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Abstract

Advancing emotional expressiveness in Text-to-
Speech (TTS) systems remains a pivotal chal-
lenge for achieving natural and adaptive voice
synthesis. Existing emotion-aware TTS models
often struggle with limited emotional diversity,
lack of fine-grained control, and reliance on
small, labeled emotional speech-text datasets,
making them less scalable and adaptable. To
address these limitations, we propose IMPACT-
TTS, an Integrated Multimodal Prompting and
Adaptive Control for Text-to-Speech system
that effectively leverages a disentangled emo-
tion module and a novel emotion modulation
function. By incorporating large-scale pre-
trained multimodal models, IMPACT-TTS miti-
gates dataset constraints while enabling flexible
emotional adjustments via prompt-based con-
trol. Our approach allows seamless blending of
emotional intensities, significantly enhancing
expressiveness even in low-resource labeled
datasets. Experimental results demonstrate that
IMPACT-TTS outperforms existing models in
emotional naturalness and adaptability, offering
a scalable solution for emotion-aware TTS.

1 Introduction

Text-to-Speech (TTS) technology has made signifi-
cant strides in recent years, particularly in improv-
ing intelligibility, naturalness, and speaker adap-
tation. However, achieving high levels of emo-
tional expressiveness remains a critical challenge.
Despite progress in prosody modeling and expres-
siveness enhancement, many existing TTS models
struggle with capturing and generating nuanced
emotional variations due to limited labeled emo-
tional speech-text datasets and constrained emotion
control mechanisms.

Existing approaches to emotional TTS primar-
ily rely on textual cues or predefined emotion la-
bels, which restrict the system’s ability to gener-
ate diverse and contextually appropriate emotional
speech. Moreover, models such as Hierspeech (Lee

and et al, 2022) and Hierspeech++ (Lee and et al,
2023) highlight the one-to-many mapping prob-
lem, where a single input text can correspond to
multiple valid emotional outputs, leading to am-
biguity and reduced expressiveness. While ap-
proaches like Speech Slytherin (Jiang and et al,
2024) and limited-data two-stage models (Zhou
et al., 2021) aim to address these issues through
disentangled representations, they often require ex-
tensive labeled training data and computationally
expensive architectures, making them less adapt-
able for low-resource scenarios.

Recent advancements in multimodal learning
have introduced new possibilities for enhancing
emotional expressiveness in TTS. By integrating
diverse modalities such as text, audio, and vision,
these methods aim to improve emotional fidelity
and naturalness. For instance, MM-TTS (Li et al.,
2024) leverages multimodal alignment techniques
to enhance emotion modeling. However, it remains
highly dependent on explicitly labeled datasets and
does not provide fine-grained emotion control. Sim-
ilarly, models such as VoiceLDM (Lee and et al,
2024) and ImaginaryVoice (Lee et al., 2023) in-
corporate multimodal integration but rely predomi-
nantly on textual or visual inputs, limiting the scope
of emotional cues that can be effectively utilized.

In addition, prompt-based control mechanisms
have gained traction for enabling user-guided emo-
tional synthesis. Models like PromptStyle (Liu
and et al, 2023), InstructTTS (Yang and et al,
2024), PromptTTS (Guo and et al, 2023), and
PromptTTS2 (Leng and et al, 2023) explore the
use of descriptive text prompts to facilitate con-
trollable emotional modulation. While these meth-
ods provide greater flexibility, they are still con-
strained by their dependence on textual descrip-
tions alone, which limits their ability to capture
the full spectrum of emotional variation present in
human speech.

To address these challenges, we introduce
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Figure 1: Overview of the IMPACT-TTS architecture. The yellow box represents the emotion embedding, the red
box represents the speaker embedding, the orange box represents the textual embedding, and the blue box represents

the ground truth audio waveform embedding.

IMPACT-TTS, a novel framework that enhances
emotional expressiveness by incorporating mul-
timodal inputs and prompt-based emotion con-
trol while overcoming the limitations of small
labeled emotional datasets. Unlike prior works
that rely heavily on constrained emotion labels,
IMPACT-TTS integrates large-scale pretrained mul-
timodal models to extract meaningful emotion rep-
resentations. Notably, we leverage ONE-PEACE
(Wang and et al., 2023), a highly extensible multi-
modal model with 4B parameters, featuring sepa-
rate adapters for audio, language, and vision. For
audio representation, our system utilizes the feature
extractor weights of WavLLM (Sanyuan et al., 2022)
for initialization, enhancing its ability to generalize
from smaller datasets effectively.

By leveraging large pretrained representations,
IMPACT-TTS significantly reduces reliance on ex-
plicitly labeled emotional speech datasets while
maintaining fine-grained emotion modulation ca-
pabilities. Moreover, our approach employs a dis-
entangled architecture to separate the core speech
synthesis process from the emotion module, en-
suring robust and stable synthesis while enabling
precise control over emotional variations. This
disentanglement strategy allows IMPACT-TTS to
generate expressive speech with a higher degree of

controllability, even in low-resource settings.

2 Method

IMPACT-TTS employs a disentangled structure for
independent control of linguistic and emotional fea-
tures, ensuring dynamic emotion modulation and
consistency. The following sections describe the
TTS model, emotion embedding with cross atten-
tion, emotion modulation function, and emotion
consistency loss.

2.1 Backbone Arthitecture

IMPACT-TTS is built upon a modified VITS ar-
chitecture, inspired by YourTTS (Casanova and
et al, 2022) and VECL-TTS (Gudmalwar and et al,
2024), utilizing variational inference and adversar-
ial learning to generate high-quality speech. The
backbone is designed to produce natural and high-
quality speech from input text, ensuring both lin-
guistic and phonetic accuracy. The model fea-
tures a transformer-based text encoder with 10
blocks, a decoder with 4 affine coupling layers,
each comprising 4 WaveNet residual blocks (Oord
et al., 2016), as inspired by previous work. HiFi-
GAN (Kong et al., 2020) V1 is employed as the
neural vocoder to generate speech waveforms. A
Variational Auto-Encoder (VAE) with a Posterior
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Figure 2: Process of Emotion Module

Encoder comprising 16 WaveNet residual blocks
transforms linear spectrograms into latent variables,
seamlessly integrating the vocoder and the flow-
based decoder for end-to-end synthesis. To enable
diverse rhythm generation from text, a Stochastic
Duration Predictor (SDP) is used, further enriching
the synthesized speech’s naturalness. As shown
in Figure 1, the architecture combines emotion,
speaker, text, and waveform embeddings to control
speech attributes. Emotion embeddings (yellow)
from the Emotion Module modulate tones, speaker
embeddings (red) from H/ASP (Heo et al., 2020)
ensure consistency, text embeddings (orange) en-
code linguistic information, and waveform embed-
dings (blue) provide training supervision. The or-
ange box corresponds to the textual embedding, en-
coding linguistic and phonetic information. Finally,
the blue box represents the ground truth waveform
embedding, used during training for supervision.
These embeddings are seamlessly integrated within
the TTS backbone, allowing precise control over
emotion, speaker, and linguistic features. To en-
sure robustness and expressiveness of the model,
we incorporate Emotion Consistency Loss (ECL)
and Speaker Consistency Loss (SCL) to maximize
the similarity of emotional and speaker attributes
between the generated audio and the ground truth.
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where ¢(g) and ¢(h) represent the functions used
to extract emotion embeddings or speaker embed-
dings from the generated and ground truth audio,
respectively. The parameter « is a tunable weight
that determines the contribution of Ly, to the over-
all loss. The cosine similarity function is denoted as
cos_sim, which measures the similarity between
the emotion embeddings.

2.2 Multimodal Representation and Prompts

To enhance emotional expressiveness in speech
synthesis, our model integrates multimodal rep-
resentations from text, vision, and audio through
a unified embedding space. This section details
how these modalities contribute to emotion synthe-
sis, complementing the emotion disentanglement
framework.

221

Traditional emotional TTS systems rely heavily
on text-based emotional conditioning, limiting ex-
pressiveness. Our model overcomes this limitation
by incorporating vision and audio cues, ensuring
richer emotion transfer. The extracted representa-
tions are aligned into a shared multimodal space
to balance textual, auditory, and visual emotion
information.

Multimodal Representation Model

Vision and Audio Embedding Fusion

* Vision Representation: Facial expressions
offer valuable nonverbal emotional cues. We
extract visual embeddings from a pretrained
vision-audio-language model (ONE-PEACE)
and map them into our emotion embedding
space.

* Audio Emotion Features: Instead of rely-
ing only on text-based emotion modeling,
we extract pitch contours, energy variation,
and prosodic rhythm features from speech
waveforms, which provide additional emotion
grounding.

Multimodal Cross-Attention for Emotion Inte-
gration The extracted text, vision, and audio
embeddings are integrated using a cross-attention
mechanism. Unlike direct concatenation, this al-
lows for dynamic weighting of each modality based



on its relevance to the input context. This mecha-
nism enhances context-aware emotion modulation
and provides finer control over expressiveness.

2.2.2 Prompt-Based Emotion Control

Rather than relying on categorical emotion labels,
we employ prompt-based modulation, where tex-
tual prompts dynamically influence synthesized
speech expressions. These text prompts, described
in the Datasets section, are mapped into semantic
embedding spaces and fused with vision and audio
representations.

LLM-based Emotion Prompt Expansion In-
stead of fixed emotion labels, we generate emotion-
ally diverse paraphrases of input sentences using a
structured synonym mapping algorithm. Given a
neutral sentence, our system selects semantically
appropriate modifications to control emotion inten-
sity and expressiveness.

Multimodal Prompt Adaptation The generated
text prompts are conditioned alongside vision and
audio cues, ensuring that emotional modulation is
not solely text-driven. Vision embeddings provide
global emotional state awareness, while audio fea-
tures introduce prosodic characteristics, leading to
a richer emotional representation.

2.2.3 Ablation Study: Impact of Different
Modalities

To quantify the contribution of each modality (text,
vision, and audio) to emotional speech synthesis,
we conduct an ablation study where we systemat-
ically remove individual modalities and analyze
their impact on expressiveness.

Table 1: Ablation Study: Impact of Different Modalities
on Emotion Expression. Higher values for std-FO (Pitch
Variability), std-RMS (Energy Variability), and WavLM
Score (Expressiveness) indicate greater expressiveness.

Configuration std-FO T std-RMS t+  WavLM
Score 1
Audio Cues Only 0.21 0.18 35
Vision Cues Only 0.15 0.14 32
Text Prompts Only 0.12 0.10 2.8
Audio + Vision 0.25 0.22 39
Audio + Text 0.28 0.24 4.1
Text + Vision 0.20 0.17 34
Text + Vision + Audio 0.32 0.28 4.5

The results demonstrate that integrating all three
modalities (Text, Vision, and Audio) significantly
enhances emotional speech synthesis, as indicated
by higher pitch and energy variability, as well as
improved expressiveness scores.

2.3 Disentangled Emotion Module

IMPACT-TTS adopts a multi-modal emotion en-
coder to get emotion embeddings from various
modal, text and vision, and combine these embed-
dings with cross attention. The emotion module op-
erates independently of the TTS backbone, modu-
lating the emotional tone of the synthesized speech
using the emotion embedding Eemotion With the
process of Figure 2. By disentangling the emotion
module from the TTS backbone, IMPACT-TTS
achieves precise control over emotional attributes.
This disentangled structure ensures that the linguis-
tic content remains unaffected by emotional vari-
ability.

2.3.1 Emotion Encoder

The emotion embedding extraction module utilizes
finetuned representation model with retrieval func-
tion as there are some important strengths. Since
retrieval models focus on semantic similarity rather
than discrete classification, they offer rich, cross-
modal feature representations suitable for TTS task
compared to classification models. Through this,
they can capture fine-grained relationships between
the input and output, which is crucial for generating
high-quality, natural speech. We finetuned ONE-
PEACE (Wang and et al., 2023) with MEAD-TTS
dataset(Guan et al., 2024) and ESD(Zhou and et al,
2022b), and use it as the Emotion Representation
Model in Figure 2.

The cross-attention mechanism computes atten-
tion between different modalities. We integrate
cross-attention module into a emotion encoder to
fuse modalities by allowing one modality to attend
to the other modal’s features. Given two modalities:
modality A(e.g., text embeddings) and modality
B(e.g., visual features or audio features): Query
(Q) from modality A, and Keys (K) and Values
(V) from modality B. The cross-attention can be
formulated as:

T

K
Attention(Q, K, V') = softmax <Q

V. 2
@) @)

Embeddings from text-speech modalities and
text-image modalities are concatenated. At the end,
we make it transform the multimodal representa-
tion into a continuous emotion embedding, which
is used to guide the synthesis of emotionally ex-
pressive speech.



Table 2: Ablation Study on Emotion Modulation and Classification

Model Variant Prosody Metrics Emotion Metrics Speech Quality
DTW (FO) | Pitch Var1t ECA{1 KLD| MCD |

Full Model (Ours) 15.3 0.32 85.2%  0.12 4.25

w/o Emotion Modulation 20.8 0.21 78.9% 0.19 4.67

w/o Emotion Classification 18.1 0.27 803%  0.17 4.50

w/o Both 24.5 0.15 73.4%  0.24 4.80
2.3.2 Emotion Classifier
The Emotion Classifier Module serves to categorize eblond = sin((1 — a)f) e1 sin(ad) e 3)
the high-dimensional emotion embeddings gener- sin(#) sin(6)

ated by the Emotion Encoder into predefined emo-
tion classes. This module operates in two stages: 1.
Linear Transformation The emotion embedding
is first projected into a lower-dimensional space
that corresponds to the number of predefined using
a linear layer, enabling the embedding to be directly
mapped to emotion class probabilities; 2. Softmax
Normalization The output of the linear layer is
passed through a softmax activation function. The
final output of the Emotion Classifier Module is a
set of probabilities, where each value corresponds
to the likelihood of the input belonging to a specific
emotion class. For example, in Figure 2, an out-
put of [0.3, 0.6, 0.1] for three classes (e.g., neutral,
happy, sad) indicates a higher confidence for the
"happy" emotion. These probabilities serve as criti-
cal inputs for the subsequent Emotion Modulation,
where they are utilized to determine the blending
weights (¢;) in fine-grained emotion interpolation.

2.3.3 Emotion Modulation Function

To achieve fine-grained control over blended emo-
tions, IMPACT-TTS incorporates a spherical in-
terpolation method inspired by (Cho and et al.,
2024), (Zhou and et al, 2022a) and (Im and et al.,
2022). This method allows for smooth transitions
and precise mixing of multiple emotional attributes
by treating emotions as points on a hypersphere.
The blending weights for interpolation, denoted as
o, are derived directly from the probability distri-
bution generated by the Emotion Classifier Module.
These weights ensure that the contribution of each
emotion vector to the final blended representation
aligns with the classifier’s confidence levels. Given
two emotions represented as vectors e; and e, the
blended emotion eyeq is computed as:

where « € [0, 1] is the interpolation parameter that

controls the influence of each emotion, and 0 =

m) is the angle between e; and e

on the hypersphere. This formulation ensures that
the resulting vector remains normalized, preserving
the geometric properties of the emotion space.

arccos (

Extension to Multiple Emotions In scenarios
where more than two emotions are blended, the
spherical interpolation is generalized to handle n
emotions. Using the probabilities from the classi-
fier ({a1, a2, ...,an}, where > 1" | a; = 1), the
blended emotion eye,q is computed as:

Z?:l (67 sin(Qi)ei
> iy sin(0;)
where 0; is the angle between each emotion

vector e; and the reference point (e.g., a neutral
emotion vector). This integration of classifier out-
puts into the modulation function ensures that the
model can generate expressive, contextually accu-
rate speech by leveraging both high-level classifi-
cation results and continuous fine-grained emotion
control.

“

€blend =

2.3.4 Ablation Study on Emotion Modulation
and Classification

To assess the contribution of each component in
the disentangled emotion module, we conduct an
ablation study by systematically removing (i) emo-
tion modulation, (ii) emotion classification, and
(iii) both components. Table 2 presents the re-
sults across prosody metrics, emotion classification
accuracy, and speech quality.

The results indicate that both emotion modula-
tion and classification significantly contribute to
the overall performance of our model. Removing



Intra-domain

Out-of-domain

Method

MOS STOI ECS MCD MOS STOI ECS MCD
GT 4.53 +£0.03 0.87 - - 4.73 +0.05 0.85 - -
GT (Mel+Voc) 451 +£0.01 0.74 - - 4.71 £ 0.04 0.79 - -
MM-TTS (Li et al., 4.32 +£0.07 0.42 0.87 3.21 3.96 £ 0.09 0.33 0.74 6.68
2024)
Instruct-TTS 431 £0.05 0.40 0.89 3.10 3.83 £0.08 0.31 0.75 6.59
Prompt-TTS 4.23 +0.06 0.21 0.75 378  3.66 £ 0.08 0.27 0.73 6.73
IMPACT-TTS 4.41 £+ 0.02 0.63 0.92 317  4.02+0.03 0.54 0.77 6.12
(proposed)

Table 3: The performance comparison of text prompt based TTS.

emotion modulation results in a higher DTW (Dy-
namic Time Warping; F0O) score (20.8 vs. 15.3),
suggesting a reduction in prosodic expressiveness.
Additionally, pitch variability drops from 0.32 to
0.21, indicating that synthesized speech becomes
less emotionally dynamic.

Similarly, excluding emotion classification low-
ers the Emotion Classification Accuracy (ECA)
from 85.2% to 80.3%, showing that the model
struggles to preserve intended emotional expres-
siveness without explicit classification.  The
Kullback-Leibler Divergence (KLD) increases
from 0.12 to 0.17, further confirming reduced align-
ment with expected emotion distributions.

The most significant degradation occurs when
both components are removed, with ECA dropping
to 73.4% and MCD increasing to 4.80, indicating
a loss in both emotional clarity and speech qual-
ity. These findings demonstrate that the disentan-
gled emotion module plays a crucial role in achiev-
ing both expressive and high-quality synthesized
speech.

3 Inference-Time Emotion Adjustment
and Expressiveness Control

3.1 Real-Time Emotion Modulation

Traditional emotional TTS models often rely on
pretrained emotion embeddings that remain fixed
during inference, limiting their ability to adapt ex-
pressiveness dynamically. Our model introduces
Inference-Time Emotion Adjustment, which al-
lows for real-time modification of prosody and
emotional intensity during speech synthesis.

After obtaining a pretrained emotion embedding,
we apply an emotion modulation function that dy-
namically adjusts:

* Pitch (F0): Controls intonation variation, al-
lowing for smooth shifts in emotion intensity.

* Energy: Determines speech loudness and em-
phasis, enabling finer expressiveness control.

Smooth Emotion Interpolation. Unlike models
that use predefined emotion categories, our system
enables continuous control over emotion intensity.
By leveraging a spherical interpolation mechanism,
the model allows smooth transitions between emo-
tions:

* Neutral — Happy: Gradual increase in pitch
and speech rate.

* Sad — Angry: Lowered pitch at the start,
followed by a rapid increase in energy.

* Excited — Calm: Controlled pitch decay
with reduced energy.

This capability ensures that synthesized speech
adapts dynamically rather than being constrained
by fixed, pre-trained emotion embeddings.

3.2 Comparison with Contrastive
Learning-Based Emotion Alignment

Many multimodal emotional TTS models incorpo-
rate contrastive learning to pre-align emotion em-
beddings from text, vision, and audio into a shared
representation space. This approach ensures consis-
tency across modalities but relies on fixed emotion
representations at inference time.

Our approach introduces an alternative strat-
egy by integrating real-time emotion modulation,
where emotion embeddings are adaptively adjusted
at inference time based on synthesis needs. This
enables:



* Fine-Grained Emotion Interpolation Blend-
ing between emotions smoothly rather than
switching between predefined categories.

* Intensity Scaling Adjusting the strength of
an emotion dynamically (e.g., slightly sad vs.
deeply sad).

* Context-Aware Expressiveness Modulating
prosody in real-time based on speaker intent.

4 Datasets

Pretraining The TTS backbone is initially trained
on neutral speech data to establish a robust
foundation for speech generation. We use
VCTK(Yamagishi et al., 2019) dataset as the pre-
training data, which comprises of 44 hours of
speech from 109 different speakers.

Finetuning The emotion module is introduced, and
the entire system is finetuned using datasets en-
riched with emotional speech samples to ensure
consistent and expressive output. Specifically, we
leverage two datasets for finetuning: ESD (Zhou
and et al, 2022b), which covers 5 emotion classes
(neutral, angry, happy, sad, and surprised), and
MEAD-TTS (Guan et al., 2024) dataset, which en-
compasses 8 emotion classes (neutral, angry, con-
tempt, disgusted, fear, happy, sad and surprised).

4.1 Generation of Emotional Text Prompt

Given a dataset annotated with emotional tags, we
generate multiple emotionally nuanced variations
of each sentence. This ensures that the text better
reflects the speaker’s emotional state, enhancing the
system’s ability to produce more accurate prosodic
features during synthesis. The input data includes
columns indicating the speaker’s sex (male, female)
and the associated emotion from the 8§ classes. Us-
ing this information, we generate five emotionally
enriched variations of the sentence as text prompts
using GPT-4.0 for each input sentences based on
(Primus et al., 2023).

Synonym Mapping for Diversity We employ a
synonym mapping technique to introduce lexical
variety in the emotion-contained sentences. Each
emotion is associated with a set of semantically
similar words, such as "angry", "furious", "irate",
etc. This lexical variety helps diversify the emo-
tional cues present in the input text, thereby im-
proving the robustness of the generated speech.

4.2 Comparison of Emotion-Labeled Dataset
Sizes

To analyze the effectiveness of IMPACT-TTS in
low-resource scenarios, we compare the size of
labeled emotional speech datasets used in our
model with those of MM-TTS, InstructTTS, and
PromptTTS. The dataset size significantly impacts
the ability of a model to generalize emotional ex-
pressiveness effectively.

As shown in Table 4, IMPACT-TTS effectively
reduces reliance on large labeled emotional speech
datasets by leveraging pretrained multimodal mod-
els, whereas other models require substantially
larger explicitly labeled datasets.

5 Experimental Results

We evaluate the generated speech quality and sim-
ilarity by objective metrics and subjective eval-
uations. Short-Time Objective Intelligibility
(STOI) is an objective measure of how understand-
able and clear speech is. The STOI score ranges
from O to 1, where 1 indicates perfectly intelligi-
ble speech. Emotion Cosine Similarity (ECS)
measures the similarity between the synthesized
and target emotional embeddings, with higher ECS
values indicating better alignment. Mel Cepstral
Distortion (MCD) measures the spectral distance
between the ground truth and synthesized Mel-
spectrum features. As for subjective evaluations,
we conduct 5-scale Mean Opinion Score (MOS) us-
ing MOSNet (Chen-Chou et al., 2019) for 5 times.
We generate 50 speech samples for each model and
select 50 samples from MEAD-TTS and LibriTTS
testing sets for intra-domain and out-of-domain
evaluation respectively. Table 3 presents the exper-
imental results of text prompt-based speech synthe-
sis, encompassing MOS, audio quality and classifi-
cation accuracy for emotion and gender. For text
prompt based TTS, we conduct experiments on the
following systems : 1) GT: This is the ground-truth
recording; 2) GT (Mel + Voc): This is the speech
synthesized using pretrained HiFi-GAN vocoder
for GT Mel-spectrogram; 3) MM-TTS (Guan et al.,
2024): This is a model for multi-modal prompt
based TTS, which prompt encoder based on CLIP;
4) IMPACT-TTS: This is the proposed model for
multi-modal prompt based expressive TTS. In the
context of prompts, IMPACT-TTS model surpasses
the baseline model in terms of audio naturalness
and classification performance on the MEAD-TTS
dataset as well as out-of-domain datasets. These



Model

Emotion-Labeled Speech Data (Hours)

IMPACT-TTS (Ours)

MM-TTS (Li et al., 2024)
InstructTTS (Yang and et al, 2024)
PromptTTS (Guo and et al, 2023)

65
100
300
152

Table 4: Comparison of emotion-labeled dataset sizes across emotional TTS models. The dataset sizes (in hours)
are estimated. MM-TTS also utilizes 15,433 emotion-labeled images from the RAF-DB dataset.

results highlight the effectiveness of the method
in accurately capturing and extracting emotion at-
tributes from various text prompts.

6 Limitation

One limitation of the current model is the lack
of vision datasets for facial expressions, leading
to confusion with prompts like "sorrowful eyes,"
where happy emotions may be generated due to
overlapping features like watery eyes. In the fu-
ture, this limitation could be addressed by incor-
porating more diverse and abundant datasets and
employing fine-grained image detection techniques
to distinguish specific facial components. Another
challenge lies in the large size of the representa-
tion model, which requires substantial server ca-
pacity for effective processing. Future work will
focus on exploring lightweight alternatives, such
as compressing the emotion encoder through prun-
ing and quantization or using parameter-efficient
fine-tuning methods.

7 Conclusion and Future Work

In this paper, we introduced IMPACT-TTS, a mul-
timodal prompt-based TTS system that enhances
emotional expressiveness while overcoming the
limitations of small labeled datasets. By integrat-
ing large-scale pretrained models, generating text
prompts with diverse synonyms and employing
spherical interpolation for emotion modulation,
IMPACT-TTS offers fine-grained control over emo-
tional expression with minimal reliance on explicit
emotion labels.

Future work will focus on improving efficiency
by developing lightweight versions of the multi-
modal components. Additionally, we aim to ex-
tend the framework to support a broader range
of emotional variations, including nuanced styles
and speaker-adaptive expressions. We will also ex-
plore integrating ethical safeguards, such as audio
watermarking for authenticity verification and us-

age monitoring, to prevent misuse. Incorporating
broader ethical considerations into the design and
deployment process will strengthen the trustwor-
thiness and social responsibility of emotional TTS
systems like IMPACT-TTS.
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