ATTIC: A NEW ARCHITECTURE FOR TABULAR IN CONTEXT LEARNING TRANSFORMERS

Anonymous authors

004

010 011

012

013

014

015

016

017

018

022

Paper under double-blind review

Abstract

Tabular In-Context Learning (ICL) transformers, such as TabPFN and Tab-ForestPFN, have shown strong performance on tabular classification tasks. In this paper, we introduce Attic, a new architecture for ICL-transformers. Unlike TabPFN and TabForestPFN, where one token represents all features of one observation, Attic assigns one token to each feature of every observation. This simple architectural change results in a significant performance boost. As a result, we can confidently say that neural networks outperform tree-based methods like XG-Boost.

021 1 INTRODUCTION

Tabular classification is an important prediction task in many different parts of industry. This task concerns predicting the value of a certain feature for an observation, given other features, often stored in tabular format. Tabular classification can be used to predict heart disease based on patient characteristics (Singh & Kumar, 2020), to predict whether someone commits credit card fraud (Awoyemi et al., 2017), or to predict the chance an employee quits the company (Fallucchi et al., 2020). Numerous methods from wildly different backgrounds have been used to tackle this task, with the most popular being tree-based methods like XGBoost (Chen & Guestrin, 2016) or ensemble methods like AutoGluon (Erickson et al., 2020).

Recently, there has been work that tries to improve the classification performance by pretraining an In-Context Learning (ICL) transformer. ICL-transformers like TabPFN (Hollmann et al., 2023) perform zero-shot inference after pretraining on synthetic data, while TabForestPFN (Breejen et al., 2024) further fine-tunes this ICL-transformer for better performance. Both use the same transformer architecture, where one token represents all the features of one observation. We refer to this as an 'observation token'. Using observation tokens, these ICL-transformers embed the features of one observation into a token via a linear embedding.

This observation token constrains the ICL-transformer in two ways. First of all, the embedding layer
 has a maximum size; TabPFN and TabForestPFN both accept a maximum of a hundred features.
 Secondly, these ICL-transformers are dependent on the order of the features. In tabular data, the
 order of the columns should not influence the final prediction, but in ICL-transformers like TabPFN
 and TabForestPFN, the linear embedding layer enforces an arbitrary order in the features.

In this paper, we introduce a straightforward modification to the architecture: replacing the observation token with a cell token, which represents a single feature of each observation. This enables
the ICL transformer to accommodate as many features as the GPU can handle while maintaining
feature-order invariance. We refer to this modified ICL transformer as Attic: "A Tabular Transformer based on In-Context Learning." Given this architectural change, the memory required to fit
everything on the GPU increases significantly. We tackle this issue by using FlashAttention and
bfloat16 mixed-precision.

Not only does this architectural change allow the network to use an arbitrary number of features,
but we also observe an immense performance increase. The performance increase is so significant
that it outperforms XGBoost and CatBoost on average on two benchmarks (Grinsztajn et al., 2022;
McElfresh et al., 2023) even when these methods are allowed to run hundreds of hyperparameter
searches, while Attic does not run any hyperparameter search at all. Especially for datasets with

more than 500 observations, there are very few datasets in the benchmark suite for which XGBoost or CatBoost have better performance.

Additionally, we found a dataset for which Attic has 20% higher accuracy than any other method, including ensemble methods like AutoGluon. This shows that Attic is a strong method that should be included in ensemble methods because it can achieve performance levels on some datasets that no other methods can attain. Given these strong results, we are excited to see future developments in the field of tabular ICL.

061 062

2 RELATED WORK

063 064

The most popular methods for tabular classification are tree-based methods such as XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018). The fundamental principle behind tree-based methods is to iteratively split the feature space and assign predictions based on the resulting partitions. Recent tabular prediction benchmarks (Gorishniy et al., 2021; Grinsztajn et al., 2022; McElfresh et al., 2023; Zabërgja et al., 2024) show that these tree-based methods perform exceptionally well.

Numerous studies have tackled tabular data using neural networks (Kadra et al., 2021; Somepalli et al., 2021; Gorishniy et al., 2022). Generally, their performance is lacking compared to tree-based methods, although progress is still being made (Gorishniy et al., 2024). Neural networks trained from scratch seem to struggle in low-data regimes because they may lack specific biases that tree-based methods have (Grinsztajn et al., 2022).

Other research has focused on using language data for their predictions (Yang et al., 2023; Kim et al., 2024; Yan et al., 2024). When datasets are small, pretrained language models can infer relationships between features based on feature names and table metadata. This capability allows such approaches to achieve excellent performance in a few-shot setting (Hegselmann et al., 2023; Gardner et al., 2024). However, these methods are unlikely to scale effectively to larger datasets and are heavily dependent on having informative feature names, which are not present in all datasets.

Our work contributes to the field of tabular In-Context Learning (ICL)(Hollmann et al., 2023). In this approach, transformers are pretrained to predict test observations using training observations provided in the context. A major limitation of ICL-transformers is the necessity of including the entire training dataset within the context, so there is active research on how to address this issue (Ma et al., 2023; Feuer et al., 2024; Breejen et al., 2024; Thomas et al., 2024)

Regarding neural network architectures, transformers trained from scratch use various strategies.
 SAINT (Somepalli et al., 2021) uses cell tokens, whereas FT-Transformer (Gorishniy et al., 2021)
 uses feature tokens. Benchmark results (Grinsztajn et al., 2022; McElfresh et al., 2023) indicate no
 clear relationship between the token scheme and performance. Additionally, we have not identified
 any literature suggesting that cell tokens are superior to observation tokens for modeling tabular
 data. This gap shows the relevance of our work, which specifically compares token schemes for ICL-transformers.

093 094

3 Methodology

096

101 In tabular classification, we are interested in predicting labels $y \in \mathbb{N}^n$ given features $X \in \mathbb{R}^{n \times k}$, where k is the number of features and n is the number of observations. In tabular In-Context Learning (ICL), we consider a support set (X_S, y_S) , where y_S is known, and a query set (X_Q, y_Q) , where y_Q must be predicted or is used as a loss during training. During inference, it is natural to think of the support set as a training dataset and the query set as the test dataset. However, this comparison breaks down during pretraining and fine-tuning, as the query set then also comes from the training dataset. An ICL-transformer takes (X_S, y_S, X_Q) as input and predicts y_Q .

We train Attic using the same tabular ICL-pipeline as described by Breejen et al. (2024). This means that during pretraining, new datasets are generated at each step using a synthetic dataset generator. This generator combines the the TabPFN dataset generator (Hollmann et al., 2023) with the forest dataset generator (Breejen et al., 2024). The generated datasets are preprocessed and split into support and query sets before being fed into the ICL-transformer. During fine-tuning, the

Figure 1: Architecture of Attic

ICL-transformer is further trained by drawing support and query sets from the training dataset of the specific real-world dataset being used. Inference is done by selecting the support set from the training dataset and the query set from the validation or test dataset.

3.1 ARCHITECTURE

137 138

132

139 In this paper, we introduce Attic, an ICL-transformer based on cell tokens. The architecture is depicted in Figure 1. The core difference compared to TabPFN (Hollmann et al., 2023) and Tab-140 ForestPFN (Breejen et al., 2024) is what a token represents. Attic uses cell tokens, meaning that one 141 token represents one feature of one observation, as opposed to TabPFN's observation token, which 142 represents all features of one observation. 143

144 Given a value $x_{ij} \in \mathbb{R}$ of observation i and feature j, Attic embeds this value x_{ij} into token $h_{ij} \in$ 145 \mathbb{R}^d , where d is the dimension of the model. These tokens pass through L layers, each consisting of 146 an observation attention layer, a feature attention layer, two MLP layers, and layer normalizations before each module. The MLP layers consist of two linear layers, with the inner dimension being 147 four times larger than d, and a GeLU activation in between. The final layer of the model isolates 148 y_Q from the other tokens and maps it to the number of classes, which is fixed at 10 classes in all 149 ICL-transformers discussed. 150

151 The observation attention treats the observation dimension as the sequence and the feature dimension 152 as a batch dimension, while feature attention does the opposite. The observation attention mecha-153 nism uses a mask that ensures that observations from the query set cannot see other observations from the query set. This guarantees that the prediction for a test observation remains independent of 154 the other test observations in the context. This attention mechanism is borrowed from TabPFN. 155

156 Compared to TabPFN and equivalently TabForestPFN, the tokens of Attic have an additional feature 157 dimension, which increases the total memory requirement by a factor k. The embedding is also different, since the TabPFN architecture embeds from observation $x_i \in \mathbb{R}^k$ to token $h_i \in \mathbb{R}^d$. Our 158 embedding also embeds the labels of y_s as if it were a language tokens, with each class treated 159 as a word, in contrast to TabPFN, which treats y_S as a float vector. We changed this because we 160 believe this formulation is more natural, but performance-wise, it has little impact. Other than the 161 differences mentioned, there are no additional architectural changes between Attic and TabPFN.

	Т	abForestPF	N	Attic
	Original	BF16-M	BF16-L	
Architecture				
Based on observation tokens	 ✓ 	 ✓ 	 ✓ 	×
Based on cell tokens	×	×	×	~
Uses FlashAttention	×	~	~	~
Uses mixed-precision with bfloat16	×	~	~	~
Hidden dimension size	512	512	2048	512
Number of layers	12	12	24	12
Hyperparameters				
Batch size	512	1024	1024	1024
Number of steps	50k	50k	50k	441
Number of generated pretraining datasets	26M	51M	51M	45N
Learning rate	1e-4	1e-4	1e-4	1e-3
Weight decay	0.0	0.0	0.0	0.1
Pretraining dataset minimum number of observations	128	128	128	16
Pretraining dataset maximum number of observations	1024	1024	1024	512
Pretraining dataset minimum number of features	3	3	3	1
Pretraining dataset maximum number of features	100	100	100	10
Statistics				
Training time (H100 GPU-hours)	199	97	299	20
Parameter count	39M	39M	1226M	76N

Table 1: Model comparison overview.

3.2 MOTIVATION

162

186 187

188

200 201

202 203

204

205

206

207 208

209

In the results, we will see that this cell-token architecture is significantly more performant than the observation-token architecture. In our intuition, this is because the cell-token architecture is feature-order invariant. For tabular data, the order of the features holds no importance: in an Excel sheet, you can freely rearrange the columns, and this should not influence the prediction. However, observation-token-based ICL-transformers do enforce a specific feature order; the linear mapping between features and tokens changes when the features are reordered.

We believe that this dependency on feature order leads to training inefficiencies. The cell-token ICL-transformer treats each feature the same and learns how to construct relationships between features. In contrast, the observation-token ICL-transformer assigns each feature a unique position in the embedding. Consequently, when learning the relationships between features, it has to learn this relationship for every possible position that these features can be in.

4 EXPERIMENTS

Our experiments focus on showing the improvement of Attic over TabForestPFN (Breejen et al., 2024). In Section 4.1, we describe the design choices for the comparison, conducted on the benchmarks outlined in Section 4.2. Section 4.3 presents the main results, while Sections 4.5, 4.6, and 4.7 delve deeper into the findings. Finally, we include some initial regression results in Section 4.8.

4.1 Design

For the architectural comparison between Attic and TabForestPFN, we want to change the architecture while keeping all other hyperparameters the same. However, the computational costs of Attic scale with both the number of features and the number of observations, in contrast to TabForestPFN, which scales only with the number of observations. For this reason, we pretrain Attic using smaller pretraining datasets. Furthermore, Attic uses FlashAttention (Dao et al., 2022) and mixed-precision with bfloat16, so it is important to implement these techniques on TabForestPFN for a fair comparison. Table 1 reports all the differences between Attic and TabForestPFN, including the variants BF16-M
and BF16-L, which implement mixed precision and FlashAttention for two different model sizes.
The number of training steps for Attic has been set to ensure that Attic trains for approximately 200
GPU-hours on an H100, matching the training time of TabForestPFN. With TabForestPFN BF16-L,
we can assess the sample efficiency of Attic, as TabForestPFN BF16-L is a larger model trained on
a greater number of generated pretraining datasets. We include TabForestPFN BF16-M to show the
effect of mixed-precision training on TabForestPFN.

Other differences in hyperparameters do not affect the fairness of the comparison. Optimizer hyperparameters such as the learning rate and weight decay are model-specific; we experienced training collapse when using these settings on TabForestPFN. Additionally, pretraining Attic on smaller datasets than TabForestPFN favors TabForestPFN, as almost all our benchmark datasets contain more than 512 observations or more than 16 features. This makes it more challenging for Attic to generalize to larger datasets. Given this experimental design, if Attic outperforms TabForestPFN and its variants, we can conclude that Attic has a better architecture.

230 231

232

4.2 BENCHMARKS

We evaluate the ICL-transformers on two benchmarks: the benchmark we refer to as WhyTrees
(Grinsztajn et al., 2022) and TabZilla (McElfresh et al., 2023). For most of the methods, we rely on
publicly available results, which we further extend by running TabPFN, TabForestPFN, AutoGluon
(Erickson et al., 2020), and Attic ourselves.

WhyTrees is a benchmark that tests on datasets ranging from 1,000 to 10,000 observations, providing a total of 25 classification datasets. These datasets are categorized into 'numerical' datasets, which include only numerical features, and 'mixed' datasets, which also includes categorical features. The benchmark authors run methods with up to a few hundred hyperparameter search iterations.

TabZilla is a benchmark consisting of 176 datasets, of which we test on 94. See Appendix A.2 for details on the dataset selection. The datasets in TabZilla vary in size from 10 to 100,000 observations and include between 2 to hundreds of features. Hyperparameter searches for the methods are conducted up to 30 iterations.

When running TabPFN, TabForestPFN, and Attic on these benchmarks, we run each method ten times and report the average performance across these runs. AutoGluon, using the 'best quality' setting, is only run once on the WhyTrees benchmark and is not run on TabZilla due to extremely long running times. The run times for these methods can be found in Appendix A.4, and metadata about the datasets for both benchmarks is available in Appendix A.3.

- 251
- 4.3 MAIN RESULTS
- 253

Figure 2 reports the main results of Attic on the WhyTrees benchmark compared to other baselines provided by the benchmark. Table 3 shows the results of Attic against other ICL-transformers and AutoGluon. The results for the TabZilla benchmark are presented in Table 2.

First, we compare Attic with the TabForestPFN variants. Both benchmarks indicate that Attic outperforms all variants of TabForestPFN by a wide margin. A closer examination of the results reveals
that switching to bfloat16 severely diminishes the performance of TabForestPFN, and that scaling up
this model barely recovers the original performance. This shows that Attic's superior performance
cannot be attributed to the efficiency improvements from using FlashAttention (Dao et al., 2022)
combined with bfloat16 mixed-precision. Considering the other arguments discussed in Section 4.1,
we conclude that the excellent performance of Attic stems from the architectural changes.

Looking at other baselines, fine-tuned Attic outperforms all other methods on both the WhyTrees and the TabZilla benchmarks. This is a strong result, especially since Attic does not use any hyperparameter optimization, wheras other methods perform extensive hyperparameter sweeps. To further put the results in perspective, we included AutoGluon as an additional reference. AutoGluon is a method that runs hundreds of tree-based algorithms, neural networks, and other tabular prediction models, then ensembles them. As Attic can be included in this ensemble, we do not consider it a direct competitor; instead, it highlights how strong Attic is.

Models]	Rank		N. Accuracy		
Models	min	max	mean	median	mean	median	
Attic - Fine-tuned	1	28	6.4	4.0	0.882	0.961	
Attic - Zero-shot	1	26	8.8	6.2	0.834	0.922	
TabForestPFN - Fine-tuned	1	28	9.2	7.0	0.829	0.886	
CatBoost	1	24	10.4	10.0	0.832	0.861	
TabForestPFN - Zero-shot	1	25	10.4	10.0	0.809	0.880	
TabPFN - Fine-tuned	1	27	10.5	10.5	0.823	0.875	
XGBoost	1	25	10.7	11.0	0.826	0.877	
TabForestPFN BF16-L - Fine-tuned	1	27	12.2	11.0	0.785	0.868	
TabForestPFN BF16-M - Fine-tuned	1	26	12.5	12.2	0.784	0.850	
LightGBM	2	28	12.5	12.2	0.777	0.860	
TabForestPFN BF16-L - Zero-shot	1	26	12.8	12.2	0.770	0.852	
RandomForest	1	27	12.9	12.5	0.782	0.835	
TabPFN - Zero-shot	1	27	13.0	13.0	0.767	0.830	
Resnet	1	28	13.5	13.0	0.719	0.834	
SAINT	1	28	13.8	14.0	0.721	0.795	
NODE	2	28	13.8	14.5	0.741	0.817	
SVM	1	27	14.1	14.5	0.701	0.798	
FT-Transformer	1	25	14.4	15.0	0.724	0.794	
DANet	3	28	16.4	16.0	0.708	0.757	
TabForestPFN BF16-M - Zero-shot	1	27	17.1	17.0	0.708	0.795	
MLP-rtdl	1	28	17.8	19.8	0.613	0.723	
STG	2	28	18.0	19.8	0.585	0.672	
LinearRegression	1	28	19.4	22.0	0.559	0.590	
MLP	2	28	19.6	22.0	0.563	0.582	
TabNet	3	28	19.9	21.0	0.571	0.661	
DecisionTree	1	28	20.6	22.0	0.496	0.551	
KNN	2	28	21.4	24.0	0.467	0.478	
VIME	2	28	23.7	26.0	0.337	0.238	

Table 2: Main Results for the TabZilla benchmark. N. Accuracy stands for Normalized accuracy.
Rank compares the relative rank of a method compared to all other methods on that dataset.

299 300

272

301

When examining the individual datasets within WhyTrees in more detail, we find one dataset where the performance gap between Attic and all other methods is massive. Figure 3 illustrates the results on the Eye Movements dataset. Here, Attic outperforms all other methods, including AutoGluon, by more than 20%. This further suggests that Attic is an exceptionally strong model. Given that this specific dataset significantly influences the averaged normalized accuracy, we refer the reader to Appendix A.5 for detailed results on other individual datasets.

- 308
- 309

310 4.4 MIXED-PRECISION TRAINING

311

312 In the main results, we have seen that Attic outperforms all other TabForestPFN variants. In par-313 ticular, there is a significant performance drop when switching the mixed-precision setup of Tab-314 ForestPFN from float32 to bfloat16, as shown in Tables 2 and 3 when comparing the original Tab-315 ForestPFN with variant BF16-M. This indicates that TabForestPFN is highly sensitive to floatingpoint precision. The exact cause of this performance deterioration is unknown to us. We would have 316 liked to determine if Attic is also sensitive to precision. However, we cannot evaluate Attic using 317 float32 because we cannot fit it into GPU memory without FlashAttention, which does not support 318 float32. 319

Given this sensitivity to precision, it would be natural to try float16 instead of bfloat16. However,
 we encountered high pretraining instability with float16, where the cross-entropy training loss would
 start to climb and diverge at a seemingly random point during training. For weeks, we experimented
 with gradient scaler settings in an attempt to stabilize the training, but unfortunately, all pretraining
 runs eventually collapsed. This issue occurred for both TabForestPFN and Attic.

Figure 2: Main results on the WhyTrees Benchmark. ICL-transformers report the mean accuracy over ten default runs for different fine-tuning seeds, Autogluon reports one default run, and all others use random search over the hyperparameters. Results by dataset are displayed in Figure 7 and 8 of the appendix.

347 4.5 COMPUTATION RESOURCES

Run times, as reported in Appendix A.4, tell us that in the fine-tuning setting, Attic takes an average of 125 seconds to complete one cross-validation split. On average, Attic is twice as slow as Tab-ForestPFN, although this varies depending on the number of features. When dealing with datasets containing 5 or 10 features, the fine-tuning speed is similar. However, for datasets with 400 features, Attic experiences a slowdown by a factor of ten.

Attic also requires more GPU memory than TabForestPFN. As Attic uses cell tokens, it needs additional GPU memory to store all tokens for the backward pass during fine-tuning. With a maximum support size of 8192 and a maximum query size of 1024, evaluating TabForestPFN can be done within 32GB of memory, while Attic requires 80GB to run on all datasets in the benchmark. We considered increasing the context size of TabForestPFN to 16,384 for a fairer comparison, but this only marginally improved the prediction accuracy of TabForestPFN. This is because the maximum training dataset size in the WhyTrees benchmark is 10,000, and in Tabzilla there are only a handful of datasets larger than this.

361 362

363

346

348

4.6 DECISION BOUNDARIES

Given the strong results presented in the main results section, we now examine the behavior of
 the new architecture regarding decision boundaries. Breejen et al. (2024) demonstrated that ICL transformers can create highly complex decision boundaries when fine-tuned. We reproduce their
 analysis and compare the decision boundaries of Attic and TabForestPFN.

Figure 4 shows the decision boundaries for TabForestPFN and Attic based on the two most important variables of the Electricity dataset. We observe that, on this dataset, Attic can create more detailed decision boundaries than TabForestPFN. The shape of Attic's decision boundaries is more similar to those of random forest than to those of TabForestPFN. Attic also provides a major boost in the accuracy compared to TabForestPFN. We attribute this behavior to the fact that cell tokens offer a better representation of tabular data than observation tokens (see Section 3.2 for further motivation).

374 375

- 4.7 INDIVIDUAL DATASETS
- In Section 4.3, we have seen that Attic has excellent performance on the TabZilla benchmark. Here, we examine the results of individual TabZilla datasets in more detail to identify potential patterns.

380			
381		Mixed	Numerical
382	Zero-shot		
383			
384	TabPFN	0.452	0.567
385	TabForestPFN	0.419	0.597
386	TabForestPFN BF16-M	0.291	0.385
207	TabForestPFN BF16-L	0.423	0.574
307	Attic	0.446	0.610
389	Fine-tuned		
390	TabPFN	0.587	0.684
391	TabForestPFN	0.654	0.734
392	TabForestPFN BF16-M	0.538	0.613
393	TabForestPFN BF16-L	0.608	0.703
394	Attic	0.832	0.890
395	Other		
396	AutoGluon	0.835	0.887
397		0.000	5.007

Table 3: WhyTrees normalized accuracy results for methods without hyperparameter search.

Normalized Test Score for Eye Movements 0.90

Figure 3: Results on the Eye Movements dataset (OpenML ID 44156). Other datasets are presented in Appendix A.5

Figure 4: Decision boundaries for the Electricity dataset (OpenML ID 44156). Axis represent features, colors are predicted class probabilities, and dots are test observations. Score V measures complexity (see Appendix A.7).

Figure 5 presents comparisons of performance between fine-tuned Attic, CatBoost, XGBoost, fine-tuned TabForestPFN, and zero-shot Attic.

First, we compare Attic with TabForestPFN and observe that the performance gains are primarily seen in datasets with more than a thousand observations. When comparing Attic with CatBoost and XGBoost, we find that there are still a few datasets, particularly those with fewer than a thousand observations, where tree-based models perform better. This indicates that although Attic is generally stronger on average, there remains room for improvement.

When comparing Attic's fine-tuning and zero-shot performance, we observe a clear threshold around 500 observations. Zero-shot Attic performs better on datasets with fewer than 500 observations, while fine-tuned Attic excels on datasets with more than 500 observations. Since pretraining occurs on datasets with a maximum size of 512 observations, it is likely that fine-tuning is more effective for datasets larger than 512 observations because Attic has not encountered such large datasets dur-ing pretraining. Given the performance deficit of fine-tuned Attic on datasets with fewer than 500 observations, we include similar comparison graphs for zero-shot Attic in Appendix A.6.

Figure 5: Comparison of fine-tuned Attic with XGBoost, CatBoost, TabForestPFN and zero-shot Attic. Dots represent difference in normalized accuracy for an individual dataset from TabZilla. Red means fine-tuned Attic is better.

Figure 6: Regression results on the WhyTrees Benchmark. ICL-transformers report the mean R2
score over ten default runs for different fine-tuning seeds, and all others use random search over the
hyperparameters. Results by dataset are displayed in Figure 9 and 10 of the appendix.

486 4.8 REGRESSION

In this section, we present initial experiments of Attic on regression tasks. To adapt Attic for regression, we modified the synthetic dataset generator to output regression tasks instead of classification tasks. Additionally, we replaced the embedding and final layer of the Attic with linear layers that enable the model to input and output float values instead of class labels. The loss function was changed from cross-entropy loss to mean-squared error.

During the pretraining of Attic under these settings, we experienced high training instability that
was not present in the classification setting. To address this, we reduced the pretraining learning
rate from 1e-3 to 1e-4 and the fine-tuning learning rate from 1e-5 to 1e-6. The results under these
adjusted settings are presented in Figure 6.

The performance of Attic on regression tasks is not as impressive as its performance on classification tasks. We did not anticipate that regression would behave differently from classification, indicating that further investigation into regression tasks is necessary. Nonetheless, Attic remains the best-performing neural network method for regression, where we note that regression versions of TabPFN and TabForestPFN do not exist.

502 503

504

5 CONCLUSION

In this paper, we present Attic, an ICL-transformer that uses cell tokens instead of observation tokens. Our experiments show that this new architecture leads to large improvements in performance over TabForestPFN when trained under the same computational budget.

When comparing Attic with XGBoost and CatBoost, we see that Attic outperforms these tree-based methods on average, particularly on datasets with more than 500 observations. In this comparison, we fine-tuned Attic on default settings, while XGBoost and CatBoost were allowed to perform hyperparameter searches. The improvement over XGBoost and CatBoost suggests that we finally have surpassed a major barrier in AI for tabular data, favoring ICL-transformers over traditional tree-based methods.

The next milestone is to outperform AutoGluon. Until then, incorporating Attic into ensemble methods appears to be a promising approach. However, as we have observed that Attic still faces challenges with regression tasks, our immediate focus will be on improving performance in that area. Given that the field of tabular ICL-transformers is still in its early stages, we anticipate significant advancements in the coming years.

- 519
- 521
- 522
- 523
- 524 525
- 526
- 527
- 528
- 529 530
- 531
- 532
- 533 534
- 535
- 536
- 537
- 538
- 539

540 REFERENCES

548

549

550

565

566

567

568

569

570

- John O. Awoyemi, Adebayo O. Adetunmbi, and Samuel A. Oluwadare. Credit card fraud detection using machine learning techniques: A comparative analysis. In 2017 International Conference on Computing Networking and Informatics (ICCNI), pp. 1–9, October 2017. doi: 10.1109/ICCNI. 2017.8123782.
- Felix den Breejen, Sangmin Bae, Stephen Cha, and Se-Young Yun. Why In-Context Learning
 Transformers are Tabular Data Classifiers, May 2024. arXiv:2405.13396 [cs, stat].
 - Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In *International Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 785–794, August 2016. doi: 10.1145/2939672.2939785. arXiv:1603.02754 [cs].
- Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, June 2022. arXiv:2205.14135 [cs].
- Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
 Smola. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data, March 2020.
 arXiv:2003.06505 [cs, stat].
- Francesca Fallucchi, Marco Coladangelo, Romeo Giuliano, and Ernesto William De Luca. Predicting Employee Attrition Using Machine Learning Techniques. *Computers*, 9(4):86, December 2020. ISSN 2073-431X. doi: 10.3390/computers9040086. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.
- Benjamin Feuer, Robin Tibor Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter, Micah Goldblum, Niv Cohen, and Colin White. TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks, March 2024. arXiv:2402.11137 [cs].
 - Josh Gardner, Juan C. Perdomo, and Ludwig Schmidt. Large Scale Transfer Learning for Tabular Data via Language Modeling, June 2024. arXiv:2406.12031 [cs].
 - Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting Deep Learning Models for Tabular Data. In Advances in Neural Information Processing Systems (NeurIPS). arXiv, 2021. arXiv:2106.11959 [cs] version: 3.
- Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On Embeddings for Numerical Features in Tabular Deep Learning. In *Advances in Neural Information Processing Systems (NeurIPS)*. arXiv, March 2022. arXiv:2203.05556 [cs].
- Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
 Babenko. TabR: Tabular Deep Learning Meets Nearest Neighbors. In *International Conference* on Learning Representations (ICLR). arXiv, 2024. arXiv:2307.14338 [cs].
- Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on tabular data? In *Advances in Neural Information Processing Systems (NeurIPS)*. arXiv, July 2022. arXiv:2207.08815 [cs, stat].
- Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
 Sontag. TabLLM: Few-shot Classification of Tabular Data with Large Language Models. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 5549–5581. PMLR,
 April 2023. ISSN: 2640-3498.
- Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second. In *International Conference on Learning Representations (ICLR)*. arXiv, September 2023. doi: 10.48550/arXiv.2207. 01848. arXiv:2207.01848 [cs, stat].
- Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned Simple Nets Excel on Tabular Datasets, November 2021. arXiv:2106.11189 [cs].
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

- Myung Jun Kim, Léo Grinsztajn, and Gaël Varoquaux. CARTE: pretraining and transfer for tabular learning, February 2024. arXiv:2402.16785 [cs].
- Junwei Ma, Valentin Thomas, Guangwei Yu, and Anthony Caterini. In-Context Data Distillation with TabPFN. In NeurIPS Workshop: Table Representation Learning. arXiv, 2023. doi: 10. 48550/arXiv.2402.06971. arXiv:2402.06971 [cs] version: 1.
- Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Benjamin Feuer, Chin-may Hegde, Ganesh Ramakrishnan, Micah Goldblum, and Colin White. When Do Neural Nets Outperform Boosted Trees on Tabular Data? In Advances in Neural Information Processing Sys-tems (NeurIPS) Track on Datasets and Benchmarks. arXiv, October 2023. arXiv:2305.02997 [cs, stat].
- Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc., 2018. arXiv:1706.09516 [cs].
- Archana Singh and Rakesh Kumar. Heart Disease Prediction Using Machine Learning Algorithms. In 2020 International Conference on Electrical and Electronics Engineering (ICE3), pp. 452–457, February 2020. doi: 10.1109/ICE348803.2020.9122958.
- Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Gold-stein. SAINT: Improved Neural Networks for Tabular Data via Row Attention and Con-trastive Pre-Training. In NeurIPS Workshop: Table Representation Learning. arXiv, June 2021. arXiv:2106.01342 [cs, stat].
- Valentin Thomas, Junwei Ma, Rasa Hosseinzadeh, Keyvan Golestan, Guangwei Yu, Maksims Volkovs, and Anthony Caterini. Retrieval & Fine-Tuning for In-Context Tabular Models, June 2024. arXiv:2406.05207 [cs].
- Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Z. Chen, Jimeng Sun, Jian Wu, and Jintai Chen. Making Pre-trained Language Models Great on Tabular Prediction, March 2024. arXiv:2403.01841 [cs].
- Yazheng Yang, Yuqi Wang, Guang Liu, Ledell Wu, and Qi Liu. UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model in Data Science. In International Conference on Learning Representations (ICLR), October 2023.
- Guri Zabërgja, Arlind Kadra, and Josif Grabocka. Tabular Data: Is Attention All You Need? In International Conference on Learning Representations (ICLR). arXiv, February 2024. arXiv:2402.03970 [cs].

APPENDIX А

REPRODUCIBILITY STATEMENT A.1

With this submission, we provide all the code that is necessary to pretrain, fine-tune and evaluate our model as well as other models on the benchmark datasets. We will also provide the exact scripts and hyperparameters settings necessary to reproduce the training and evaluation, as well as intermediate run statistics and outputs, and the code to reproduce all tables and graphs. Code will be hosted on GitHub and pretrained weights will be publicly available.

A.2 TABZILLA DATASET SELECTION

From the TabZilla benchmark, we test on 94 datasets from a collection of 176. We follow the selection procedure as outlined by the authors of TabForestPFN (Breejen et al., 2024), which means we remove all datasets for which a baseline algorithm did not have a completed run in the results provided by the benchmark authors. Additionally datasets that have more than 10 classes are also removed.

A.3 BENCHMARK METADATA

Tables 4 and 5 show the composition of all the datasets we use to benchmark Attic.

Table 4: Metadata of the WhyTrees Benchmark. Splits refers to the number of cross validation splits.

671									
672	OpenM	L		Observ	ations		Features	Splits	Classes
673	ID	Name	All	Train	Valid	Test	-		
674	44089	credit	16714	10000	2014	4700	10	2	2
675	44120	electricity	38474	10000	8542	19932	7	1	2
676	44121	covertype	566602	10000	50000	50000	10	1	2
677	44122	pol	10082	7057	907	2118	26	3	2
670	44123	house_16H	13488	9441	1214	2833	16	3	2
010	44125	MagicTelescope	13376	9363	1203	2810	10	3	2
679	44126	bank-marketing	10578	7404	952	2222	7	3	2
680	44128	MiniBooNE	72998	10000	18899	44099	50	1	2
681	44129	Higgs	940160	10000	50000	50000	24	1	2
682	44130	eye_movements	7608	5325	684	1599	20	3	2
692	44156	electricity	38474	10000	8542	19932	8	1	2
003	44157	eye_movements	7608	5325	684	1599	23	3	2
684	44159	covertype	423680	10000	50000	50000	54	1	2
685	45019	Bioresponse	3434	2403	309	722	419	5	2
686	45020	default-of-cred	13272	9290	1194	2788	20	3	2
687	45021	jannis	57580	10000	14274	33306	54	1	2
688	45022	Diabetes130US	71090	10000	18327	42763	7	1	2
000	45026	heloc	10000	7000	900	2100	22	3	2
689	45028	california	20634	10000	3190	7444	8	1	2
690	45035	albert	58252	10000	14475	33777	31	1	2
691	45036	default-of-cred	13272	9290	1194	2788	21	3	2
692	45038	road-safety	111762	10000	30528	50000	32	1	2
693	45039	compas-two-year	4966	3476	447	1043	11	3	2

Table 5: Metadata of the TabZilla Benchmark. Splits refers to the number of cross validation splits.

OpenM	/IL		Observation	ations	Features	Splits	Classes	
ID	Name	All	Train	Valid	Test			
	kr-vs-kp	3196	2556	320	320	36	10	2
4	labor	57	45	6	6	16	10	2

702	9	autos	205	163	21	21	25	10	6
703	10	lymph	148	118	15	15	18	10	4
704	11	balance-scale	625	499	63	63	4	10	3
705	12	mfeat-factors	2000	1600	200	200	216	10	10
706	14	mfeat-fourier	2000	1600	200	200	76	10	10
700	15	breast-w	699	559	70	70	9	10	2
707	16	mfeat-karhunen	2000	1600	200	200	64	10	10
708	18	mfeat-morpholog	2000	1600	200	200	6	10	10
709	23	cmc	1473	1177	148	148	9	10	3
710	25	colic	368	294	37	37	26	10	2
711	27	colic	368	294	37	37	22	10	2
712	29	credit-approval	690	552	69 5 4 9	69 5 4 9	15	10	2
713	30 25	page-blocks	54/3 266	4377	548 27	548 27	10	10	5
714	35	diabetes	768	292 614	57 77	37 77	24	10	2
715	39	sonar	208	166	21	21	60	10	2
715	40	glass	214	170	22	22	9	10	6
/10	43	spambase	4601	3680	460	461	57	10	2
/1/	45	splice	3190	2552	319	319	60	10	3
718	47	tae	151	120	15	16	5	10	3
719	48	heart-c	303	241	31	31	13	10	2
720	49	tic-tac-toe	958	766	96	96	9	10	2
721	50	heart-h	294	234	30	30	13	10	2
722	53	vehicle	846	676	85	85	18	10	4
723	39 2074	1r1s	150	120 5144	15	15	4	10	3
724	2074	saumage	0430	5144	043 74	043 74	30 10	10	0 5
725	2079	anneal	898	718	90	90	38	10	5
725	3485	scene	2407	1925	241	241	299	10	2
720	3512	synthetic_contr	600	480	60	60	60	10	6
727	3540	analcatdata_box	120	96	12	12	3	10	2
728	3543	irish	500	400	50	50	5	10	2
729	3549	analcatdata_aut	841	672	84	85	70	10	4
730	3560	analcatdata_dmf	797	637	80	80	4	10	6
731	3561	profb	6/2	536	68	68	9	10	2
732	3620	fri c0 100 5	100	00 80	10	12	5	10	2
733	3647	rabe 266	120	96	12	12	2	10	2
734	3711	elevators	16599	13279	1660	1660	18	10	2
735	3731	visualizing_liv	130	104	13	13	2	10	2
736	3739	analcatdata_chl	100	80	10	10	3	10	2
737	3748	transplant	131	104	13	14	3	10	2
738	3779	fri_c3_100_5	100	80	10	10	5	10	2
730	3797	socmob	1156	924	116	116	5	10	2
739	3896	ada_agnostic	4562	3048	457	457	48	10	2
740	3902	pc4	14563	1240	140	140	37	10	2
741	3904	im1	10885	8707	1089	1089	21	10	2
742	3913	kc2	522	416	53	53	21	10	2
743	3917	kc1	2109	1687	211	211	21	10	2
744	3918	pc1	1109	887	111	111	21	10	2
745	3953	adult-census	32561	26048	3256	3257	14	10	2
746	9946	wdbc	569	455	57	57	30	10	2
747	9952	phoneme	5404	4322	541	541	5	10	2
748	9957	qsar-blodeg	1055	843 4264	100 546	100 546	41	10	2 4
749	9900 9964	semeion	1593	4304	160	160	2 4 256	10	10
750	9971	ilpd	583	465	59	59	10	10	2
751	9978	ozone-level-8hr	2534	2026	254	254	72	10	$\frac{1}{2}$
750	9984	fertility	100	80	10	10	9	10	$\overline{2}$
752	10089	acute-inflammat	120	96	12	12	6	10	2
/ 53	10093	banknote-authen	1372	1096	138	138	4	10	2
/54	10101	blood-transfusi	748	598	75	75	4	10	2
755	14952	Phishing Website	11055	8843	1106	1106	30	10	2
	14934	cynnuer-bands	540	432	54	54	51	10	2

756	14065	hank markating	45211	26169	4521	4522	16	10	2
757	14903	cis	2796	2236	4321 280	4322	33	10	6
758	125920	dresses-sales	500	400	50	50	12	10	2
759	125921	LED-display-dom	500	400	50	50	7	10	10
760	145793	yeast	1269	1015	127	127	8	10	4
761	145799	breast-cancer	286	228	29	29	9	10	2
101	145836	blood-transfusi	748	598	75	75	4	10	2
762	145847	hill-valley	1212	968	122	122	100	10	2
763	145977	ecoli	336	268	34	34	7	10	8
764	145984	ionosphere	351	280	35	36	34	10	2
765	146024	lung-cancer	32	24	4	4	56	10	3
766	146063	hayes-roth	160	128	16	16	4	10	3
700	146065	monks-problems	601	480	60	61	6	10	2
/0/	146192	car-evaluation	1728	1382	173	173	21	10	4
768	146210	postoperative-p	88	70	9	9	8	10	2
769	146607	SpeedDating	8378	6702	838	838	120	10	2
770	146800	MiceProtein	1080	864	108	108	77	10	8
771	146817	steel-plates-fa	1941	1552	194	195	27	10	7
770	146818	Australian	690	552	69	69	14	10	2
112	146820	wilt	4839	3871	484	484	5	10	2
773	146821	car	1728	1382	173	173	6	10	4
774	167140	dna	3186	2548	319	319	180	10	3
775	167141	churn	5000	4000	500	500	20	10	2
776	167211	Satellite	5100	4080	510	510	36	10	2
777	168911	jasmine	2984	2386	299	299	144	10	2
	190408	Click_predictio	39948	31958	3995	3995	11	10	2
778	360948	libras	360	288	36	36	104	10	10
779									

A.4 RUN TIMES

Tables 6 and 7 present the run times for Attic, TabForestPFN and AutoGluon. The ICL-transformers
are run on an H100, while AutoGluon is run on 64 cores of a Intel Xeon Gold 5220R CPU. AutoGluon is only run on the WhyTrees benchmark due to the high run times. We would like to emphasize that the run time of AutoGluon should only be compared to that of ICL-transformers by orders
of magnitude. As AutoGluon runs on CPUs and the ICL-transformers run on GPUs, any direct
run-time comparison critically depends on the equipment used.

Table 6: Run times of TabForestPFN, Attic and AutoGluon on the WhyTrees benchmark. The runtime is the end-to-end time in seconds for one cross validation split. End-to-end time includes loading, preprocessing, training and testing.

793 794	Data				Run time (s)						
795	OpenM	L	Siz	ze	TabFo	restPFN	А	ttic	AutoGluon		
796	ID	Name	Obs.	Feat.	Zero-shot	Fine-tuned	Zero-shot	Fine-tuned	Best-Quality		
797	44089	credit	10000	10	9	103	12	90	5982		
798	44120	electricity	10000	7	15	151	18	125	10390		
799	44121	covertype	10000	10	34	167	36	146	45419		
800	44122	pol	7057	26	6	57	11	104	4714		
004	44123	house_16H	9441	16	8	72	12	111	7081		
001	44125	MagicTelescope	9363	10	7	105	11	103	7188		
802	44126	bank-marketing	7404	7	7	68	9	49	5198		
803	44128	MiniBooNE	10000	50	28	126	75	376	8119		
804	44129	Higgs	10000	24	34	119	56	219	26781		
805	44130	eye_movements	5325	20	5	63	9	140	6311		
006	44156	electricity	10000	8	17	142	19	131	16432		
000	44157	eye_movements	5325	23	6	65	10	149	4896		
807	44159	covertype	10000	54	37	219	103	476	45452		
808	45019	Bioresponse	2403	419	8	34	19	333	4858		
809	45020	default-of-credit-card-clients	9290	20	7	81	13	119	4839		
	45021	jannis	10000	54	23	130	63	457	8992		

810	45022	Dishetas 120US	10000	7	25	05	24	07	0576
811	45022	heloc	7000	22	23	93 56	24 11	87 85	8330 6490
812	45028	california	10000	8	11	112	15	82	7022
813	45035	albert	10000	31	21	103	40	252	8116
814	45036	default-of-credit-card-clients	9290	21	8	79	13	135	4648
915	45038	road-safety	10000	32	30	153	60	349	14055
816	45039	compas-two-years	3476	11	5	43	8	41	3579

Table 7: Run times of TabForestPFN and the Attic on the TabZilla benchmark. The runtime is the end-to-end time in seconds for one cross validation split. End-to-end time includes loading, preprocessing, training and testing.

	Data	a	Run time (s)					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ope	enML	Siz	ze	TabFo	restPFN	А	ttic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ID	Name	Obs.	Feat.	Zero-shot	Fine-tuned	Zero-shot	Fine-tuned
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	kr-vs-kp	2556	36	4	29	8	53
9 autos 163 25 3 11 8 1 10 lymph 118 18 3 9 8 1 11 balance-scale 499 4 3 32 7 2 12 mfeat-factors 1600 216 5 26 13 14 14 mfeat-fourier 1600 76 4 29 10 4 15 breast-w 559 9 3 19 8 1 16 mfeat-karhunen 1600 64 4 22 8 1 23 cmc 1177 9 4 20 8 11 23 cmc 1177 9 4 20 8 11 25 colic 294 26 3 10 8 1 29 credit-approval 552 15 4 22 7 1 30 page-blocks 4377 10 5 40 8 3 35 dermatology 292 34 3 13 7 22 37 diabetes 614 8 3 19 7 1 40 glass 170 9 3 10 7 11 43 spambase 3680 57 6 42 12 9 44 palies 170 9 3 10 7 1 43 spambase 3680 57 6 42 12 9 44 palies 170 9 3 10 7 1 43 spambase 3680 57 6 42 12 9 50 heart-h 234 13 2 12 8 11 51 vehicle 676 18 3 23 8 1 53 vehicle 676 18 3 23 8 1 54 heart-c 241 13 3 11 8 1 55 vehicle 676 18 3 23 8 1 57 diabetes 5144 36 6 55 11 11 50 heart-h 234 13 2 12 8 11 51 vehicle 676 18 3 23 8 1 52 state 7 1 53 dermatology 58 19 3 10 7 1 54 splice 252 99 6 37 15 20 50 heart-h 234 13 2 12 8 11 51 vehicle 676 18 3 23 8 1 52 state 7 1 53 dermatology 58 19 3 10 7 1 54 splice 7 241 13 3 11 8 11 53 vehicle 676 18 3 23 8 1 54 splice 676 18 3 23 8 1 55 state 7 1 56 heart-h 234 13 2 12 8 11 57 vehicle 676 18 3 23 8 1 58 19 3 16 7 1 50 heart-h 234 13 2 12 8 11 51 state 20 4 3 16 8 1 52 state 7 2 54 splice 25 29 6 37 15 20 54 splice 25 29 6 37 15 20 55 state 7 2 56 state 7 2 57 state 7 2 58 19 3 16 7 1 59 state 7 2 50 heart-h 234 13 2 12 8 12 50 heart-h 234 13 2 12 8 12 51 vehicle 676 18 3 23 8 1 51 state 7 1 52 state 7 2 54 splice 7 20 4 3 16 8 1 53 state 7 1 54 splice 7 7 0 54 19 8 1 55 state 7 1 56 10 11 57 3 56 10 10 5 17 57 30 56 10 10 5 17 57 30 57 40 3 16 7 1 57 30 56 10 10 5 17 57 30 56 10 10 5 17 57 30 57 40 3 16 7 1 57 30 56 10 10 5 17 57 3	4	labor	45	16	3	13	9	25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	autos	163	25	3	11	8	18
11balance-scale499433272212mfeat-factors1600216526131414mfeat-forrier16007642910415breast-w55993198116mfeat-karhunen1600642210418mfeat-morphological160064228125colic294223118127colic294223118129credit-approval552154227130page-blocks4377105408335dermatology292343137237diabetes61483197140glass17093107143spambase36805764212945splice2552603339847tae12053118149tic-tac-toe76693208250heart-h2341321281207eucalytus5881931871204satimage514436655<	10	lymph	118	18	3	9	8	18
12mfeat-fourier1600216526131414mfeat-fourier16007642910415breast-w55993198116mfeat-morphological16006442210418mfeat-morphological160064228123cmc117794208125colic294223118129credit-approval552154227130page-blocks4377105408335dermatology292343137237diabetes61483197140glass17093107143spambase36805764212945splice255260333398250heart-c2411331181149tic-tac-toe76693208250heart-h234132128112074satimage51443665511112074satimage51443665511112074satimage <t< td=""><td>11</td><td>balance-scale</td><td>499</td><td>4</td><td>3</td><td>32</td><td>7</td><td>28</td></t<>	11	balance-scale	499	4	3	32	7	28
14mfeat-fourier160076429104415breast-w55993198116mfeat-karhunen1600644228123cmc117794208125colic294263108127colic294223118129credit-approval552154227130page-blocks4377105408337diabetes61483197140glass17093107140glass17093107143spambase36805764212945splice2552603339847tae12053118149tic-tac-toe76693208250heart-h23413212812074satimage51443665511112074satimage51443665511112167analcatdata_authorship67270425933540analcatdata_authorship67270425 <td>12</td> <td>mfeat-factors</td> <td>1600</td> <td>216</td> <td>5</td> <td>26</td> <td>13</td> <td>145</td>	12	mfeat-factors	1600	216	5	26	13	145
15breast-w55993198116mfeat-karhunen1600644228123cmc117794208125colic294263118127colic294223118129credit-approval552154227130page-blocks4377105408335dermatology292343137239sonar166603117140glass17093107143spambase36805764212945splice2552603339847tae12053118250heart-c241133118250heart-h23413212812074satinage51443665511112079euclyptus58819318723485scene19252963715203543irish40054198136467analcatdata_auhorship6727042593 <td>14</td> <td>mfeat-fourier</td> <td>1600</td> <td>76</td> <td>4</td> <td>29</td> <td>10</td> <td>47</td>	14	mfeat-fourier	1600	76	4	29	10	47
16mfeat-morphological1600 64 42210418mfeat-morphological160064228123cmc117794208125colic294263108127colic294223118129credit-approval552154227130page-blocks4377105408335dermatology292343137237diabetes61483197140glass17093107143spambase36805764212945splice2552603339847tae12053118149tic-tac-toe76693208250heart-h23413212812074satimage51443665511112077eucalyptus58819318723485scene192529963715203540analcatdata_dmft6374320813549analcatdata_dmft63743 <td< td=""><td>15</td><td>breast-w</td><td>559</td><td>9</td><td>3</td><td>19</td><td>8</td><td>19</td></td<>	15	breast-w	559	9	3	19	8	19
18mfeat-morphological160064228123cmc117794208125colic294263108127colic294223118129credit-approval552154227130page-blocks4377105408335dermatology292343137237diabetes61483197140glass17093107143spambase36805764212945splice2552603339847tae12053118148heart-c241133118149tic-tac-toe76693208250heart-h23413212811207eucalyptus5881931871279eucalyptus58819318723485scene192529963715203512synthetic.control48060331281360analcatdata.authorship672704 <td< td=""><td>16</td><td>mfeat-karhunen</td><td>1600</td><td>64</td><td>4</td><td>22</td><td>10</td><td>42</td></td<>	16	mfeat-karhunen	1600	64	4	22	10	42
23cmc 1177 94208125colic 294 263108127colic 294 223118129credit-approval 552 154227130page-blocks 4377 105408335dermatology 292 343137237diabetes61483197140glass17093107143spambase36805764212945splice2552603339847tae12053118149tic-tac-toe76693208250heart-h234132128148heart-c12053118153vehicle676183238150heart-h23413212812079eucalyptus58819318712079eucalyptus58819318723540analcatdata_boxing1963312823543irish400541981 <td>18</td> <td>mfeat-morphological</td> <td>1600</td> <td>6</td> <td>4</td> <td>22</td> <td>8</td> <td>19</td>	18	mfeat-morphological	1600	6	4	22	8	19
25colic294263108127colic294223118129credit-approval552154227130page-blocks4377105408335dermatology292343137237diabetes61483197140glass17093107143spambase36805764212945splice2552603339847tae12053118149tic-tac-toe76693208250heart-h234132128153vehicle67618323812074satimage51443665511112079eucalyptus588193187123485scene192529963715203540analcatdata_boxing1963312823543irish4005419813602riz010.5805313723647rabe.26696231482	23	cmc	1177	9	4	20	8	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	colic	294	26	3	10	8	16
29credit-approval552154227130page-blocks4377105408335dermatology292343137237diabetes61483197139sonar166603117140glass17093107143spambase36805764212945splice2552603339847tae12053118248heart-c241133118149tic-tac-toe76693208250heart-h234132128159iris1204316812074satimage51443665511112079eucalyptus588193187123485scene192529963715203540analcatdata_obxing1963312823540analcatdata_atorship6774320813620rizo.100.5805313723647rabe_2669623148 </td <td>27</td> <td>colic</td> <td>294</td> <td>22</td> <td>3</td> <td>11</td> <td>8</td> <td>18</td>	27	colic	294	22	3	11	8	18
30page-blocks43771054083335dermatology292343137237diabetes61483197139sonar166603117140glass17093107143spambase36805764212945splice2552603339847tae12053118248heart-c241133118149tic-tac-toe76693208250heart-h234132128153vehicle67618323812074satimage51443665511112079eucalyptus58819318712867anneal71838326723485scene192529963715203540analcatdata_boxing1963312823543irish4005419813602visualizing_environmental883310813601profb53693167 <t< td=""><td>29</td><td>credit-approval</td><td>552</td><td>15</td><td>4</td><td>22</td><td>7</td><td>17</td></t<>	29	credit-approval	552	15	4	22	7	17
35dermatology292343137237diabetes 614 83 19 7139sonar 166 60 3 11 7140glass 170 93 10 7143spambase 3680 57 6 42 12 945splice 2552 60 3 33 9847tae 120 53 11 8248heart-c 241 13 3 11 8149tic-tac-toe 766 93 20 8250heart-h 234 13 2 12 8153vehicle 676 18 3 23 812074satimage 5144 36 6 55 11 111 2079eucalyptus 588 19 3 18 7 2 3485 scene 1925 299 6 37 15 20 3512 synthetic-control 480 60 3 18 7 2 3540 analcatdata_boxing1 96 3 316 7 2 3540 analcatdata_dufnft 637 4 3 20 8 11 3602 rish 400 5 4 19 8 11 3602 risultizing_environmental<	30	page-blocks	4377	10	5	40	8	37
37 diabetes 614 8 3 19 7 1 39 sonar 166 60 3 11 7 1 40 glass 170 9 3 10 7 1 43 spambase 3680 57 6 42 12 9 45 splice 2552 60 3 33 9 8 47 tae 120 5 3 11 8 2 48 heart-c 241 13 3 11 8 2 48 heart-c 241 13 2 12 8 1 49 tic-tac-toe 766 9 3 20 8 2 50 heart-h 234 13 2 12 8 1 53 vehicle 676 18 3 23 8 1 2074 satimage 5144 36 6 55 11 11 2074 satimage 5144 36 6 55 11 11 2079 eucalyptus 588 19 3 18 7 2 3485 scene 1925 299 6 37 15 20 3540 analcatdata_oning1 96 3 312 8 2 3543 irish 400 5 4 19 8 1 3620 ricoloto 536 9 3 16 <	35	dermatology	292	34	3	13	7	22
39sonar166603117140glass17093107143spambase36805764212945splice2552603339847tae12053118248heart-c241133118149tic-tac-toe76693208250heart-h234132128153vehicle676183238159iris1204316812074satimage51443665511112075anneal71838326723485scene192529963715203540analcatdata_boxing1963312823543irish4005419813549analcatdata_authorship67270425933560analcatdata_dmft6374320813620fri.c0.100_5805313723647rabe.266962314823711elvators1327918910115 <td>37</td> <td>diabetes</td> <td>614</td> <td>8</td> <td>3</td> <td>19</td> <td>7</td> <td>17</td>	37	diabetes	614	8	3	19	7	17
40glass17093107143spambase 3680 57 6 42 12 945splice 2552 60 3 33 9847tae 120 53 11 8 2 48heart-c 241 13 3 11 8 11 49tic-tac-toe 766 93 20 8 22 50heart-h 234 13 2 12 8 11 53vehicle 676 18 3 23 8 11 59iris 120 4 3 16 8 1 2074satimage 5144 36 6 55 11 11 2079eucalyptus 588 19 3 18 7 1 2867anneal 718 38 3 26 7 2 3485 scene 1925 299 6 37 15 20 3540 analcatdata.boxing1 96 3 312 8 2 3543 irish 400 5 4 19 8 11 3602 visualizing.environmental 88 3 3 10 8 11 3620 fri.c0.100.5 80 5 3 13 7 22 3647 rabe.266 96 2 3 14 8 22 3711 <td>39</td> <td>sonar</td> <td>166</td> <td>60</td> <td>3</td> <td>11</td> <td>7</td> <td>19</td>	39	sonar	166	60	3	11	7	19
43spambase 3680 57 6 42 12 9 45splice 2552 60 3 33 9 8 47tae 120 5 3 11 8 2 48heart-c 241 13 3 11 8 11 49tic-tac-toe 766 9 3 20 8 2 50heart-h 234 13 2 12 8 11 53vehicle 676 18 3 23 8 11 2074satimage 5144 36 6 55 11 111 2079 eucalyptus 588 19 3 18 7 11 2867 anneal 718 38 3 26 7 22 3485 scene 1925 299 6 37 15 200 3512 synthetic_control 480 60 3 18 7 22 3540 analcatdata_authorship 672 70 4 25 9 33 3560 analcatdata_authorship 672 70 4 25 9 33 3560 analcatdata_authorship 672 70 4 25 9 33 3560 analcatdata_authorship 536 9 3 16 7 11 3620 trianetal 88 3 3 10 8 11 <tr<< td=""><td>40</td><td>glass</td><td>170</td><td>9</td><td>3</td><td>10</td><td>7</td><td>17</td></tr<<>	40	glass	170	9	3	10	7	17
45splice2552603339847tae12053118248heart-c241133118149tic-tac-toe76693208250heart-h234132128153vehicle676183238159iris1204316812074satimage51443665511112079eucalyptus58819318712867anneal71838326723485scene192529963715203512synthetic_control48060318723540analcatdata_boxing1963312823543irish4005419813560analcatdata_authorship67270425933560analcatdata_dmft6374320813620fri_c0_100_5805313723647rabe_266962314823711elevators1327918910115173739analcatdata_chlamydia80	43	spambase	3680	57	6	42	12	92
47tae12053118248heart-c241133118149tic-tac-toe76693208250heart-h234132128153vehicle676183238159iris1204316812074satimage51443665511112079eucalyptus58819318712867anneal71838326723485scene192529963715203512synthetic_control48060318723543analcatdata_boxing1963312823543analcatdata_authorship67270425933560analcatdata_authorship6374320813611profb5369316713602visualizing_environmental883310813620fri $c0.100.5$ 805313723647rabe_266962314823711elvators1327918910115173731visualizing_live	45	splice	2552	60	3	33	9	83
48 heart-c 241 13 3 11 8 1 49 tic-tac-toe 766 9 3 20 8 22 50 heart-h 234 13 2 12 8 11 53 vehicle 676 18 3 23 8 11 59 iris 120 4 3 16 8 11 2074 satimage 5144 36 6 55 11 111 2079 eucalyptus 588 19 3 18 7 11 2867 anneal 718 38 3 26 7 22 3485 scene 1925 299 6 37 15 200 3512 synthetic_control 480 60 3 18 7 22 3543 analcatdata_authorship 672 70 4 25 9 33 3560 analcatdata_authorship 672 70 4 25 9 33 3561 profb 536 9 3 16 7 11 3602 visualizing_environmental 88 3 3 10 8 11 3620 fri_c0.100_5 80 5 3 13 7 22 3647 rabe_266 96 2 3 14 8 22 3711 elvators 13279 18 9 101 15 17 <	47	tae	120	5	3	11	8	22
49tic-tac-toe76693208250heart-h234132128153vehicle676183238159iris1204316812074satimage51443665511112079eucalyptus58819318712867anneal71838326723485scene192529963715203512synthetic_control48060318723540analcatdata_boxing1963312823543irish4005419813549analcatdata_authorship67270425933660analcatdata_dmft6374320813620ric.0.100_5805313723647rabe.266962314823711elevators1327918910115173731visualizing_livestock1042315923748transplant1043312723748transplant104331272	48	heart-c	241	13	3	11	8	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	tic-tac-toe	766	9	3	20	8	20
53 vehicle 676 18 3 23 8 1 59 iris 120 4 3 16 8 1 2074 satimage 5144 36 6 55 11 11 2079 eucalyptus 588 19 3 18 7 1 2867 anneal 718 38 3 26 7 22 3485 scene 1925 299 6 37 15 200 3512 synthetic_control 480 60 3 18 7 22 3540 analcatdata_boxing1 96 3 3 12 8 22 3543 irish 400 5 4 19 8 11 3549 analcatdata_authorship 672 70 4 25 9 33 3560 analcatdata_authorship 672 70 4 25 9 33 3560 analcatdata_authorship 672 70 4 25 9 33 3560 analcatdata_authorship 536 9 3 16 7 11 3602 visualizing_environmental 88 3 3 10 8 11 3620 fri_aco_100_5 80 5 3 13 7 22 3647 rabe_266 96 2 3 14 8 22 3739 analcatdata_chlamydia 80 3 <td>50</td> <td>heart-h</td> <td>234</td> <td>13</td> <td>2</td> <td>12</td> <td>8</td> <td>16</td>	50	heart-h	234	13	2	12	8	16
59iris1204316812074satimage 5144 366 55 11112079eucalyptus 588 19318712867anneal71838326723485scene192529963715203512synthetic_control48060318723540analcatdata_boxing1963312823543irish4005419813549analcatdata_authorship67270425933560analcatdata_dmft6374320813602visualizing_environmental883310813620fri_c0_100_5805313723647rabe_266962314823731visualizing_livestock1042315923739analcatdata_chlamydia803316823748transplant104331272	53	vehicle	676	18	3	23	8	18
2074 satimage 5144 36 6 55 11 11 2079 eucalyptus 588 19 3 18 7 1 2867 anneal 718 38 3 26 7 2 3485 scene 1925 299 6 37 15 20 3512 synthetic_control 480 60 3 18 7 2 3540 analcatdata_boxing1 96 3 3 12 8 2 3543 irish 400 5 4 19 8 1 3549 analcatdata_authorship 672 70 4 25 9 3 3560 analcatdata_dmft 637 4 3 20 8 1 3602 visualizing_environmental 88 3 3 10 8 1 3620 fri_c0_100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3731 visualizing_livestock 104 2 3 16 8 2 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	59	iris	120	4	3	16	8	19
2079 eucalyptus 588 19 3 18 7 1 2867 anneal 718 38 3 26 7 2 3485 scene 1925 299 6 37 15 20 3512 synthetic_control 480 60 3 18 7 2 3540 analcatdata_boxing1 96 3 3 12 8 2 3543 irish 400 5 4 19 8 1 3549 analcatdata_authorship 672 70 4 25 9 3 3560 analcatdata_dmft 637 4 3 20 8 1 3561 profb 536 9 3 16 7 1 3602 visualizing_environmental 88 3 3 10 8 1 3620 fri_c0_1100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	207	4 satimage	5144	36	6	55	11	118
2867 anneal 718 38 3 26 7 22 3485 scene 1925 299 6 37 15 20 3512 synthetic_control 480 60 3 18 7 2 3540 analcatdata_boxing1 96 3 3 12 8 2 3543 irish 400 5 4 19 8 1 3549 analcatdata_authorship 672 70 4 25 9 3 3560 analcatdata_dmft 637 4 3 20 8 1 3561 profb 536 9 3 16 7 1 3602 visualizing_environmental 88 3 3 10 8 1 3620 fri_c0_100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	207	9 eucalyptus	588	19	3	18	7	17
3483 scelle 1923 299 6 37 13 20 3512 synthetic_control 480 60 3 18 7 2 3540 analcatdata_boxing1 96 3 3 12 8 2 3543 irish 400 5 4 19 8 1 3549 analcatdata_authorship 672 70 4 25 9 3 3560 analcatdata_dmft 637 4 3 20 8 1 3561 profb 536 9 3 16 7 1 3602 visualizing_environmental 88 3 3 10 8 1 3620 fri_c0_100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3731 visualizing_livestock 104 2 3 16 8 2 3738 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	280	/ anneal	/18	200	5	20	15	20
3512 synthetic control 480 60 5 18 7 22 3540 analcatdata_boxing1 96 3 3 12 8 2 3543 irish 400 5 4 19 8 1 3549 analcatdata_authorship 672 70 4 25 9 3 3560 analcatdata_dmft 637 4 3 20 8 1 3561 profb 536 9 3 16 7 1 3602 visualizing_environmental 88 3 3 10 8 1 3620 fri_c0_100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3731 visualizing_livestock 104 2 3 16 8 2 3739 analcatdata_chlamydia 80 3 3 12 7 2 3748 transplant 104 3 3 12 7 2	251	3 scelle	1923	299	0	37 19	13	201
3340 analcatidata boxing 1 96 3 3 12 8 2 3543 irish 400 5 4 19 8 1 3549 analcatdata_authorship 672 70 4 25 9 3 3560 analcatdata_dmft 637 4 3 20 8 1 3561 profb 536 9 3 16 7 1 3602 visualizing_environmental 88 3 3 10 8 1 3620 fri_c0_100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3731 visualizing_livestock 104 2 3 16 8 2 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	254	2 Synthetic_control	480	00	3	10	/	22
354.5Iffsh400 3 4 19 8 11 3549analcatdata_authorship 672 70 4 25 9 3 3560 analcatdata_dmft 637 4 3 20 8 1 3561 profb 536 9 3 16 7 1 3602 visualizing_environmental 88 3 3 10 8 1 3620 fri_c0_100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 1011 15 17 3731 visualizing_livestock 104 2 3 15 9 2 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	254	0 anaicaidata_doxing1	90 400	3 5	5	12	8	23
3349 anarcatidata authorship 672 70 4 23 9 33 3560 analcatidata authorship 637 4 3 20 8 11 3561 profb 536 9 3 16 7 11 3602 visualizing_environmental 88 3 3 10 8 11 3620 fri_c0_100_5 80 5 3 13 7 22 3647 rabe_266 96 2 3 14 8 22 3711 elevators 13279 18 9 101 15 17 3731 visualizing_livestock 104 2 3 16 8 22 3739 analcatdata_chlamydia 80 3 3 16 8 22 3748 transplant 104 3 3 12 7 22	254	5 IFISH	400	5 70	4	19	8	10
3560analcaldata dmit637452081 3561 profb 536 931671 3602 visualizing_environmental88331081 3620 fri_c0_100_580531372 3647 rabe_26696231482 3711 elevators132791891011517 3731 visualizing_livestock104231592 3739 analcatdata_chlamydia80331682 3748 transplant104331272 3750 6490531272	254	9 analcaldala_authorship	672	/0	4	25	9	3Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	330	0 anaicaidata_dmit	03/ 526	4	3	20	87	18
3602 Visualizing_environmental 88 5 5 10 8 1 3620 fri_c0_100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3731 visualizing_livestock 104 2 3 15 9 2 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	330	1 proib	530	9	3	10	/	1/
3620 ffl.c0_100_5 80 5 3 13 7 2 3647 rabe_266 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3731 visualizing_livestock 104 2 3 15 9 2 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	360	2 visualizing_environmental	88	5	3	10	8	19
364/ rabe_200 96 2 3 14 8 2 3711 elevators 13279 18 9 101 15 17 3731 visualizing_livestock 104 2 3 15 9 2 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	362	U III_CU_100_5	80	2	3	13	/	22
3711 elevators $132/9$ 18 9 101 15 17 3731 visualizing_livestock 104 2 3 15 9 2 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	364	/ rabe_266	96	2	3	14	8	22
3731 visualizing_livestock 104 2 3 15 9 2 3739 analcatdata_chlamydia 80 3 3 16 8 2 3748 transplant 104 3 3 12 7 2	5/1	1 elevators	13279	18	9	101	15	175
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5/3	1 visualizing_livestock	104	2	3	15	9	21
3/48 transplant 104 3 3 12 7 2	3/3	9 analcatdata_chlamydia	80	3	3	16	8	22
	5/4	δ transplant	104	3	3	12	7	22

864	3797	socmob	924	5	3	19	8	14
865	3896	ada_agnostic	3648	48	6	36	11	82
866	3902	pc4	1166	37	4	23	8	30
867	3903	pc3	1249	37	4	26	9	34
868	3904	jm1	8707	21	6	117	10	161
869	3913	kc2	416	21	3	26	7	18
870	3917	KC1	168/	21	4	48	8	27
971	3918	pc1	26049	21	5 14	10	8 10	18
071	0046	adult-cellsus	20046	14 30	14	175	19	100
872	9940	phoneme	4322	5	4	17	8	22
873	9957	asar-biodeg	843	41	4	23	7	20
874	9960	wall-robot-navigation	4364	24	5	42	9	65
875	9964	semeion	1273	256	5	26	11	147
876	9971	ilpd	465	10	4	20	8	16
877	9978	ozone-level-8hr	2026	72	4	25	10	55
878	9984	fertility	80	9	3	13	8	18
070	10089	acute-inflammations	96	6	3	10	8	18
0/9	10093	banknote-authentication	1096	4	4	20	7	17
880	10101	blood-transfusion-service-center	598	4	3	20	9	16
881	14952	PhishingWebsites	8843	30	8	103	15	269
882	14954	cylinder-bands	432	37	4	16	7	18
883	14965	bank-marketing	36168	16	17	165	24	234
884	14967	cjs	2236	33	4	79	10	47
885	125920	dresses-sales	400	12	4	18	7	18
005	125921	LED-display-domain-/digit	400	7	4	16	9	18
880	145793	yeast	1015	8	4	19	8	19
887	145/99	blood transfusion service conter	220	9	3	21	/	16
888	145850	hill_valley	068 068	100	3	21 47	9	10 60
889	145977	ecoli	268	7	3	12	8	16
890	145984	ionosphere	280	34	3	12	7	16
891	146024	lung-cancer	200	56	3	14	8	15
892	146063	haves-roth	128	4	3	14	8	17
202	146065	monks-problems-2	480	6	2	22	7	19
093	146192	car-evaluation	1382	21	4	27	9	33
894	146210	postoperative-patient-data	70	8	3	13	8	20
895	146607	SpeedDating	6702	120	6	57	23	456
896	146800	MiceProtein	864	77	4	28	8	38
897	146817	steel-plates-fault	1552	27	4	22	9	30
898	146818	Australian	552	14	4	23	8	16
899	146820	wilt	3871	5	4	30	9	20
900	146821	car	1382	6	4	30	9	33
001	16/140	ana	2548	180	4	26	13	208
301	167211	cnurn Satallita	4000	20	5	41	10	4/
902	10/211		4080	30 144	5 4	40 36	11	0/
903	100911	Jasiiiiite Click prediction small	2300 31059	144	4 14	120	12	132
904	360949	libras	51958 288	104	14	129	20	21
905	500940	110143	200	104	5	11	0	21

907 908

909

A.5 WHYTREES INDIVIDUAL DATASETS

In Figure 2 we have seen the average normalized accuracy score for various methods on the
WhyTrees benchmark. In Figures 7 and 8 we show the performance on each individual benchmark.
For regression, the individual datasets are shown in Figures 9 and 10

913

914 A.6 ATTIC ZERO-SHOT COMPARISON

915

In Section 4.7 we have seen the comparison between fine-tuned Attic and other methods. In Fig ure 11 we show the comparison between zero-shot Attic and XGBoost, CatBoost, zero-shot Tab ForestPFN, and fine-tuned Attic.

Figure 7: Performance of various classification methods on the WhyTrees benchmark with mixed features.

A.7 COMPLEXITY SCORE

Breejen et al. (2024) use a complexity score V to measure the complexity of decision boundaries. We produced the graphs and scores using their code, using the following formula for the complexity score:

$$V = \frac{1}{n} \sum_{ij} |p_{i+1,j} - p_{ij}| + |p_{i-1,j} - p_{i,j}| + |p_{i,j+1} - p_{ij}| + |p_{i,j-1} - p_{ij}|$$

Here $p_{i,j}$ is the prediction value of grid cell of feature space. As the analysis is done on two variables, the feature space is cut into grid cell, of which the middle point of the grid cell as an observation to predict. The complexity score then measures how fast the prediction changes when we move along the grid.

Figure 8: Performance of various classification methods on the WhyTrees benchmark with numerical features.

Figure 9: Performance of various regression methods on the WhyTrees benchmark with mixed features.

Figure 11: Comparison of fine-tuned Attic with XGBoost, CatBoost, TabForestPFN and it's zeroshot variant. Dots represent difference in normalized accuracy for an individual dataset from TabZilla. Red means Attic Zero-shot is better.

1188 A.8 TABZILLA CRITICAL DIFFERENCE DIAGRAMS

1190 Here we present the critical difference diagrams for the TabZilla benchmark as shown in Table 2. We 1191 construct the diagrams following the procedure of the TabZilla authors McElfresh et al. (2023). The 1192 critical difference diagrams are constructed using paired Wilcoxon signed-rank tests under $\alpha = 0.05$ 1193 with Holm-Bonferroni correction to account for multiple comparisons. The tests are performed on 1194 the cross-entropy loss.

Using 94 datasets and 28 methods, the statistical power to compare all 28 methods is relatively
low. Therefore, we created two versions of the critical difference diagram. Figure 12 considers all
methods, while Figure 13 considers only the most important methods. The most important methods
are selected as follows: we select the two most commonly used tree-based algorithms (XGBoost,
CatBoost), the two most commonly used neural network based methods (MLP, FT-Transformer),
Attic (Fine-tuned, Zero-Shot) and TabForestPFN (Fine-tuned, Zero-Shot).

1201In this setting, the two Attic versions are significantly different from the other six methods. In particular, the Wilcoxon signed-rank test rejects Attic Fine-tuned to have the same mean as TabForestPFN1203Fine-tuned with probability P < 0.000000 and rejects Attic Zero-shot to have the same mean as
TabForestPFN Zero-shot with probability P < 0.000006.

1219 1220

1225

Figure 12: Critical difference diagram for 94 datasets of the TabZilla benchmark. All methods 28 included. Top row presents the relative rank of the methods ranked by the log loss. Bars show the significant bands: all methods within a band are not significantly different. Diagram made using the *autorank* package.

Figure 13: Critical difference diagram for 94 datasets of the TabZilla benchmark. Only the most important methods are included. Top row presents the relative rank of the methods ranked by the log loss. Bars show the significant bands: all methods within a band are not significantly different. Diagram made using the *autorank* package.

1237

1238

1239

1240