in on-policy setting in Section C could be of
independent interest, as PPO is one of the most popular preference learning method widely used
across different domains including RLVR, RLHEF, etc. To understand the root cause for the observed
instability, we dive deeper into analyzing the estimates of value function calculated by the value
network used in PPO. Surprisingly, we find that the value network predicts negative value functions
in case of incorrect rollouts (See Fig. 8). Note that this is mathematically not possible, as the value
function should be greater than zero when using zero reward for incorrect rollouts and one for the
correct ones. We note that similar inconsistencies were also noted previously in Kazemnejad et al.
(2024) which motivated them to utilize monte carlo rollouts for calculating advantages instead of
a value network. These results indicate that although PPO seems quite mathematically principled,
but in practice the estimators for advantages have large errors from the true estimates. This leads to
collapses in on-policy setting as observed in Fig. 6 (c, d). This finding is summarized below.

Takeaway 5

PPO in RLVR setting without the use of KL divergence is susceptible to training instabilities
often leading to model collapses. This is due to high errors associated with the empirical
estimators of value functions.

Next, we provide a preliminary study to overcome the training instabilities observed so far.

F Discussion

We note that the although the analysis presented in this work is focused on RLVR, our results are
expected to hold across different applications of preference learning, where algorithms like GRPO are
being used. This also includes RLHF, which is popularly used for aligning the language models as
per human preferences. One example particularly interesting is SimPO (Meng et al., 2024) which was
proposed as a simplified version of DPO (Rafailov et al., 2023). We can show that SimPO behaves
like reweighted maximum likelihood estimation (MLE) in cases where the confidence of the policy
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Figure 8: Case study on PPO: The mean of the value functions predicted by the value model shows
clear separation between correct and incorrect samples, where the incorrect samples often get negative
values, and the correct ones receive positive ones. This shows that the value estimates predicted by
the value network often deviate significantly from the true estimates.

on the incorrect samples is much larger than that on the correct samples. This is in fact the regime
where maximum learning would occur. More details are given below:

The optimization function of SimPO is given by the following

Lsimpo(T9) = —E(zy,, y)~pllog o(——log me(yw|x) — |yﬁl|log mo(yilz) — )] (23)

Y
where v, y; represents the preferred and the less preferred outputs for the input prompt given by x.
Gradients for the above objective function are given as:

VoLsimpo(mg) = E(g, yw,yz)~D[V0109(1 te ~Taios Tolwule)+rples We(yllm)ﬂ)] 24

Clearly, if — = - —1log mo (Yw|z)+ \yz\ log mg(y1|x)+~ >> 0 then we have the following approximation

lOg(l +€ \yw\ log 779(yw|-5)+ Tull log 779(1/!|£)+"/)]

~ — B log W@(yw|x)+§]|log7rg(ylm)+7 (25)

Yo
Thus, we get the following

VoLsimpo(mo) = E(z,y,,y)~p Val— B —log g (yw|z) + 5l| log mo(yilz) +~]  (26)

Y

The above equation is simply some reweighted version of MLE.

Similarly as shown in Fig.8, we observe that PPO ends up learning positive value functions for correct
rollouts and negative for the incorrect ones, thereby resulting in an objective function very close
to simple reweighted iterated MLE. The demonstrated similarity of different preference learning
methods with simple maximum likelihood estimation makes us question if we are really investing
correctly in terms of algorithmic designs for learning preferences. Here is one such way that could
help develop more principled preference learning algorithms:

Performing reweighted iterated MLE at token level: PPO (Schulman et al., 2017b) and Reinforce
(Sutton et al., 1999) can be considered as doing token level MLE. However due to several errors
in PPO (See Sec. E) and approximations made in Reinforce, we end up in a regime very close to
sample level reweighting. A naive solution to perform token level reweighting could be to generate
multiple monte-carlo rollouts at each state of the MDP. However, this could be quite expensive in
terms of compute. Moreover, defining a good MDP need not define a state as a single token prediction.
Therefore, definition of an MDP with appropriate number and position of states is important. A naive
solution could be to prompt an LLM for this, but there could be better ways. Utilizing process reward
models could also be helpful in minimizing the compute associated with rollouts, however training a
good process reward model is challenging in itself (Lightman et al., 2023).

Incorporating preference based learning during pre-training: An alternative way to enable models
learn human like preferences could be to incorporate preference based training during pretraining
itself by designing specialized datasets and training algorithms. In such a case, the effectiveness of
existing post-training methods like PPO and GRPO would increase, even if they end up doing simple
reweighted MLE.
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Figure 9: Analysis of response length over training iterations in on-policy setting: Using Lpy,
collapses the output’s length, while utilizing Ly, explodes it when compared to optimizing GRPO.

G Reasoning in bandits setting

Here, we try to derive GRPO’s objective function in the setting of contextual bandits. Considering a
single state MDP we will get the following gradient update for GRPO.

|a’|

K
Or1 =01 + Z @' )Vo, [[] £ (Rouaailsey ), mo(ailse), €],
i=1 t=1
. -1 Lii‘l Tk
where Ar(st,a}) = W

[T} mo(ails:)
zl‘/a:{ T0o1a (a% |st)
Clearly, Eq. 27 is different from Eq. 3, which means that GRPO cannot be considered as operating in
a bandit setting. However, it would be interesting to analyze how much of a difference analyzing
GRPO (Shao et al., 2024) and DAPO (Zhou et al., 2025) in an MDP vs. bandit setting would create.
This has been recently explored in Zheng et al. (2025); Zhao et al. (2025¢), which demonstrate
improved stability and performance as compared to GRPO.

F(mo,1a(aglse)) mo(at|st), €) = min [ max | —d,1+¢ Q7)

H Gradient updates in case of PPO

Using PPO in on-policy setting we get the following:

VTK‘Q (at|st, 0)
Op4q = ZA Sy, Q) —A—— 2
" \ t| eor(5t, 1) Tooa (at]St, 0)

K
where Ay (s, ai) = —vn,, (s))+ri+yrie1+..7" "on, (s7)and ¢ypy = ¢t—f Z ~Vr,)
B (28)

¢ corresponds to the t*" time step update of the value network. Since v, , 18 calculated for each state,
we can consider PPO as performing reweighted iterated MLE but with reweighting at token level.

I Additional Results

In this section, we present additional analysis providing a more detailed investigation on the results
in the main paper. First, we analyze the evolution of the average response length over the course of
training in on-policy setting in Fig. 9. We find that on optimizing Lyy, the average length of model’s
outputs increases, while it decreases on optimizing Lpy,. Similarly, as shown in Fig. 10 the entropy of
model’s outputs increases on using Lyy, and decreases on using Lpy,. Moreover the sudden jumps in
entropy are close to the timestamps where the model collapses. Similarly, on analyzing the evolution
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Figure 10: Analysis of output’s entropy over training iterations in on-policy setting: Using Lpr,
collapses the output’s entropy, while utilizing Ly, explodes it when compared to optimizing GRPO.
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Figure 11: Analysis of gradient’s norm over training iterations in on-policy setting: Generally
the gradient norm is higher when optimizing Lpr, and Ly, when compared with GRPO. The norm
becomes especially high at the time of collapse and generally remains high thereafter.

of model’s grdient norm over the course of training in Fig. 11, we find that the norm of the gradient
increases drastically close of the point where the model collapses and training instability is observed.

Next, we compare the evolution of model’s gradient norm between off-policy and on-policy training,
where clipping is utilized in off-policy training. As shown in Fig. 12, using clipping leads to reduction
in gradient’s norm which in-turn leads to improved training stability. To further understand the reason
behind this, we analyze how the average difference between the probability of the current and the old
policy changes over the course of training in Fig. 12. We observe that utilizing clipping reduces this
difference, which results in lower norm of gradients.

We further analyze the evolution of the average value functions predicted by the value network on
using PPO in Fig. 8. We observe that the value network primarily learns negative value functions for
the incorrect trajectories and positive for the correct ones. Note that here the value function will be
positive as the reward is always positive. Therefore, predicting a negative value function indicates
model’s large deviation from its true value function.

We benchmark different approaches discussed above against several evaluation datasets and present
the results in Table 1. We observe that while optimizing Lnt,, Lp1,, and Loy, leads to suboptimal
performance when compared with GRPO, on using token normalization, optimizing L1y ¢, leads to
performance comparable with GRPO.
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Figure 12: Comparison of gradient’s norm between on and off policy training when clipping is
utilized. Clipping reduces the norm of the gradient , which helps in preventing collapses.
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Figure 13: Analysis of the difference in probability of sampling rollouts from the old and the
current policy in off-policy setting. The difference increases on using off-policy without clipping.
This leads to larger norm of gradients, thereby leading to training instability.

Table 1: Evaluation results of different objective functions in on-policy setting: The results
are suboptimal when optimizing Lpy, Lpr, and Loy as compared to GRPO. However on using
token normalization, L, performs similar to GRPO, thereby highlighting the effectiveness of token
normalization.

Method | Dataset | Model |GSMSK | Math-500 | College-Math | Gaokao-2023 | Minerva-Math | OlympiadBench

GRPO 91.9 77.6 41.9 64.4 37.9 39.7
PPO 88.6 73 39.6 62.6 30.5 34.1

NL SimpleRL Qwen 0.1 0.2 0.1 0.8 0.7 0

PL 59.4 314 23.9 28.6 16.5 9.2

CL 1.4 0.4 0.5 4.7 0.7 1

GRPO 87.5 52.2 30.9 47.3 22.8 20
PPO 84.7 48.2 30.2 41.6 26.8 15.6

NL SimpleRL | Llama 21.5 5.8 32 6.5 4 33

PL 17.1 14.8 11 17.4 9.2 5
CL 78.1 40 26.3 353 21.3 11.3
GRPO 90.8 77.6 40.5 61.3 43 38.8
PPO 91.7 77.8 42.3 64.2 40.1 40.4

NL SimpleRL | QwenIT 2.2 2.6 1 4.4 1.8 1.3

PL 25.2 27.8 20.5 29.1 16.2 8.7

CL 77.2 59 325 50.6 29.4 28
GRPO 90.8 74.6 41.7 63.4 342 37.9

NL Numina-Hard | Qwen 1.6 1.8 1 29 1.1 1.2

PL 23.7 22.8 17.9 28.3 15.1 7

CL 0.4 1 1.4 1.8 0.4 0.1
GRPO 91.1 77 45.6 64.4 38.6 39.9

NL Numina Qwen 1.7 1.8 0.7 4.7 1.1 0.9

PL 25.2 24.4 20.8 26.8 16.2 7.9
CL 52.8 41.6 25.5 36.1 16.2 233
GRPO (Token Norm.) 91.9 70 40.7 59.7 37.9 338
NL (Token Norm.) SimpleRL Qwen 56.8 422 23.1 37.7 7 15.1
PL (Token Norm.) 234 21.2 113 22.6 6.2 6.8
TNCL 91.8 71.8 41 65.2 40.1 37.6
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Figure 14: Analysis of rollouts using Lpy, and Ly, objectives for Qwen2.5-7B in the on-policy
setting on SimpleRL. a) Using Lpy, collapses the entropy and also the output’s length. This makes
the model output the final answer without any reasoning steps. b) In contrast, on using Lyr,, the
model tends to output random tokens first (2), which leads to enhanced length of the output. However,
due to instability associated with this solution, the model ends up outputting repetitive tokens (3),
thereby changing the nature of the rollouts.

Input: You are a helpful assistant. Suppose 2 distinct integers are chosen from 1 through 9, inclusive. What is the probability that they are both
odd? Please reason step by step, and put your final answer within \\boxed{{}}.

Output: There are 5 odd numbers (1, 3, 5, 7, 9) out of 9 total numbers. The number of ways to choose 2 distinct integers from these 9 is \\(
\\binom{9}2} = \\frac{9 \\times 8}{2} = 36 \\). The number of ways to choose 2 odd numbers from these 5 is \\( \\binom{5}2} = \\frac{5 \\times
442} = 10 \\). Therefore, the probability is \\(\\frac{10}{36} = \\boxed{\\frac{SH18}}\\)

Input: You are a helpful assistant. A triangle can be formed having side lengths $4,$ $5,$ and $8.5 It is impossible, however, to construct a triangle
with side lengths $4,5 $5,5 and $10.$ Using the side lengths $2,$ $3,$ $5,5 $7,$ and $11,$ how many different triangles with exactly two equal
sides can be formed? Please reason step by step, and put your final answer within \\boxed{{}}.
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Input: You are a helpful assistant. What is the sum of the squares of the lengths of the $\\textbf{medians}$ of a triangle whose side lengths are
$10,$ $10,$ and $125? Please reason step by step, and put your final answer within \\boxed{{}}.
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Figure 15: Analysis of rollouts for Qwen2.5-7B trained using L in on-policy setting on
SimpleRL.

J Analysis of Rollouts

We investigate the rollouts corresponding to different objective functions (NL, PL, and CL), alongwith
GRPO and their token normalized version in Fig. 14, 15, 14(a), 18, 17(b), and 17(a). We observe
that on optimizing for Lyi, and Loy, at the time of collapse, the model learns to output random
tokens. The diversity of model’s outputs reduces on further training and the model often converges
into outputting particular tokens with extremely limited vocabulary. On the other hand on using Lpy,
the model learns the shortcut solution of outputting the final answer directly without any reasoning
traces. Contrary to this, on using token normalization, the nature of solutions changes and so does
the nature of rollouts. Now, on using Lpy, with token level normalization, the model learns to output
large length solutions, which become more of random at the time of collapse. Whereas optimizing
L, results in shorter outputs.
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o — o Input: You are a helpful assistant. In how many ways can | arrange 3 different math books and 5 different history books on my bookshelf, if |
require there to be a math book on both ends? Please reason step by step, and put your final answer within \\boxed{{}}.\

Output: To determine the number of ways to arrange 3 different math books and 5 different history books on a bookshelf with the condition

£ that there must be a math book on both ends, we can break the problem down into several steps:\n\n1. **Choose the math books for the
E ends:**\n - We need to place a math book on the left end and a math book on the right end.\n - There are 3 choices for the math book on
;’ w the left end.\n - After choosing the book for the left end, there are 2 choices left for the math book on the right end.\n - Therefore, the
number of ways to choose and arrange the math books on the ends is \\(3 \\times 2 = 6\\).\n\n2. **Arrange the remaining books:**\n - After
20 placing the math books on the ends, we have used 2 out of the 3 math books, so we have 1 math book and all 5 history books left, which makes

a total of 6 books.\n - The number of ways to arrange these remaining 6 books is \\(6!\\) (6 factorial).\n - Calculate \\(6!\\): \\(6! =
4o - 4 " 720\\).\n\n3. **Combine the arrangements:**\n - The total number of arrangements is the product of the number of ways to arrange the
terations. math books on the ends and the number of ways to arrange the remaining books.\n - Therefore, the total number of arrangements is \\(6
\\times 720 = 4320\\). Putting it all together, the final answer is:\n\n\\boxed{4320}

Figure 16: Analysis of rollouts for Qwen2.5-7B trained using GRPO in on-policy setting on
SimpleRL.

smeis Avrctio)+

(a) Lpr (token level normalization) (b) L (token level normalization)

Figure 17: Analysis of rollouts on SimpleRL for Lp;, and Ly, objectives with token level normal-
ization using Qwen2.5-7B model in on-policy setting. Using token level normalization changes the
nature of rollouts at the time of collapse. As predicted by Eq. 13, 14, using L py, (a) increases length
of rollouts at the time of collapse, whereas it decreases on using L, (b). This is in sharp contrast to
the observations predicted without the presence of token normalization in Fig. 14

Input: You are a helpful assistant. Square SABCDS has side length $1$ unit. Points SES and $F$ are on sides SABS and SCBS, respectively, with
SAE = CFS. When the square is folded along the lines SDES and $DFS$, sides SADS and $CD$ coincide and lie on diagonal $BDS. The length of
segment SAES can be expressed in the form $\\sqrt{k}-m$ units. What is the integer value of Sk+m$? Please reason step by step, and put your
final answer within \\boxed({{}}.

Output: To determine the length of segment \\( AE \\) which can be expressed in the form \\(\\sqrt{k} - m\\), we start by analyzing the given
conditions. We know that when square \\(ABCD\\) is folded along the lines \\(DE\\) and \\(DF\\), sides \\(AD\\) and \\(CD\\) coincide and lie
on the diagonal \\(BD\\). This implies that points \\(A\\) and \\(C\\) are reflected to lie on \\(BD\\).\n\nLet \\(AE = CF = x\\). Since \\(ABCD\\)
is a square with side length 1, we have \\(BE = 1 - x\\) and \\(BF = 1 - x\\). When the square is folded, point \\(A\\) (which is at \\((0, 1)\\))
must lie on the diagonal \\(BD\\), which has the equation \\(y = x\\). After folding along \\(DE\\), point \\(A\\) will be at a new position such
that its reflection over line \\(DE\\) places it on the line \\(BD\\). The same logic applies to point \\(C\\) (which is at \\((1, 0)\\)).\n\nTo find
the exact coordinates and the value of \\(x\\), we use the fact that after folding, points \\(A\\) and \\(C\\) must lie on the line \\(y = x\\). For
point \\(A\\), its reflection over line \\(DE\\) must place it on the line \\(y = x\\). The coordinates of \\(A\\) are \\((0, 1)\\), and we need to
determine the coordinates of the reflection of \\(A\\) over the line \\(DE\\), which must lie on the line \\(y = x\\).\n\nThe line \\(DE\\) can be
determined using the coordinates of \\(D (0, 0)\\) and \\(E (x, 0)\\). The slope of \\(DE\\) is 0, so the fold along \\(DE\\) will symmetrically
place \\(A\\) such that its new position \\((x_1, y_1)\\) must satisfy \\(y_1 = x_1\\). Since \\(A (0, 2)\\) is folded over \\(DE\\), and \\(AE = x\\),
we need to use the symmetry and the fact that the folded image of \\(A\\) must lie on \\(BD\\).\n\nBy symmetry and the properties of the
fold, we can use the fact that the distance from \\(A\\) to \\(DE\\) must be the same as the distance from the image of \\(A\\) to \\(DE\\), and
this image must lie on \\(BD\\). Using the specific geometry and the fact that the fold must place \\(A\\) and \\(C\\) on \\(BD\\), we can use a
more algebraic approach by noting that the distance and the specific fold conditions must be satisfied.\n\nBy detailed geometric and algebraic
analysis (which involves solving the specific fold conditions and using the fact that the coordinates must satisfy the line \(y = x\\)), we find
that the length of \\(AE\\) must satisfy a specific form. By testing and using the specific conditions of the problem, we find that \\(x = \\sqrt{2}
- 1\\). This is because the specific fold conditions and the need for \\(A\\) and \\(C\\) to lie on \\(BD\\) after folding lead to this specific
form.\n\nThus, we have \(AE = \\sqrt{2} - 1\\), so \\(k = 2\\) and \\(m = 1\\), and the integer value of \\(k + m\\) is \\(\\boxed{3}\\)

Accuracy (%)

10t
Iterations

Figure 18: Analysis of rollouts for Qwen2.5-7B trained using L, ¢, in on-policy setting on
SimpleRL.
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K Characterization of critical solutions

Here we will first derive the global minimas corresponding to the objective function in Eq. 9. We
wish to show that

1
=Vt < |al,Va € A (29)

SNL : To(aels:) = 4

The optimization objective is given as follows:

lal

Lni(0,q) = |A | Z i |ZA q,a), where a ~ mg(alq), A" (¢,a) =1

\Y%
= Vobw= 5 & |a|Z omo(@else) o, where a ~ mo(alg)

aeA- 7T0 at‘st
la|
v
N Z mo(alq) oo (at|st) —0
|al WICED)

=1

H‘ ol g (ar|sk) ! Vo (at|st)
— 3 M Z =0 (30)

|al mo(a|se)

Note that the above problem might have several critical solutions. But in particular, we can character-
ize only a few of them.

Assuming that the uniform policy would lead to a fixed length of the output given by F' and the
cardinality of A~ tends to infinity, we can now show that using a uniform policy will serve as a
critical solution to the above equation.

lal |al

H‘k al 1o (ak|sk) Voro(at|s:) 1
= = =0 (31
Z la| Z molads) | F|V|F- 1V9ZZ7T9 F|V|F Tpot vee =0 G

a t=1 a t=1

where c is some constant. Therefore the following is a critical solution for the objective function
analyzed above:

1
Vi< la|,Ya € A" (32)

7T9(at|8t) = |V|

Note that the above scenario is true only when the cardinality of the set A~ is close to infinity. In
practice, this won’t be true and therefore we might observe large variance depending on the cardinality

of A™.
Next, we wish to show that

Spr, : mo(ag|sy) = 1Vt < |a|,Ya € AT (33)

Proof. For Lpy,, we get the following

lal |al

> ! o (aksi) Z Voo (a|5) =>.>. ML, o CLk|Sk)V97f9(at|5t) =0 G4

|al —  mo(alst) — < |a|mg(als:)

a

Now we will show that Vgmg(as|ss) = 0if g (ag|s:) = 1Vt < |a|,Va € AT

e%at (Z 1 e¥i — e¥ar) ePat (e9)
(M) em)2 (I ewi)2

where z,, represents the logits corresponding to a; and z; represents the logits corresponding to i*"
token in the vocabulary. The above equation will yield a vector of zeroes iff x; << xq,,Vj # a¢, V.

Vora(ass:) = [ 6%ar {——or—— Ve 1L L] (39)
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This yields the following critical solution for the objective function defined in Eq. 9.

7T9(at|8t) = 1Vt < |a\,Va S A+ (36)
O

Note that there would be infinitely many solutions following Eq. 32 and Eq. 36 as the length of the
rollouts (i.e. |al) is not a constant. Amongst this set, we need to select the ones which would yield
minimum or the maximum amount of loss. Since in case of Eq. 9, and Eq. 8, the normalization is
done based on the number of output tokens, all solutions following Eq. 32, will yield the same loss.
Same is the case with Eq. 36.

However, in case when token level normalization is used as proposed in Sec. 5, all the policies
following Eq. 32 and Eq. 36 won’t yield same loss. In case of Eq. 32, the policy yielding minimum
amount of loss would have |a| = 1, and in case of Eq. 36, the policy yielding maximum loss would
have |a| = T Therefore, using a different normalization can change the behavior of the model.

Here we will show that Sy, and Spy, are critical solutions of Ly

Proof.
A*|LpL(0,q) + | A~ |LnL(6,
LCL(Q;Q):‘ | Lpr( Q)A|| |LnL (0, q) 37)
where |A| = [AT] + |A™].
lal
1 at|5t
Lpy, (0 — — 38
pL(0,q)= |,4 ga;maqst (38)
1 Cl,t|5t
Ly (6 — — 39
N (0, q)= ‘A ZAj a;%d @l (39)

From Eq. 35, we know that Vgmg(ast|s:) = 0 if mg(ar|s) = 1Vt < |a|. By definition
Spr : W@(atlst) =1Vt < |a\Va € A, thus VQLPL(Q,Q) =0, VQLNL(Q,(]) = 0 at Spr, hence
VoLcw(6,q) = 0.

Similarly, we know that S, : mg(a¢|st) = |V|Vt < |a|,Ya € A. As shown in Eq. 30 this implies

VoLnr(0,q) = 0. Further since mg(a|s;) = IV\W <la|; = |ﬁ4‘| ~ 0. Thus at Sy, :
T|VoL “|VoL
At|VyL
VoLew(q) = 'fMPL() ~ 0 @1)
This shows that Sy, and Spy, are critical solutions for L¢oy,. ]

L Details on Datasets and Training

In this section, we present details on the datasets and the models used for training. We train
Qwen2.5-7B base, Qwen2.5-7B Instruct, and Llama3.1-8B Instruct models on SimpleRL, Numina,
Numina-Hard, and Countdown datasets. All the experiments are done using a batch size of 128, with
a constant learning schedule and a learning rate of le-6. We use Adam optimizer with no weight
decay. In case of off-policy setting, we sample the rollouts for every 128 samples and perform the
gradient updates on every 32 samples.

SimpleRL consists of 8024 samples taken from GSMS8K and Math datasets, Numina consists of
approximately 83k problems, where as Numina-Hard consists of around 12k problems which are
sampled from Numina by ensuring that Qwen2.5-7B base fails on them in both attempts made from
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it. Countdown consists of around 5k problems. For Xiong et al. (2025); Prabhudesai et al. (2025) and
Zhu et al. (2025) we verify our analysis using their version of code as well.
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