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ABSTRACT

Tabular In-Context Learning (ICL) transformers, such as TabPFN and Tab-
ForestPFN, have shown strong performance on tabular classification tasks. In
this paper, we introduce Attic, a new architecture for ICL-transformers. Unlike
TabPFN and TabForestPFN, where one token represents all features of one obser-
vation, Attic assigns one token to each feature of every observation. This simple
architectural change results in a significant performance boost. As a result, we
can confidently say that neural networks outperform tree-based methods like XG-
Boost.

1 INTRODUCTION

Tabular classification is an important prediction task in many different parts of industry. This task
concerns predicting the value of a certain feature for an observation, given other features, often
stored in tabular format. Tabular classification can be used to predict heart disease based on pa-
tient characteristics (Singh & Kumar, 2020), to predict whether someone commits credit card fraud
(Awoyemi et al., 2017), or to predict the chance an employee quits the company (Fallucchi et al.,
2020). Numerous methods from wildly different backgrounds have been used to tackle this task,
with the most popular being tree-based methods like XGBoost (Chen & Guestrin, 2016) or ensem-
ble methods like AutoGluon (Erickson et al., 2020).

Recently, there has been work that tries to improve the classification performance by pretraining
an In-Context Learning (ICL) transformer. ICL-transformers like TabPFN (Hollmann et al., 2023)
perform zero-shot inference after pretraining on synthetic data, while TabForestPFN (Breejen et al.,
2024) further fine-tunes this ICL-transformer for better performance. Both use the same transformer
architecture, where one token represents all the features of one observation. We refer to this as an
’observation token’. Using observation tokens, these ICL-transformers embed the features of one
observation into a token via a linear embedding.

This observation token constrains the ICL-transformer in two ways. First of all, the embedding layer
has a maximum size; TabPFN and TabForestPFN both accept a maximum of a hundred features.
Secondly, these ICL-transformers are dependent on the order of the features. In tabular data, the
order of the columns should not influence the final prediction, but in ICL-transformers like TabPFN
and TabForestPFN, the linear embedding layer enforces an arbitrary order in the features.

In this paper, we introduce a straightforward modification to the architecture: replacing the obser-
vation token with a cell token, which represents a single feature of each observation. This enables
the ICL transformer to accommodate as many features as the GPU can handle while maintaining
feature-order invariance. We refer to this modified ICL transformer as Attic: “A Tabular Trans-
former based on In-Context Learning.” Given this architectural change, the memory required to fit
everything on the GPU increases significantly. We tackle this issue by using FlashAttention and
bfloat16 mixed-precision.

Not only does this architectural change allow the network to use an arbitrary number of features,
but we also observe an immense performance increase. The performance increase is so significant
that it outperforms XGBoost and CatBoost on average on two benchmarks (Grinsztajn et al., 2022;
McElfresh et al., 2023) even when these methods are allowed to run hundreds of hyperparameter
searches, while Attic does not run any hyperparameter search at all. Especially for datasets with
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more than 500 observations, there are very few datasets in the benchmark suite for which XGBoost
or CatBoost have better performance.

Additionally, we found a dataset for which Attic has 20% higher accuracy than any other method,
including ensemble methods like AutoGluon. This shows that Attic is a strong method that should
be included in ensemble methods because it can achieve performance levels on some datasets that
no other methods can attain. Given these strong results, we are excited to see future developments
in the field of tabular ICL.

2 RELATED WORK

The most popular methods for tabular classification are tree-based methods such as XGBoost (Chen
& Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018). The
fundamental principle behind tree-based methods is to iteratively split the feature space and assign
predictions based on the resulting partitions. Recent tabular prediction benchmarks (Gorishniy et al.,
2021; Grinsztajn et al., 2022; McElfresh et al., 2023; Zabërgja et al., 2024) show that these tree-based
methods perform exceptionally well.

Numerous studies have tackled tabular data using neural networks (Kadra et al., 2021; Somepalli
et al., 2021; Gorishniy et al., 2022). Generally, their performance is lacking compared to tree-based
methods, although progress is still being made (Gorishniy et al., 2024). Neural networks trained
from scratch seem to struggle in low-data regimes because they may lack specific biases that tree-
based methods have (Grinsztajn et al., 2022).

Other research has focused on using language data for their predictions (Yang et al., 2023; Kim et al.,
2024; Yan et al., 2024). When datasets are small, pretrained language models can infer relationships
between features based on feature names and table metadata. This capability allows such approaches
to achieve excellent performance in a few-shot setting (Hegselmann et al., 2023; Gardner et al.,
2024). However, these methods are unlikely to scale effectively to larger datasets and are heavily
dependent on having informative feature names, which are not present in all datasets.

Our work contributes to the field of tabular In-Context Learning (ICL)(Hollmann et al., 2023). In
this approach, transformers are pretrained to predict test observations using training observations
provided in the context. A major limitation of ICL-transformers is the necessity of including the
entire training dataset within the context, so there is active research on how to address this issue (Ma
et al., 2023; Feuer et al., 2024; Breejen et al., 2024; Thomas et al., 2024)

Regarding neural network architectures, transformers trained from scratch use various strategies.
SAINT (Somepalli et al., 2021) uses cell tokens, whereas FT-Transformer (Gorishniy et al., 2021)
uses feature tokens. Benchmark results (Grinsztajn et al., 2022; McElfresh et al., 2023) indicate no
clear relationship between the token scheme and performance. Additionally, we have not identified
any literature suggesting that cell tokens are superior to observation tokens for modeling tabular
data. This gap shows the relevance of our work, which specifically compares token schemes for
ICL-transformers.

3 METHODOLOGY

In tabular classification, we are interested in predicting labels y ∈ Nn given features X ∈ Rn×k,
where k is the number of features and n is the number of observations. In tabular In-Context Learn-
ing (ICL), we consider a support set (XS ,yS), where yS is known, and a query set (XQ,yQ),
where yQ must be predicted or is used as a loss during training. During inference, it is natural to
think of the support set as a training dataset and the query set as the test dataset. However, this
comparison breaks down during pretraining and fine-tuning, as the query set then also comes from
the training dataset. An ICL-transformer takes (XS ,yS ,XQ) as input and predicts yQ.

We train Attic using the same tabular ICL-pipeline as described by Breejen et al. (2024). This
means that during pretraining, new datasets are generated at each step using a synthetic dataset
generator. This generator combines the the TabPFN dataset generator (Hollmann et al., 2023) with
the forest dataset generator (Breejen et al., 2024). The generated datasets are preprocessed and
split into support and query sets before being fed into the ICL-transformer. During fine-tuning, the
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Figure 1: Architecture of Attic

ICL-transformer is further trained by drawing support and query sets from the training dataset of
the specific real-world dataset being used. Inference is done by selecting the support set from the
training dataset and the query set from the validation or test dataset.

3.1 ARCHITECTURE

In this paper, we introduce Attic, an ICL-transformer based on cell tokens. The architecture is
depicted in Figure 1. The core difference compared to TabPFN (Hollmann et al., 2023) and Tab-
ForestPFN (Breejen et al., 2024) is what a token represents. Attic uses cell tokens, meaning that one
token represents one feature of one observation, as opposed to TabPFN’s observation token, which
represents all features of one observation.

Given a value xij ∈ R of observation i and feature j, Attic embeds this value xij into token hij ∈
Rd, where d is the dimension of the model. These tokens pass through L layers, each consisting of
an observation attention layer, a feature attention layer, two MLP layers, and layer normalizations
before each module. The MLP layers consist of two linear layers, with the inner dimension being
four times larger than d, and a GeLU activation in between. The final layer of the model isolates
yQ from the other tokens and maps it to the number of classes, which is fixed at 10 classes in all
ICL-transformers discussed.

The observation attention treats the observation dimension as the sequence and the feature dimension
as a batch dimension, while feature attention does the opposite. The observation attention mecha-
nism uses a mask that ensures that observations from the query set cannot see other observations
from the query set. This guarantees that the prediction for a test observation remains independent of
the other test observations in the context. This attention mechanism is borrowed from TabPFN.

Compared to TabPFN and equivalently TabForestPFN, the tokens of Attic have an additional feature
dimension, which increases the total memory requirement by a factor k. The embedding is also
different, since the TabPFN architecture embeds from observation xi ∈ Rk to token hi ∈ Rd. Our
embedding also embeds the labels of yS as if it were a language tokens, with each class treated
as a word, in contrast to TabPFN, which treats yS as a float vector. We changed this because we
believe this formulation is more natural, but performance-wise, it has little impact. Other than the
differences mentioned, there are no additional architectural changes between Attic and TabPFN.
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Table 1: Model comparison overview.

TabForestPFN Attic

Original BF16-M BF16-L

Architecture

Based on observation tokens ✔ ✔ ✔ ✘
Based on cell tokens ✘ ✘ ✘ ✔
Uses FlashAttention ✘ ✔ ✔ ✔
Uses mixed-precision with bfloat16 ✘ ✔ ✔ ✔
Hidden dimension size 512 512 2048 512
Number of layers 12 12 24 12

Hyperparameters

Batch size 512 1024 1024 1024
Number of steps 50k 50k 50k 44k
Number of generated pretraining datasets 26M 51M 51M 45M
Learning rate 1e-4 1e-4 1e-4 1e-3
Weight decay 0.0 0.0 0.0 0.1
Pretraining dataset minimum number of observations 128 128 128 16
Pretraining dataset maximum number of observations 1024 1024 1024 512
Pretraining dataset minimum number of features 3 3 3 1
Pretraining dataset maximum number of features 100 100 100 16

Statistics

Training time (H100 GPU-hours) 199 97 299 208
Parameter count 39M 39M 1226M 76M

3.2 MOTIVATION

In the results, we will see that this cell-token architecture is significantly more performant than
the observation-token architecture. In our intuition, this is because the cell-token architecture is
feature-order invariant. For tabular data, the order of the features holds no importance: in an Excel
sheet, you can freely rearrange the columns, and this should not influence the prediction. However,
observation-token-based ICL-transformers do enforce a specific feature order; the linear mapping
between features and tokens changes when the features are reordered.

We believe that this dependency on feature order leads to training inefficiencies. The cell-token
ICL-transformer treats each feature the same and learns how to construct relationships between
features. In contrast, the observation-token ICL-transformer assigns each feature a unique position
in the embedding. Consequently, when learning the relationships between features, it has to learn
this relationship for every possible position that these features can be in.

4 EXPERIMENTS

Our experiments focus on showing the improvement of Attic over TabForestPFN (Breejen et al.,
2024). In Section 4.1, we describe the design choices for the comparison, conducted on the bench-
marks outlined in Section 4.2. Section 4.3 presents the main results, while Sections 4.5, 4.6, and 4.7
delve deeper into the findings. Finally, we include some initial regression results in Section 4.8.

4.1 DESIGN

For the architectural comparison between Attic and TabForestPFN, we want to change the architec-
ture while keeping all other hyperparameters the same. However, the computational costs of Attic
scale with both the number of features and the number of observations, in contrast to TabForestPFN,
which scales only with the number of observations. For this reason, we pretrain Attic using smaller
pretraining datasets. Furthermore, Attic uses FlashAttention (Dao et al., 2022) and mixed-precision
with bfloat16, so it is important to implement these techniques on TabForestPFN for a fair compari-
son.
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Table 1 reports all the differences between Attic and TabForestPFN, including the variants BF16-M
and BF16-L, which implement mixed precision and FlashAttention for two different model sizes.
The number of training steps for Attic has been set to ensure that Attic trains for approximately 200
GPU-hours on an H100, matching the training time of TabForestPFN. With TabForestPFN BF16-L,
we can assess the sample efficiency of Attic, as TabForestPFN BF16-L is a larger model trained on
a greater number of generated pretraining datasets. We include TabForestPFN BF16-M to show the
effect of mixed-precision training on TabForestPFN.

Other differences in hyperparameters do not affect the fairness of the comparison. Optimizer hyper-
parameters such as the learning rate and weight decay are model-specific; we experienced training
collapse when using these settings on TabForestPFN. Additionally, pretraining Attic on smaller
datasets than TabForestPFN favors TabForestPFN, as almost all our benchmark datasets contain
more than 512 observations or more than 16 features. This makes it more challenging for Attic to
generalize to larger datasets. Given this experimental design, if Attic outperforms TabForestPFN
and its variants, we can conclude that Attic has a better architecture.

4.2 BENCHMARKS

We evaluate the ICL-transformers on two benchmarks: the benchmark we refer to as WhyTrees
(Grinsztajn et al., 2022) and TabZilla (McElfresh et al., 2023). For most of the methods, we rely on
publicly available results, which we further extend by running TabPFN, TabForestPFN, AutoGluon
(Erickson et al., 2020), and Attic ourselves.

WhyTrees is a benchmark that tests on datasets ranging from 1,000 to 10,000 observations, providing
a total of 25 classification datasets. These datasets are categorized into ‘numerical’ datasets, which
include only numerical features, and ‘mixed’ datasets, which also includes categorical features. The
benchmark authors run methods with up to a few hundred hyperparameter search iterations.

TabZilla is a benchmark consisting of 176 datasets, of which we test on 94. See Appendix A.2 for
details on the dataset selection. The datasets in TabZilla vary in size from 10 to 100,000 observa-
tions and include between 2 to hundreds of features. Hyperparameter searches for the methods are
conducted up to 30 iterations.

When running TabPFN, TabForestPFN, and Attic on these benchmarks, we run each method ten
times and report the average performance across these runs. AutoGluon, using the ‘best quality’
setting, is only run once on the WhyTrees benchmark and is not run on TabZilla due to extremely
long running times. The run times for these methods can be found in Appendix A.4, and metadata
about the datasets for both benchmarks is available in Appendix A.3.

4.3 MAIN RESULTS

Figure 2 reports the main results of Attic on the WhyTrees benchmark compared to other baselines
provided by the benchmark. Table 3 shows the results of Attic against other ICL-transformers and
AutoGluon. The results for the TabZilla benchmark are presented in Table 2.

First, we compare Attic with the TabForestPFN variants. Both benchmarks indicate that Attic out-
performs all variants of TabForestPFN by a wide margin. A closer examination of the results reveals
that switching to bfloat16 severely diminishes the performance of TabForestPFN, and that scaling up
this model barely recovers the original performance. This shows that Attic’s superior performance
cannot be attributed to the efficiency improvements from using FlashAttention (Dao et al., 2022)
combined with bfloat16 mixed-precision. Considering the other arguments discussed in Section 4.1,
we conclude that the excellent performance of Attic stems from the architectural changes.

Looking at other baselines, fine-tuned Attic outperforms all other methods on both the WhyTrees
and the TabZilla benchmarks. This is a strong result, especially since Attic does not use any hyperpa-
rameter optimization, wheras other methods perform extensive hyperparameter sweeps. To further
put the results in perspective, we included AutoGluon as an additional reference. AutoGluon is a
method that runs hundreds of tree-based algorithms, neural networks, and other tabular prediction
models, then ensembles them. As Attic can be included in this ensemble, we do not consider it a
direct competitor; instead, it highlights how strong Attic is.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Main Results for the TabZilla benchmark. N. Accuracy stands for Normalized accuracy.
Rank compares the relative rank of a method compared to all other methods on that dataset.

Models Rank N. Accuracy

min max mean median mean median

Attic - Fine-tuned 1 28 6.4 4.0 0.882 0.961
Attic - Zero-shot 1 26 8.8 6.2 0.834 0.922
TabForestPFN - Fine-tuned 1 28 9.2 7.0 0.829 0.886
CatBoost 1 24 10.4 10.0 0.832 0.861
TabForestPFN - Zero-shot 1 25 10.4 10.0 0.809 0.880
TabPFN - Fine-tuned 1 27 10.5 10.5 0.823 0.875
XGBoost 1 25 10.7 11.0 0.826 0.877
TabForestPFN BF16-L - Fine-tuned 1 27 12.2 11.0 0.785 0.868
TabForestPFN BF16-M - Fine-tuned 1 26 12.5 12.2 0.784 0.850
LightGBM 2 28 12.5 12.2 0.777 0.860
TabForestPFN BF16-L - Zero-shot 1 26 12.8 12.2 0.770 0.852
RandomForest 1 27 12.9 12.5 0.782 0.835
TabPFN - Zero-shot 1 27 13.0 13.0 0.767 0.830
Resnet 1 28 13.5 13.0 0.719 0.834
SAINT 1 28 13.8 14.0 0.721 0.795
NODE 2 28 13.8 14.5 0.741 0.817
SVM 1 27 14.1 14.5 0.701 0.798
FT-Transformer 1 25 14.4 15.0 0.724 0.794
DANet 3 28 16.4 16.0 0.708 0.757
TabForestPFN BF16-M - Zero-shot 1 27 17.1 17.0 0.708 0.795
MLP-rtdl 1 28 17.8 19.8 0.613 0.723
STG 2 28 18.0 19.8 0.585 0.672
LinearRegression 1 28 19.4 22.0 0.559 0.590
MLP 2 28 19.6 22.0 0.563 0.582
TabNet 3 28 19.9 21.0 0.571 0.661
DecisionTree 1 28 20.6 22.0 0.496 0.551
KNN 2 28 21.4 24.0 0.467 0.478
VIME 2 28 23.7 26.0 0.337 0.238

When examining the individual datasets within WhyTrees in more detail, we find one dataset where
the performance gap between Attic and all other methods is massive. Figure 3 illustrates the results
on the Eye Movements dataset. Here, Attic outperforms all other methods, including AutoGluon,
by more than 20%. This further suggests that Attic is an exceptionally strong model. Given that
this specific dataset significantly influences the averaged normalized accuracy, we refer the reader
to Appendix A.5 for detailed results on other individual datasets.

4.4 MIXED-PRECISION TRAINING

In the main results, we have seen that Attic outperforms all other TabForestPFN variants. In par-
ticular, there is a significant performance drop when switching the mixed-precision setup of Tab-
ForestPFN from float32 to bfloat16, as shown in Tables 2 and 3 when comparing the original Tab-
ForestPFN with variant BF16-M. This indicates that TabForestPFN is highly sensitive to floating-
point precision. The exact cause of this performance deterioration is unknown to us. We would have
liked to determine if Attic is also sensitive to precision. However, we cannot evaluate Attic using
float32 because we cannot fit it into GPU memory without FlashAttention, which does not support
float32.

Given this sensitivity to precision, it would be natural to try float16 instead of bfloat16. However,
we encountered high pretraining instability with float16, where the cross-entropy training loss would
start to climb and diverge at a seemingly random point during training. For weeks, we experimented
with gradient scaler settings in an attempt to stabilize the training, but unfortunately, all pretraining
runs eventually collapsed. This issue occurred for both TabForestPFN and Attic.
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Figure 2: Main results on the WhyTrees Benchmark. ICL-transformers report the mean accuracy
over ten default runs for different fine-tuning seeds, Autogluon reports one default run, and all others
use random search over the hyperparameters. Results by dataset are displayed in Figure 7 and 8 of
the appendix.

4.5 COMPUTATION RESOURCES

Run times, as reported in Appendix A.4, tell us that in the fine-tuning setting, Attic takes an average
of 125 seconds to complete one cross-validation split. On average, Attic is twice as slow as Tab-
ForestPFN, although this varies depending on the number of features. When dealing with datasets
containing 5 or 10 features, the fine-tuning speed is similar. However, for datasets with 400 features,
Attic experiences a slowdown by a factor of ten.

Attic also requires more GPU memory than TabForestPFN. As Attic uses cell tokens, it needs addi-
tional GPU memory to store all tokens for the backward pass during fine-tuning. With a maximum
support size of 8192 and a maximum query size of 1024, evaluating TabForestPFN can be done
within 32GB of memory, while Attic requires 80GB to run on all datasets in the benchmark. We
considered increasing the context size of TabForestPFN to 16,384 for a fairer comparison, but this
only marginally improved the prediction accuracy of TabForestPFN. This is because the maximum
training dataset size in the WhyTrees benchmark is 10,000, and in Tabzilla there are only a handful
of datasets larger than this.

4.6 DECISION BOUNDARIES

Given the strong results presented in the main results section, we now examine the behavior of
the new architecture regarding decision boundaries. Breejen et al. (2024) demonstrated that ICL-
transformers can create highly complex decision boundaries when fine-tuned. We reproduce their
analysis and compare the decision boundaries of Attic and TabForestPFN.

Figure 4 shows the decision boundaries for TabForestPFN and Attic based on the two most important
variables of the Electricity dataset. We observe that, on this dataset, Attic can create more detailed
decision boundaries than TabForestPFN. The shape of Attic’s decision boundaries is more similar
to those of random forest than to those of TabForestPFN. Attic also provides a major boost in the
accuracy compared to TabForestPFN. We attribute this behavior to the fact that cell tokens offer a
better representation of tabular data than observation tokens (see Section 3.2 for further motivation).

4.7 INDIVIDUAL DATASETS

In Section 4.3, we have seen that Attic has excellent performance on the TabZilla benchmark. Here,
we examine the results of individual TabZilla datasets in more detail to identify potential patterns.

7
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Table 3: WhyTrees normalized accuracy results
for methods without hyperparameter search.

Mixed Numerical

Zero-shot

TabPFN 0.452 0.567
TabForestPFN 0.419 0.597
TabForestPFN BF16-M 0.291 0.385
TabForestPFN BF16-L 0.423 0.574
Attic 0.446 0.610
Fine-tuned

TabPFN 0.587 0.684
TabForestPFN 0.654 0.734
TabForestPFN BF16-M 0.538 0.613
TabForestPFN BF16-L 0.608 0.703
Attic 0.832 0.890
Other

AutoGluon 0.835 0.887

1 10 100 1000
Number of hyperparameter search runs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 sc
or

e

Normalized Test Score for Eye Movements

Attic Fine-tuned
AutoGluon
FT-Transformer
GradientBoostingTree
MLP
RandomForest

Resnet
SAINT
TabForestPFN Fine-tuned
TabPFN Zero-shot
XGBoost

Figure 3: Results on the Eye Movements dataset
(OpenML ID 44156). Other datasets are pre-
sented in Appendix A.5

Figure 4: Decision boundaries for the Electricity dataset (OpenML ID 44156). Axis represent fea-
tures, colors are predicted class probabilities, and dots are test observations. Score V measures
complexity (see Appendix A.7).

Figure 5 presents comparisons of performance between fine-tuned Attic, CatBoost, XGBoost, fine-
tuned TabForestPFN, and zero-shot Attic.

First, we compare Attic with TabForestPFN and observe that the performance gains are primarily
seen in datasets with more than a thousand observations. When comparing Attic with CatBoost and
XGBoost, we find that there are still a few datasets, particularly those with fewer than a thousand
observations, where tree-based models perform better. This indicates that although Attic is generally
stronger on average, there remains room for improvement.

When comparing Attic’s fine-tuning and zero-shot performance, we observe a clear threshold around
500 observations. Zero-shot Attic performs better on datasets with fewer than 500 observations,
while fine-tuned Attic excels on datasets with more than 500 observations. Since pretraining occurs
on datasets with a maximum size of 512 observations, it is likely that fine-tuning is more effective
for datasets larger than 512 observations because Attic has not encountered such large datasets dur-
ing pretraining. Given the performance deficit of fine-tuned Attic on datasets with fewer than 500
observations, we include similar comparison graphs for zero-shot Attic in Appendix A.6.
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Figure 5: Comparison of fine-tuned Attic with XGBoost, CatBoost, TabForestPFN and zero-shot
Attic. Dots represent difference in normalized accuracy for an individual dataset from TabZilla.
Red means fine-tuned Attic is better.
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Figure 6: Regression results on the WhyTrees Benchmark. ICL-transformers report the mean R2
score over ten default runs for different fine-tuning seeds, and all others use random search over the
hyperparameters. Results by dataset are displayed in Figure 9 and 10 of the appendix.
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4.8 REGRESSION

In this section, we present initial experiments of Attic on regression tasks. To adapt Attic for regres-
sion, we modified the synthetic dataset generator to output regression tasks instead of classification
tasks. Additionally, we replaced the embedding and final layer of the Attic with linear layers that
enable the model to input and output float values instead of class labels. The loss function was
changed from cross-entropy loss to mean-squared error.

During the pretraining of Attic under these settings, we experienced high training instability that
was not present in the classification setting. To address this, we reduced the pretraining learning
rate from 1e-3 to 1e-4 and the fine-tuning learning rate from 1e-5 to 1e-6. The results under these
adjusted settings are presented in Figure 6.

The performance of Attic on regression tasks is not as impressive as its performance on classification
tasks. We did not anticipate that regression would behave differently from classification, indicating
that further investigation into regression tasks is necessary. Nonetheless, Attic remains the best-
performing neural network method for regression, where we note that regression versions of TabPFN
and TabForestPFN do not exist.

5 CONCLUSION

In this paper, we present Attic, an ICL-transformer that uses cell tokens instead of observation
tokens. Our experiments show that this new architecture leads to large improvements in performance
over TabForestPFN when trained under the same computational budget.

When comparing Attic with XGBoost and CatBoost, we see that Attic outperforms these tree-based
methods on average, particularly on datasets with more than 500 observations. In this comparison,
we fine-tuned Attic on default settings, while XGBoost and CatBoost were allowed to perform
hyperparameter searches. The improvement over XGBoost and CatBoost suggests that we finally
have surpassed a major barrier in AI for tabular data, favoring ICL-transformers over traditional
tree-based methods.

The next milestone is to outperform AutoGluon. Until then, incorporating Attic into ensemble
methods appears to be a promising approach. However, as we have observed that Attic still faces
challenges with regression tasks, our immediate focus will be on improving performance in that area.
Given that the field of tabular ICL-transformers is still in its early stages, we anticipate significant
advancements in the coming years.
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Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on tabular data? In Advances in Neural Information Processing Systems (NeurIPS).
arXiv, July 2022. arXiv:2207.08815 [cs, stat].

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. TabLLM: Few-shot Classification of Tabular Data with Large Language Models. In Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), pp. 5549–5581. PMLR,
April 2023. ISSN: 2640-3498.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A Trans-
former That Solves Small Tabular Classification Problems in a Second. In International Confer-
ence on Learning Representations (ICLR). arXiv, September 2023. doi: 10.48550/arXiv.2207.
01848. arXiv:2207.01848 [cs, stat].

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned Simple Nets Excel
on Tabular Datasets, November 2021. arXiv:2106.11189 [cs].

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Myung Jun Kim, Léo Grinsztajn, and Gaël Varoquaux. CARTE: pretraining and transfer for tabular
learning, February 2024. arXiv:2402.16785 [cs].

Junwei Ma, Valentin Thomas, Guangwei Yu, and Anthony Caterini. In-Context Data Distillation
with TabPFN. In NeurIPS Workshop: Table Representation Learning. arXiv, 2023. doi: 10.
48550/arXiv.2402.06971. arXiv:2402.06971 [cs] version: 1.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Benjamin Feuer, Chin-
may Hegde, Ganesh Ramakrishnan, Micah Goldblum, and Colin White. When Do Neural Nets
Outperform Boosted Trees on Tabular Data? In Advances in Neural Information Processing Sys-
tems (NeurIPS) Track on Datasets and Benchmarks. arXiv, October 2023. arXiv:2305.02997 [cs,
stat].

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems (NeurIPS). Curran Associates, Inc., 2018. arXiv:1706.09516 [cs].

Archana Singh and Rakesh Kumar. Heart Disease Prediction Using Machine Learning Algorithms.
In 2020 International Conference on Electrical and Electronics Engineering (ICE3), pp. 452–457,
February 2020. doi: 10.1109/ICE348803.2020.9122958.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Gold-
stein. SAINT: Improved Neural Networks for Tabular Data via Row Attention and Con-
trastive Pre-Training. In NeurIPS Workshop: Table Representation Learning. arXiv, June 2021.
arXiv:2106.01342 [cs, stat].

Valentin Thomas, Junwei Ma, Rasa Hosseinzadeh, Keyvan Golestan, Guangwei Yu, Maksims
Volkovs, and Anthony Caterini. Retrieval & Fine-Tuning for In-Context Tabular Models, June
2024. arXiv:2406.05207 [cs].

Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Z. Chen, Jimeng Sun, Jian Wu, and
Jintai Chen. Making Pre-trained Language Models Great on Tabular Prediction, March 2024.
arXiv:2403.01841 [cs].

Yazheng Yang, Yuqi Wang, Guang Liu, Ledell Wu, and Qi Liu. UniTabE: A Universal Pretraining
Protocol for Tabular Foundation Model in Data Science. In International Conference on Learning
Representations (ICLR), October 2023.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

With this submission, we provide all the code that is necessary to pretrain, fine-tune and evaluate our
model as well as other models on the benchmark datasets. We will also provide the exact scripts and
hyperparameters settings necessary to reproduce the training and evaluation, as well as intermediate
run statistics and outputs, and the code to reproduce all tables and graphs. Code will be hosted on
GitHub and pretrained weights will be publicly available.

A.2 TABZILLA DATASET SELECTION

From the TabZilla benchmark, we test on 94 datasets from a collection of 176. We follow the
selection procedure as outlined by the authors of TabForestPFN (Breejen et al., 2024), which means
we remove all datasets for which a baseline algorithm did not have a completed run in the results
provided by the benchmark authors. Additionally datasets that have more than 10 classes are also
removed.

A.3 BENCHMARK METADATA

Tables 4 and 5 show the composition of all the datasets we use to benchmark Attic.

Table 4: Metadata of the WhyTrees Benchmark. Splits refers to the number of cross validation
splits.

OpenML Observations Features Splits Classes

ID Name All Train Valid Test

44089 credit 16714 10000 2014 4700 10 2 2
44120 electricity 38474 10000 8542 19932 7 1 2
44121 covertype 566602 10000 50000 50000 10 1 2
44122 pol 10082 7057 907 2118 26 3 2
44123 house 16H 13488 9441 1214 2833 16 3 2
44125 MagicTelescope 13376 9363 1203 2810 10 3 2
44126 bank-marketing 10578 7404 952 2222 7 3 2
44128 MiniBooNE 72998 10000 18899 44099 50 1 2
44129 Higgs 940160 10000 50000 50000 24 1 2
44130 eye movements 7608 5325 684 1599 20 3 2
44156 electricity 38474 10000 8542 19932 8 1 2
44157 eye movements 7608 5325 684 1599 23 3 2
44159 covertype 423680 10000 50000 50000 54 1 2
45019 Bioresponse 3434 2403 309 722 419 5 2
45020 default-of-cred... 13272 9290 1194 2788 20 3 2
45021 jannis 57580 10000 14274 33306 54 1 2
45022 Diabetes130US 71090 10000 18327 42763 7 1 2
45026 heloc 10000 7000 900 2100 22 3 2
45028 california 20634 10000 3190 7444 8 1 2
45035 albert 58252 10000 14475 33777 31 1 2
45036 default-of-cred... 13272 9290 1194 2788 21 3 2
45038 road-safety 111762 10000 30528 50000 32 1 2
45039 compas-two-year... 4966 3476 447 1043 11 3 2

Table 5: Metadata of the TabZilla Benchmark. Splits refers to the number of cross validation splits.

OpenML Observations Features Splits Classes

ID Name All Train Valid Test

3 kr-vs-kp 3196 2556 320 320 36 10 2
4 labor 57 45 6 6 16 10 2
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9 autos 205 163 21 21 25 10 6
10 lymph 148 118 15 15 18 10 4
11 balance-scale 625 499 63 63 4 10 3
12 mfeat-factors 2000 1600 200 200 216 10 10
14 mfeat-fourier 2000 1600 200 200 76 10 10
15 breast-w 699 559 70 70 9 10 2
16 mfeat-karhunen 2000 1600 200 200 64 10 10
18 mfeat-morpholog... 2000 1600 200 200 6 10 10
23 cmc 1473 1177 148 148 9 10 3
25 colic 368 294 37 37 26 10 2
27 colic 368 294 37 37 22 10 2
29 credit-approval 690 552 69 69 15 10 2
30 page-blocks 5473 4377 548 548 10 10 5
35 dermatology 366 292 37 37 34 10 6
37 diabetes 768 614 77 77 8 10 2
39 sonar 208 166 21 21 60 10 2
40 glass 214 170 22 22 9 10 6
43 spambase 4601 3680 460 461 57 10 2
45 splice 3190 2552 319 319 60 10 3
47 tae 151 120 15 16 5 10 3
48 heart-c 303 241 31 31 13 10 2
49 tic-tac-toe 958 766 96 96 9 10 2
50 heart-h 294 234 30 30 13 10 2
53 vehicle 846 676 85 85 18 10 4
59 iris 150 120 15 15 4 10 3
2074 satimage 6430 5144 643 643 36 10 6
2079 eucalyptus 736 588 74 74 19 10 5
2867 anneal 898 718 90 90 38 10 5
3485 scene 2407 1925 241 241 299 10 2
3512 synthetic contr... 600 480 60 60 60 10 6
3540 analcatdata box... 120 96 12 12 3 10 2
3543 irish 500 400 50 50 5 10 2
3549 analcatdata aut... 841 672 84 85 70 10 4
3560 analcatdata dmf... 797 637 80 80 4 10 6
3561 profb 672 536 68 68 9 10 2
3602 visualizing env... 111 88 11 12 3 10 2
3620 fri c0 100 5 100 80 10 10 5 10 2
3647 rabe 266 120 96 12 12 2 10 2
3711 elevators 16599 13279 1660 1660 18 10 2
3731 visualizing liv... 130 104 13 13 2 10 2
3739 analcatdata chl... 100 80 10 10 3 10 2
3748 transplant 131 104 13 14 3 10 2
3779 fri c3 100 5 100 80 10 10 5 10 2
3797 socmob 1156 924 116 116 5 10 2
3896 ada agnostic 4562 3648 457 457 48 10 2
3902 pc4 1458 1166 146 146 37 10 2
3903 pc3 1563 1249 157 157 37 10 2
3904 jm1 10885 8707 1089 1089 21 10 2
3913 kc2 522 416 53 53 21 10 2
3917 kc1 2109 1687 211 211 21 10 2
3918 pc1 1109 887 111 111 21 10 2
3953 adult-census 32561 26048 3256 3257 14 10 2
9946 wdbc 569 455 57 57 30 10 2
9952 phoneme 5404 4322 541 541 5 10 2
9957 qsar-biodeg 1055 843 106 106 41 10 2
9960 wall-robot-navi... 5456 4364 546 546 24 10 4
9964 semeion 1593 1273 160 160 256 10 10
9971 ilpd 583 465 59 59 10 10 2
9978 ozone-level-8hr 2534 2026 254 254 72 10 2
9984 fertility 100 80 10 10 9 10 2
10089 acute-inflammat... 120 96 12 12 6 10 2
10093 banknote-authen... 1372 1096 138 138 4 10 2
10101 blood-transfusi... 748 598 75 75 4 10 2
14952 PhishingWebsite... 11055 8843 1106 1106 30 10 2
14954 cylinder-bands 540 432 54 54 37 10 2
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14965 bank-marketing 45211 36168 4521 4522 16 10 2
14967 cjs 2796 2236 280 280 33 10 6
125920 dresses-sales 500 400 50 50 12 10 2
125921 LED-display-dom... 500 400 50 50 7 10 10
145793 yeast 1269 1015 127 127 8 10 4
145799 breast-cancer 286 228 29 29 9 10 2
145836 blood-transfusi... 748 598 75 75 4 10 2
145847 hill-valley 1212 968 122 122 100 10 2
145977 ecoli 336 268 34 34 7 10 8
145984 ionosphere 351 280 35 36 34 10 2
146024 lung-cancer 32 24 4 4 56 10 3
146063 hayes-roth 160 128 16 16 4 10 3
146065 monks-problems-... 601 480 60 61 6 10 2
146192 car-evaluation 1728 1382 173 173 21 10 4
146210 postoperative-p... 88 70 9 9 8 10 2
146607 SpeedDating 8378 6702 838 838 120 10 2
146800 MiceProtein 1080 864 108 108 77 10 8
146817 steel-plates-fa... 1941 1552 194 195 27 10 7
146818 Australian 690 552 69 69 14 10 2
146820 wilt 4839 3871 484 484 5 10 2
146821 car 1728 1382 173 173 6 10 4
167140 dna 3186 2548 319 319 180 10 3
167141 churn 5000 4000 500 500 20 10 2
167211 Satellite 5100 4080 510 510 36 10 2
168911 jasmine 2984 2386 299 299 144 10 2
190408 Click predictio... 39948 31958 3995 3995 11 10 2
360948 libras 360 288 36 36 104 10 10

A.4 RUN TIMES

Tables 6 and 7 present the run times for Attic, TabForestPFN and AutoGluon. The ICL-transformers
are run on an H100, while AutoGluon is run on 64 cores of a Intel Xeon Gold 5220R CPU. Auto-
Gluon is only run on the WhyTrees benchmark due to the high run times. We would like to empha-
size that the run time of AutoGluon should only be compared to that of ICL-transformers by orders
of magnitude. As AutoGluon runs on CPUs and the ICL-transformers run on GPUs, any direct
run-time comparison critically depends on the equipment used.

Table 6: Run times of TabForestPFN, Attic and AutoGluon on the WhyTrees benchmark. The
runtime is the end-to-end time in seconds for one cross validation split. End-to-end time includes
loading, preprocessing, training and testing.

Data Run time (s)

OpenML Size TabForestPFN Attic AutoGluon

ID Name Obs. Feat. Zero-shot Fine-tuned Zero-shot Fine-tuned Best-Quality

44089 credit 10000 10 9 103 12 90 5982
44120 electricity 10000 7 15 151 18 125 10390
44121 covertype 10000 10 34 167 36 146 45419
44122 pol 7057 26 6 57 11 104 4714
44123 house 16H 9441 16 8 72 12 111 7081
44125 MagicTelescope 9363 10 7 105 11 103 7188
44126 bank-marketing 7404 7 7 68 9 49 5198
44128 MiniBooNE 10000 50 28 126 75 376 8119
44129 Higgs 10000 24 34 119 56 219 26781
44130 eye movements 5325 20 5 63 9 140 6311
44156 electricity 10000 8 17 142 19 131 16432
44157 eye movements 5325 23 6 65 10 149 4896
44159 covertype 10000 54 37 219 103 476 45452
45019 Bioresponse 2403 419 8 34 19 333 4858
45020 default-of-credit-card-clients 9290 20 7 81 13 119 4839
45021 jannis 10000 54 23 130 63 457 8992
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45022 Diabetes130US 10000 7 25 95 24 87 8536
45026 heloc 7000 22 6 56 11 85 6490
45028 california 10000 8 11 112 15 82 7022
45035 albert 10000 31 21 103 40 252 8116
45036 default-of-credit-card-clients 9290 21 8 79 13 135 4648
45038 road-safety 10000 32 30 153 60 349 14055
45039 compas-two-years 3476 11 5 43 8 41 3579

Table 7: Run times of TabForestPFN and the Attic on the TabZilla benchmark. The runtime is
the end-to-end time in seconds for one cross validation split. End-to-end time includes loading,
preprocessing, training and testing.

Data Run time (s)

OpenML Size TabForestPFN Attic

ID Name Obs. Feat. Zero-shot Fine-tuned Zero-shot Fine-tuned

3 kr-vs-kp 2556 36 4 29 8 53
4 labor 45 16 3 13 9 25
9 autos 163 25 3 11 8 18
10 lymph 118 18 3 9 8 18
11 balance-scale 499 4 3 32 7 28
12 mfeat-factors 1600 216 5 26 13 145
14 mfeat-fourier 1600 76 4 29 10 47
15 breast-w 559 9 3 19 8 19
16 mfeat-karhunen 1600 64 4 22 10 42
18 mfeat-morphological 1600 6 4 22 8 19
23 cmc 1177 9 4 20 8 18
25 colic 294 26 3 10 8 16
27 colic 294 22 3 11 8 18
29 credit-approval 552 15 4 22 7 17
30 page-blocks 4377 10 5 40 8 37
35 dermatology 292 34 3 13 7 22
37 diabetes 614 8 3 19 7 17
39 sonar 166 60 3 11 7 19
40 glass 170 9 3 10 7 17
43 spambase 3680 57 6 42 12 92
45 splice 2552 60 3 33 9 83
47 tae 120 5 3 11 8 22
48 heart-c 241 13 3 11 8 19
49 tic-tac-toe 766 9 3 20 8 20
50 heart-h 234 13 2 12 8 16
53 vehicle 676 18 3 23 8 18
59 iris 120 4 3 16 8 19
2074 satimage 5144 36 6 55 11 118
2079 eucalyptus 588 19 3 18 7 17
2867 anneal 718 38 3 26 7 26
3485 scene 1925 299 6 37 15 201
3512 synthetic control 480 60 3 18 7 22
3540 analcatdata boxing1 96 3 3 12 8 25
3543 irish 400 5 4 19 8 16
3549 analcatdata authorship 672 70 4 25 9 32
3560 analcatdata dmft 637 4 3 20 8 18
3561 profb 536 9 3 16 7 17
3602 visualizing environmental 88 3 3 10 8 19
3620 fri c0 100 5 80 5 3 13 7 22
3647 rabe 266 96 2 3 14 8 22
3711 elevators 13279 18 9 101 15 175
3731 visualizing livestock 104 2 3 15 9 21
3739 analcatdata chlamydia 80 3 3 16 8 22
3748 transplant 104 3 3 12 7 22
3779 fri c3 100 5 80 5 3 13 7 25
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3797 socmob 924 5 3 19 8 14
3896 ada agnostic 3648 48 6 36 11 82
3902 pc4 1166 37 4 23 8 30
3903 pc3 1249 37 4 26 9 34
3904 jm1 8707 21 6 117 10 161
3913 kc2 416 21 3 26 7 18
3917 kc1 1687 21 4 48 8 27
3918 pc1 887 21 3 16 8 18
3953 adult-census 26048 14 14 175 19 166
9946 wdbc 455 30 4 17 8 19
9952 phoneme 4322 5 4 44 8 22
9957 qsar-biodeg 843 41 4 23 7 20
9960 wall-robot-navigation 4364 24 5 42 9 65
9964 semeion 1273 256 5 26 11 147
9971 ilpd 465 10 4 20 8 16
9978 ozone-level-8hr 2026 72 4 25 10 55
9984 fertility 80 9 3 13 8 18
10089 acute-inflammations 96 6 3 10 8 18
10093 banknote-authentication 1096 4 4 20 7 17
10101 blood-transfusion-service-center 598 4 3 20 9 16
14952 PhishingWebsites 8843 30 8 103 15 269
14954 cylinder-bands 432 37 4 16 7 18
14965 bank-marketing 36168 16 17 165 24 234
14967 cjs 2236 33 4 79 10 47
125920 dresses-sales 400 12 4 18 7 18
125921 LED-display-domain-7digit 400 7 4 16 9 18
145793 yeast 1015 8 4 19 8 19
145799 breast-cancer 228 9 3 11 7 22
145836 blood-transfusion-service-center 598 4 3 21 9 16
145847 hill-valley 968 100 4 47 7 69
145977 ecoli 268 7 3 12 8 16
145984 ionosphere 280 34 3 12 7 16
146024 lung-cancer 24 56 3 14 8 15
146063 hayes-roth 128 4 3 14 8 17
146065 monks-problems-2 480 6 2 22 7 19
146192 car-evaluation 1382 21 4 27 9 33
146210 postoperative-patient-data 70 8 3 13 8 20
146607 SpeedDating 6702 120 6 57 23 456
146800 MiceProtein 864 77 4 28 8 38
146817 steel-plates-fault 1552 27 4 22 9 30
146818 Australian 552 14 4 23 8 16
146820 wilt 3871 5 4 30 9 20
146821 car 1382 6 4 30 9 33
167140 dna 2548 180 4 26 13 208
167141 churn 4000 20 5 41 10 47
167211 Satellite 4080 36 5 40 11 67
168911 jasmine 2386 144 4 36 12 132
190408 Click prediction small 31958 11 14 129 20 182
360948 libras 288 104 3 11 8 21

A.5 WHYTREES INDIVIDUAL DATASETS

In Figure 2 we have seen the average normalized accuracy score for various methods on the
WhyTrees benchmark. In Figures 7 and 8 we show the performance on each individual benchmark.
For regression, the individual datasets are shown in Figures 9 and 10

A.6 ATTIC ZERO-SHOT COMPARISON

In Section 4.7 we have seen the comparison between fine-tuned Attic and other methods. In Fig-
ure 11 we show the comparison between zero-shot Attic and XGBoost, CatBoost, zero-shot Tab-
ForestPFN, and fine-tuned Attic.
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Figure 7: Performance of various classification methods on the WhyTrees benchmark with mixed
features.

A.7 COMPLEXITY SCORE

Breejen et al. (2024) use a complexity score V to measure the complexity of decision boundaries.
We produced the graphs and scores using their code, using the following formula for the complexity
score:

V =
1

n

∑
ij

|pi+1,j − pij |+ |pi−1,j − pi,j |+ |pi,j+1 − pij |+ |pi,j−1 − pij |

Here pi,j is the prediction value of grid cell of feature space. As the analysis is done on two variables,
the feature space is cut into grid cell, of which the middle point of the grid cell as an observation to
predict. The complexity score then measures how fast the prediction changes when we move along
the grid.
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Figure 8: Performance of various classification methods on the WhyTrees benchmark with numeri-
cal features.
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Figure 9: Performance of various regression methods on the WhyTrees benchmark with mixed
features.
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Figure 10: Performance of various regression methods on the WhyTrees benchmark with numerical
features.
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Figure 11: Comparison of fine-tuned Attic with XGBoost, CatBoost, TabForestPFN and it’s zero-
shot variant. Dots represent difference in normalized accuracy for an individual dataset from
TabZilla. Red means Attic Zero-shot is better.
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A.8 TABZILLA CRITICAL DIFFERENCE DIAGRAMS

Here we present the critical difference diagrams for the TabZilla benchmark as shown in Table 2. We
construct the diagrams following the procedure of the TabZilla authors McElfresh et al. (2023). The
critical difference diagrams are constructed using paired Wilcoxon signed-rank tests under α = 0.05
with Holm-Bonferroni correction to account for multiple comparisons. The tests are performed on
the cross-entropy loss.

Using 94 datasets and 28 methods, the statistical power to compare all 28 methods is relatively
low. Therefore, we created two versions of the critical difference diagram. Figure 12 considers all
methods, while Figure 13 considers only the most important methods. The most important methods
are selected as follows: we select the two most commonly used tree-based algorithms (XGBoost,
CatBoost), the two most commonly used neural network based methods (MLP, FT-Transformer),
Attic (Fine-tuned, Zero-Shot) and TabForestPFN (Fine-tuned, Zero-Shot).

In this setting, the two Attic versions are significantly different from the other six methods. In partic-
ular, the Wilcoxon signed-rank test rejects Attic Fine-tuned to have the same mean as TabForestPFN
Fine-tuned with probability P < 0.000000 and rejects Attic Zero-shot to have the same mean as
TabForestPFN Zero-shot with probability P < 0.000006.

Figure 12: Critical difference diagram for 94 datasets of the TabZilla benchmark. All methods 28
included. Top row presents the relative rank of the methods ranked by the log loss. Bars show the
significant bands: all methods within a band are not significantly different. Diagram made using the
autorank package.

Figure 13: Critical difference diagram for 94 datasets of the TabZilla benchmark. Only the most
important methods are included. Top row presents the relative rank of the methods ranked by the
log loss. Bars show the significant bands: all methods within a band are not significantly different.
Diagram made using the autorank package.
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