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ABSTRACT

It has recently been argued that AI models’ representations are becoming aligned
as their scale and performance increase. Empirical analyses have been designed to
support this idea and conjecture the possible alignment of different representations
toward a shared statistical model of reality. In this paper, we propose a learning-
theoretic perspective to representation alignment. First, we review and connect
different notions of alignment based on metric, probabilistic, and spectral ideas.
Then, we focus on stitching, a particular approach to understanding the interplay
between different representations in the context of a task. Our main contribution
here is to relate the properties of stitching to the kernel alignment of the underlying
representation. Our results can be seen as a first step toward casting representation
alignment as a learning-theoretic problem.

1 INTRODUCTION

In recent years, as AI systems have grown in scale and performance, attention has moved towards
universal models that share architecture across modalities. Examples of such systems include CLIP
(Radford et al., 2021), VinVL (Zhang et al., 2021), FLAVA (Singh et al., 2022), OpenAI’s GPT-4
(OpenAI, 2023), and Google’s Gemini (Google, 2023). These models are trained on diverse datasets
containing both images and text and yield embeddings that can be used for downstream tasks in
either modality or for tasks that require both modalities. The emergence of this new class of multi-
modal models poses interesting questions regarding alignment and the trade-offs between unimodal
and multimodal modeling. While multimodal models may provide access to greater scale through
dataset size and computational efficiency, how well do features learned from different modalities
correspond to each other? How do we mathematically quantify and evaluate this alignment and
feature learning across modalities?

Regarding alignment, Huh et al. (2024) observed that as the scale and performance of deep networks
increase, the models’ representations tend to align. They further conjectured that the limiting repre-
sentations accurately describe reality - known as Platonic representation hypothesis. Their analysis
also suggests that alignment correlates with performance, implying that improving the alignment of
learned features across different modalities could enhance a model’s generalization ability. However,
alignment across modalities has yet to be evaluated in a more interpretable manner, and theoretical
guarantees of alignment under realistic assumptions are still lacking.

One way to quantify alignment is by kernel alignment, introduced by Cristianini et al. (2001), which
evaluates the correlation of two kernel matrices K1,n,K2,n through Frobenius norms
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Â(K1,n,K2,n) =
⟨K1,n,K2,n⟩F√

⟨K1,n,K1,n⟩F ⟨K2,n,K2,n⟩F
.

Following this direction, methods such as Centered Kernel Alignment (CKA) (Kornblith et al., 2019)
and Singular Vector Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017) were developed
to compare the learned representations. Another class of metrics is derived from independence
testing, including the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005a) and
Mutual Information (MI) (Hjelm et al., 2019). However, further research is needed to clarify the
relationships among these methods and other frameworks for assessing alignment.
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Objects/data
(X1, µ1)

Objects/data
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Representation
(Z1, λ1)

Representation
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Output
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f1 f2
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s1,2
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h1 h2

Figure 1: Diagram illustrating the process of multi-modal learning. It contains spaces and measures
of reality, objects/data, representation, and outputs as well as the functions connecting them. A
detailed explanation of these symbols is in Section 2.

To quantify the alignment of representation conditioned on a task, one approach is to use the stitching
method (Lenc & Vedaldi, 2015). Bansal et al. (2021) revisited this technique and used it to high-
light that good models trained on different objectives (supervised vs self-supervised) have similar
representations. By evaluating how well one representation integrates into another model, stitching
provides a more interpretable framework for assessing alignment. To describe the setup, we use
h1,2 := g2 ◦ s1,2 ◦ f1 to represent the function after stitching from model 1 to model 2 (Figure 1
gives a detailed illustration of the whole process). Here gq and fq are parts of model Hq : Xq → Yq

with q = 1, 2, and s1,2 is the stitcher. We consider the generalization error after stitching between
two models:

R(g2 ◦ s1,2 ◦ f1) = E [ℓ(h1,2(x), y)] .

We can use the risk of the stitched model in excess of the risk of model 2

min
s1,2

R(h1,2)−R(h2)

to quantify the impact of using different representations, fixing g2.

In this paper, we aim to formalize and refine some of these questions, and our contributions are
summarized as follows:

(a) We compile different definitions of alignment from various communities, demonstrate their
connections, and give spectral interpretations.

• Starting from the empirical Kernel Alignment (KA), we reformulate empirical KA and pop-
ulation version of KA using feature/representation maps, operators in Reproducing Kernel
Hilbert Space (RKHS), and spectral interpretation. In addition, we discuss the statistical
properties of KA.
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• We integrate various notions of alignment, ranging from kernel alignment in independence
testing and learning theory to measure and metric alignment, and demonstrate their relation-
ships and correlations. This comprehensive exploration provides a deeper understanding for
practical applications.

(b) We provide a generalization error bound of linear stitching with the kernel alignment of the
underlying representation.

• A linear gq results in the stitching error being equivalent to the risk from the model Hq .
This occurs, for example, when Hq represents RKHSs or neural networks, then gq is a linear
combination of features in RKHSs or the output linear layers of neural networks.

• The excess stitching risk can be bounded by kernel alignment when gq are nonlinear functions
with the Lipschitz property. A typical scenario is stitching across the intermediate layers of
neural networks.

• For models involving several compositions, such as deep networks, if we stitch from a layer
further from the output to a layer closer to the output (stitching forward) and gq is Lipschitz,
the difference in risk can be bounded by stitching.

Structure of the paper In the following of this paper, we introduce the problem settings and some
notation in Section 2. Different definitions for representation alignment from different communities
and the relationship among them will be derived in Section 3. Section 4 demonstrates that the
stitching error could be bounded by the kernel alignment metric. And the conclusion is given in
Section 5.

2 PRELIMINARIES

Empirical results demonstrate that well-aligned features significantly enhance task performance.
However, there is a pressing need for more rigorous mathematical tools to formalize and quantify
these concepts in uni/multi-modal settings. In this section, we provide a mathematical formalization
of uni/ multi-modal learning, introducing key notation to facilitate a deeper understanding of the
underlying processes.

Setup Without loss of generality, we focus on the case of two modalities, as illustrated in Figure 1,
which outlines the corresponding process. For q = 1, 2, let (Xq, µq) and (Zq, λq) be probability
spaces, and let Fq be spaces of functions fq : Xq → Zq = Rdq . We regard Xq as the space of
objects (or data), Fq as the space of representation (or embedding) maps, and Zq as the space of
representations. We relate µq and λq by assuming λq = (fq)#µq

1. We also assume that µ1 and
µ2 are the marginals of a joint probability space (X , µ) with X = X1 × X2, µq = (πq)#µ,
where πq : X → Xq is the projection map. Moreover, let (Yq, νq) be the task-based output spaces
and define Gq = {gq : Zq → Yq} with νq = (gq)#λq . Each overall model is generated by
Hq := {hq : Xq → Yq | hq = gq ◦ fq}.

Reality Consider a space of abstract objects, called the reality space and denoted by Ξ, which
generates the observed data in various modalities through maps mq : Ξ → Xq . These maps may be
bijective, lossy, or stochastic. Reality can be modeled as a probability space (Ξ, ξ). Alternatively,
one may define reality as the joint distribution over modalities by setting mq = πq .

Uni/Multi-modal We may want to consider the case of a single modality, where only one data
space exists, versus multiple modalities, where several such spaces are present. Two modalities are
deemed equal if π1 = π2.

Representation alignment A representation mapping is a function f : X → Rd that assigns a
latent feature vector in Rd to each input in the data domain X . Alignment provides a metric to eval-
uate how well the latent feature spaces obtained from different representation mappings, whether

1(fq)#µq is the pushforward measure of µq defined as (fq)#µq(A) = µq(f
−1
q (A)). In terms of random

variables Xq and Zq with measures µq and λq , respectively, this is equivalent to fq(Xq) and Zq being equal in
law.
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from uni-modal or multi-modal data, are aligned or similar. Commonly used metrics for quantify-
ing alignment include those derived from kernel alignment, contrastive learning, mutual informa-
tion, canonical correlation analysis, and cross-modal mechanisms, among others. However, they
are introduced in a very fragmented manner, without an integrated or unified concept. A detailed
introduction and analysis of these methods will be provided in Section 3.

3 FRAMEWORKS FOR REPRESENTATION ALIGNMENT

In this section, we describe various definitions of representation alignment from different commu-
nities and demonstrate the relationship among them. We begin with a detailed presentation of em-
pirical and population Kernel Alignment and its statistical properties. We then cover other notions
of alignment coming from metrics, independence testing, and probability measures, as well as their
spectral interpretations. We draw connections to kernel alignment which emerges as a central object.

3.1 KERNEL ALIGNMENT (KA)

Based on the work of Cristianini et al. (2001), who introduced the definition of kernel alignment
using empirical kernel matrices, we propose different perspectives to understand kernel alignment
in both empirical and population settings and derive its statistical properties accordingly.

A reproducing positive definite kernel K : X × X → R captures the notion of similarity between
objects by inducing an inner product in the associated reproducing kernel Hilbert space (RKHS) H.
Specifically, K(x, x′) = ⟨f(x), f(x′)⟩ for any representation (feature) map f ∈ H, and x, x′ ∈ X .
For the multi-modal case, we define Kq(x, x

′) := K̃q(πq(x), πq(x
′)) = K̃q(xq, x

′
q), where K̃q

is the reproducing kernel associated with Hq . In other words, Kq acts on x = (x1, x2) by first
applying the projection πq(x) = xq . In the following, the subscript xq denotes the q-th modality,
and the superscript xi indicates the i-th sample.

3.1.1 EMPIRICAL KA

From Cristianini et al. (2001), we adopt the following formulation for kernel alignment for kernel
matrix Kq,n ∈ Rn×n with samples {xi}ni=1 drawing according to the probability measure µ

Â(K1,n,K2,n) =
⟨K1,n,K2,n⟩F√

⟨K1,n,K1,n⟩F ⟨K2,n,K2,n⟩F
,

where ⟨K1,n,K2,n⟩F =
∑n

i,j=1 K1,n(x
i, xj)K2,n(x

i, xj). One modification is to first demean the
kernel by applying a matrix H = In − 1

n1n1
T
n on the left and right of each Kq,n with I ∈ Rn×n

being the identity matrix and 1n being the ones vectors. This results in Centered Kernel Alignment
(CKA).

Representation interpretation of KA Denote the empirical cross-covariance matrix between the
representation maps f1 and f2 as Σ̂1,2 = En

[
f1(x)f2(x)

T
]
= 1

n

∑n
i=1 f1(x

i)f2(x
i)T ∈ Rd1×d2 .

Then the empirical KA will become

Â(K1,n,K2,n) =
∥Σ̂1,2∥2F

∥Σ̂1,1∥F ∥Σ̂2,2∥F
. (1)

RKHS operator interpretation of KA Inspired by the equation 1, we construct a consistent def-
inition of Kernel Alignment using tools of RKHS, where it suffices to consider output in one di-
mension2. Consider RKHS Hq containing functions hq : Xq → R with kernel Kq . Given eval-
uation (sampling) operators Ŝq : Hq → Rn defined by (Ŝqhq)

i = hq(x
i
q) = ⟨hq,Kq,xi

q
⟩. It is

not hard to check that the adjoint operator Ŝ∗
q : Rn → Hq can be written as Ŝ∗

q (w
1, . . . , wn) =

2We can generalize the definition to vector-valued functions by recasting hq : Xq → Rtq as hq : Xq ×
[tq] → R i.e. with kernels of the form Kq(xq, i, x

′
q, i

′) for integers 1 ≤ i, i′ ≤ tq .
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∑n
i=1 w

iKq(x
i
q, ·) and the empirical kernels can be written as Kq,n/n = ŜqŜ

∗
q (De Vito et al.,

2005; Smale & Zhou, 2007). Then the empirical KA may be written as

Â(K1,n,K2,n) =
⟨Ŝ1Ŝ

∗
1 , Ŝ2Ŝ

∗
2 ⟩F

∥Ŝ1Ŝ∗
1∥F ∥Ŝ2Ŝ∗

2∥F
=

∥Ŝ∗
1 Ŝ2∥2F

∥Ŝ∗
1 Ŝ1∥F ∥Ŝ∗

2 Ŝ2∥F
,

where Ŝ∗
1 Ŝ2 = 1

n

∑
i K1,xi

1
⊗K2,xi

2
and it coincides with the literature about learning theory with

RKHS.

3.1.2 POPULATION VERSION OF KA

For the population setting (infinite data limit of the evaluation operator) in L2, the restriction operator
Sq : Hq → L2(Xq, µ) is defined by Sqhq(x) = ⟨hq,Kq(x, ·)⟩Kq

and its adjoint S∗
q : L2(Xq, µ) →

Hq is given by S∗
q g =

∫
X g(x)Kq(x, ·)dx. Then the integral operator LKq

= SqS
∗
q : L2(Xq, µ) →

L2(Xq, µ) is given by LKqg(x) =
∫
X Kq(x, x

′)g(x′)dµ(x′) and the operator Σq = S∗
qSq : Hq →

Hq can be written as Σq =
∫
X Kq(x, ·)⊗Kq(x, ·)dµ(x) (De Vito et al., 2005; Rosasco et al., 2010).

Similarly, the population KA between two kernels K1,K2 can be defined by

A(K1,K2) =
Tr (LK1

LK2
)√

Tr
(
L2
K1

)
Tr

(
L2
K2

) ,
where the summation in ⟨K1,n,K2,n⟩F becomes the integration as

Tr (LK1
LK2

) =

∫
dµ(x1, x2)dµ(x

′
1, x

′
2)K1(x1, x

′
1)K2(x2, x

′
2).

If Kq(x, x
′) = ⟨fq(x), fq(x′)⟩, then S∗

qSq is a projection onto the span of coordinates of fq . The
population version of CKA is KA with Sq replaced with HSq .

Spectral Interpretation of KA The understanding of kernel alignment (KA) can be deepened
via the spectral decomposition of the associated integral operator. The mercer kernel K can be
decomposed as K =

∑
i ηi ϕi ⊗ ϕi, where ηi are the eigenvalues and ϕi are the eigenfunctions

of the integral operator LK (Cucker & Smale, 2002; Schölkopf, 2002). Defining the features as
fi =

√
ηiϕi and expressing the target function as h =

∑
i wifi, we obtain

A(K,h⊗ h) =

∑
i η

2
iw

2
i√∑

i η
2
i

∑
i ηiw

2
i

.

Similarly, given two kernels Kq =
∑

i ηq,iϕq,i ⊗ ϕq,i with fq,i =
√
ηq,iϕq,i, we have

A(K1,K2) =

∑
i,j⟨f1,i, f2,j⟩√∑
i η

2
1,i

∑
i η

2
2,i

=

∑
i,j η1,iη2,j⟨ϕ1,i, ϕ2,j⟩2√∑

i η
2
1,i

∑
i η

2
2,i

.

Letting [C1,2]i,j = ⟨ϕ1,i, ϕ2,j⟩ and defining η̂i = ηi/∥ηi∥, we can equivalently write

A(K1,K2) = Tr
[
C1,2 diag(η̂2)C

T
1,2 diag(η̂1)

]
= ⟨η̂1, (C1,2 ⊙ C1,2) η̂2⟩ = ⟨η̂1η̂T2 , C1,2 ⊙ C1,2⟩

with ⊙ as the Hadamard product. This formulation provides insight into kernel alignment by relating
it to the similarity between the eigenfunctions of the two integral operators. In particular, if η1 and
η2 are constant, then A(K1,K2) ∝ ∥C1,2∥2; and if C1,2 = I , then A(K1,K2) = ⟨η̂1, η̂2⟩.

3.1.3 STATISTICAL PROPERTIES OF KA.

Having introduced both the empirical and population versions of KA, we now explore its statistical
properties. Cristianini et al. (2006) shows that empirical KA concentrates to its expectation by
McDiarmid’s inequality and gives an O(1/

√
n) bound. For completeness, we state the following

lemma summarizing this statistical property and the proof is provided in Appendix 6.3.

Lemma 1. Let K1,K2 be two kernels for different representations and K̂1,n, K̂2,n ∈ Rn×n be
kernel matrices generated by n samples, then with probability at least 1− δ, we have

Â(K1,n,K2,n)−A(K1,K2) ≤
√
(32/n) log(2/δ).
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3.2 ALIGNMENT FROM DISTANCE ALIGNMENT

Distance alignment (DA) Given distances dq : Xq×Xq → R, then we can compare the difference
of two spaces by

D(d1, d2) =

∫
(d21(x, x

′)− d22(x, x
′))2dµ(x)dµ(x′).

Equivalence between KA and DA Suppose d2q = 2(1−Kq) (Igel et al., 2007) and Kq(xq, xq) =
1, which emerges naturally from assuming Kq(x, x

′) = ⟨fq(x), fq(x′)⟩, ∥fq(x)∥ = 1, and
d2q(xq, x

′
q) = ∥fq(xq) − fq(x

′
q)∥2, (i.e., Kq represents a mapping onto a ball). Also assume

∥Kq∥ = C. Then, D(d1, d2) = 8C(1−A(K1,K2)), hence the two paradigms are equivalent.

3.3 ALIGNMENT FROM INDEPENDENCE TESTING

Independence testing is a statistical method used to assess the degree of dependence between vari-
ables. It often involves examining the covariance and correlations between random variables and can
also be applied to quantify kernel-based independence. In this section, we outline several approaches
from independence testing within the alignment framework and investigate their connections to the
kernel alignment method discussed earlier.

Hilbert-Schmidt Independence Criterion (HSIC) The cross-covariance operator for two func-
tions (Baker, 1973) is given by C1,2[h1, h2] = Ex1,x2 [(h1(x1) − Ex1(h1(x1))(h2(x2) −
Ex2(h2(x2))] for h1 ∈ H1, h2 ∈ H2. From Gretton et al. (2005a)

HSIC(µ,H1,H2) = ∥C1,2∥2HS ,

where µ is the joint distribution of X1 and X2. We can also note that

HSIC(µ,H1,H2) = ∥E [Kx1
⊗Kx2

] ∥2 = ∥Σ1,2∥2HS .

Hence HSIC is effectively and unnormalized version of CKA, or, more explicitly,

CKA(K1,K2) =
HSIC(H1,H2)√

HSIC(H1,H1)HSIC(H2,H2)
.

Statistical property of HSIC Gretton et al. (2005b) shows that, excluding the O(n−1) diago-
nal bias, centered empirical HSIC concentrates to population and Song et al. (2012) provides an
unbiased estimator of HSIC and shows its concentration, both by U-statistic arguments.
Remark 1 (Other notions from independence testing). There are other concepts of independence test-
ing for alignment such us Constrained Covariance (COCO) (Gretton et al., 2005a), Kernel Canonical
Correlation (KCC), Kernel Mutual Information (KMI) (Bach & Jordan, 2002). They are also related
to kernel alignment and more detailed explanations can be found in Appendix 6.2.

3.4 ALIGNMENT FROM MEASURE ALIGNMENT

There are several methods for comparing measures on the same space. One can then quantify inde-
pendence by comparing a joint measure with the product of its marginals. This principle allows us
to interpret HSIC as test for independence given two function classes.

MMD to HSIC Following Gretton et al. (2012), we start by introducing the so-called Maximum
Mean Discrepancy (MMD). Let H be a class of functions h : X → R and let µq be different
measures on X . Then, letting xq ∼ µq ,

MMD(µ1, µ2;H) = sup
h∈H

E [h(x1)− h(x2)] .

Let H be an RKHS and restrict to a ball of radius 1, then

MMD(µ1, µ2;H)2 = ∥E [Kx1 −Kx2 ] ∥2H = E [K(x1, x
′
1) +K(x2, x

′
2)− 2K(x1, x2)] .
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Now we construct a measure of independence by applying MMD on µ versus µ1 ⊗ µ2 where H is
replaced with H1 ×H2 and get HSIC

MMD(µ, µ1 ⊗ µ2;H1 ⊗H2)
2 = HSIC(µ,H1,H2) = ∥Σ1,2∥2 =

∑
i

ρ2i

where
{
ρ2i
}

is the spectrum of Σ1,2Σ2,1.

We can also use tests of independence that don’t explicitly depend on a function class, such as
mutual information, by letting µ be a Gaussian Process measure on two functions in their respective
RKHS with covariance defined by their kernels.

KL Divergence to Mutual Information Given KL divergence

DKL(µ||ν) =
∫

dµ(x) log

(
dµ

dν
(x)

)
,

we can define mutual information as

I(µ) = DKL(µ||µ1⊗µ2) =

∫
dµ(x1, x2) log

(
µ(x1, x2)

µ1(x1)µ2(x2)

)
=

∫
dµ(x1, x2) log

(
µ(x2|x1)

µ2(x2)

)
.

For multivariate Gaussian µ, with marginals µq = N (0,Σq),

MI(ν) =
1

2
log

(
|Σ1||Σ2|

|Σ|

)
=

1

2
log

(
|Σ2|

|Σ2 − Σ2,1Σ
−1
1 Σ1,2|

)
.

For the simplest case of Σq = I , then this simplifies to

MI(ν) = − 1
2 log(|I − Σ1,2Σ2,1|) = − 1

2

∑
i

log(1− ρ2i ).

Wasserstein distance For the Wasserstein distance

W2(µ, ν) = inf{E(x,y)∼γ

[
∥x− y∥2

]
: γ1 = µ, γ2 = ν},

applying µ and µ1 ⊗ µ2 to measure independence, we have

W2(µ, µ1 ⊗ µ2) = inf{E((x1,x2),(x′
1,x

′
2))∼γ

[
∥x1 − x′

1∥2 + ∥x2 − x′
2∥2

]
: γ1 = µ, γ2 = µ1 ⊗ µ2}.

For mean zero Gaussians

W2(µ1, µ2) = Tr[Σ1 +Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2]

and as a measure of independence with Σq = I

W2(µ, µ1 ⊗ µ2) = 2Tr[I − (I − Σ1,2Σ2,1)
1/2] = 2

∑
i

(
1−

√
1− ρ2i

)
.

In summary, we’ve introduced several popular metrics for alignment between two representations
and related them via spectral decompositions to a central notion of kernel alignment generalized for
RKHS. Moreover, similar notions can be used to quantify alignment between a model and a task to
estimate generalization error, and more details are provided in the Appendix 6.1.

4 STITCHING: TASK AWARE REPRESENTATION ALIGNMENT

Building on our understanding of kernel alignment—a fundamental metric for evaluating the align-
ment of representations detailed in the previous section—we now explore stitching, a task-aware
concept of alignment. Stitching involves combining layers or components from various models to
create a new model which can be used to understand of how different parts contribute to overall per-
formance or to compare the learned features for a task. In this section, we mathematically formulate
this process and provide some intuition by demonstrating that the generalization error after stitching
can be bounded by kernel alignment using spectral arguments.
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4.1 STITCHING ERROR BETWEEN MODELS

In the following, we focus on stitching between two modalities. Figure 1 provides a detailed illus-
tration of the functions, spaces, and compositions in question. Denote the function space for task
learning as Hq := {hq : Xq → Yq|hq = gq ◦ fq, gq ∈ Gq, fq ∈ Fq} with q = 1, 2. Here
Fq : Xq → Zq and Gq : Zq → Yq . Denote S1,2 := {s1,2 : Z1 → Z2} as the stitching map from Z1

to Z2 and S2,1 := {s2,1 : Z2 → Z1} reversely. Define the risk concerning the least squares loss as

Rq(hq) = E
[
∥hq(x)− y∥2

]
=

∫
Xq×Yq

∥hq(x)− y∥2dρq(x, y), hq ∈ Hq.

Here, ρq(x, y) is the joint distribution of Xq and Yq and we use the notation ∥ · ∥ to represent ∥ · ∥Yq

associated with space Yq for simplicity, i.e. absolute value for Yq = R, l2 norm for Yq = Rtq and
L2 norm for Yq being the function space. For hq ∈ Hq , denote any minimizer of R(hq) among Hq

as h∗
q , that is,

Rq(Hq) := Rq(h
∗
q) = min

h∈Hq

Rq(h), q = 1, 2.

Moreover, denote the function spaces generated after stitching from Z1 to Z2 as

H1,2 = {h1,2 = g2 ◦ s1,2 ◦ f1 : s1,2 ∈ S1,2}

and conversely as H2,1.

Lenc & Vedaldi (2015) proposed to describe the similarity between two representations by quanti-
fying how usable a representation f1 is when stitching with g2 through a function s1,2 : Z1 → Z2

or oppositely through s2,1 ∈ S2,1. To quantify the similarity, we provide a detailed definition of the
stitching error.

Stitching error Define the stitching error as

Rstitch
1,2 (s1,2) := R2(g2 ◦ s1,2 ◦ f1) = R2(h1,2)

and the minimum as

Rstitch
1,2 (S1,2) := min

s1,2∈S1,2

R2(h1,2) = R2(H1,2).

To quantify the difference in the use of stitching, we define the excess stitching risk as

Rstitch
1,2 (S1,2)−R2(h2).

Note that Rstitch
1,2 (S1,2) − R2(h2) quantifies a difference in use of representation (fix g2, compare

s1,2 ◦ f1 vs f2), while if Y1 = Y2 and R1 = R2 then Rstitch
1,2 (S1,2)−R1(h1) quantifies difference

between g2 ◦ s1,2 and g1 (fix f1).

The functions in S1,2 are typically simple maps such as linear layers or convolutions of size one, to
avoid introducing any learning, as emphasized in Bansal et al. (2021). The aim is to measure the
compatibility of two given representations without fitting a representation to another. One perspec-
tive inspired by Lenc & Vedaldi (2015) is that we should not penalize certain symmetries, such as
rotations, scaling, or translations, which do not alter the information content of the representations.
Furthermore, the amount of unwanted learning may be quantified by stitching from a randomly
initialized network.

4.2 STITCHING ERROR BOUNDS WITH KERNEL ALIGNMENT

In this section, we focus on a simplified setting where s1,2 : Z1 → Z2 is a linear stitching, that is,
s1,2(z1) = S1,2z1 with S1,2 ∈ Rd2×d1 , zq ∈ Rdq . Additionally, we assume Y1 = Rt1 ,Y2 = Rt2 .
In this section, we quantify the stitching error and excess stitching risk using kernel alignment and
provide a lower bound for the stitching error when stitching forward.

The following lemma shows that when Gq are linear, stitching error only measures the difference in
risk of H1 versus H2.

8
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Lemma 2. Suppose dim(Y1) = dim(Y2) = d and R1 = R2. Let gq ∈ Gq be linear with gq(zq) =
Wqzq and Wq ∈ Rd×dq . Let s1,2 : Z1 → Z2 be linear with s1,2(z1) = S1,2z1 and S1,2 ∈ Rd2×d1 .
Then Rstitch

1,2 (S1,2) = R1(h1).
Remark 2. The lemma applies when Hq represents a neural network with Gq as the output linear
layer, as well as when Hq is an RKHS with a Mercer kernel and Gq is the linear map of representa-
tions 3.

The next theorem shows the case when Gq are nonlinear with the κ-Lipschitz property, ∥g(z) −
g(z′)∥ ≤ κ∥z − z′∥. One intermediate example is the stitching between the middle layers of neural
networks.
Theorem 1. Suppose g2 is κ2-Lipschitz. Again let s1,2 be linear, identified with matrix S1,2. With
the spectral interpretations of Σ1,2 = E

[
f1f

T
2

]
= diag(η1)1/2C1,2diag(η2)1/2 and Ã2 = ∥I∥η2

−
∥C1,2∥2η2

as Paragraph 3.1.2, we have

Rstitch
1,2 (S1,2) ≤ R2(h2) + κ2

2Ã2 + 2κ2(Ã2R2(h2))
1/2. (2)

Proof. Breaking Rstitch
1,2 (s1,2) into two parts and using Cauchy-Schwarz we get

E
[
∥g2(S1,2f1)(x)− y∥2

]
=E

[
∥(g2(S1,2f1)(x)− g2(f2)(x))− (y − g2(f2)(x))∥2

]
≤R2(h2) + E

[
∥g2(S1,2f1)(x)− g2(f2)(x)∥2

]
+ 2(E

[
∥g2(S1,2f1)(x)− g2(f2)(x)∥2

]
R2(h2))

1/2.

As g2 is κ2-Lipschitz, we can bound with the error from linearly regressing f2 on f1

E
[
∥g2(S1,2f1)(x)− g2(f2)(x)∥2

]
≤ κ2

2E
[
∥S1,2f1(x)− f2(x)∥2

]
= κ2

2(∥S1,2∥2η1
+ ∥I∥2η2

− 2⟨S1,2,Σ
T
1,2⟩)

with ∥M∥2η = ⟨M,Mdiag(η)⟩. Taking derivatives, we note that the minimizer of the RHS is S1,2 =

ΣT
1,2diag(η1)−1. Plugging in, the RHS reduces to κ2

2Ã2. Thus

Rstitch
1,2 (S1,2) ≤ Rstitch

1,2 (Σ1,2)

≤ R2(h2) + κ2
2Ã2 + 2κ2(Ã2R2(h2))

1/2.

Remark 3. In arguing that kernel alignment bounds stitching error for Theorem 1, we made sev-
eral simplifying assumptions, which we now assess. Firstly, we restricted the stitching S1,2 to linear
maps, following the transformations commonly used in practice (Bansal et al., 2021; Csiszárik et al.,
2021), and to preserve the significance of the original representations. If we relax this assumption,
we observe that a similar result holds, with Ã2 = infs1,2∈S1,2 E[∥s1,2(f1(x)) − f2(x)∥2]. Interest-
ingly, for s1,2 to use only information about the covariance of f1, f2, similarly to kernel alignment,
s1,2 must be linear. Furthermore, we note that for stitching classes that include all linear maps, the
linear result remains valid.
Remark 4. Note that the notion of alignment that appears here, namely ∥I∥2η2

− Ã2 =

∥C1,2∥2η2
= ∥C1,2diag(η2)∥2, is similar to, yet distinct from, kernel alignment given by ∥Σ1,2∥2 =

∥diag(η1)1/2C1,2diag(η2)1/2∥2. In particular, the spectrum η1 is irrelevant for the bound. However,
this does not hold if regularization is added to S1,2 by analogy to linear regression.
Remark 5. If two representations are similar in the alignment sense, they are also similar in the
stitching sense; however, the converse does not necessarily hold. By loose analogy to topology, this
suggests that kernel alignment is a stronger notion of similarity.

3 More explicitly, if the RKHS kernel Kq is a sum of separable kernels, then by Mercer’s theorem we can
decompose it as Kq =

∑dq
ρ=1 ηq,ρϕq,ρ ⊗ ϕq,ρ where ηq,ρ ≥ 0 are the eigenvalues, and ϕq,ρ : RDq → Rdq are

the orthonormal eigenfunctions of the integral operator associated with the kernel Kq . Then any hq ∈ Hq can
be decomposed as hq = gq ◦ fq , where fq ∈ Fq is the feature map fq(Xq)ρ =

√
ηρϕq,ρ(Xq) and gq ∈ Gq is

linear gq(zq) = wq · zq .

9



Published as a conference paper at ICLR 2025

Excess stitching risk can also serve as an intermediate result to bound the difference in risk. Let
Y1 = Y2 and R1 = R2. To obtain a lower bound for Rstitch

1,2 (S1,2) in a practical setting, we can
assume that S1,2 ◦G2 ⊆ G1. For models involving several compositions, such as deep networks, this
condition can hold when stitching from a layer further from the output to a layer closer to the output
(i.e., stitching forward), provided that the networks are similar and the layer indices are aligned at
the end.
Lemma 3. Let Y1 = Y2 = Y and R1 = R2 = R. If S1,2 ◦G2 ⊆ G1 then Rstitch

1,2 (S1,2) ≥ R1(H1).

The following theorem derives directly from equation 2 and Lemma 3.
Theorem 2. Let Y1 = Y2 and R1 = R2 = R. Assume S1,2 ◦ G2 ⊆ G1, g2 is κ2-Lipschitz, and
R(h2) = R(H2). Then

R(H1)−R(H2) ≤ Rstitch
1,2 (S1,2)−R(H2) ≤ κ2

2Ã2 + 2κ2(Ã2R(H2))
1/2.

Remark 6. If we consider deep models and keep the H1,H2 the same but iterate over layers j
stitching forward, then

R(H1)−R(H2) ≤ min
j

{
(κ

(j)
2 )2Ã

(j)
2 + 2κ

(j)
2 (Ã

(j)
2 R(H2))

1/2
}
.

Alternatively, by making similar assumptions and swapping the index 1 ↔ 2, which requires G1 =
G2 up to a linear layer (due to the S1,2 ◦ G2 ⊆ G1 condition), we get

|R(H1)−R(H2)| ≤ max
i∈{1,2}

{
κ2
i Ãi + 2κi(ÃiR(Hq))

1/2
}
.

The above result can be stated informally as “alignment at similar depth (measured backward from
the output) bounds differences in risk”.

The results presented have several practical implications. First, we build on the experiments from
Huh et al. (2024), which provide evidence for the alignment of deep networks at a large scale using
measures similar to kernel alignment. By establishing a connection between kernel alignment and
stitching, our work supports building universal models that share architectures across modalities
as scale increases. Second, we can elucidate the experiments from Bansal et al. (2021), which
suggest that typical SGD minima have low stitching costs (stitching connectivity). This aligns with
works that argue feature learning under SGD can be understood through the lens of adaptive kernels
(Radhakrishnan et al., 2022; Atanasov et al., 2022).

5 CONCLUSION

In this paper, we review and unify several representation alignment metrics, including kernel align-
ment, distance alignment, and independence testing, demonstrating their equivalence and interrela-
tionships. Additionally, we formalize the concept of stitching, a technique used in uni/multi-modal
settings to quantify alignment in relation to a given task. Furthermore, we establish bounds on stitch-
ing error across different modalities and derive stitching error bounds based on misalignment, along
with their generalizations and implications.
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6 APPENDIX

6.1 ALIGNMENT TO TASK

Here we mention ideas of alignment between a representation and task used to estimate generaliza-
tion error and characterize spectral contributions to sample complexity.

Kernel alignment risk estimator (KARE) In Jacot et al. (2020) we have the following definition
for KARE which is an estimator for risk.

ρ(λ, yn,Kn) =
1
n ⟨(Kn/n+ λI)−2, yny

T
n ⟩

( 1nTr[(Kn/n+ λI)−1])2

This was also obtained in Golub et al. (1979), Wei et al. (2022), Craven & Wahba (1978).

Spectral task-model alignment From Canatar et al. (2021), we have a definition for the cumula-
tive power distribution which quantifies task-model alignment.

C(n) =

∑
i≤n ηiw

2
i∑

i ηiw
2
i

Here K =
∑

i ηiϕi ⊗ ϕi, ⟨ϕi, ϕj⟩ = δi,j , and target hµ =
∑

i wi
√
ηiϕi. C(n) can be interpreted

as fraction of variance of hµ explained by first n features. The faster C(n) goes to 1, the higher the
alignment.

Source Condition From Rosasco et al. (2005) we have bounds on generalization of kernel ridge
assuming some regularity of hµ, called source condition

hµ ∈ Ωr,R =
{
h ∈ L2(X, ρ) : h = Lr

Kv, ∥v∥K ≤ R
}

Assuming hµ =
∑

i wi
√
ηiϕi, then the statement can be rewritten as

∞∑
i=1

ηiw
2
i

η2ri
< ∞

Remark 7. KTA appears in several theoretical applications. Cristianini et al. (2001) bounds gener-
alization error of Parzen window classifier 1. Cristianini et al. (2006); Cortes et al. (2012) show that
there exist predictors for which kernel target alignment (KTA) A(K, yyT ) bounds risk.

h(x) =
Ex′,y′ [K(x, x′)y′]

Ex′,x [K(x, x′)2]
⇒ R(h) ≤ 2(1−A(K, yyT ))

Furthermore, several authors including Atanasov et al. (2022); Paccolat et al. (2021); Kopitkov &
Indelman (2020); Fort et al. (2020); Shan & Bordelon (2021) use KTA to study feature learning and
Neural Tangent Kernel evolution.

1Cortes et al. (2012) notes error in proof since implicitly assumes
maxx Ex′

[
K2(x, x′)

]
/Ex,x′

[
K2(x, x′)

]
= 1 making kernel constant. However proof can be saved

with an additional assumption.
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6.2 OTHER NOTIONS FOR ALIGNMENT FROM INDEPENDENCE TESTING

Constrained Covariance (COCO) Then Gretton et al. (2005a) proposed the concept of con-
strained covariance as the largest singular value of the cross-covariance operator,

COCO(µ,H1,H2) = sup{cov[h1(x1), h2(x2)] : h1 ∈ H1, h2 ∈ H2}

Kernel Canonical Correlation (KCC) From Bach & Jordan (2002)

KCC(µ,H1,H2, κ) = sup

{
cov[h1(x1), h2(x2)]

(var(h1(x1)) + κ∥h1∥2H1
)1/2(var(h2(x2)) + κ∥h2∥2H2

)1/2
: h1 ∈ H1, h2 ∈ H2

}

The next two are bounds on mutual information from correlation and covariance respectively

Kernel Mutual Information (KMI) From Bach & Jordan (2002)

KMI(H1,H2) = −1

2
log(|I − (κ1,nκ2,n)K1,nK2,n|)

where kernels are centered and κq,n = mini
∑

j Kq(xq,i, xq,j) but empirically κ = 1/n suffices.

6.3 ADDITIONAL PROOFS

In this section, we provide the detailed proofs of Lemmas presented in and Section 3 and Section 4.

We begin with the proof of Lemma 1. For completeness, we first restate the lemma below.

Lemma 4. Assume |Kq(xq, x
′
q)| ≤ Cq . Let Â1,2(X) = Â1,2((x

1
1, x

1
2), . . . , (x

n
1 , x

n
2 )) =

1
n2 ⟨K1,K2⟩F . Let A1,2 = EÂ1,2, Â =

Â1,2√
Â1,1Â2,2

, and A =
A1,2√

A1,1A2,2

. Then with probability

at least 1− δ, and ϵ =
√
(32/n) log(2/δ), we have |Â− A| ≤ C(X)ϵ, where C(X) is non-trivial

function.

Proof. Let (xi
1
′
, xi

2
′
) = (xi

1, x
i
2) for all i = 1, . . . n except k. Then

Dij = K1(x
i
1, x

j
1)K2(x

i
2, x

j
2)−K1(x

i
1
′
, xj

1

′
)K2(x

i
2
′
, xj

2

′
) and note |Dij | ≤ 4C1C2. Then

|Â1,2(X)− Â1,2(X
′)| = n−2

2
∑
j ̸=i

|Dij |+ |Dii|

 ≤ 4C1C2
2n− 1

n2
≤ 8C

n

Applying McDiarmid, we get

P{|Â1,2 −A1,2| ≥ ϵ} ≤ 2 exp

(
−ϵ2n

32C2

)
which can also be read as, with probability at least 1− δ, |Â1,2 −A1,2| ≤ ϵ =

√
(32/n) log(2/δ)

Finally, we show that |Âi,j −Ai,j | ≤ ϵ for i, j ∈ {1, 2} gives |Â−A| ≤ C(X)ϵ.

|Â−A| =
∣∣∣Â1,2(Â1,1Â2,2)

−1/2 −A1,2(A1,1A2,2)
−1/2

∣∣∣
=|Â1,2 −A1,2|(Â1,1Â2,2)

−1/2 +A1,2

∣∣∣(Â1,1Â2,2)
−1/2 − (A1,1A2,2)

−1/2
∣∣∣

=|Â1,2 −A1,2|(Â1,1Â2,2)
−1/2

+A1,2

(∣∣∣(Â1,1Â2,2)
−1/2 − (A1,1Â2,2)

−1/2
∣∣∣+ ∣∣∣(A1,1Â2,2)

−1/2 − (A1,1A2,2)
−1/2

∣∣∣)
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Lastly, we can use

(x−1/2 − y−1/2) =
y1/2 − x1/2

(xy)1/2
=

y − x

(xy)1/2(y−1/2 + x−1/2)

Now we are in the position to prove Lemma 2. For completeness, we first restate the lemma below.
Lemma 5. Suppose dim(Y1) = dim(Y2) = d and R1 = R2. Let gq ∈ Gq be linear with gq(zq) =
Wqzq and Wq ∈ Rd×dq . Let s1,2 : Z1 → Z2 be linear with s1,2(z1) = S1,2z1 and S1,2 ∈ Rd2×d1 .
Then Rstitch

1,2 (S1,2) = R1(H1).

Proof. For the linear case, there exists a vector Wq ∈ Rd×dq , such that gq(zq) = Wqzq, zq ∈ Rdq .
We can write the error of stitching as

Rstitch
1,2 (s1,2) = E

[
∥W2S1,2f1 − y∥2

]
= E

[
∥(W2S1,2 −W1)f1∥2

]
+ E

[
∥W1f1(x)− y∥2

]
= ∥W2S1,2 −W1∥2η1

+R1(h1),

where we used that for W1 to be optimal, we require ∂W1R1(h1) = E
[
(W1f1 − y)fT

1

]
= 0.

Minimizing with respect to S1,2 yields

Rstitch
1,2 (S1,2) = ∥Π⊥

2 W1∥2η1
+R1(H1),

where we use Π2 = I − (WT
2 diag(η1)W2)

†WT
2 diag(η1) to denote the residual of the generalized

η1-projection onto (column) span of W2. We note that in general, as long as d ≤ d2, we have
Rstitch

1,2 (S1,2) = R1(H1).

15
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