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Figure 1: We present DEFT, a novel approach that can learn complex, dexterous tasks in the real world in an
efficient manner. DEFT manipulates tools and soft objects without any robot demonstrations.

Abstract: Dexterity is often seen as a cornerstone of complex manipulation. Hu-1

mans are able to perform a host of skills with their hands, from making food to op-2

erating tools. In this paper, we investigate these challenges, especially in the case of3

soft, deformable objects as well as complex, relatively long-horizon tasks. However,4

learning such behaviors from scratch can be data inefficient. To circumvent this, we5

propose a novel approach, DEFT (DExterous Fine-Tuning for Hand Policies), that6

leverages human-driven priors, which are executed directly in the real world. In7

order to improve upon these priors, DEFT involves an efficient online optimization8

procedure. With the integration of human-based learning and online fine-tuning,9

coupled with a soft robotic hand, DEFT demonstrates success across various tasks,10

establishing a robust, data-efficient pathway toward general dexterous manipula-11

tion. Please see our website at https://dexterousfinetuning.github.io12

for video results.13
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1 Fine-Tuning Affordance for Dexterity16

The goal of DEFT is to learn useful, dexterous manipulation in the real world that can generalize17

to many objects and scenarios. DEFT learns in the real-world and fine-tunes robot hand-to-object18

interaction in the real world using only a few samples. However, without any priors on useful behavior,19

the robot will explore inefficiently. Especially with a high-dimensional robotic hand, we need a20

strong prior to effectively explore the real world. We thus train an affordance model on human videos21

that leverages human behavior to learn what are reasonable behaviors the robot should perform.22

1.1 Learning grasping affordances23

To learn from dexterous interaction in a sample efficient way, we use human hand motion as a prior24

for robot hand motion. We aim to answer the following: (1) What useful, actionable information can25

we extract from the human videos? (2) How can human motion be translated to the robot embodiment26

to guide the robot? In internet videos, humans frequently interact with a wide variety of objects. This27
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Figure 2: Left: DEFT consists of two phases: an affordance model that predicts grasp parameters followed by
online fine-tuning with CEM. Right: Our affordance prediction setup predicts grasp location and pose.

data is especially useful in learning object affordances. Furthermore, one of the major obstacles in28

manipulating objects with few samples is accurately grasping the object. A model that can perform29

a strong grasp must learn where and how to grasp. Additionally, the task objective is important in30

determining object affordances–humans often grasp objects in different ways depending on their goal.31

Therefore, we extract three items from human videos: the grasp location, human grasp pose, and task.32

Given a video clip V = {v1, v2, . . . , vT }, the first frame vt where the hand touches the object is found33

using a pre-trained, off-the-shelf hand-object detection model [1]. Similar to previous approaches34

[2, 3, 4, 5], a set of contact points are extracted to fit a Gaussian Mixture Model (GMM) with centers35

µ = {µ1, µ2, . . . , µk}. Detic [6] is used to obtain a cropped image v′1 containing just the object in36

the initial frame v1 to condition the model. We use Frankmocap [7] to extract the hand grasp pose37

P in the contact frame vt as MANO parameters. We also obtain the wrist orientation θwrist in the38

camera frame. This guides our prior to output wrist rotations and hand joint angles that produce a39

stable grasp. Finally, we acquire a text description T describing the action occurring in V .40

Figure 3: We produce three priors from human videos:
the contact location (top row) and grasp pose (middle
row) from the affordance prior; the post-grasp trajectory
(bottom row) from a human demonstration of the task.

We extract affordances from three large-scale,41

egocentric datasets: Ego4D [8] for its large scale42

and the variety of different scenarios depicted,43

HOI4D [9] for high-quality human-object inter-44

actions, and EPIC Kitchens [10] for its focus on45

kitchen tasks similar to our robot’s. We learn a46

task-conditioned affordance model f that pro-47

duces (µ̂, θ̂wrist, P̂ ) = f(v′1, T ). We predict µ̂48

in similar fashion to [2]. First, we use a pre-49

trained visual model [11] to encode v′1 into a50

latent vector zv. Then we pass zv through a set51

of deconvolutional layers to get a heatmap and52

use a spatial softmax to estimate µ̂.53

To determine θ̂wrist and P̂ , we use zv and an embedding of the text description zT = g(T ), where g is54

the CLIP text encoder [12]. Because transformers have seen success in encoding various multiple55

modes of input, we use a transformer encoder T to predict θ̂wrist, P̂ = T (zv, zT ).56

At test time, we generate a crop of the object using Segment-Anything [13] and give our model a57

task description. The model generates contact points on the object, and we take the average as our58

contact point. Using a depth camera, we can determine the 3D contact point to navigate to. While the59

model outputs MANO parameters [14] that are designed to describe human hand joints, we retarget60

these values to produce similar grasping poses on our robot hand in a similar manner to previous61

approaches [15, 16]. For more details, we refer readers to the appendix.62

1.2 Fine-tuning via Interaction63
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Algorithm 1 Fine-Tuning Procedure for DEFT
Require: Task-conditioned affordance model f , task description

T , post-grasp trajectory τ , parameter distribution D, residual
cVAE policy π. E number of elites, M number of warm-up
episodes, N total iterations.

D ← N (0, σ2)
for k = 1 . . . N do

Ik,0 ← initial image
ξk ← f(Ik,0, T )
Sample ϵk ∼ D
Execute grasp from ξk + ϵk, then trajectory τ
Collect reward Rk; reset environment
if k > M then

Order traj indices i1, i2, . . . , ik based on rewards
Ω← {ϵi1 , ϵi2 , . . . , ϵiE}
Fit D to distribution of residuals in Ω

end if
end for
Fit π(.) as a VAE to Ω

Residual policies have been used pre-64

viously to efficiently explore in the65

real world [17, 18]. They use the prior66

as a starting point and explore nearby.67

Let the grasp location, wrist rotation68

and grasp pose, as well as the trajec-69

tory from our affordance prior be ξ.70

During training we sample noise ϵ ∼71

D where D is initialized to N (0, σ2)72

(for a small σ). We rollout a trajectory73

parameterized by ξ+ϵ. We collect Ri,74

the reward for each ξi = f(vi) + ϵi75

where vi is the image. First, we exe-76

cute an initial number of M warmup77

episodes with actions sampled from78

D, recording a reward Ri based on79

how well the trajectory completes the80

task. For each episode afterward, we81

rank the prior episodes based on the reward Ri and extract the sampled noise from the episodes with82

the highest reward (the ‘elites’ Ω). We fit D to the elite episodes to improve the sampled noise. Then83

we sample actions from D, execute the episode, and record the reward. By repeating this process we84

can gradually narrow the distribution around the desired values. In practice, we use M = 10 warmup85

episodes and a total of N = 30 episodes total for each task. This procedure is shown in Algorithm 1.86

See Table ?? for more information.87

At test time, we could take the mean values of the top N trajectories for the rollout policy. However,88

this does not account for the appearance of different objects, previously unseen object configurations,89

or other properties in the environment. To generalize to different initializations, we train a VAE90

[19, 20, 21, 22] to output residuals δj conditioned on an encoding of the initial image ϕ(Ij,0) and91

affordance model outputs ξj from the top ten trajectories. We train an encoder q(z|δj , cj) where92

cj = (ϕ(Ij,0), ξj), as well as a decoder p(δj |z, cj) that learns to reconstruct residuals δj . At test time,93

our residual policy π(I0, ξ) samples the latent z ∼ N (0, I) and predicts δ̂ = p(z, (I0, ξ)). Then we94

rollout the trajectory determined by the parameters ξ + δ̂. Because the VAE is conditioned on the95

initial image, we generalize to different locations and configurations of the object.96

2 Experiment Setup97

We performs a variety of experiments to answer the following: 1) How well can DEFT learn and98

improve in the real world? 2) How good is our affordance model? 3) How can the experience99

collected by DEFT be distilled into a policy? 4) How can DEFT be used for complex, soft object100

manipulation? Please see our website at http://dexterousfinetuning.github.io for videos.101

3 Results102

Effect of affordance model We investigate the role of the affordance model and real-world fine-103

tuning (Table 1 as well as Figure 4). In the real-world only model, we manually provide a few104

Method Pick cup Pour cup Open drawer Pick spoon Scoop Grape Stir Spoon
train test train test train test train test train test train test

Real-World Only 0.0 0.1 0.2 0.1 0.1 0.0 0.7 0.3 0.0 0.0 0.3 0.0
Affordance Model Only 0.1 0.4 0.5 0.5 0.0 0.3

DEFT 0.8 0.8 0.8 0.9 0.5 0.4 0.8 0.6 0.7 0.3 0.8 0.5

Table 1: We present the results of our method as well as compare them to other baselines: Real-world
learning without internet priors used as guidance and the affordance model outputs without real-world
learning. We evaluate the success of the methods on the tasks over 10 trials.
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Method Pour Cup Open Drawer Pick Spoon
train test train test train test

Reward Function:
R3M Reward 0.0 0.0 0.4 0.5 0.5 0.4
Resnet18 Imagenet Reward 0.1 0.2 0.3 0.1 0.4 0.2

Policy Ablation:
DEFT w/ MLP 0.0 0.0 0.5 0.0 0.6 0.5
DEFT w/ Transformer 0.4 0.5 0.6 0.1 0.4 0.5
DEFT w/ Direct Parameter est. 0.1 0.1 0.1 0.0 0.3 0.0

DEFT 0.8 0.9 0.5 0.4 0.8 0.6

Table 2: Ablations for (1) reward function type, (2) model architecture, and (3) parameter estimation.

heuristics in place of the affordance prior. We detect the object in the scene using a popular object105

detection model [13] and let the contact location prior be the center of the bounding box and106

randomly sample the rotation angle, and a half-closed hand as the grasp pose prior. With these107

manually provided priors, the robot has difficulty finding stable grasps. Additionally, the main108

challenge was finding the correct rotation angle for the hand. Hand rotation is very important for109

many tool manipulation tasks because it requires not only picking the tool but also grasping in a110

stable manner.111

Zero-shot model execution We explore the zero-shot performance of our prior. Without applying112

any online fine-tuning to our affordance model, we rollout the trajectory parameterized by the prior.113

While our model is decent on simpler tasks, the model struggles on tasks like stir and scoop that114

require strong, power grasps (shown in Table 1). In these tasks, the spoon collides with other objects,115

so fine-tuning the prior to hold the back of the spoon is important in maintaining a reliable grip116

throughout the post-grasp motion. Because DEFT incorporates real-world experience with the prior,117

it is able to sample contact locations and grasp rotations that can better execute the task.118

Human and automated rewards We ablate the reward function used to evaluate episodes. Our119

method queries the operator during the task reset process to assign a continuous score from 0 to 1 for120

the grasp. Because the reset process requires a human-in-the-loop regardless, this adds little marginal121

cost for the operator. But what if we would like these rewards to be calculated autonomously? We122

use the final image collected in the single post-grasp human demonstration from Section 1 as the goal123

image. We define the reward to be the negative embedding distance between the final image of the124

episode and the goal image with either an R3M [11] or a ResNet [23] encoder. The model learned125

from ranking trajectories with R3M reward is competitive with DEFT in all but one task, indicating126

that using a visual reward model can provide reasonable results compared to human rewards.127
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Figure 4: Improvement results for 6 tasks: pick cup, pour, open drawer, pick spoon, scoop, and stir. We see a
steady improvement in our method as more CEM episodes are collected.
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