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Abstract

Advancing emotional expressiveness in Text-to-001
Speech (TTS) systems remains a pivotal chal-002
lenge for achieving natural and adaptive voice003
synthesis. Existing emotion-aware TTS models004
often struggle with limited emotional diversity,005
lack of fine-grained control, and reliance on006
small, labeled emotional speech-text datasets,007
making them less scalable and adaptable. To008
address these limitations, we propose IMPACT-009
TTS, an Integrated Multimodal Prompting and010
Adaptive Control for Text-to-Speech system011
that effectively leverages a disentangled emo-012
tion module and a novel emotion modulation013
function. By incorporating large-scale pre-014
trained multimodal models, IMPACT-TTS miti-015
gates dataset constraints while enabling flexible016
emotional adjustments via prompt-based con-017
trol. Our approach allows seamless blending of018
emotional intensities, significantly enhancing019
expressiveness even in low-resource labeled020
datasets. Experimental results demonstrate that021
IMPACT-TTS outperforms existing models in022
emotional naturalness and adaptability, offering023
a scalable solution for emotion-aware TTS.024

1 Introduction025

Text-to-Speech (TTS) technology has made signifi-026

cant strides in recent years, particularly in improv-027

ing intelligibility, naturalness, and speaker adap-028

tation. However, achieving high levels of emo-029

tional expressiveness remains a critical challenge.030

Despite progress in prosody modeling and expres-031

siveness enhancement, many existing TTS models032

struggle with capturing and generating nuanced033

emotional variations due to limited labeled emo-034

tional speech-text datasets and constrained emotion035

control mechanisms.036

Existing approaches to emotional TTS primar-037

ily rely on textual cues or predefined emotion la-038

bels, which restrict the system’s ability to gener-039

ate diverse and contextually appropriate emotional040

speech. Moreover, models such as Hierspeech (Lee041

and et al, 2022) and Hierspeech++ (Lee and et al, 042

2023) highlight the one-to-many mapping prob- 043

lem, where a single input text can correspond to 044

multiple valid emotional outputs, leading to am- 045

biguity and reduced expressiveness. While ap- 046

proaches like Speech Slytherin (Jiang and et al, 047

2024) and limited-data two-stage models (Zhou 048

et al., 2021) aim to address these issues through 049

disentangled representations, they often require ex- 050

tensive labeled training data and computationally 051

expensive architectures, making them less adapt- 052

able for low-resource scenarios. 053

Recent advancements in multimodal learning 054

have introduced new possibilities for enhancing 055

emotional expressiveness in TTS. By integrating 056

diverse modalities such as text, audio, and vision, 057

these methods aim to improve emotional fidelity 058

and naturalness. For instance, MM-TTS (Li et al., 059

2024) leverages multimodal alignment techniques 060

to enhance emotion modeling. However, it remains 061

highly dependent on explicitly labeled datasets and 062

does not provide fine-grained emotion control. Sim- 063

ilarly, models such as VoiceLDM (Lee and et al, 064

2024) and ImaginaryVoice (Lee et al., 2023) in- 065

corporate multimodal integration but rely predomi- 066

nantly on textual or visual inputs, limiting the scope 067

of emotional cues that can be effectively utilized. 068

In addition, prompt-based control mechanisms 069

have gained traction for enabling user-guided emo- 070

tional synthesis. Models like PromptStyle (Liu 071

and et al, 2023), InstructTTS (Yang and et al, 072

2024), PromptTTS (Guo and et al, 2023), and 073

PromptTTS2 (Leng and et al, 2023) explore the 074

use of descriptive text prompts to facilitate con- 075

trollable emotional modulation. While these meth- 076

ods provide greater flexibility, they are still con- 077

strained by their dependence on textual descrip- 078

tions alone, which limits their ability to capture 079

the full spectrum of emotional variation present in 080

human speech. 081

To address these challenges, we introduce 082
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Figure 1: Overview of the IMPACT-TTS architecture. The yellow box represents the emotion embedding, the red
box represents the speaker embedding, the orange box represents the textual embedding, and the blue box represents
the ground truth audio waveform embedding.

IMPACT-TTS, a novel framework that enhances083

emotional expressiveness by incorporating mul-084

timodal inputs and prompt-based emotion con-085

trol while overcoming the limitations of small086

labeled emotional datasets. Unlike prior works087

that rely heavily on constrained emotion labels,088

IMPACT-TTS integrates large-scale pretrained mul-089

timodal models to extract meaningful emotion rep-090

resentations. Notably, we leverage ONE-PEACE091

(Wang and et al., 2023), a highly extensible multi-092

modal model with 4B parameters, featuring sepa-093

rate adapters for audio, language, and vision. For094

audio representation, our system utilizes the feature095

extractor weights of WavLM (Sanyuan et al., 2022)096

for initialization, enhancing its ability to generalize097

from smaller datasets effectively.098

By leveraging large pretrained representations,099

IMPACT-TTS significantly reduces reliance on ex-100

plicitly labeled emotional speech datasets while101

maintaining fine-grained emotion modulation ca-102

pabilities. Moreover, our approach employs a dis-103

entangled architecture to separate the core speech104

synthesis process from the emotion module, en-105

suring robust and stable synthesis while enabling106

precise control over emotional variations. This107

disentanglement strategy allows IMPACT-TTS to108

generate expressive speech with a higher degree of109

controllability, even in low-resource settings. 110

2 Method 111

IMPACT-TTS employs a disentangled structure for 112

independent control of linguistic and emotional fea- 113

tures, ensuring dynamic emotion modulation and 114

consistency. The following sections describe the 115

TTS model, emotion embedding with cross atten- 116

tion, emotion modulation function, and emotion 117

consistency loss. 118

2.1 Backbone Arthitecture 119

IMPACT-TTS is built upon a modified VITS ar- 120

chitecture, inspired by YourTTS (Casanova and 121

et al, 2022) and VECL-TTS (Gudmalwar and et al, 122

2024), utilizing variational inference and adversar- 123

ial learning to generate high-quality speech. The 124

backbone is designed to produce natural and high- 125

quality speech from input text, ensuring both lin- 126

guistic and phonetic accuracy. The model fea- 127

tures a transformer-based text encoder with 10 128

blocks, a decoder with 4 affine coupling layers, 129

each comprising 4 WaveNet residual blocks (Oord 130

et al., 2016), as inspired by previous work. HiFi- 131

GAN (Kong et al., 2020) V1 is employed as the 132

neural vocoder to generate speech waveforms. A 133

Variational Auto-Encoder (VAE) with a Posterior 134
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Figure 2: Process of Emotion Module

Encoder comprising 16 WaveNet residual blocks135

transforms linear spectrograms into latent variables,136

seamlessly integrating the vocoder and the flow-137

based decoder for end-to-end synthesis. To enable138

diverse rhythm generation from text, a Stochastic139

Duration Predictor (SDP) is used, further enriching140

the synthesized speech’s naturalness. As shown141

in Figure 1, the architecture combines emotion,142

speaker, text, and waveform embeddings to control143

speech attributes. Emotion embeddings (yellow)144

from the Emotion Module modulate tones, speaker145

embeddings (red) from H/ASP (Heo et al., 2020)146

ensure consistency, text embeddings (orange) en-147

code linguistic information, and waveform embed-148

dings (blue) provide training supervision. The or-149

ange box corresponds to the textual embedding, en-150

coding linguistic and phonetic information. Finally,151

the blue box represents the ground truth waveform152

embedding, used during training for supervision.153

These embeddings are seamlessly integrated within154

the TTS backbone, allowing precise control over155

emotion, speaker, and linguistic features. To en-156

sure robustness and expressiveness of the model,157

we incorporate Emotion Consistency Loss (ECL)158

and Speaker Consistency Loss (SCL) to maximize159

the similarity of emotional and speaker attributes160

between the generated audio and the ground truth.161

LCL = −α

n
·

n∑
i

cos_sim (ϕ(gi), ϕ(hi)), (1)162

where ϕ(g) and ϕ(h) represent the functions used163

to extract emotion embeddings or speaker embed-164

dings from the generated and ground truth audio,165

respectively. The parameter α is a tunable weight166

that determines the contribution of LCL to the over-167

all loss. The cosine similarity function is denoted as168

cos_sim, which measures the similarity between169

the emotion embeddings.170

2.2 Multimodal Representation and Prompts 171

To enhance emotional expressiveness in speech 172

synthesis, our model integrates multimodal rep- 173

resentations from text, vision, and audio through 174

a unified embedding space. This section details 175

how these modalities contribute to emotion synthe- 176

sis, complementing the emotion disentanglement 177

framework. 178

2.2.1 Multimodal Representation Model 179

Traditional emotional TTS systems rely heavily 180

on text-based emotional conditioning, limiting ex- 181

pressiveness. Our model overcomes this limitation 182

by incorporating vision and audio cues, ensuring 183

richer emotion transfer. The extracted representa- 184

tions are aligned into a shared multimodal space 185

to balance textual, auditory, and visual emotion 186

information. 187

Vision and Audio Embedding Fusion 188

• Vision Representation: Facial expressions 189

offer valuable nonverbal emotional cues. We 190

extract visual embeddings from a pretrained 191

vision-audio-language model (ONE-PEACE) 192

and map them into our emotion embedding 193

space. 194

• Audio Emotion Features: Instead of rely- 195

ing only on text-based emotion modeling, 196

we extract pitch contours, energy variation, 197

and prosodic rhythm features from speech 198

waveforms, which provide additional emotion 199

grounding. 200

Multimodal Cross-Attention for Emotion Inte- 201

gration The extracted text, vision, and audio 202

embeddings are integrated using a cross-attention 203

mechanism. Unlike direct concatenation, this al- 204

lows for dynamic weighting of each modality based 205
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on its relevance to the input context. This mecha-206

nism enhances context-aware emotion modulation207

and provides finer control over expressiveness.208

2.2.2 Prompt-Based Emotion Control209

Rather than relying on categorical emotion labels,210

we employ prompt-based modulation, where tex-211

tual prompts dynamically influence synthesized212

speech expressions. These text prompts, described213

in the Datasets section, are mapped into semantic214

embedding spaces and fused with vision and audio215

representations.216

LLM-based Emotion Prompt Expansion In-217

stead of fixed emotion labels, we generate emotion-218

ally diverse paraphrases of input sentences using a219

structured synonym mapping algorithm. Given a220

neutral sentence, our system selects semantically221

appropriate modifications to control emotion inten-222

sity and expressiveness.223

Multimodal Prompt Adaptation The generated224

text prompts are conditioned alongside vision and225

audio cues, ensuring that emotional modulation is226

not solely text-driven. Vision embeddings provide227

global emotional state awareness, while audio fea-228

tures introduce prosodic characteristics, leading to229

a richer emotional representation.230

2.2.3 Ablation Study: Impact of Different231

Modalities232

To quantify the contribution of each modality (text,233

vision, and audio) to emotional speech synthesis,234

we conduct an ablation study where we systemat-235

ically remove individual modalities and analyze236

their impact on expressiveness.237

Table 1: Ablation Study: Impact of Different Modalities
on Emotion Expression. Higher values for std-F0 (Pitch
Variability), std-RMS (Energy Variability), and WavLM
Score (Expressiveness) indicate greater expressiveness.

Configuration std-F0 ↑ std-RMS ↑ WavLM
Score ↑

Audio Cues Only 0.21 0.18 3.5
Vision Cues Only 0.15 0.14 3.2
Text Prompts Only 0.12 0.10 2.8
Audio + Vision 0.25 0.22 3.9
Audio + Text 0.28 0.24 4.1
Text + Vision 0.20 0.17 3.4
Text + Vision + Audio 0.32 0.28 4.5

The results demonstrate that integrating all three238

modalities (Text, Vision, and Audio) significantly239

enhances emotional speech synthesis, as indicated240

by higher pitch and energy variability, as well as241

improved expressiveness scores.242

2.3 Disentangled Emotion Module 243

IMPACT-TTS adopts a multi-modal emotion en- 244

coder to get emotion embeddings from various 245

modal, text and vision, and combine these embed- 246

dings with cross attention. The emotion module op- 247

erates independently of the TTS backbone, modu- 248

lating the emotional tone of the synthesized speech 249

using the emotion embedding Eemotion with the 250

process of Figure 2. By disentangling the emotion 251

module from the TTS backbone, IMPACT-TTS 252

achieves precise control over emotional attributes. 253

This disentangled structure ensures that the linguis- 254

tic content remains unaffected by emotional vari- 255

ability. 256

2.3.1 Emotion Encoder 257

The emotion embedding extraction module utilizes 258

finetuned representation model with retrieval func- 259

tion as there are some important strengths. Since 260

retrieval models focus on semantic similarity rather 261

than discrete classification, they offer rich, cross- 262

modal feature representations suitable for TTS task 263

compared to classification models. Through this, 264

they can capture fine-grained relationships between 265

the input and output, which is crucial for generating 266

high-quality, natural speech. We finetuned ONE- 267

PEACE (Wang and et al., 2023) with MEAD-TTS 268

dataset(Guan et al., 2024) and ESD(Zhou and et al, 269

2022b), and use it as the Emotion Representation 270

Model in Figure 2. 271

The cross-attention mechanism computes atten- 272

tion between different modalities. We integrate 273

cross-attention module into a emotion encoder to 274

fuse modalities by allowing one modality to attend 275

to the other modal’s features. Given two modalities: 276

modality A(e.g., text embeddings) and modality 277

B(e.g., visual features or audio features): Query 278

(Q) from modality A, and Keys (K) and Values 279

(V) from modality B. The cross-attention can be 280

formulated as: 281

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (2) 282

Embeddings from text-speech modalities and 283

text-image modalities are concatenated. At the end, 284

we make it transform the multimodal representa- 285

tion into a continuous emotion embedding, which 286

is used to guide the synthesis of emotionally ex- 287

pressive speech. 288
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Table 2: Ablation Study on Emotion Modulation and Classification

Model Variant
Prosody Metrics Emotion Metrics Speech Quality

DTW (F0) ↓ Pitch Var ↑ ECA ↑ KLD ↓ MCD ↓

Full Model (Ours) 15.3 0.32 85.2% 0.12 4.25
w/o Emotion Modulation 20.8 0.21 78.9% 0.19 4.67
w/o Emotion Classification 18.1 0.27 80.3% 0.17 4.50
w/o Both 24.5 0.15 73.4% 0.24 4.80

2.3.2 Emotion Classifier289

The Emotion Classifier Module serves to categorize290

the high-dimensional emotion embeddings gener-291

ated by the Emotion Encoder into predefined emo-292

tion classes. This module operates in two stages: 1.293

Linear Transformation The emotion embedding294

is first projected into a lower-dimensional space295

that corresponds to the number of predefined using296

a linear layer, enabling the embedding to be directly297

mapped to emotion class probabilities; 2. Softmax298

Normalization The output of the linear layer is299

passed through a softmax activation function. The300

final output of the Emotion Classifier Module is a301

set of probabilities, where each value corresponds302

to the likelihood of the input belonging to a specific303

emotion class. For example, in Figure 2, an out-304

put of [0.3, 0.6, 0.1] for three classes (e.g., neutral,305

happy, sad) indicates a higher confidence for the306

"happy" emotion. These probabilities serve as criti-307

cal inputs for the subsequent Emotion Modulation,308

where they are utilized to determine the blending309

weights (αi) in fine-grained emotion interpolation.310

2.3.3 Emotion Modulation Function311

To achieve fine-grained control over blended emo-312

tions, IMPACT-TTS incorporates a spherical in-313

terpolation method inspired by (Cho and et al.,314

2024), (Zhou and et al, 2022a) and (Im and et al.,315

2022). This method allows for smooth transitions316

and precise mixing of multiple emotional attributes317

by treating emotions as points on a hypersphere.318

The blending weights for interpolation, denoted as319

αi, are derived directly from the probability distri-320

bution generated by the Emotion Classifier Module.321

These weights ensure that the contribution of each322

emotion vector to the final blended representation323

aligns with the classifier’s confidence levels. Given324

two emotions represented as vectors e1 and e2, the325

blended emotion eblend is computed as:326

eblend =
sin((1− α)θ)

sin(θ)
e1 +

sin(αθ)

sin(θ)
e2 , (3) 327

where α ∈ [0, 1] is the interpolation parameter that 328

controls the influence of each emotion, and θ = 329

arccos
(

e1·e2
∥e1∥∥e2∥

)
is the angle between e1 and e2 330

on the hypersphere. This formulation ensures that 331

the resulting vector remains normalized, preserving 332

the geometric properties of the emotion space. 333

Extension to Multiple Emotions In scenarios 334

where more than two emotions are blended, the 335

spherical interpolation is generalized to handle n 336

emotions. Using the probabilities from the classi- 337

fier ({α1, α2, . . . , αn}, where
∑n

i=1 αi = 1), the 338

blended emotion eblend is computed as: 339

eblend =

∑n
i=1 αi sin(θi)ei∑n

i=1 sin(θi)
, (4) 340

where θi is the angle between each emotion 341

vector ei and the reference point (e.g., a neutral 342

emotion vector). This integration of classifier out- 343

puts into the modulation function ensures that the 344

model can generate expressive, contextually accu- 345

rate speech by leveraging both high-level classifi- 346

cation results and continuous fine-grained emotion 347

control. 348

2.3.4 Ablation Study on Emotion Modulation 349

and Classification 350

To assess the contribution of each component in 351

the disentangled emotion module, we conduct an 352

ablation study by systematically removing (i) emo- 353

tion modulation, (ii) emotion classification, and 354

(iii) both components. Table 2 presents the re- 355

sults across prosody metrics, emotion classification 356

accuracy, and speech quality. 357

The results indicate that both emotion modula- 358

tion and classification significantly contribute to 359

the overall performance of our model. Removing 360
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Method
Intra-domain Out-of-domain

MOS STOI ECS MCD MOS STOI ECS MCD

GT 4.53 ± 0.03 0.87 - - 4.73 ± 0.05 0.85 - -

GT (Mel+Voc) 4.51 ± 0.01 0.74 - - 4.71 ± 0.04 0.79 - -

MM-TTS (Li et al.,
2024)

4.32 ± 0.07 0.42 0.87 3.21 3.96 ± 0.09 0.33 0.74 6.68

Instruct-TTS 4.31 ± 0.05 0.40 0.89 3.10 3.83 ± 0.08 0.31 0.75 6.59

Prompt-TTS 4.23 ± 0.06 0.21 0.75 3.78 3.66 ± 0.08 0.27 0.73 6.73

IMPACT-TTS
(proposed)

4.41 ± 0.02 0.63 0.92 3.17 4.02 ± 0.03 0.54 0.77 6.12

Table 3: The performance comparison of text prompt based TTS.

emotion modulation results in a higher DTW (Dy-361

namic Time Warping; F0) score (20.8 vs. 15.3),362

suggesting a reduction in prosodic expressiveness.363

Additionally, pitch variability drops from 0.32 to364

0.21, indicating that synthesized speech becomes365

less emotionally dynamic.366

Similarly, excluding emotion classification low-367

ers the Emotion Classification Accuracy (ECA)368

from 85.2% to 80.3%, showing that the model369

struggles to preserve intended emotional expres-370

siveness without explicit classification. The371

Kullback-Leibler Divergence (KLD) increases372

from 0.12 to 0.17, further confirming reduced align-373

ment with expected emotion distributions.374

The most significant degradation occurs when375

both components are removed, with ECA dropping376

to 73.4% and MCD increasing to 4.80, indicating377

a loss in both emotional clarity and speech qual-378

ity. These findings demonstrate that the disentan-379

gled emotion module plays a crucial role in achiev-380

ing both expressive and high-quality synthesized381

speech.382

3 Inference-Time Emotion Adjustment383

and Expressiveness Control384

3.1 Real-Time Emotion Modulation385

Traditional emotional TTS models often rely on386

pretrained emotion embeddings that remain fixed387

during inference, limiting their ability to adapt ex-388

pressiveness dynamically. Our model introduces389

Inference-Time Emotion Adjustment, which al-390

lows for real-time modification of prosody and391

emotional intensity during speech synthesis.392

After obtaining a pretrained emotion embedding,393

we apply an emotion modulation function that dy-394

namically adjusts:395

• Pitch (F0): Controls intonation variation, al- 396

lowing for smooth shifts in emotion intensity. 397

• Energy: Determines speech loudness and em- 398

phasis, enabling finer expressiveness control. 399

Smooth Emotion Interpolation. Unlike models 400

that use predefined emotion categories, our system 401

enables continuous control over emotion intensity. 402

By leveraging a spherical interpolation mechanism, 403

the model allows smooth transitions between emo- 404

tions: 405

• Neutral → Happy: Gradual increase in pitch 406

and speech rate. 407

• Sad → Angry: Lowered pitch at the start, 408

followed by a rapid increase in energy. 409

• Excited → Calm: Controlled pitch decay 410

with reduced energy. 411

This capability ensures that synthesized speech 412

adapts dynamically rather than being constrained 413

by fixed, pre-trained emotion embeddings. 414

3.2 Comparison with Contrastive 415

Learning-Based Emotion Alignment 416

Many multimodal emotional TTS models incorpo- 417

rate contrastive learning to pre-align emotion em- 418

beddings from text, vision, and audio into a shared 419

representation space. This approach ensures consis- 420

tency across modalities but relies on fixed emotion 421

representations at inference time. 422

Our approach introduces an alternative strat- 423

egy by integrating real-time emotion modulation, 424

where emotion embeddings are adaptively adjusted 425

at inference time based on synthesis needs. This 426

enables: 427
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• Fine-Grained Emotion Interpolation Blend-428

ing between emotions smoothly rather than429

switching between predefined categories.430

• Intensity Scaling Adjusting the strength of431

an emotion dynamically (e.g., slightly sad vs.432

deeply sad).433

• Context-Aware Expressiveness Modulating434

prosody in real-time based on speaker intent.435

4 Datasets436

Pretraining The TTS backbone is initially trained437

on neutral speech data to establish a robust438

foundation for speech generation. We use439

VCTK(Yamagishi et al., 2019) dataset as the pre-440

training data, which comprises of 44 hours of441

speech from 109 different speakers.442

Finetuning The emotion module is introduced, and443

the entire system is finetuned using datasets en-444

riched with emotional speech samples to ensure445

consistent and expressive output. Specifically, we446

leverage two datasets for finetuning: ESD (Zhou447

and et al, 2022b), which covers 5 emotion classes448

(neutral, angry, happy, sad, and surprised), and449

MEAD-TTS (Guan et al., 2024) dataset, which en-450

compasses 8 emotion classes (neutral, angry, con-451

tempt, disgusted, fear, happy, sad and surprised).452

4.1 Generation of Emotional Text Prompt453

Given a dataset annotated with emotional tags, we454

generate multiple emotionally nuanced variations455

of each sentence. This ensures that the text better456

reflects the speaker’s emotional state, enhancing the457

system’s ability to produce more accurate prosodic458

features during synthesis. The input data includes459

columns indicating the speaker’s sex (male, female)460

and the associated emotion from the 8 classes. Us-461

ing this information, we generate five emotionally462

enriched variations of the sentence as text prompts463

using GPT-4.0 for each input sentences based on464

(Primus et al., 2023).465

Synonym Mapping for Diversity We employ a466

synonym mapping technique to introduce lexical467

variety in the emotion-contained sentences. Each468

emotion is associated with a set of semantically469

similar words, such as "angry", "furious", "irate",470

etc. This lexical variety helps diversify the emo-471

tional cues present in the input text, thereby im-472

proving the robustness of the generated speech.473

4.2 Comparison of Emotion-Labeled Dataset 474

Sizes 475

To analyze the effectiveness of IMPACT-TTS in 476

low-resource scenarios, we compare the size of 477

labeled emotional speech datasets used in our 478

model with those of MM-TTS, InstructTTS, and 479

PromptTTS. The dataset size significantly impacts 480

the ability of a model to generalize emotional ex- 481

pressiveness effectively. 482

As shown in Table 4, IMPACT-TTS effectively 483

reduces reliance on large labeled emotional speech 484

datasets by leveraging pretrained multimodal mod- 485

els, whereas other models require substantially 486

larger explicitly labeled datasets. 487

5 Experimental Results 488

We evaluate the generated speech quality and sim- 489

ilarity by objective metrics and subjective eval- 490

uations. Short-Time Objective Intelligibility 491

(STOI) is an objective measure of how understand- 492

able and clear speech is. The STOI score ranges 493

from 0 to 1, where 1 indicates perfectly intelligi- 494

ble speech. Emotion Cosine Similarity (ECS) 495

measures the similarity between the synthesized 496

and target emotional embeddings, with higher ECS 497

values indicating better alignment. Mel Cepstral 498

Distortion (MCD) measures the spectral distance 499

between the ground truth and synthesized Mel- 500

spectrum features. As for subjective evaluations, 501

we conduct 5-scale Mean Opinion Score (MOS) us- 502

ing MOSNet (Chen-Chou et al., 2019) for 5 times. 503

We generate 50 speech samples for each model and 504

select 50 samples from MEAD-TTS and LibriTTS 505

testing sets for intra-domain and out-of-domain 506

evaluation respectively. Table 3 presents the exper- 507

imental results of text prompt-based speech synthe- 508

sis, encompassing MOS, audio quality and classifi- 509

cation accuracy for emotion and gender. For text 510

prompt based TTS, we conduct experiments on the 511

following systems : 1) GT: This is the ground-truth 512

recording; 2) GT (Mel + Voc): This is the speech 513

synthesized using pretrained HiFi-GAN vocoder 514

for GT Mel-spectrogram; 3) MM-TTS (Guan et al., 515

2024): This is a model for multi-modal prompt 516

based TTS, which prompt encoder based on CLIP; 517

4) IMPACT-TTS: This is the proposed model for 518

multi-modal prompt based expressive TTS. In the 519

context of prompts, IMPACT-TTS model surpasses 520

the baseline model in terms of audio naturalness 521

and classification performance on the MEAD-TTS 522

dataset as well as out-of-domain datasets. These 523
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Model Emotion-Labeled Speech Data (Hours)
IMPACT-TTS (Ours) 65
MM-TTS (Li et al., 2024) 100
InstructTTS (Yang and et al, 2024) 300
PromptTTS (Guo and et al, 2023) 152

Table 4: Comparison of emotion-labeled dataset sizes across emotional TTS models. The dataset sizes (in hours)
are estimated. MM-TTS also utilizes 15,433 emotion-labeled images from the RAF-DB dataset.

results highlight the effectiveness of the method524

in accurately capturing and extracting emotion at-525

tributes from various text prompts.526

6 Limitation527

One limitation of the current model is the lack528

of vision datasets for facial expressions, leading529

to confusion with prompts like "sorrowful eyes,"530

where happy emotions may be generated due to531

overlapping features like watery eyes. In the fu-532

ture, this limitation could be addressed by incor-533

porating more diverse and abundant datasets and534

employing fine-grained image detection techniques535

to distinguish specific facial components. Another536

challenge lies in the large size of the representa-537

tion model, which requires substantial server ca-538

pacity for effective processing. Future work will539

focus on exploring lightweight alternatives, such540

as compressing the emotion encoder through prun-541

ing and quantization or using parameter-efficient542

fine-tuning methods.543

7 Conclusion and Future Work544

In this paper, we introduced IMPACT-TTS, a mul-545

timodal prompt-based TTS system that enhances546

emotional expressiveness while overcoming the547

limitations of small labeled datasets. By integrat-548

ing large-scale pretrained models, generating text549

prompts with diverse synonyms and employing550

spherical interpolation for emotion modulation,551

IMPACT-TTS offers fine-grained control over emo-552

tional expression with minimal reliance on explicit553

emotion labels.554

Future work will focus on improving efficiency555

by developing lightweight versions of the multi-556

modal components. Additionally, we aim to ex-557

tend the framework to support a broader range558

of emotional variations, including nuanced styles559

and speaker-adaptive expressions. We will also ex-560

plore integrating ethical safeguards, such as audio561

watermarking for authenticity verification and us-562

age monitoring, to prevent misuse. Incorporating 563

broader ethical considerations into the design and 564

deployment process will strengthen the trustwor- 565

thiness and social responsibility of emotional TTS 566

systems like IMPACT-TTS. 567
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