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Abstract

Offline reinforcement learning (RL) aims at learning a good policy from a batch1

of collected data, without extra interactions with the environment during training.2

However, current offline RL benchmarks commonly have a large reality gap,3

because they involve large datasets collected by highly exploratory policies, and4

the trained policy is directly evaluated in the environment. In real-world situations,5

running an overly exploratory policy is prohibited to ensure system safety, the data6

is commonly very limited, and a trained policy should be carefully evaluated before7

deployment. In this paper, we present a Near real-world offline RL benchmark,8

named NeoRL, which contains datasets from various domains with controlled9

sizes, and extra test datasets for offline policy evaluation. We evaluate recent SOTA10

offline RL algorithms on NeoRL, through both online evaluation and purely offline11

evaluation. The empirical results demonstrate that the tested offline RL algorithms12

become less competitive to BC on many datasets, and the current offline policy13

evaluation methods can hardly select truly effective policies. We hope this work14

will shed some light on future research and draw more attention when deploying15

RL in real-world systems.16

1 Introduction17

Recent years have witnessed the great success of machine learning, especially deep learning systems,18

in computer vision, and natural language processing tasks. These tasks are usually based on a large19

dataset and are divided into training and test phases. The deep learning algorithm updates its model20

and tunes its hyper-parameters on the training dataset. In general, the trained model will be evaluated21

on the unseen test dataset before deployment. On the contrary, reinforcement learning (RL) agents22

interact with the environment and collect trajectory data online to maximize the expected return.23

Combined with deep learning, RL shows impressive ability in simulated environments even without24

human knowledge [1, 2]. However, beyond the scope of cheap simulated environments, current RL25

algorithms are hard to leverage in real-world applications, because the lack of a simulator makes it26

unrealistic to train an RL agent in critical applications. Fortunately, the running systems will produce27

data, which come from expert demonstrations, human-designed rules, learned prediction models,28

etc. A recent trend to alleviate the online trial-and-error cost is offline RL (batch RL) [3], which29

aims to learn an optimal policy from these static data, without extra online interactions. Thus, it is30

a promising approach to scale RL to more real-world applications, such as industrial control and31

quantitative trading, where online training may incur safety, and ethical problems.32

Data limitation in reality. The literature of offline RL usually assumes a large batch of data at hand33

[4, 5]. However, the requirements of a large dataset limit the use of offline RL, because collecting34

enough data will be both time-consuming and costly for some real-world systems, e.g., the numbers35
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of trajectories are often less than 100 in the traditional industry. Therefore, the out-of-data problem is36

more challenging in the low-data regime for offline RL, and it is crucial for an RL policy to apply.37

Current offline RL methods are often pessimistic about the out-of-data distribution, by constraining38

the RL agent to be close to the offline data [6–8], or reconstructing an environment to learn from and39

only trusting it when the uncertainty about the generated data is low [9, 10]. This constraint obscures40

the distinction of naive behavioral cloning (BC). It is widely believed that the naive BC approach can41

hardly outperform the behavior policy that produced the offline data, and because the behavior policy42

is sub-optimal in general, BC is seldom applied in practice. An intuitive solution to the out-of-data43

problem is trying to cover the decision space (state-action space), e.g., collecting data from random44

policy or using replay buffer data [6, 4, 5]. The reality is that the real-world system commonly allows45

a working policy only to guarantee the system performance, thus the collected data are conservative,46

rather than exploratory.47
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Figure 1: The pipeline of training and deploying offline RL,
including training, validation (offline test before deployment),
and test (deploying) phases. In the validation phase, (a) uses
the online environment to validate the trained policy. (b) uses
offline policy evaluation models on training data. (c) uses
offline policy evaluation method on an extra offline test data
or uses a test environment, where the test environment can be
learned from test data or uses other cheap simulators instead.
After validating, an optimal policy is obtained and deployed
in the online environment.

Evaluation protocol can be unprac-48

tical. Another critical issue is about49

evaluating the trained policy and se-50

lecting the best of them before de-51

ployment. Figure 1 summarizes the52

pipeline of training and deploying of-53

fline RL. Analogous to a supervised54

learning task, it is necessary to val-55

idate the trained RL agent and fin-56

ish the policy selection before deploy-57

ment (we call it evaluation in this58

work), rather than directly running it59

in the real environment. In current lit-60

erature, online policy evaluation is the61

mainstream approach, which refers to62

directly running the trained policy in63

the original environment, thus the val-64

idation phase has not been taken seri-65

ously. On the other hand, online eval-66

uation is overly optimistic towards67

the trained policy since it allows per-68

fect evaluation beforehand, thus is un-69

realistic to apply in the real world.70

Furthermore, online policy selection,71

which corresponds to utilizing the test72

dataset to select a model in supervised learning, will raise the ideal performance of an algorithm73

and result in misleading conclusions. Offline evaluation uses the dataset to assess a policy, without74

running in the environment [11–13]. Current benchmarks may use OPE methods on the training data75

[13], as in Figure 1(b) or perform online selection [14]. It will be more compelling to conduct OPE76

on an unseen test dataset or an unseen cheap test environment.77

To tackle the above issues (we name them reality gap), we propose NeoRL, a suite of near real-world78

benchmarks for offline RL. The datasets include robotics, industrial control, finance trading and city79

management tasks with real-world properties. We provide three-level sizes of datasets, three-level80

quality of data collected from corresponding simulators, and benchmark recent model-free and model-81

based offline RL methods as a reference. The online and offline evaluations are both performed82

for policy selection based on each training algorithm. Moreover, the running system commonly83

involves a deterministic working policy and we slightly perturbed this policy to collect data from84

simulators, thus the performance of the perturbed behavior policy, i.e., the reward on the dataset85

decreases. So offline RL methods are also compared with the deterministic behavior policy, and it86

appears competitive to recent offline RL methods. The comparison results suggest that many of the87

current offline RL methods do not exceed this deterministic behavior policy significantly. Although88

offline evaluation before deployment is crucial, using current OPE methods can be hard to select a89

training algorithm or a trained policy that matches the online performance. We hope these findings90

will facilitate the design of offline RL algorithms for real-world applications.91
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2 Offline Reinforcement Learning92

Traditional RL algorithms need to interact with the environment to collect trajectories with the current93

policy and update it, where the environment is treated as a black-box function. The RL agent needs94

to explore in the environment and then learn to get a high episode return.95

In the offline RL setting, the environment is not provided during training, and only a batch of static96

data is accessible, thus the agent is unable to explore in the environment. Real-world tasks also involve97

issues such as action delays and non-stationarities [15]. The data can be gathered by sub-optimal98

expert policies with noise. For simplicity, we denote the policy that collected the data as the behavior99

policy πb. Although off-policy algorithms can be readily applied to a static replay buffer, running an100

off-policy RL algorithm on a static buffer can sometimes diverge, due to issues like the distribution101

shift [16]. To learn a robust policy, recent offline RL algorithms explicitly or implicitly prevent102

the training policy from being too disjoint with πb [6, 17, 7, 8]. Besides, the absence of a cheap103

environment also makes it untamed to evaluate a training policy. Offline policy evaluation (OPE)104

is subtly different from off-policy policy evaluation [18], where the latter may have access to the105

behavior policy, thus novel techniques should be proposed to tackle the issue of offline evaluation.106

(a) HalfCheetah (b) Hopper (c) Walker2d

Figure 2: The distribution of state-action pairs. UMAP is the projection method.

3 Previous Benchmarks107

Recently, some offline RL benchmarks have been proposed to facilitate the research and evaluation of108

offline RL algorithms. These benchmarks include multiple aspects of offline tasks and datasets, and109

also the performance of prior offline algorithms on these tasks [4, 5, 19]. Previously, the celebrated110

Atari 57 games and Gym-MuJoCo tasks (or DeepMind Control Suite [20]) have been widely used111

to benchmark online and offline RL methods. Besides these two domains, D4RL [5] also releases112

offline datasets of maze environments, FrankaKitchen [21], and offline CARLA [22], etc. These113

datasets in D4RL are designed to cover a range of challenging properties in real-world scenarios,114

including narrow and biased data distributions, multi-task data, sparse rewards, sub-optimal data.115

RL Unplugged [4] includes datasets from Atari and DM control suite, where the properties of these116

tasks range from different action spaces, observation spaces, partial observability, the difficulty117

of exploration, and real-world challenges [15]. Despite the properties of tasks are well covered,118

the properties of the real-world dataset are underexplored. To guarantee the system stability and119

performance, datasets from real-world running systems cannot be too exploratory. Recent works120

utilize the training data to assess RL algorithms [14, 6, 16] or sample from the training data to collect121

datasets [4, 5]. Intuitively, a wider data distribution weakens the exploration challenge, thus may122

overestimate the offline RL algorithms.123

D4RL and RL Unplugged both noticed online policy selection is not allowed in a strict offline setting124

and proposed an evaluation protocol where they used a similar domain for policy selection and then125

trained with the optimal hyper-parameters from that similar domain. This protocol blurs the boundary126

of offline RL and transfer learning (or meta-learning), since we can learn from that domain and adapt127

to the online environment [23, 24]. DOPE benchmark [13] is designed to measure the performance128

of OPE methods and tested on RL Unplugged and D4RL. Offline training and OPE are conducted129

separately, yet have not been combined to select optimal policy before deployment.130
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4 The Reality Gap131

Very few production environments are paired with a simulator in practice, and building a high-fidelity132

simulator comes at high expenses, e.g., it takes domain experts years of work to build a simulator in133

complex industrial tasks, while the devices may have aged and updated during this period, so that134

the simulator need to rebuild from scratch. The production environment is often risk-sensitive and135

the candidate policies must be evaluated before deployment. Besides, the data are directly logged136

from the production environment, so the data are often conservative and limited. Thus, the reality137

gap exists in the following forms:138

Offline evaluation before deployment: In supervised learning, the trained models are evaluated139

on an unseen test set before deployment to assess the possible performance. Current offline RL140

algorithms are directly evaluating and selecting policy in an online manner [6, 16, 7, 9], which141

may cause unaffordable costs in real-world systems. Recent benchmarks have proposed a protocol142

to conduct evaluation through a different simulated environment that has similar dynamics [5, 4].143

However, this evaluation approach somewhat contradicts the offline setting. If we had access to144

a cheap simulator that has similar dynamics, we could benefit more from this simulator, e.g., to145

pre-train a policy, and the offline RL problem reduces to transfer learning. Besides, it is unlikely to146

conduct such validation providing only the production environment is available. Nevertheless, offline147

policy selection and evaluation is compulsory for RL to apply in real-world domains.148

Conservative data: Because of the cost and potential risks of random exploration, the human149

operators or designed rules in the production environment usually take conservative actions that stick150

to domain knowledge passed from generation to generation. This will result in a less diverse dataset151

than current benchmarks. These datasets can have different quality.152

Limited available data: Although previous works assume that a large amount of logged data are153

easily obtained, it only holds for large-scale or streaming applications, such as recommendation154

systems. Datasets containing dozens of trajectories are common in traditional industry.155

Non-stationary environments: The real-world systems appear to be non-stationary (highly stochas-156

tic, evolving through time, etc.). They may constantly evolve themselves and contain confounders157

that are not controllable.158

Although previous benchmarks provide diverse datasets and useful tools for evaluating the perfor-159

mance of offline RL algorithms, the reality gap hinders the selection of the appropriate algorithm160

to train or the best policy to deploy in real-world systems. Considering the above gaps, we provide161

various datasets and tasks to fill these gaps and explore what can achieve with current offline RL162

algorithms under such limitations.163

Table 1: An overview of existing benchmarks with respect to real-world properties. The principal
differences are listed below, while some common features such as high state and action spaces are
omitted. SP and All mean the benchmark provided this property for a small portion or all of their
tasks and domains respectively.

Data properties Domain
property

Policy
selection

Benchmark Limited
data

Conservative
data

Contain overly
exploratory data

Non-
stationarity

Offline policy
selection

RL Unplugged SP SP X X ×
D4RL SP SP X × ×
NeoRL (Ours) All All × X X

5 Near Real-World Benchmarks164

To address the above issues, we construct datasets with near real-world properties. In real-world165

systems, the working policies can be various and unknown, no matter whether they are trained,166

designed rules, or human demonstrations. We only assume that the working policies are sub-optimal167

and conservative, which are often common in realistic applications but are not well embodied in168

4



previous benchmarks. Therefore, we produce policies to have these two properties. Most importantly,169

we follow the complete training and validation pipeline, conducting OPE for policy selection. The170

schematic comparisons with two existing benchmarks are listed in Table 1.171

5.1 Near Real-World Environments172

Compared to existing environments such as Gym-MuJoCo, in real-world environments, the state173

and action space can be relatively large and the transition functions are complex, with stronger174

stochasticity. Hence, we select tasks that are both high dimensional and with high stochasticity.175

i.e., industrial controlling, financial marketing, and city energy management scenarios. In real176

scenarios, the rewards may be calculated based on predefined quantifiable goals, e.g., a function177

of two successive states. Therefore, we encapsulate the reward function for each environment and178

provide an interface to use it, while for benchmarking, our default datasets contain the original179

environment rewards. By using tasks that capture the nature of real-world environments, it could help180

offline RL step further towards the real world.181

5.2 Multi-Level Policy and Dataset Sizes182

The historical interaction data collected from the real world are often produced by expert policies,183

rather than from a random policy or replay buffer. Note that these policies may not be optimal, and we184

have no knowledge of how sub-optimal they are. To simulate the real-world data collection scenarios,185

for each environment, we use SAC [25] to train on the environment until convergence and record a186

policy at every epoch. We denote the policy with the highest episode return during the whole training187

as the expert policy. Another three levels of policies with around 25%, 50%, 75% expert performance188

are stored to simulate multi-level sub-optimal policies, denoted by low, medium, and high respectively.189

For each level, 4 policies with similar returns are selected, among which three policies are randomly190

selected to collect the training data used for offline RL policy training, and the left one produces the191

test data. The size of the test data is 1/10 of the training data for each task. The extra test dataset192

can be used to design the offline evaluation method for the model selection during training and193

hyper-parameter selection. Because of human manipulation or sensory errors, demonstrations are194

noisy in general, to reproduce this phenomenon, with probability 20%, we sample from the trained195

Gaussian policies to execute, otherwise, use the mean of Gaussian to execute. Previous work [5]196

collects the data by sampling from the policy output distribution, which collects more explorative197

data. Besides the limited data setting, to help verify the impact of different amounts of data, for each198

task, we provide training data with a maximum of 104 trajectories and three-level sizes of 102, 103,199

and 104 trajectories by default. An interface is available to slice and shuffle the data set arbitrarily to200

meet specific demands. It should be noted that the samples in domains with terminal functions may201

be less than #Trajectories× Max_Timesteps. See Appendix A for detailed sample sizes.202

We use UMAP [26] to project the (s, a) tuple onto a 2D plane for the seemingly closest datasets in203

the data collection process from D4RL and NeoRL, i.e., the 3 Gym-MuJoCo medium tasks on D4RL204

and the corresponding 3 medium tasks on NeoRL. The samples of the D4RL HalfCheetah-medium205

task and the NeoRL HalfCheetah-medium-1000 task are the same, so they can directly be used with206

UMAP. For Hopper and Walker2d, we use the first 387,466 and 768,249 samples from D4RL to make207

the size of samples the same. Figure 2 visualizes the data distribution of D4RL medium tasks and the208

NeoRL medium task, which demonstrates D4RL presents a wider data distribution, especially on209

HalfCheetah and Walker2d.210

5.3 Benchmarks with Online and Offline Policy Selection211

We benchmark some recent offline RL algorithms on the proposed datasets, with both online and212

offline policy selection. The online selection is contained because the performance via online selection213

can reflect the upper bound of an algorithm, and would help once OPE or other approaches can214

select the optimal policy without interacting with the environment. We also follow the fully offline215

training pipeline and benchmark these algorithms, where the policy model is selected by offline216

policy evaluation (OPE) methods. Especially, since data are collected with a perturbed πb, which can217

degrade the dataset reward, we provide comparisons with the deterministic version of πb.218

5



6 Tasks and Datasets219

Despite the tasks vary a lot, we provide a unified API on our datasets. Each item of a dataset consists220

of (st, at, rt, st+1) tuples, and a unified interface for calling the reward calculation function and the221

terminal function for each task. Besides the provided reward for benchmarking, users can define their222

reward function for their purpose.223

Gym-MuJoCo The Gym-MuJoCo is based on MuJoCo [27] engine, and its continuous control tasks224

are the standard testbeds for online RL algorithms. We select three environments and construct the225

offline RL tasks, i.e., HalfCheetah-v3, Walker2d-v3, and Hopper-v3. The subtle difference is that226

we include the first dimension of the position. Because part of the reward function of these three227

environments is the distance moved forward, so adding the location information simplifies the reward228

calculation for the current step. The 3 selected tasks are widely used in existing benchmarks, so we229

introduce the conservative and limited data properties into these tasks to investigate the impact on230

previous benchmarking results.231

IB The industrial benchmark (IB) [28] is an RL benchmark environment motivated to simulate the232

characteristics presented in various industrial control tasks, such as wind or gas turbines, chemical233

reactors, etc. It includes problems commonly encountered in real-world industrial environments,234

such as high-dimensional continuous state spaces, delayed rewards, complex noise patterns, and high235

stochasticity of multiple reactive targets. Since the IB environment is high-dimensional and highly236

stochastic, we use the mean of Gaussian policy when collecting data, rather than sample from it.237

FinRL The FinRL environment [29] provides a way to build a trading simulator that replicates the238

real stock market and supports backtesting with important market frictions such as transaction costs,239

market liquidity, investor risk aversion, and so on. In FinRL, per trading day can trade once for the240

stocks in the pool (30 stocks). The reward function is the difference in the total asset value between241

the end of the day and the day before. The environment may evolve itself as time elapsed. Because242

the dataset of 104 trajectories is too large, we only provide 102 and 103 trajectories for FinRL.243

CityLearn The CityLearn (CL) environment [30] reshapes the aggregation curve of electricity244

demand by controlling energy storage in different types of buildings. The objective is to coordinate245

the control of domestic hot water and chilled water storage by the electricity consumers (i.e., buildings)246

to reshape the overall curve of electricity demand. This environment is highly stochastic and with247

high-dimensional space.248

For each domain, NeoRL contains 9 tasks (3 kinds of behavior policy performances and 3 kinds of249

sizes) except for FinRL environment. So currently, NeoRL contains 6 domains with 51 tasks in total.250

Detailed features of IB, FinRL, and CityLearn environment can be found in the Appendix A.251

7 Experiments252

To make fair comparisons for all the offline RL algorithms, a copy of codes with good quality253

(reproducibility, running time, resource demands, etc.) is the first to consider. However, publicly254

available codes are usually implemented with specific frameworks, and these algorithms are heavily255

coupled with specific frameworks. To focus on the algorithms and be easy to call them by a unified256

interface, we re-implement several algorithms (codes can be found in supplementary materials). The257

re-implementation has been verified on Gym-MuJoCo-medium tasks from D4RL dataset and matches258

the result (see Table 6). We roughly divide these algorithms into two categories: model-based and259

model-free. Since offline RL algorithms are sensitive to the choice of hyper-parameters, we conduct260

a grid search on hyper-parameter space to choose the best policy. Details of the hyper-parameters261

settings are in Appendix D.262

7.1 Comparing Methods263

7.1.1 Baselines264

Expert We run SAC until convergence in each environment to choose the policy with the highest265

returns and call it expert. Expert is used as a reference of a good policy. However, it does not imply266

that the expert is optimal.267
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Deterministic Policy Commonly, the running system involves a working deterministic policy. We268

take the deterministic behavior policy as the deterministic policy in our experiments.269

Behavior Policy The behavior policy is used to collect the data. If the offline data collection process270

has no randomness injected, the behavior policy equals the deterministic policy. However, in many271

situations, we randomize the deterministic policy to mimic the stochasticity by systematical error.272

7.1.2 Model-Free Methods273

Most algorithms in current offline RL favor a model-free fashion, especially, by extending from274

off-policy algorithms. Since offline RL is learning from a fixed static dataset, directly utilizing275

off-policy algorithms will suffer from distribution shift [31] or extrapolation error [6], where the276

training policies try to reach out-of-data states and actions. For this reason, model-free algorithms277

usually explicitly or implicitly constrain the learned policy to be close to the offline data [6, 17, 7].278

BC Behavioral cloning trains a policy to imitate the behavior policy from the data. We treat BC as a279

baseline of learning methods.280

BCQ [6] learns a state-conditioned generative model Gω(s), i.e., VAE, to mimic the behavior policy281

on the dataset, and a perturbation network ξφ(s, a,Φ) to generate actions {ai = ai+ξφ(s′, ai,Φ)}ni=1,282

where {ai ∼ Gω(s′)}ni=1 and the perturbation ξφ(s, a,Φ) lies in the range [−Φ,Φ]. Controlling the283

perturbation amount by a hyper-parameter Φ, the learned policy is constrained near the original data.284

PLAS [17] is an extension of BCQ. Instead of learning a perturbation model on the action space,285

PLAS learns a deterministic policy on the latent space of VAE and assumes that the latent action286

space implicitly defines a constraint over the action output, thus the policy selects actions within the287

support of the dataset during training. In PLAS architecture, actions are decoded from latent actions.288

An optional perturbation layer can be applied in the PLAS architecture to improve the out-of-data289

generalization, akin to the perturbation model in BCQ.290

CQL [7] penalizes the value function for states and actions not supported by the data to prevent291

overestimation of the training policy. By introducing an extra term under the offline data distribution292

(Es∼D,a∼π̂b(s,a)[Q(s, a)]), CQL learns a conservative Q function. The authors have also proved this293

additional term helps achieve a tighter lower bound on the expected Q-value of the training policy π.294

CRR [8] can be viewed as weighted BC which uses critic function f to weight log π(a|s) to295

discourage π from taking actions that are outside the offline data. Similar approaches include BAIL296

[32] and ABM [33]. We choose CRR as the representative due to its good performance and robustness297

to OPE-based offline selection [12].298

7.1.3 Model-Based Methods299

Although model-free methods perform well in offline RL algorithms and are easy to use, an overly con-300

strained policy can hinder stronger results, especially when the data is collected by low-performance301

behavior policies. On the other hand, model-based methods learn the transition function of the302

environment, which depends less on the quality of the behavior policy πb. The transition model303

takes (s, a) pair as input and outputs next state s′, thus online RL algorithms can use these models to304

perform rollout or plan. However, a learned imperfect model without any safeguards against model305

inaccuracy can result in model exploitation [34, 35].306

BREMEN [36] uses BC to initialize the policy and uses TRPO [37] to update the policy with307

ensemble models. The authors proved the total variation of the learned policy and BC initialization308

grows linearly in terms of TRPO iteration, thus the policy search on a controllable space. Although309

BREMEN is not tailored towards purely offline, it reduces to purely offline by setting deployment310

times equal to 1. In this case, it is a straightforward model-based approach.311

MOPO [9] constructs a pessimistic MDP from the transition models. MOPO uses the ensemble of312

models to estimate the uncertainty of model predictions. When generating rollouts from the transition313

models, the reward is penalized by the uncertainty term to encourage the policy to explore states that314

the transition models are certain about. The similar spirit appears in MOReL [10] which truncates the315

trajectory when the uncertainty becomes high.316
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Table 2: Average ranks over 51 tasks of online, FQE, WIS policy selection results.

Name Det.
policy

Behavior
policy Random BC BCQ PLAS CQL CRR BREMEN MOPO

Online 4.80 5.67 8.92 4.94 6.15 5.33 2.17 3.98 5.25 7.76
FQE 3.29 3.92 8.61 3.22 6.20 6.61 4.43 4.53 6.20 8.00
WIS 3.71 4.43 8.61 3.65 5.90 5.69 4.51 4.43 6.24 7.84
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Figure 3: Average normalized score of each algorithm on 51 tasks by online evaluation and OPE.

7.2 Evaluation Protocol317

Online Evaluation. Although not practical, the online selection score is important because it is318

indicative of performance given perfect offline selection methods while it favors algorithms with319

more hyper-parameters (also noted in [4]). We keep the policy at the last epoch for each hyper-320

parameter configuration and seed, except for BC (see Appendix. D). Each trained policy interacts321

with the environment for 1,000 episodes to get a score. The final performance is reported for the best322

hyper-parameter with the highest average score over 3 seeds.323

Offline Policy Selection. A not evaluated policy is strongly forbidden to run in real-world systems, so324

offline evaluation is crucial for real-world applications, to know about the candidate policy in advance325

and to select the best policy for deployment. In our settings, we use off-policy evaluation (OPE) on326

the extra test dataset to select the best policy among policies trained by different hyper-parameters327

and seeds, then we report their online performance. To select the best model, an effective OPE328

method only needs to tell the relative performance between policies, rather than approximating the329

ground-truth performance to some extent.330

In general, we only have one or two chances to deploy trained policies in real-world systems, even331

though the trained policies only differ in random seeds, they will be treated as different policies.332

Thus, we stored the policy from each hyper-parameter and each random seed to form the candidate333

policy set. Specifically, we choose two OPE methods: fitted Q evaluation (FQE) [38] and weighted334

importance sampling (WIS) [39]. FQE takes a policy as input and performs policy evaluation on the335

fixed dataset by Bellman backup. After learning the Q function of the policy, the performance is336

measured by the mean Q values on the initial states from the dataset and actions by the policy. WIS337

is a canonical variant of important sampling (IS). IS only uses the ratio between target policy and338

behavioral policy to weight the episodic reward in the dataset, while WIS can further reduce the IS339

variance. Both methods are run with 3 seeds on the candidate policy set. The three non-learning340

baselines do not need to go through OPE process.341

7.3 Results342

We calculate an average rank and average normalized scores respectively. The rank of an algorithm343

or baseline is determined by the score on each task, and the final average rank is computed over344

the 51 tasks. The average rank of each algorithm is shown in Table 2, and the average normalized345

scores are shown in Figure 3, for online and offline evaluation respectively. Detailed raw scores346

and normalized scores of each task are deferred to Appendix. F due to the page limitation. The347

normalization 100× raw score−random score
expert score−random score is also adopted in our evaluation.348

In online evaluation, CQL achieves the highest rank of 2.17, which greatly outperforms other349

algorithms. BC matches the performance of the deterministic policy, which indicates that BC350

recovered the deterministic behavior policy from the datasets. Interestingly, results of BC form351
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Table 3: The difference of the normalized scores between each algorithms and the behavior policy on
Gym-MuJoCo medium tasks.

Task Name BCQ PLAS CQL MOPO

HalfCheetah-D4RL 6.6 8.1 10.3 6.1
HalfCheetah-NeoRL 4.6 4.8 8.6 16.3

Hopper-D4RL 22.5 4.9 54.6 −5.5
Hopper-NeoRL 5.7 19.2 22.5 −41.0

Walker2d-D4RL 42.3 56.1 63.7 3.2
Walker2d-NeoRL 18.7 −8.4 14.3 −3.1

very strong baselines: the other six offline RL algorithms fail to outperform BC in 152 out of 306352

comparisons (note that we have set the quality of datasets to three levels where BC is believed to353

perform poorly in the low-quality dataset). Using the Nemenyi test [40], the critical difference of 10354

comparing methods over 51 tasks with confidence level 95% is 1.8970. Therefore, if we take BC as355

the reference, only CQL is significantly better than BC, while Random and MOPO are significantly356

worse. The result is the same if we take the deterministic policy as the reference. The winning rates357

against behavior policy, the deterministic policy, and BC for each compared baselines can be found358

in Table 21.359

For model-based approaches, the overall performance is worse than model-free methods, but they360

can bring remarkable improvements in some domains. For instance, on HalfCheetah-Low and361

HalfCheetah-Medium tasks, BREMEN and MOPO can outperform other algorithms and baselines362

by a large margin, which reveals the potential of model-based offline RL approaches. However, the363

dataset can be less diverse as the quality improves, which may incur bias in environment learning and364

lead to poorer performance on high-quality datasets. To investigate how the conservative data affect

BC BCQ PLAS CQL CRR BREMEN MOPO
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Figure 4: Average normalized score of each algorithms with respect to the number of trajectories.
BCQ performed badly and even worse than random on IB domains, thus its average score is low.

365
the evaluation of offline RL, we calculate the difference of normalized score between the comparing366

algorithm (online performance) and the dataset reward (behavior policy performance) in Table 3.367

The performance on D4RL is directly adopted from the D4RL results or the original paper. It can368

be observed from Table 3, 10 out of 12 results are overestimated when compared with the behavior369

policy. We also evaluate the performance of each algorithm with respect to the number of trajectories370

used in training. As shown in Figure 4, for 5 out of 7 algorithms, the performance grows as the371

training number increases from 100 to 1000. However, only performances of BCQ, CQL, CRR372

increase when the training trajectories further increased to 10000. We notice that the BCQ performs373

badly on IB, which degrades its overall average score. The reason may lie in the highly stochastic374

nature of IB so that BCQ needs more carefully hyper-parameter tuning to achieve a decent score.375

However, the result of offline evaluation favors BC. From Table 2 and Figure 3, for both OPE methods,376

the average rank and average normalized score of BC become the best. That means if we follow a377
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strict offline setting and fully offline training pipeline, current offline RL algorithms are no better378

than the naive BC and the deterministic policy. Except CQL and CRR, other learning algorithms379

significantly fall behind BC (see Table 22 and 23 for winning rates). From the normalized scores380

over three evaluations, on over a half of tasks, online evaluation, and two OPE could not reach an381

agreement on the best algorithms and policies (see Appendix F for detailed score). We conjecture this382

disagreement of online and offline evaluation is due to the performance of candidate policies; if the383

candidate set contains many extremely low-performance policies, FQE and WIS cannot distinguish384

them (see correlation figure in Appendix E, FQE and WIS can give both extremely high or low385

evaluation to a policy with very low online performance). Empirically, we may benefit from OPE if386

we can preclude these poor policies with little effort, e.g., preclude a policy when the value function387

loss explodes.388

8 Conclusion389

NeoRL. In this paper we present NeoRL, a near real-world benchmark for offline RL. Since real-390

world datasets are usually very limited and collected with conservative policies to ensure system391

safety. For real-world considerations, NeoRL focuses on conservative actions, limited data, non-392

stationary dynamics, and especially offline policy evaluation before deployment, which are ubiquitous393

and crucial in real-world decision-making scenarios. So far, NeoRL has included Gym-MuJoCo394

tasks, industrial control, financial trading, and city management tasks, where the training and test395

datasets are collected from these domains with different sizes.396

Findings. We benchmark some state-of-the-art offline RL algorithms on NeoRL tasks, including397

model-free and model-based algorithms, in both online and offline policy evaluation manner. Sur-398

prisingly, the experimental results demonstrate that these compared offline RL algorithms fail to399

outperform neither the simplest behavior cloning method nor the deterministic behavior policy on400

NeoRL, only except CQL. With constraints to be close to the data or a pessimistic MDP, their401

performance may be extremely bounded by the data.402

Our experiment results further show that model-based offline RL approaches are overall worse than403

model-free approaches. However, model-based approaches may have better potential to achieve the404

out-of-data generalization ability. Meanwhile, we have noticed that better model-learning approaches405

based on adversarial learning [41–43] could help. We will test these approaches in the future.406

Lessons learned. For real-world applications, the trained policy must be evaluated before deployment.407

We recommend using offline policy evaluation methods on an unseen test dataset (or using a cheap408

learned simulator) to evaluate the trained policy. Despite the importance of offline evaluation in409

real-world scenarios, it can be inferred from the experiments that current offline policy evaluation410

methods (FQE and WIS in the experiments) may hardly help improve the policy selection and favor411

algorithms that are not sensitive to different hyper-parameters. We argue that offline RL algorithms412

should pay more attention to real-world restrictions and offline evaluation, and recommend using413

extra test datasets to conduct offline policy evaluation, which leads to a great challenge for existing414

offline RL methods.415

Future work. In the future, we will step further towards real-world scenarios and investigate more416

real-world offline RL challenges, by constantly providing new near real-world datasets and tasks. We417

also hope the NeoRL benchmark will shed some light on future research and draw more attention to418

real-world RL applications.419
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Checklist548

The checklist follows the references. Please read the checklist guidelines carefully for information on549

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or550

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing551

the appropriate section of your paper or providing a brief inline description. For example:552

• Did you include the license to the code and datasets? [Yes] See Section .553

• Did you include the license to the code and datasets? [No] The code and the data are554

proprietary.555

• Did you include the license to the code and datasets? [N/A]556

Please do not modify the questions and only use the provided macros for your answers. Note that the557

Checklist section does not count towards the page limit. In your paper, please delete this instructions558

block and only keep the Checklist section heading above along with the questions/answers below.559

1. For all authors...560

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s561

contributions and scope? [Yes]562

(b) Did you describe the limitations of your work? [Yes]563

(c) Did you discuss any potential negative societal impacts of your work? [No]564

(d) Have you read the ethics review guidelines and ensured that your paper conforms to565

them? [Yes]566

2. If you are including theoretical results...567

(a) Did you state the full set of assumptions of all theoretical results? [N/A]568

(b) Did you include complete proofs of all theoretical results? [N/A]569

3. If you ran experiments (e.g., for benchmarks)...570

(a) Did you include the code, data, and instructions needed to reproduce the main experi-571

mental results (either in the supplemental material or as a URL)? [Yes]572

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they573

were chosen)? [Yes]574

(c) Did you report error bars (e.g., with respect to the random seed after running experi-575

ments multiple times)? [Yes]576

(d) Did you include the total amount of compute and the type of resources used (e.g., type577

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix. C.578

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...579

(a) If your work uses existing assets, did you cite the creators? [Yes]580

(b) Did you mention the license of the assets? [Yes]581

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]582

(d) Did you discuss whether and how consent was obtained from people whose data you’re583

using/curating? [No] Our datasets don’t contain personal or user information.584

(e) Did you discuss whether the data you are using/curating contains personally identifiable585

information or offensive content? [No]586

5. If you used crowdsourcing or conducted research with human subjects...587

(a) Did you include the full text of instructions given to participants and screenshots, if588

applicable? [N/A]589

(b) Did you describe any potential participant risks, with links to Institutional Review590

Board (IRB) approvals, if applicable? [N/A]591

(c) Did you include the estimated hourly wage paid to participants and the total amount592

spent on participant compensation? [N/A]593
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A Task Description594

Table 4: Configuration of environments.

Environment Observation
Shape

Action
Shape

Have
Done

Max
Timesteps

HalfCheetah-v3 18 6 False 1000
Hopper-v3 12 3 True 1000

Walker2d-v3 18 6 True 1000
IB 180 3 False 1000

FinRL 181 30 False 2516
CL 74 14 False 1000

Table 5: Number of samples contained in Hopper and Walker2d datasets.

Tasks Training Set Test Set

Hopper-v3-Low-102 19259 1979
Hopper-v3-Low-103 192346 19790
Hopper-v3-Low-104 1918370 198188
Hopper-v3-Medium-102 39219 2843
Hopper-v3-Medium-103 387466 33435
Hopper-v3-Medium-104 3885950 315728
Hopper-v3-High-102 42142 4086
Hopper-v3-High-103 413793 46981
Hopper-v3-High-104 4168323 471693

Walker2d-v3-Low-102 55353 5521
Walker2d-v3-Low-103 543557 49426
Walker2d-v3-Low-104 5455589 502659
Walker2d-v3-Medium-102 77738 8605
Walker2d-v3-Medium-103 768249 86776
Walker2d-v3-Medium-104 7688849 867596
Walker2d-v3-High-102 80880 7767
Walker2d-v3-High-103 806876 83334
Walker2d-v3-High-104 7963782 837832

Gym-MuJoCo We set EXCLUDE_CURRENT_POSITIONS_FROM_OBSERVATION to false to595

include the first dimension of the position in HalfCheetah-v3, Walker2d-v3, and Hopper-v3. We use596

Gym-MuJoCo: https://gym.openai.com/envs/#mujoco.597

IB IB [28] simulates the characteristics presented in various industrial control tasks, such as wind or598

gas turbines, chemical reactors, etc. The raw system output for each time step is a 6-dimensional599

vector including velocity, gain, shift, setpoint, consumption, and fatigue. To enhance the Markov600

property, the authors stitch the system outputs of the last K timesteps as observations (K = 30 by601

default). The action space is three-dimensional. Each action can be interpreted as three proposed602

changes to the three observable state variables called current steerings. Original codes can be found603

at https://github.com/siemens/industrialbenchmark.604

FinRL FinRL [29] contains 30 stocks in the pool and the trading histories over the past 10 years.605

Each stock is represented as a 6-dimensional feature vector, where one dimension is the number606

of stocks currently owned, another five dimensions are the factor information of that stock. The607

observation has one dimension of information representing the current account cash balance. The608

dimension of the action space is 30, corresponding to the transactions of each of the thirty stocks.609

Original codes can be found at https://github.com/AI4Finance-LLC/FinRL-Library. For610

CityLearn The CityLearn (CL) environment [30] reshapes the aggregation curve of electricity611

demand by controlling energy storage in different types of buildings. Domestic hot water (DHW) and612

solar power demands are modeled in the CL environment. High electricity demand raises the price of613
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electricity and the overall cost of the distribution network. Flattening, smoothing, and narrowing the614

electricity demand curve help to reduce the operating and capital costs of generation, transmission,615

and distribution. The observation encodes the states of buildings, including time, outdoor temperature,616

indoor temperature, humidity, solar radiation, power consumption, charging status of the cooling and617

heating storage units, etc. The action is to control each building to increase or decrease the amount618

of energy stored in its own heat storage and cooling equipment. Original codes can be found at619

https://github.com/intelligent-environments-lab/CityLearn.620

The state and action spaces of all environments are summarized in Table 4. Have Done means the621

respective environment provides a terminal function that will finish the episode before reaching622

the maximum timesteps. For tasks without the terminal function, the number of samples in the623

dataset is Traj_Numbers * Max_Timesteps. On the other hand, for tasks with a terminal function, i.e.624

Hopper-v3 and Walker2d-v3, the samples can be less. The accurate sample numbers of these two625

tasks are summarized in Table 5.For domains that provide terminal function, the sample sizes may be626

less than #Trajectories× Max_Timesteps, so we list the detailed number of samples for these627

domains in Table 5.628

B The Verification of Re-implementation629

The reproducibility issue is critical in offline RL. Even if using codes from the original authors, we630

may have difficulty reproducing the results for some algorithms on previous benchmarks. Random631

seeds and which model to keep seem to matter a lot. Since we aim to use the same training workflow,632

we re-implement compared baselines and have verified our re-implementations on D4RL MuJoCo-633

medium tasks. The hyper-parameters are set to the recommended values in the original papers. The634

results are shown in Table.6. Note that, in order to make a fair comparison between BREMEN and635

MOPO, we use the same implementation of stochastic ensemble models. However, we do notice636

that the original implementation of BREMEN adopted deterministic models, which may cause a637

discrepancy in the results.638

Table 6: Normalized scores of the re-implementations on D4RL. Values in the brackets state the
reported score in the original papers (except for CRR whose scores on D4RL are not available). The
difference between two scores greater than 10 are in bold.

Task Name CQL PLAS BCQ CRR BREMEN MOPO

Walker2d-medium 78.5 (58.0) 70.9 (66.9) 69.0 (53.1) 30.2 29.8 (59.6) 27.6 (14.0)
Hopper-medium 78.3 (79.2) 34.2 (36.9) 32.0 (54.5) 53.3 29.7 (69.3) 21.9 (26.5)
HalfCheetah-medium 41.5 (44.4) 40.9 (42.2) 43.2 (40.7) 39.8 50.2 (55.0) 39.3 (40.2)

C Computation Resources639

We run all the experiments on the local clusters with multiple NVIDIA Telsa V100 GPUs (10 times640

CPU cores). By rough calculation, training all the offline policies require 21,420 GPU hours, and641

evaluating them with OPEs requires 15,300 GPU hours.642

D Choice of Hyper-parameters643

To make a fair comparison, all the policies and value functions are implemented by the same644

network structure, i.e., an MLP with 2 hidden layers and 256 units per layer. Because network645

architecture search (NAS) consumes large computation resources, especially in offline RL, since it646

takes a long time to train a policy and the ground-truth performance replies on online interactions.647

Thus, we directly use the same network architecture as the behavior policy that produced the648

datasets, and they do learn something in the online training process. We hope future work will649

enrich the property network architecture for offline RL. The output of the policies is transformed650

by tanh function to ensure the actions are within the range. For model-based approaches, the651

transition model is represented by an ensemble of Gaussian models, i.e., for each model, st+1 ∼652

N (st + ∆θ(st, at), σθ(st, at)), where ∆θ and σθ are implemented by an MLP with 4 hidden layers653
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and two heads. For Gym-MoJuCo tasks, we use 256 units in each hidden layer, for other tasks with654

higher input dimensions, we use 1024 units. Each transition model is trained by Adam optimizer via655

maximum likelihood until the MSE plateaus on the test dataset.656

For BC, the policies are trained by Adam optimizer with a learning rate of 1e-3 for 100K steps657

with a batch size of 256, and it is early stopped with the lowest MSE on the test dataset to prevent658

overfitting. Although the best policy may get from the middle of the training process, except for BC,659

there does not exist a decent criterion to early stop. Thus, we only consider the finally trained policy660

for evaluation.661

For BREMEN, we follow the original settings to treat 25 TRPO steps as an epoch and train for 250662

epochs. For other methods, we treat 1000 learning steps as an epoch and then train BCQ, PLAS,663

CRR, MOPO for 200 epochs and train CQL for 300 epochs (The original CQL used 3000 epochs,664

but it spends too much time and the best performance can occur before 300 epochs).665

Except for BC, offline RL algorithms can be very sensitive to the choice of hyper-parameters. To666

evaluate the performance of these algorithms, we conduct grid searches for the important hyper-667

parameters noted by the original papers. The search space of these algorithms is summarized in Table668

7 and the hyper-parameters used in the reported results are summarized in Table 8. For parameters669

not mentioned, their values are the same as the original papers.670

Table 7: The search space of hyper-parameters.

Algorithms Search Space

BCQ Φ ∈ {0.05, 0.1, 0.2, 0.5}
PLAS Φ ∈ {0, 0.05, 0.1, 0.2, 0.5}

CQL
variant ∈ {H, ρ}
α ∈ {5, 10}

τ ∈ {−1, 2, 5, 10}

CRR advantage mode ∈ {max, mean}
weight mode ∈ {exp, binary}

BREMEN h ∈ {250, 1000}
exploration mode ∈ {sample, static}

MOPO
uncertainty type ∈ {aleatoric, disagreement}

h ∈ {1, 5}
λ ∈ {0.5, 1, 2, 5}

For BCQ, the action is decoded from VAE plus a perturbation, i.e., a = â+ Φ tanh(ξφ(s, â)). Here,671

Φ controls the maximum deviation allowed for the learned policy from the behavior policy. We search672

for Φ ∈ {0.05, 0.1, 0.2, 0.5}.673

For PLAS, the default setting is to learn a deterministic policy in the latent space of VAE. The authors674

mentioned that a similar perturbation layer as BCQ can be applied to the output action to improve its675

generalization out of the dataset. Thus, we search for the value of Φ ∈ {0, 0.05, 0.1, 0.2, 0.5}, where676

Φ = 0 stands for the perturbation is not applied.677

For CQL, we mainly consider three parameters mentioned in the original paper:678

• Variant: The paper proposed two variants of CQL algorithms, i.e., CQL(H) and CQL(ρ).679

The former uses entropy as the regularizer, whereas the latter one uses KL-divergence.680

• Q-values penalty parameter α: In the formulation of CQL, α stands for how large penalty681

will be enforced on the Q function. As suggested in the paper, we search for α ∈ {5, 10}.682

• τ : Since α can be hard to tune, the authors also introduce an auto-tuning trick via dual683

gradient-descent. The trick introduces a threshold τ > 0. When the difference between684

Q-values is greater than τ , α will be auto-tuned to a greater value to make the penalty more685

aggressive. As suggested by the paper, we search τ ∈ {−1, 2, 5, 10}. τ = −1 indicates686

removing this trick.687
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Table 8: Hyper-parameters for reported results.
Task Name BCQ PLAS CQL CRR BREMEN MOPO

Φ Φ Variant α τ
Advantage

Mode
Weight
Mode h

Exploration
Mode

Uncertainty
Type h λ

HalfCheetah-L-102 0.05 0.05 H 5 2 mean exp 250 sample aleatoric 5 1.0
HalfCheetah-L-103 0.2 0.05 H 10 10 mean exp 250 sample aleatoric 5 1.0
HalfCheetah-L-104 0.5 0.05 H 5 10 max binary 250 sample disagreement 1 1.0
HalfCheetah-M-102 0.05 0.0 ρ 10 -1 mean binary 1000 sample aleatoric 5 1.0
HalfCheetah-M-103 0.05 0.0 ρ 5 -1 mean binary 250 sample aleatoric 5 2.0
HalfCheetah-M-104 0.05 0.0 H 10 5 mean binary 250 sample disagreement 1 5.0
HalfCheetah-H-102 0.05 0.0 ρ 5 10 max exp 1000 sample aleatoric 5 5.0
HalfCheetah-H-103 0.05 0.0 ρ 5 10 mean binary 1000 sample aleatoric 5 2.0
HalfCheetah-H-104 0.05 0.0 ρ 10 -1 mean binary 1000 static aleatoric 1 1.0
Hopper-L-102 0.1 0.1 H 5 10 max binary 250 static aleatoric 1 1.0
Hopper-L-103 0.1 0.5 H 5 10 mean exp 250 static disagreement 5 5.0
Hopper-L-104 0.2 0.2 H 5 10 max exp 250 static disagreement 1 0.5
Hopper-M-102 0.1 0.0 ρ 10 10 mean binary 1000 static aleatoric 1 5.0
Hopper-M-103 0.05 0.1 H 10 -1 max exp 250 static disagreement 5 5.0
Hopper-M-104 0.05 0.05 H 5 10 mean exp 250 static aleatoric 5 1.0
Hopper-H-102 0.05 0.0 ρ 5 10 mean exp 250 static aleatoric 1 0.5
Hopper-H-103 0.2 0.0 ρ 10 -1 mean binary 250 static aleatoric 1 5.0
Hopper-H-104 0.05 0.0 H 5 -1 mean binary 1000 static disagreement 1 0.5
Walker2d-L-102 0.05 0.0 ρ 10 2 mean exp 1000 static disagreement 1 0.5
Walker2d-L-103 0.2 0.0 H 5 10 mean binary 1000 static aleatoric 1 5.0
Walker2d-L-104 0.05 0.0 H 10 5 max exp 1000 static aleatoric 1 0.5
Walker2d-M-102 0.1 0.0 H 5 -1 max binary 1000 static aleatoric 5 5.0
Walker2d-M-103 0.2 0.0 H 10 2 mean binary 1000 static aleatoric 5 5.0
Walker2d-M-104 0.05 0.0 ρ 5 -1 mean binary 1000 static aleatoric 5 2.0
Walker2d-H-102 0.05 0.0 ρ 5 -1 mean exp 1000 static disagreement 1 2.0
Walker2d-H-103 0.2 0.0 ρ 5 -1 mean binary 1000 static disagreement 1 2.0
Walker2d-H-104 0.1 0.0 ρ 10 -1 mean binary 250 static disagreement 5 1.0
IB-L-102 0.5 0.05 ρ 10 10 mean exp 1000 sample aleatoric 5 5.0
IB-L-103 0.5 0.2 ρ 5 5 mean exp 250 sample disagreement 5 5.0
IB-L-104 0.5 0.05 ρ 10 -1 mean binary 250 static aleatoric 5 2.0
IB-M-102 0.5 0.5 H 10 2 mean exp 250 static aleatoric 1 2.0
IB-M-103 0.2 0.0 H 5 5 max exp 1000 static aleatoric 1 0.5
IB-M-104 0.5 0.0 H 5 2 max binary 250 static disagreement 1 1.0
IB-H-102 0.5 0.2 ρ 10 5 mean exp 250 static disagreement 5 2.0
IB-H-103 0.05 0.5 ρ 5 2 mean exp 250 static aleatoric 1 1.0
IB-H-104 0.1 0.05 ρ 10 5 mean exp 250 static aleatoric 5 2.0
FinRL-L-102 0.5 0.5 H 5 2 mean binary 250 static aleatoric 1 0.5
FinRL-L-103 0.5 0.2 H 10 -1 max exp 250 sample aleatoric 1 0.5
FinRL-M-102 0.1 0.5 ρ 10 2 mean binary 250 static aleatoric 1 0.5
FinRL-M-103 0.5 0.0 ρ 10 10 max exp 1000 sample aleatoric 5 0.5
FinRL-H-102 0.5 0.0 H 5 10 max exp 250 sample aleatoric 5 0.5
FinRL-H-103 0.5 0.2 ρ 10 -1 mean exp 250 sample aleatoric 1 0.5
CL-L-102 0.05 0.0 H 10 10 mean binary 1000 static disagreement 1 5.0
CL-L-103 0.2 0.05 H 10 -1 mean binary 250 static disagreement 1 2.0
CL-L-104 0.1 0.1 H 10 -1 mean exp 1000 sample aleatoric 5 1.0
CL-M-102 0.2 0.05 ρ 10 10 mean exp 250 static disagreement 5 0.5
CL-M-103 0.2 0.0 H 10 2 max binary 1000 sample aleatoric 1 0.5
CL-M-104 0.05 0.1 H 10 10 max exp 250 static aleatoric 1 5.0
CL-H-102 0.05 0.0 ρ 10 2 mean exp 250 static disagreement 5 0.5
CL-H-103 0.1 0.0 H 10 10 mean exp 250 static aleatoric 5 1.0
CL-H-104 0.05 0.0 H 10 2 mean exp 250 static aleatoric 5 5.0

Note that, there is an approximate-max backup trick mentioned in the original paper. By default, the688

bellman backup is computed with double Q, i.e., y = r + mini=1,2Qi(s
′, a′), where a′ ∼ π(s′). In689

addition, the authors propose a approximate-max backup, which use 10 samples to approximate the690

max Q-values, where the backup is computed by y = r + mini=1,2 maxa′1...a′10∼π(s′)Qi(s
′, a′). In691

the former experiments, we found this trick impairs the performance. Thus, we keep the double-Q692

target to reduce the search space.693

In CRR, the policy is learned via arg maxπ E(s,a)∼D [f(Qθ, π, s, a) log π(a|s)], where f is the694

weight function that is non-negative and monotonous in Q value. The authors mainly use the695

advantage function to compute f . There are mainly two design choices that effect f :696

• Advantage mode: The original paper gives two methods to estimate the advantage func-697

tion, i.e., Âmean(s, a) = Qθ(s, a) − 1
m

∑m
i=1Qθ(s, ai) and Âmax(s, a) = Qθ(s, a) −698

maxi=1...mQθ(s, ai), where ai ∼ π(a|s). The former one is termed as mean while the later699

one is termed max.700
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• Weight mode: The original paper gives two ways to compute weight given advantage, i.e.,701

f := 1

[
Â(s, a) > 0

]
and f := exp(A(s, a)/β). The former one is termed as binary while702

the later one is termed exp. For the exp method, the β is set to 1 to be align with the original703

paper.704

For BREMEN, we consider two parameters mentioned in the original paper:705

• Rollout horizon h: BREMEN uses the transition models to generate imaginary rollouts706

whose length is controlled by parameter h. As suggested in the original paper, we search for707

h ∈ {250, 1000}.708

• Exploration Mode: In the original paper, the authors conducted an ablation study on the709

exploration strategy when generating rollouts. They found using a stationary Gaussian noise710

with σ = 0.1 other than sampling from the policy can significantly boost the performance.711

However, in our experiment, we observe that using stationary noise does not always help.712

Thus, we perform a search on this strategy. The term sample is referred to directly sample713

from the policy, while static is referred to the stationary noise suggested by the authors.714

For MOPO, we consider three parameters mentioned in the original paper:715

• Uncertainty type: In the default setting, MOPO uses the maximum L2-norm of the output716

standard deviation among ensemble transition models, i.e., maxi=1...N ‖σiθ(s, a)‖22, as717

the uncertainty measure. Since the learned variance can theoretically recover the true718

aleatoric uncertainty [44, 9], we denote this type of uncertainty as aleatoric. Another719

variant that uses the disagreement between ensemble transition models is also included, i.e.,720

maxi=1...N ‖∆i
θ(s, a)− 1

N

∑
i ∆i

θ(s, a)‖22. We refer to this variant as disagreement.721

• Rollout horizon h: MOPO uses a branch rollout trick that rollouts from states in the dataset722

with a small length. h determines the length of the rollout. As suggested in the paper, we723

search for h ∈ {1, 5}.724

• Uncertainty penalty weight λ: The main idea of MOPO is to penalize the reward function725

with the uncertainty term, i.e., r̂ = r − λu(s, a). Here, λ control the amplitude of the726

penalty. As suggested in the original paper, we search for λ ∈ {0.5, 1, 2, 5}.727

E Details of Offline Policy Evaluation728

This section describes implementation details and hyper-parameters for offline evaluation and provides729

additional results. Corresponding to supervised learning, all the OPE methods are conducted on the730

holdout test dataset with a discount factor γ = 0.99.731

For FQE, we follow the hyper-parameters in [12]. The critic network is implemented with an MLP732

of 4 layers with 1024 units per layer and is trained for 250K steps by Adam optimizer with a batch733

size of 256. In the experiment, we observe that FQE is inclined to explode to extremely large734

values. Therefore, we use a value clipping trick on the target of bellman backups. The max and min735

values are computed by the rewards from the dataset with 40% enlargement of the interval. That is,736

vmax = (1.2rmax − 0.2rmin)/(1− γ) and vmin = (1.2rmin − 0.2rmax)/(1− γ).737

IS based methods rely on the probability density function of policies to compute the important ratio738

ρ = π(a|s)
πb(a|s) . However, the behavior policy πb(a|s) is unknown in the offline setting, and the target739

policy π(a|s), i.e., the one trained by offline RL algorithms, can also be deterministic or stochastic740

with implicit distribution, as in BCQ and PLAS. Thus, we adopt BC to estimate the density function of741

the respective policy. For the behavior policy, BC is directly applied to the raw dataset. For the target742

policy, we first relabel the dataset by the output of the target policy, then apply BC on the relabeled743

dataset. We follow [45] to implement the WIS. The policy is implemented as a TanhGaussian744

distribution in BC with an MLP of 2 layers and 256 units per layer.745

In addition to directly select the best policy according to the OPE estimations, we also consider other746

two metrics to evaluate the OPE methods as in [12, 13]:747

Rank Correlation Score (RC Score): RC score indicates how the OPE produces the same rank as748

the ground-truth in the online evaluation. It is computed as Spearman correlation coefficient between749

19



0 1 2 3 4 5 6 7
Ground Truth 1e2

0

1

2

3

4

5

6

7

FQ
E

1e2 HalfCheetah-v3-low-100 (r = -0.04)
BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

0 1 2 3 4 5 6 7
Ground Truth 1e2

0

1

2

3

4

5

6

7

FQ
E

1e2 HalfCheetah-v3-low-1000 (r = 0.38)

BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

−6 −4 −2 0 2 4
Ground Truth 1 2

−6

−4

−2

0

2

4

FQ
E

1 2 HalfCh  tah-v3-low-10000 (r = 0.75)
BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

0 1 2 3 4 5
Ground Truth 1e2

0

1

2

3

4

5

IS

1e2 HalfCheetah-v3-low-100 (r = 0.22)
BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

0 1 2 3 4 5
Ground Truth 1e2

0

1

2

3

4

5

IS

1e2 HalfCheetah-v3-low-1000 (r = 0.01)
BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

0 1 2 3 4 5
Ground Truth 1e2

0

1

2

3

4

5

IS

1e2 HalfCheetah-v3-low-10000 (r = -0.36)
BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

Figure 5: Scatter plot of OPE results for HalfCheetah-Low tasks. r stands for the correlation
coefficient.

the two rankings produced by OPE and online evaluation respectively. RC score lies in [−1, 1], and if750

the rank is uniformly random, the score will be 0.751

Top-K Score: Top-K score represents the relative performance of the chosen K policies via OPE.752

To compute this score, the real online performance of each policy is first normalized to a score within753

[0, 1] by the min and max values over the whole candidate policy set of all the algorithms. Let πkoff754

denote the k-th ranked policy by the offline evaluation, then we use 1
K

∑K
k=1 π

k
off and maxk{πkoff} as755

the mean and max top-K score respectively. We report the scores with K ∈ {1, 3, 5}.756

In addition, we report the average performance of the candidate policies as Policy Mean Score. Note757

that, it also represents the expectation of the top-1 score for a random selection method. All the758

metrics are shown from Table 9 to 20 for each domain and corresponding OPE method.759

We also show additional correlation figures of each task on whole candidate policies below. The760

scatter plots compare the estimated values from OPEs against the ground truth values for every policy.761

The ground truth is estimated by the online performance, i.e., vgt = Ronline
(1−γ)hmax

, where hmax denotes the762

maximum horizon of the environment. Dots on the dashed line indicates the OPE methods perfectly763

predict the online performance. We found the FQE and WIS estimation can be far from the real764

online performance in most tasks. Especially, we can identify a vertical line on the left in most of the765

scatter plots of FQE, which indicates FQE fails to evaluate policies with very bad performance.766

Table 9: FQE performance on the policies from HalfCheetah tasks. L, M, H stands for low, medium
and high quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

HalfCheetah-L-102 −.122± .007 .834± .007 .787± .000 .771± .000 .834± .007 .839± .000 .839± .000 0.701
HalfCheetah-L-103 .306± .036 .586± .000 .804± .001 .785± .065 .586± .000 .936± .003 .980± .028 0.724
HalfCheetah-L-104 .631± .052 .621± .439 .697± .275 .730± .124 .621± .439 .932± .000 .932± .000 0.700
HalfCheetah-M-102 −.636± .009 .730± .000 .741± .041 .724± .085 .730± .000 .884± .021 .899± .000 0.649
HalfCheetah-M-103 .024± .030 .640± .195 .620± .105 .581± .043 .640± .195 .807± .134 .807± .134 0.683
HalfCheetah-M-104 .382± .016 .449± .007 .481± .030 .499± .017 .449± .007 .537± .083 .622± .046 0.634
HalfCheetah-H-102 −.295± .021 .518± .190 .418± .079 .459± .065 .518± .190 .653± .001 .738± .059 0.468
HalfCheetah-H-103 −.207± .028 .760± .103 .441± .146 .429± .145 .760± .103 .795± .089 .795± .089 0.533
HalfCheetah-H-104 .204± .005 .363± .000 .333± .015 .316± .008 .363± .000 .363± .000 .363± .000 0.467

Average .032± .369 .611± .226 .591± .202 .588± .179 .611± .226 .750± .193 .775± .187 .618± .096
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Figure 6: Scatter plot of OPE results for HalfCheetah-Medium tasks. r stands for the correlation
coefficient.
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Figure 7: Scatter plot of OPE results for HalfCheetah-High tasks. r stands for the correlation
coefficient.

Table 10: IS performance on the policies from HalfCheetah tasks. L, M, H stands for low, medium
and high quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

HalfCheetah-L-102 .039± .242 .689± .044 .729± .053 .732± .058 .689± .044 .855± .133 .915± .062 0.701
HalfCheetah-L-103 −.309± .034 .658± .069 .649± .052 .642± .006 .658± .069 .718± .017 .742± .000 0.724
HalfCheetah-L-104 −.446± .015 .457± .333 .418± .045 .511± .026 .457± .333 .654± .094 .746± .067 0.700
HalfCheetah-M-102 .215± .068 .764± .100 .653± .116 .664± .104 .764± .100 .789± .083 .802± .080 0.649
HalfCheetah-M-103 .218± .099 .540± .254 .633± .126 .642± .057 .540± .254 .829± .050 .829± .050 0.683
HalfCheetah-M-104 .108± .017 .001± .000 .001± .000 .072± .100 .001± .000 .001± .000 .184± .258 0.634
HalfCheetah-H-102 .061± .184 .147± .064 .207± .087 .205± .060 .147± .064 .351± .231 .417± .176 0.468
HalfCheetah-H-103 −.192± .103 .105± .059 .100± .020 .125± .028 .105± .059 .191± .089 .321± .118 0.533
HalfCheetah-H-104 .346± .029 .880± .000 .870± .008 .870± .023 .880± .000 .916± .025 .948± .035 0.467

Average .004± .275 .471± .333 .473± .297 .496± .279 .471± .333 .589± .326 .656± .287 .618± .096
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Figure 8: Scatter plot of OPE results for Hopper-Low tasks. r stands for the correlation coefficient.
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Figure 9: Scatter plot of OPE results for Hopper-Medium tasks. r stands for the correlation coefficient.

Table 11: FQE performance on the policies from Hopper tasks. L, M, H stands for low, medium and
high quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

Hopper-L-102 −.101± .059 .586± .359 .416± .141 .377± .029 .586± .359 .830± .015 .844± .005 0.619
Hopper-L-103 .085± .071 .022± .029 .057± .029 .053± .011 .022± .029 .104± .038 .112± .031 0.386
Hopper-L-104 .223± .152 .260± .331 .267± .211 .189± .130 .260± .331 .551± .361 .551± .361 0.491
Hopper-M-102 −.086± .065 .104± .107 .215± .054 .131± .032 .104± .107 .404± .093 .404± .093 0.383
Hopper-M-103 −.005± .177 .001± .001 .002± .000 .002± .000 .001± .001 .002± .001 .002± .000 0.359
Hopper-M-104 −.112± .113 .001± .000 .002± .000 .002± .000 .001± .000 .002± .000 .002± .000 0.344
Hopper-H-102 −.246± .060 .054± .074 .020± .024 .012± .015 .054± .074 .055± .073 .055± .073 0.402
Hopper-H-103 −.437± .028 .002± .000 .001± .000 .003± .002 .002± .000 .002± .000 .005± .005 0.387
Hopper-H-104 −.201± .063 .001± .001 .008± .009 .005± .006 .001± .001 .021± .027 .021± .027 0.409

Average −.098± .206 .115± .250 .110± .168 .086± .129 .115± .250 .219± .314 .222± .316 .420± .080
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Figure 10: Scatter plot of OPE results for Hopper-High tasks. r stands for the correlation coefficient.
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Figure 11: Scatter plot of OPE results for Walker2d-Low tasks. r stands for the correlation coefficient.

Table 12: IS performance on the policies from Hopper tasks. L, M, H stands for low, medium and
high quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

Hopper-L-102 .098± .091 .378± .304 .375± .208 .323± .142 .378± .304 .545± .157 .626± .179 0.619
Hopper-L-103 .161± .037 .287± .236 .406± .024 .338± .037 .287± .236 .587± .023 .609± .027 0.386
Hopper-L-104 .138± .113 .653± .000 .558± .106 .417± .120 .653± .000 .700± .066 .700± .066 0.491
Hopper-M-102 −.430± .158 .338± .187 .273± .084 .263± .107 .338± .187 .436± .122 .468± .138 0.383
Hopper-M-103 −.620± .045 .002± .000 .001± .000 .001± .000 .002± .000 .002± .000 .002± .000 0.359
Hopper-M-104 −.442± .030 .000± .001 .001± .000 .005± .003 .000± .001 .002± .000 .023± .016 0.344
Hopper-H-102 −.439± .134 .037± .050 .036± .024 .072± .017 .037± .050 .090± .065 .219± .054 0.402
Hopper-H-103 −.209± .051 .002± .000 .007± .006 .008± .005 .002± .000 .010± .008 .029± .023 0.387
Hopper-H-104 −.016± .052 .013± .000 .013± .000 .030± .031 .013± .000 .013± .000 .074± .086 0.409

Average −.195± .296 .190± .264 .185± .222 .162± .177 .190± .264 .265± .288 .305± .289 .420± .080
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Figure 12: Scatter plot of OPE results for Walker2d-Medium tasks. r stands for the correlation
coefficient.
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Figure 13: Scatter plot of OPE results for Walker2d-High tasks. r stands for the correlation coefficient.

Table 13: FQE performance on the policies from Walker2d tasks. L, M, H stands for low, medium
and high quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

Walker2d-L-102 −.287± .020 .072± .057 .127± .013 .126± .013 .072± .057 .182± .023 .212± .045 0.345
Walker2d-L-103 .025± .045 .161± .113 .102± .035 .156± .102 .161± .113 .218± .087 .454± .356 0.418
Walker2d-L-104 .267± .136 .035± .018 .036± .008 .040± .007 .035± .018 .063± .014 .073± .011 0.487
Walker2d-M-102 −.220± .037 .262± .183 .239± .115 .245± .088 .262± .183 .461± .124 .535± .063 0.497
Walker2d-M-103 −.036± .044 .044± .027 .133± .140 .215± .146 .044± .027 .292± .325 .562± .213 0.497
Walker2d-M-104 −.101± .130 .107± .073 .155± .043 .143± .030 .107± .073 .249± .043 .249± .043 0.496
Walker2d-H-102 −.306± .124 .051± .000 .093± .054 .129± .039 .051± .000 .188± .097 .275± .035 0.435
Walker2d-H-103 −.171± .052 .031± .034 .052± .049 .106± .035 .031± .034 .145± .147 .322± .037 0.534
Walker2d-H-104 .150± .093 .077± .047 .087± .017 .069± .002 .077± .047 .137± .004 .137± .004 0.516

Average −.075± .205 .093± .108 .114± .089 .136± .092 .093± .108 .215± .172 .313± .215 .469± .056
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Figure 14: Scatter plot of OPE results for IB-Low tasks. r stands for the correlation coefficient.
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Figure 15: Scatter plot of OPE results for IB-Medium tasks. r stands for the correlation coefficient.

Table 14: IS performance on the policies from Walker2d tasks. L, M, H stands for low, medium and
high quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

Walker2d-L-102 .064± .094 .167± .051 .164± .013 .165± .006 .167± .051 .220± .021 .246± .016 0.345
Walker2d-L-103 −.515± .051 .094± .030 .060± .019 .041± .009 .094± .030 .115± .000 .115± .000 0.418
Walker2d-L-104 −.326± .027 .011± .002 .018± .007 .016± .004 .011± .002 .030± .023 .030± .023 0.487
Walker2d-M-102 .161± .166 .020± .018 .256± .111 .361± .092 .020± .018 .571± .186 .734± .078 0.497
Walker2d-M-103 −.021± .038 .009± .001 .009± .000 .072± .048 .009± .001 .010± .000 .306± .245 0.497
Walker2d-M-104 −.036± .036 .298± .229 .450± .250 .334± .134 .298± .229 .752± .161 .790± .147 0.496
Walker2d-H-102 .441± .055 .364± .297 .519± .088 .528± .099 .364± .297 .858± .058 .878± .033 0.435
Walker2d-H-103 −.044± .065 .093± .124 .160± .078 .221± .072 .093± .124 .436± .188 .649± .235 0.534
Walker2d-H-104 .215± .070 .117± .092 .108± .041 .101± .006 .117± .092 .191± .070 .241± .000 0.516

Average −.007± .279 .130± .182 .194± .199 .204± .177 .130± .182 .354± .316 .443± .326 .469± .056
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Figure 16: Scatter plot of OPE results for IB-High tasks. r stands for the correlation coefficient.
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Figure 17: Scatter plot of OPE results for FinRL-Low tasks. r stands for the correlation coefficient.

Table 15: FQE performance on the policies from IB tasks. L, M, H stands for low, medium and high
quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

IB-L-102 .282± .027 .060± .000 .645± .000 .511± .088 .060± .000 .940± .000 .940± .000 0.847
IB-L-103 −.013± .121 .967± .012 .322± .004 .320± .088 .967± .012 .967± .012 .967± .012 0.862
IB-L-104 −.136± .091 .935± .014 .895± .020 .802± .176 .935± .014 .968± .020 .982± .020 0.850
IB-M-102 .170± .047 .781± .000 .834± .067 .828± .038 .781± .000 .922± .057 .966± .012 0.873
IB-M-103 .182± .009 .863± .067 .902± .002 .919± .001 .863± .067 .948± .007 .953± .007 0.842
IB-M-104 .243± .015 .000± .000 .632± .005 .756± .003 .000± .000 .953± .015 .953± .015 0.881
IB-H-102 .098± .015 .452± .303 .708± .106 .640± .037 .452± .303 .914± .000 .926± .017 0.715
IB-H-103 .102± .034 .879± .058 .871± .031 .855± .052 .879± .058 .911± .041 .911± .042 0.732
IB-H-104 .007± .025 .889± .119 .928± .034 .858± .034 .889± .119 .982± .009 .982± .009 0.694

Average .104± .138 .647± .377 .749± .190 .721± .200 .647± .377 .945± .035 .953± .029 .811± .070
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Figure 18: Scatter plot of OPE results for FinRL-Medium tasks. r stands for the correlation
coefficient.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4
Ground Truth 1e7

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

FQ
E

1e7 F nRL-h gh-100 (r = -0.01)
BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

−4 −2 0 2 4
Ground Truth 1e4

−4

−2

0

2

4

FQ
E

1e4 FinRL-high-1000 (r = -0.07)

BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ground Truth 1e1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

IS

1e1 FinRL-high-100 (r = -0.13)
BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth 1e1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IS

1e1 FinRL-high-1000 (r = 0.14)
BC
CQL
PLAS
BCQ

CRR
BREMEN
MOPO

Figure 19: Scatter plot of OPE results for FinRL-High tasks. r stands for the correlation coefficient.

Table 16: IS performance on the policies from IB tasks. L, M, H stands for low, medium and high
quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

IB-L-102 −.375± .129 .867± .091 .837± .045 .843± .048 .867± .091 .932± .002 .934± .005 0.847
IB-L-103 −.519± .120 .317± .447 .317± .447 .308± .436 .317± .447 .317± .447 .317± .447 0.862
IB-L-104 −.375± .016 .980± .018 .861± .150 .771± .270 .980± .018 .993± .000 .993± .000 0.850
IB-M-102 .195± .294 .962± .025 .963± .015 .908± .103 .962± .025 .980± .026 .995± .005 0.873
IB-M-103 −.250± .045 .877± .094 .888± .041 .885± .043 .877± .094 .944± .001 .944± .000 0.842
IB-M-104 −.341± .036 .251± .355 .571± .005 .722± .002 .251± .355 .960± .014 .972± .008 0.881
IB-H-102 .053± .099 .820± .004 .789± .122 .861± .067 .820± .004 .993± .000 .993± .000 0.715
IB-H-103 −.170± .018 .822± .002 .810± .014 .814± .008 .822± .002 .822± .002 .822± .002 0.732
IB-H-104 .097± .006 .819± .000 .819± .000 .819± .000 .819± .000 .819± .000 .819± .000 0.694

Average −.187± .263 .746± .320 .762± .248 .770± .247 .746± .320 .862± .252 .866± .253 .811± .070
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Figure 20: Scatter plot of OPE results for CL-Low tasks. r stands for the correlation coefficient.
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Figure 21: Scatter plot of OPE results for CL-Medium tasks. r stands for the correlation coefficient.

Table 17: FQE performance on the policies from FinRL tasks. L, M, H stands for low, medium and
high quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

FinRL-L-102 −.012± .080 .701± .421 .800± .140 .510± .093 .701± .421 .999± .001 .999± .001 0.285
FinRL-L-103 −.015± .030 .209± .010 .266± .040 .353± .063 .209± .010 .349± .071 .685± .232 0.313
FinRL-M-102 −.042± .058 .112± .000 .257± .084 .416± .044 .112± .000 .442± .178 1.000± .000 0.248
FinRL-M-103 −.005± .068 .400± .246 .385± .043 .377± .121 .400± .246 .821± .126 .911± .126 0.195
FinRL-H-102 −.056± .121 .165± .042 .108± .012 .192± .029 .165± .042 .196± .037 .484± .068 0.291
FinRL-H-103 −.042± .149 .385± .160 .337± .168 .387± .126 .385± .160 .440± .210 .721± .208 0.384

Average −.029± .095 .329± .289 .359± .237 .372± .129 .329± .289 .541± .306 .800± .234 .286± .058
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Figure 22: Scatter plot of OPE results for CL-High tasks. r stands for the correlation coefficient.

Table 18: IS performance on the policies from FinRL tasks. L, M, H stands for low, medium and
high quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

FinRL-L-102 .066± .109 .267± .147 .264± .022 .247± .027 .267± .147 .489± .035 .489± .035 0.285
FinRL-L-103 −.041± .032 .333± .047 .361± .035 .301± .018 .333± .047 .406± .029 .406± .029 0.313
FinRL-M-102 .103± .112 .162± .051 .263± .089 .279± .090 .162± .051 .426± .210 .428± .212 0.248
FinRL-M-103 .056± .077 .537± .328 .297± .097 .289± .080 .537± .328 .548± .319 .687± .276 0.195
FinRL-H-102 −.046± .065 .283± .042 .286± .067 .304± .077 .283± .042 .348± .108 .411± .144 0.291
FinRL-H-103 .111± .027 .458± .080 .398± .007 .404± .011 .458± .080 .458± .080 .477± .074 0.384

Average .042± .100 .340± .198 .312± .081 .304± .077 .340± .198 .446± .178 .483± .185 .286± .058

Table 19: FQE performance on the policies from CL tasks. L, M, H stands for low, medium and high
quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

CL-L-102 .144± .056 .270± .012 .296± .028 .294± .024 .270± .012 .358± .065 .411± .047 0.443
CL-L-103 .479± .013 .511± .303 .533± .163 .476± .091 .511± .303 .807± .014 .807± .014 0.504
CL-L-104 .641± .048 .710± .005 .738± .019 .750± .009 .710± .005 .798± .056 .847± .027 0.494
CL-M-102 .288± .250 .231± .100 .242± .058 .183± .088 .231± .100 .396± .098 .396± .098 0.414
CL-M-103 .429± .038 .780± .155 .812± .004 .725± .018 .780± .155 1.000± .000 1.000± .000 0.405
CL-M-104 .638± .031 .220± .138 .297± .002 .440± .068 .220± .138 .414± .000 .798± .076 0.486
CL-H-102 −.116± .145 .626± .422 .508± .347 .486± .345 .626± .422 .627± .420 .645± .428 0.423
CL-H-103 .584± .029 .621± .082 .697± .065 .771± .044 .621± .082 .843± .088 .907± .027 0.487
CL-H-104 .618± .044 .115± .006 .221± .116 .405± .065 .115± .006 .450± .352 .979± .030 0.483

Average .412± .267 .454± .301 .483± .256 .503± .233 .454± .301 .633± .293 .754± .260 .460± .036

29



Table 20: IS performance on the policies from CL tasks. L, M, H stands for low, medium and high
quality of dataset.

Task RC
Score

Top-1
Mean
Score

Top-3
Mean
Score

Top-5
Mean
Score

Top-1
Max
Score

Top-3
Max
Score

Top-5
Max
Score

Policy
Mean
Score

CL-L-102 −.341± .128 .079± .015 .068± .011 .072± .007 .079± .015 .083± .009 .092± .006 0.443
CL-L-103 .292± .081 .563± .113 .575± .158 .653± .097 .563± .113 .705± .110 .815± .013 0.504
CL-L-104 .301± .108 .757± .077 .775± .010 .767± .011 .757± .077 .866± .000 .866± .000 0.494
CL-M-102 −.284± .225 .269± .172 .199± .066 .275± .073 .269± .172 .344± .075 .503± .227 0.414
CL-M-103 .079± .091 .014± .004 .014± .002 .014± .001 .014± .004 .017± .000 .017± .000 0.405
CL-M-104 .108± .316 .260± .341 .289± .386 .380± .326 .260± .341 .337± .448 .592± .405 0.486
CL-H-102 .217± .078 .414± .366 .331± .180 .301± .153 .414± .366 .595± .316 .679± .298 0.423
CL-H-103 .615± .066 .883± .035 .914± .042 .912± .037 .883± .035 .969± .029 .969± .029 0.487
CL-H-104 .678± .096 .943± .055 .872± .020 .863± .019 .943± .055 .958± .035 .958± .035 0.483

Average .185± .362 .465± .371 .448± .360 .471± .343 .465± .371 .542± .391 .610± .380 .460± .036

F Additional Tables767

In this section, we provide the winning rates table, raw and normalized scores that are not fitted in the768

main paper.769

Table 21: Ratio of winning the 3 baselines over the 51 tasks by online evaluation.
Baseline BCQ PLAS CQL CRR BREMEN MOPO

Det. Policy 35.3% 43.1% 86.3% 64.7% 41.2% 13.7%
Behavior Policy 41.2% 52.9% 92.2% 74.5% 49.0% 15.7%
BC 41.2% 45.1% 88.2% 70.6% 39.2% 15.7%

Table 22: Ratio of winning the 3 baselines over the 51 tasks by FQE evaluation.
Baseline BCQ PLAS CQL CRR BREMEN MOPO

Det. Policy 15.7% 11.8% 31.4% 39.2% 23.5% 11.8%
Behavior Policy 21.6% 13.7% 43.1% 41.2% 21.6% 7.8%
BC 11.8% 15.7% 41.2% 39.2% 15.7% 7.8%

Table 23: Ratio of winning the 3 baselines over the 51 tasks by IS evaluation.
Baseline BCQ PLAS CQL CRR BREMEN MOPO

Det. Policy 23.5% 29.4% 39.2% 49.0% 19.6% 15.7%
Behavior Policy 27.5% 31.4% 56.9% 52.9% 17.6% 13.7%
BC 25.5% 27.5% 39.2% 47.1% 19.6% 13.7%
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Table 24: Normalized score for HalfCheetah tasks. For each task, three lines indicate the results
of online evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best
result for each task, while numbers marked by ∗ indicate results worse than BC. The task name is
composed of the specific task, the quality of dataset, and the number of trajectories. L, M, and H
stands for low, medium, high respectively. Det. is abbreviation of deterministic.

Task Name Expert
Policy

Det.
Policy

Behavior
Policy Random BC BCQ PLAS CQL CRR BREMEN MOPO

HalfCheetah-L-102 100 27 25 0
29.1 +- 0.3
28.9 +- 0.3
29.4 +- 0.0

30.2 +- 0.3
29.6 +- 0.0
26.6 +- 1.6∗

28.8 +- 0.4∗
25.5 +- 3.5∗
28.0 +- 0.2∗

32.6 +- 0.3
31.5 +- 0.8
30.2 +- 1.6

29.0 +- 0.2∗
29.0 +- 0.0
28.0 +- 0.7∗

37.6 +- 1.8
36.5 +- 0.3
34.3 +- 3.4

42.0 +- 1.8
36.3 +- 1.9
35.3 +- 4.3

HalfCheetah-L-103 100 27 25 0
29.1 +- 0.2
29.0 +- 0.0
29.1 +- 0.2

34.1 +- 0.4
34.4 +- 0.0
31.7 +- 0.2

30.6 +- 0.0
30.5 +- 0.0
29.3 +- 0.0

38.2 +- 0.5
36.6 +- 0.7
27.3 +- 3.5∗

29.2 +- 0.2
28.6 +- 0.6∗
29.0 +- 0.3∗

39.6 +- 1.8
23.6 +- 0.0∗
22.2 +- 0.3∗

40.1 +- 0.9
24.9 +- 19.3∗
33.5 +- 2.0

HalfCheetah-L-104 100 27 25 0
28.9 +- 0.1
29.0 +- 0.0
28.8 +- 0.1

36.7 +- 0.7
35.7 +- 1.1
32.1 +- 0.7

30.6 +- 0.2
30.1 +- 0.5
29.8 +- 0.7

39.8 +- 1.4
39.0 +- 1.2
26.3 +- 4.3∗

29.3 +- 0.5
28.9 +- 0.2∗
29.2 +- 0.3

39.1 +- 0.3
38.9 +- 0.0
19.4 +- 3.4∗

37.7 +- 0.3
24.0 +- 18.7∗
-2.4 +- 0.0∗

HalfCheetah-M-102 100 50 46 0
48.9 +- 0.8
48.3 +- 0.0
49.5 +- 0.7

43.2 +- 1.5∗
12.0 +- 7.9∗
42.9 +- 1.2∗

46.7 +- 1.0∗
34.2 +- 0.0∗
45.8 +- 2.2∗

51.6 +- 0.4
24.8 +- 3.6∗
40.2 +- 11.4∗

27.2 +- 0.6∗
17.2 +- 1.3∗
24.7 +- 4.7∗

52.3 +- 5.0
47.1 +- 0.0∗
43.8 +- 11.2∗

63.1 +- 0.5
52.1 +- 0.4
51.9 +- 1.3

HalfCheetah-M-103 100 50 46 0
49.0 +- 0.6
49.5 +- 0.0
48.9 +- 0.5

50.6 +- 0.1
42.4 +- 5.3∗
45.1 +- 7.2∗

50.8 +- 0.4
28.4 +- 0.0∗
50.9 +- 0.4

54.6 +- 0.3
19.4 +- 0.0∗
48.7 +- 3.6∗

43.2 +- 2.6∗
27.2 +- 6.7∗
21.2 +- 0.2∗

55.4 +- 3.0
57.0 +- 0.0

34.8 +- 15.1∗

62.3 +- 1.1
36.9 +- 27.8∗
55.4 +- 1.7

HalfCheetah-M-104 100 50 46 0
50.0 +- 0.4
49.9 +- 0.0
49.6 +- 0.0

49.6 +- 0.9∗
31.0 +- 1.1∗
41.4 +- 8.6∗

50.8 +- 0.2
33.7 +- 6.2∗
50.9 +- 0.0

55.8 +- 0.9
55.2 +- 1.6
44.1 +- 3.2∗

44.0 +- 1.7∗
25.5 +- 0.4∗
42.0 +- 0.0∗

55.8 +- 3.2
46.0 +- 9.7∗
55.7 +- 0.0

43.7 +- 0.9∗
45.2 +- 0.8∗
-2.3 +- 0.0∗

HalfCheetah-H-102 100 74 64 0
47.2 +- 31.8
69.6 +- 0.0
69.7 +- 0.1

57.6 +- 3.1
47.9 +- 0.0∗

28.6 +- 20.0∗

64.2 +- 0.7
16.4 +- 3.3∗
43.9 +- 21.5∗

74.0 +- 1.5
1.6 +- 0.4∗

21.9 +- 27.9∗

24.0 +- 1.6∗
8.9 +- 7.8∗
16.4 +- 5.6∗

29.0 +- 22.7∗
47.2 +- 0.0∗
26.5 +- 18.7∗

47.8 +- 8.2
4.2 +- 0.8∗

23.9 +- 18.4∗

HalfCheetah-H-103 100 74 64 0
71.3 +- 0.5
71.7 +- 0.1
71.7 +- 0.0

72.4 +- 0.3
17.7 +- 0.0∗
67.2 +- 3.4∗

74.1 +- 0.8
31.0 +- 1.9∗
74.6 +- 0.8

77.4 +- 1.3
0.2 +- 0.1∗
2.3 +- 1.0∗

62.5 +- 1.9∗
9.3 +- 0.0∗
28.0 +- 5.8∗

54.8 +- 17.1∗
59.0 +- 8.3∗
29.4 +- 2.5∗

65.9 +- 10.3∗
3.5 +- 4.2∗

11.0 +- 2.4∗

HalfCheetah-H-104 100 74 64 0
66.7 +- 2.7
69.0 +- 0.0
68.4 +- 0.0

73.3 +- 1.4
24.5 +- 0.0∗

52.2 +- 21.5∗

75.4 +- 0.6
18.8 +- 4.7∗
74.7 +- 0.0

77.2 +- 0.9
1.3 +- 0.0∗
70.1 +- 3.5

69.6 +- 0.4
25.4 +- 0.5∗
69.5 +- 0.4

15.7 +- 2.8∗
26.3 +- 0.0∗
11.7 +- 3.3∗

7.6 +- 6.3∗
1.2 +- 0.0∗
-2.4 +- 0.0∗

Table 25: Normalized score for Hopper tasks. For each task, three lines indicate the results of online
evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result for
each task, while numbers marked by ∗ indicate results worse than BC. The task name is composed of
the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Task Name Expert
Policy

Det.
Policy

Behavior
Policy Random BC BCQ PLAS CQL CRR BREMEN MOPO

Hopper-L-102 100 15 15 0
16.1 +- 0.6
16.1 +- 0.6
16.1 +- 0.6

15.3 +- 0.3∗
11.1 +- 2.2∗
12.1 +- 0.0∗

15.6 +- 0.3∗
7.0 +- 5.8∗
9.8 +- 2.9∗

16.5 +- 0.5
15.0 +- 0.3∗
15.9 +- 0.8∗

16.4 +- 1.3
15.7 +- 0.0∗
16.0 +- 0.2∗

15.4 +- 0.9∗
10.7 +- 6.3∗
1.1 +- 0.0∗

5.0 +- 6.1∗
1.4 +- 0.1∗
1.0 +- 0.7∗

Hopper-L-103 100 15 15 0
15.1 +- 0.7
15.1 +- 0.7
14.6 +- 0.6

18.1 +- 0.2
14.9 +- 3.8∗
17.4 +- 1.0

19.3 +- 1.6
18.2 +- 1.6
16.1 +- 2.6

16.0 +- 0.1
15.4 +- 0.2
15.6 +- 0.4

16.8 +- 0.6
17.1 +- 2.2
17.5 +- 1.9

21.4 +- 7.6
2.1 +- 0.4∗
1.3 +- 0.2∗

6.2 +- 3.1∗
0.5 +- 0.9∗
3.7 +- 0.0∗

Hopper-L-104 100 15 15 0
15.5 +- 0.3
15.6 +- 0.4
15.7 +- 0.3

18.7 +- 1.4
14.4 +- 2.9∗
17.3 +- 1.9

17.4 +- 1.5
15.0 +- 1.1∗
16.5 +- 0.0

15.7 +- 0.0
15.1 +- 0.7∗
14.2 +- 0.1∗

20.9 +- 4.3
17.5 +- 0.6
16.2 +- 1.5

15.3 +- 1.5∗
10.4 +- 8.4∗
8.2 +- 0.0∗

7.4 +- 2.3∗
0.3 +- 0.5∗
0.6 +- 0.6∗

Hopper-M-102 100 46 42 0
28.0 +- 11.4
28.7 +- 10.9
36.4 +- 10.9

40.9 +- 1.5
21.0 +- 15.6∗
29.1 +- 14.2∗

50.0 +- 3.4
30.6 +- 7.0
30.6 +- 7.0∗

63.2 +- 9.4
43.0 +- 8.4
69.8 +- 8.2

41.5 +- 9.8
29.8 +- 1.1
36.4 +- 2.0

28.5 +- 6.3
6.3 +- 4.2∗
5.9 +- 2.4∗

1.8 +- 2.6∗
1.0 +- 0.7∗
2.3 +- 2.3∗

Hopper-M-103 100 46 42 0
51.3 +- 27.2
71.1 +- 26.2
30.2 +- 0.0

47.7 +- 11.1∗
33.0 +- 13.8∗
33.3 +- 7.7

61.2 +- 25.8
32.3 +- 6.8∗
28.0 +- 29.0∗

64.5 +- 7.0
57.3 +- 1.4∗
53.5 +- 0.2

47.8 +- 10.5∗
38.8 +- 15.1∗
42.1 +- 11.9

24.7 +- 5.5∗
21.3 +- 0.0∗
21.3 +- 0.0∗

1.0 +- 1.5∗
-0.1 +- 0.1∗
-0.0 +- 0.0∗

Hopper-M-104 100 46 42 0
54.4 +- 14.8
56.8 +- 0.0
61.6 +- 6.8

56.6 +- 7.8
29.8 +- 3.2∗
30.9 +- 0.9∗

62.9 +- 17.0
14.3 +- 0.0∗
7.3 +- 4.9∗

81.6 +- 13.1
43.7 +- 6.5∗
40.8 +- 2.5∗

49.1 +- 2.2∗
35.1 +- 19.5∗
4.6 +- 0.0∗

46.1 +- 14.1∗
15.0 +- 2.8∗
16.6 +- 3.9∗

1.1 +- 0.9∗
-0.1 +- 0.0∗
-0.1 +- 0.1∗

Hopper-H-102 100 69 47 0
44.4 +- 12.4
39.0 +- 14.3
29.0 +- 0.0

35.7 +- 6.5∗
13.3 +- 14.5∗
8.6 +- 0.0∗

57.4 +- 6.9
10.8 +- 2.8∗
14.3 +- 6.8∗

69.7 +- 8.6
44.1 +- 15.1
46.0 +- 11.6

65.6 +- 12.8
42.4 +- 0.6

38.4 +- 16.3

28.5 +- 11.6∗
0.0 +- 0.0∗
0.0 +- 0.0∗

7.6 +- 8.4∗
-0.0 +- 0.1∗
0.5 +- 0.8∗

Hopper-H-103 100 69 47 0
43.1 +- 8.3
43.1 +- 8.3
41.3 +- 9.3

51.3 +- 10.2
24.8 +- 21.9∗
26.5 +- 0.6∗

76.0 +- 4.5
26.1 +- 9.3∗
24.1 +- 1.6∗

76.6 +- 1.3
51.9 +- 23.2
69.2 +- 4.5

55.0 +- 2.0
13.8 +- 3.7∗

26.4 +- 15.0∗

32.8 +- 14.5∗
17.1 +- 0.3∗

31.5 +- 15.5∗

11.5 +- 5.8∗
0.0 +- 0.0∗
0.0 +- 0.0∗

Hopper-H-104 100 69 47 0
49.5 +- 14.1
50.3 +- 13.5
50.3 +- 13.5

28.1 +- 5.3∗
13.2 +- 18.1∗
22.8 +- 0.0∗

66.1 +- 10.0
27.1 +- 6.2∗
40.6 +- 15.5∗

81.6 +- 7.3
74.3 +- 17.3
87.6 +- 4.6

62.4 +- 5.0
29.7 +- 34.1∗
38.3 +- 28.6∗

47.3 +- 27.3∗
15.2 +- 0.0∗
12.9 +- 0.0∗

5.7 +- 7.8∗
-0.0 +- 0.1∗
1.0 +- 0.0∗
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Table 26: Normalized score for Walker2d tasks. For each task, three lines indicate the results of
online evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result
for each task, while numbers marked by ∗ indicate results worse than BC. The task name is composed
of the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Task Name Expert
Policy

Det.
Policy

Behavior
Policy Random BC BCQ PLAS CQL CRR BREMEN MOPO

Walker2d-L-102 100 30 24 0
29.1 +- 3.5
29.1 +- 3.5
28.6 +- 0.0

22.2 +- 0.3∗
20.6 +- 0.5∗
7.4 +- 0.2∗

33.0 +- 5.1
10.7 +- 0.5∗
10.5 +- 2.5∗

30.3 +- 1.0
16.3 +- 12.8∗
8.4 +- 12.2∗

36.4 +- 4.8
27.1 +- 4.2∗
28.3 +- 7.3∗

21.8 +- 20.8∗
3.4 +- 2.9∗
7.2 +- 1.7∗

9.7 +- 9.1∗
4.5 +- 3.7∗
3.8 +- 1.5∗

Walker2d-L-103 100 30 24 0
28.5 +- 1.9
27.1 +- 0.1
29.9 +- 1.9

38.0 +- 4.5
26.8 +- 4.9∗
29.3 +- 9.9∗

42.1 +- 10.3
16.6 +- 22.1∗
4.5 +- 1.6∗

44.7 +- 2.7
45.8 +- 1.6
31.6 +- 1.3

34.1 +- 1.8
19.4 +- 10.6∗

6.3 +- 6.1∗

32.4 +- 8.7
8.8 +- 5.0∗

12.4 +- 4.8∗

11.6 +- 14.1∗
0.7 +- 1.2∗
0.9 +- 0.7∗

Walker2d-L-104 100 30 24 0
31.9 +- 2.4
32.7 +- 0.0
30.0 +- 1.9

39.1 +- 3.6
29.6 +- 6.3∗
38.6 +- 0.0

31.1 +- 6.5∗
0.1 +- 0.6∗
1.4 +- 1.6∗

40.2 +- 1.4
39.0 +- 0.0
33.1 +- 0.0

33.2 +- 7.3
29.7 +- 1.0∗
30.3 +- 11.1

29.4 +- 4.8∗
1.4 +- 0.4∗
2.4 +- 1.2∗

11.5 +- 13.9∗
-0.2 +- 0.0∗
-0.3 +- 0.1∗

Walker2d-M-102 100 49 43 0
50.2 +- 4.0
50.2 +- 4.0
47.4 +- 0.1

42.0 +- 1.0∗
8.7 +- 0.6∗
39.4 +- 2.9∗

51.6 +- 1.7
26.2 +- 18.1∗
53.7 +- 0.0

53.2 +- 2.5
37.2 +- 9.3∗
47.9 +- 3.1

39.5 +- 4.8∗
36.1 +- 7.0∗
33.5 +- 7.6∗

37.6 +- 26.5∗
15.3 +- 11.2∗
14.1 +- 20.1∗

20.1 +- 15.5∗
8.9 +- 7.1∗
0.5 +- 1.2∗

Walker2d-M-103 100 49 43 0
48.7 +- 1.9
47.6 +- 2.1
48.7 +- 1.9

61.7 +- 0.5
47.3 +- 10.4∗
52.7 +- 9.8

34.6 +- 13.2∗
-0.3 +- 0.0∗
-0.2 +- 0.1∗

57.3 +- 1.0
45.8 +- 0.6∗
48.6 +- 7.8∗

44.7 +- 6.9∗
34.2 +- 3.7∗

10.1 +- 11.4∗

37.5 +- 16.6∗
3.0 +- 0.4∗

24.6 +- 14.1∗

39.9 +- 2.0∗
12.2 +- 7.1∗
-0.1 +- 0.0∗

Walker2d-M-104 100 49 43 0
54.4 +- 3.5
56.1 +- 1.5
55.1 +- 0.0

60.2 +- 1.4
51.6 +- 11.3∗
58.6 +- 4.6

47.5 +- 1.5∗
0.2 +- 0.3∗
1.0 +- 1.7∗

58.6 +- 1.2
10.8 +- 6.4∗
46.9 +- 3.9∗

54.8 +- 2.5
38.6 +- 2.6∗
39.8 +- 1.1∗

41.5 +- 2.3∗
10.0 +- 1.5∗
19.0 +- 15.5∗

31.9 +- 20.3∗
5.4 +- 7.7∗

18.4 +- 23.1∗

Walker2d-H-102 100 69 57 0
64.1 +- 4.9
67.0 +- 5.4
61.2 +- 1.3

47.6 +- 4.5∗
19.5 +- 15.8∗
38.3 +- 12.6∗

65.6 +- 0.6
4.7 +- 4.5∗
65.8 +- 0.5

74.3 +- 0.3
73.4 +- 1.1
59.6 +- 3.9∗

14.8 +- 6.1∗
11.6 +- 4.2∗
12.1 +- 3.8∗

24.3 +- 31.9∗
3.4 +- 0.0∗
6.5 +- 4.4∗

23.2 +- 3.6∗
14.8 +- 9.7∗
11.6 +- 2.8∗

Walker2d-H-103 100 69 57 0
72.6 +- 4.2
74.4 +- 0.0
71.9 +- 3.5

76.6 +- 2.8
69.7 +- 7.2∗
72.8 +- 1.7

57.0 +- 9.4∗
-0.3 +- 0.0∗

21.4 +- 30.8∗

75.3 +- 1.9
33.1 +- 12.4∗
60.9 +- 10.1∗

67.1 +- 9.6∗
57.9 +- 11.3∗
62.0 +- 11.0∗

48.0 +- 20.6∗
18.2 +- 9.2∗

32.7 +- 16.4∗

18.0 +- 3.0∗
-0.2 +- 0.0∗
-0.2 +- 0.0∗

Walker2d-H-104 100 69 57 0
58.3 +- 8.4
60.1 +- 9.3
66.7 +- 0.0

77.9 +- 1.4
51.6 +- 16.3∗
79.3 +- 0.1

36.3 +- 4.5∗
1.5 +- 2.5∗
1.8 +- 0.0∗

74.9 +- 0.8
43.1 +- 20.0∗
74.0 +- 1.3

71.7 +- 7.0
14.9 +- 21.2∗
73.8 +- 8.0

48.0 +- 9.5∗
4.6 +- 3.8∗
1.9 +- 0.0∗

17.7 +- 0.8∗
1.3 +- 3.3∗
7.8 +- 7.5∗

Table 27: Normalized score for IB tasks. For each task, three lines indicate the results of online
evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result for
each task, while numbers marked by ∗ indicate results worse than BC. The task name is composed of
the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Task Name Expert
Policy

Det.
Policy

Behavior
Policy Random BC BCQ PLAS CQL CRR BREMEN MOPO

IB-L-102 100 -19 -19 0
-19.8 +- 1.6
-19.2 +- 1.8
-19.2 +- 1.8

-287.5 +- 155.5∗
-68.0 +- 0.0∗

-411.2 +- 0.1∗

-34.9 +- 23.6∗
-68.0 +- 0.0∗

-182.8 +- 162.5∗

2.5 +- 3.2
-65.2 +- 0.0∗

-150.2 +- 160.9∗

-5.3 +- 14.4
-17.9 +- 3.9

-153.6 +- 181.3∗

-34.5 +- 24.7∗
-1598.8 +- 0.0∗
-97.0 +- 44.6∗

-181.0 +- 162.7∗
-1703.9 +- 0.5∗
-240.8 +- 140.2∗

IB-L-103 100 -19 -19 0
-16.2 +- 2.7
-14.4 +- 0.2
-20.0 +- 0.0

-177.2 +- 155.1∗
-68.0 +- 0.3∗
-68.2 +- 0.3∗

-30.5 +- 26.6∗
-68.1 +- 0.0∗
-68.1 +- 0.0∗

-0.4 +- 4.5
-53.8 +- 27.7∗

-179.0 +- 139.9∗

-5.3 +- 17.1
-21.7 +- 10.2∗
-14.6 +- 18.2

-37.3 +- 21.6∗
-19.3 +- 6.2∗
-283.9 +- 0.0∗

-163.4 +- 177.7∗
-1704.1 +- 0.3∗

-1158.9 +- 771.6∗

IB-L-104 100 -19 -19 0
-18.6 +- 3.0
-22.6 +- 0.0
-17.9 +- 3.3

-177.6 +- 155.4∗
-68.2 +- 0.1∗
-67.9 +- 0.2∗

-146.5 +- 187.9∗
-68.1 +- 0.2∗

-182.5 +- 162.4∗

-6.2 +- 13.9
-135.4 +- 99.5∗

3.7 +- 2.8

-1.5 +- 11.9
-47.9 +- 21.6∗
-17.4 +- 0.0

-122.6 +- 46.3∗
-101.3 +- 23.2∗
-68.6 +- 0.0∗

-171.7 +- 171.1∗
-1158.4 +- 771.2∗

-2.0 +- 0.0

IB-M-102 100 25 25 0
-9.2 +- 46.9
18.2 +- 0.0
25.7 +- 5.3

-177.7 +- 155.2∗
-67.9 +- 0.1∗

-182.6 +- 162.2∗

-291.7 +- 160.4∗
-182.6 +- 162.0∗
-297.8 +- 162.5∗

24.4 +- 4.9
-27.9 +- 21.5∗

-125.6 +- 187.0∗

25.6 +- 3.8
21.1 +- 0.0

-3.1 +- 41.7∗

-97.8 +- 104.1∗
-349.4 +- 0.0∗

-214.7 +- 314.9∗

-59.8 +- 5.7∗
-224.6 +- 140.9∗
-612.6 +- 771.3∗

IB-M-103 100 25 25 0
27.1 +- 0.4
26.6 +- 0.0
27.3 +- 0.2

-181.6 +- 161.0∗
-67.7 +- 0.2∗

-297.3 +- 162.1∗

-182.7 +- 161.9∗
-67.6 +- 0.0∗
-412.0 +- 0.3∗

25.2 +- 1.6∗
-237.2 +- 0.0∗

-1679.1 +- 0.0∗

28.9 +- 2.9
8.7 +- 0.0∗

27.2 +- 1.2∗

-16.0 +- 32.6∗
-207.3 +- 117.1∗

4.1 +- 1.5∗

-119.2 +- 85.7∗
-67.3 +- 0.0∗

-123.1 +- 80.2∗

IB-M-104 100 25 25 0
27.7 +- 2.7
29.4 +- 0.7
27.3 +- 2.3

-181.5 +- 163.1∗
-67.8 +- 0.1∗
-67.7 +- 0.3∗

-182.6 +- 162.3∗
-67.7 +- 0.0∗
-67.7 +- 0.0∗

26.9 +- 6.4∗
-56.1 +- 13.0∗
-14.8 +- 32.2∗

30.4 +- 0.4
31.3 +- 0.0
28.5 +- 2.8

1.6 +- 18.4∗
27.8 +- 0.3∗

-395.9 +- 0.0∗

-48.8 +- 26.2∗
-1704.2 +- 0.0∗
-1704.2 +- 0.0∗

IB-H-102 100 70 70 0
57.8 +- 30.5
72.0 +- 0.0
62.4 +- 33.2

-288.6 +- 77.0∗
-842.3 +- 609.1∗
-241.3 +- 0.2∗

-178.5 +- 78.5∗
-183.1 +- 162.3∗
-594.5 +- 744.6∗

32.9 +- 27.0∗
-140.5 +- 192.0∗
-25.1 +- 67.9∗

73.2 +- 0.1
-493.7 +- 801.7∗

72.8 +- 0.1

-89.1 +- 108.5∗
-1055.0 +- 457.8∗
-811.5 +- 695.3∗

-77.0 +- 70.0∗
-269.4 +- 146.2∗
-116.1 +- 77.7∗

IB-H-103 100 70 70 0
9.4 +- 88.0

-31.6 +- 77.9
-94.1 +- 29.7

-297.9 +- 80.7∗
-398.4 +- 0.0∗
-241.5 +- 0.0∗

-171.4 +- 146.4∗
-68.1 +- 0.2∗

-297.7 +- 80.3∗

15.5 +- 48.9
-165.7 +- 86.4∗

-575.7 +- 331.5∗

69.7 +- 0.1
69.6 +- 0.0
72.2 +- 0.5

-31.5 +- 113.4∗
-114.8 +- 85.0∗

-1145.9 +- 687.5∗

-97.5 +- 89.6∗
-158.6 +- 114.9∗
-239.1 +- 3.2∗

IB-H-104 100 70 70 0
-34.2 +- 111.3
-9.4 +- 124.6
-185.6 +- 0.0

-183.1 +- 81.4∗
-412.0 +- 0.0∗
-241.2 +- 0.7∗

-184.7 +- 82.1∗
-412.1 +- 0.1∗
-240.2 +- 0.0∗

34.2 +- 34.1
-130.6 +- 89.0∗

-1220.8 +- 681.9∗

61.7 +- 15.6
50.4 +- 15.2
39.6 +- 0.0

-5.6 +- 11.5
-12.1 +- 4.6∗

0.4 +- 0.0

-127.2 +- 84.8∗
-309.0 +- 135.5∗
-241.0 +- 0.0∗
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Table 28: Normalized score for FinRL tasks. For each task, three lines indicate the results of online
evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result for
each task, while numbers marked by ∗ indicate results worse than BC. The task name is composed of
the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Task Name Expert
Policy

Det.
Policy

Behavior
Policy Random BC BCQ PLAS CQL CRR BREMEN MOPO

FinRL-L-102 100 -13 -12 0
34.8 +- 60.2
37.5 +- 58.2
34.8 +- 60.2

23.2 +- 7.9∗
32.9 +- 1.4∗
26.8 +- 9.0∗

24.2 +- 4.2∗
24.2 +- 4.2∗
24.4 +- 4.9∗

48.3 +- 3.5
30.4 +- 17.1∗
49.4 +- 4.9

7.5 +- 1.0∗
6.7 +- 0.0∗

-0.6 +- 10.4∗

34.8 +- 60.3
119.9 +- 0.1
78.8 +- 58.3

18.6 +- 5.7∗
18.6 +- 5.7∗
18.8 +- 5.5∗

FinRL-L-103 100 -13 -12 0
18.9 +- 10.0
11.6 +- 9.8
26.1 +- 0.5

30.4 +- 6.8
37.0 +- 2.0
34.7 +- 4.6

62.6 +- 20.1
73.6 +- 25.3
56.7 +- 24.3

66.2 +- 2.3
55.5 +- 15.0
11.9 +- 9.5∗

24.7 +- 12.3
16.1 +- 1.0

26.3 +- 10.5

51.7 +- 49.5
9.6 +- 1.4∗

21.7 +- 3.4∗

17.6 +- 6.5∗
16.4 +- 7.8
13.9 +- 1.8∗

FinRL-M-102 100 22 35 0
77.3 +- 74.5
64.1 +- 82.1
77.3 +- 74.5

21.3 +- 1.8∗
20.1 +- 1.4∗
20.5 +- 2.2∗

33.1 +- 19.6∗
24.2 +- 22.4∗
29.6 +- 20.3∗

84.2 +- 27.8
71.8 +- 37.1
36.2 +- 17.0∗

37.2 +- 9.5∗
24.6 +- 10.9∗
19.6 +- 12.6∗

77.3 +- 74.5
6.0 +- 0.0∗

102.1 +- 72.2

21.1 +- 6.2∗
25.2 +- 5.9∗
22.9 +- 4.5∗

FinRL-M-103 100 22 35 0
6.4 +- 9.7
1.4 +- 4.0
14.2 +- 7.1

29.1 +- 14.5
36.2 +- 10.4
31.6 +- 12.0

50.9 +- 12.6
11.8 +- 15.1
42.4 +- 18.1

56.9 +- 25.7
31.7 +- 23.3
38.9 +- 29.1

33.0 +- 9.3
19.4 +- 22.0
22.2 +- 22.2

150.3 +- 100.0
87.5 +- 68.8

148.5 +- 102.4

20.5 +- 5.9
24.8 +- 5.7
18.1 +- 8.0

FinRL-H-102 100 55 50 0
48.5 +- 26.2
69.9 +- 14.6
37.4 +- 30.3

16.6 +- 19.7∗
0.4 +- 9.1∗
9.7 +- 18.0∗

42.0 +- 27.6∗
41.8 +- 15.7∗
22.9 +- 29.1∗

57.6 +- 27.0
48.8 +- 14.0∗
29.8 +- 3.7∗

43.2 +- 20.3∗
15.4 +- 14.0∗
12.7 +- 1.4∗

70.6 +- 63.9
5.6 +- 7.5∗

58.9 +- 30.2

19.8 +- 6.0∗
16.8 +- 1.8∗
16.8 +- 1.8∗

FinRL-H-103 100 55 50 0
14.2 +- 26.7
27.6 +- 30.5
0.8 +- 11.5

22.3 +- 19.8
20.0 +- 17.8∗
19.4 +- 18.2

52.9 +- 16.1
46.2 +- 2.0

47.5 +- 11.4

51.4 +- 20.4
45.0 +- 1.3
26.3 +- 5.1

35.9 +- 23.0
34.4 +- 19.7
27.4 +- 17.2

69.8 +- 65.9
6.0 +- 30.6∗
32.8 +- 33.8

19.2 +- 6.9
15.9 +- 2.9∗
25.1 +- 4.4

Table 29: Normalized score for CL tasks. For each task, three lines indicate the results of online
evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result for
each task, while numbers marked by ∗ indicate results worse than BC. The task name is composed of
the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Task Name Expert
Policy

Det.
Policy

Behavior
Policy Random BC BCQ PLAS CQL CRR BREMEN MOPO

CL-L-102 100 35 38 0
30.3 +- 10.1
16.9 +- 0.0

25.1 +- 11.6

17.3 +- 3.6∗
20.3 +- 1.0
17.3 +- 3.6∗

35.1 +- 3.4
12.3 +- 0.0∗
30.5 +- 7.3

40.1 +- 1.4
21.7 +- 0.0
32.0 +- 7.8

44.7 +- 0.8
42.3 +- 2.7
39.7 +- 3.4

27.8 +- 9.5∗
17.6 +- 0.4
16.1 +- 1.5∗

10.8 +- 1.6∗
9.4 +- 1.4∗

10.2 +- 0.6∗

CL-L-103 100 35 38 0
38.6 +- 1.8
37.3 +- 0.1
38.6 +- 1.8

25.0 +- 1.4∗
22.6 +- 0.7∗
22.9 +- 3.8∗

35.8 +- 2.5∗
25.4 +- 0.0∗
27.2 +- 2.6∗

46.9 +- 1.5
39.3 +- 0.0
38.8 +- 2.7

41.3 +- 2.0
39.0 +- 3.3
37.7 +- 0.6∗

40.1 +- 1.3
36.5 +- 4.6∗
33.9 +- 4.9∗

10.8 +- 1.7∗
11.7 +- 0.3∗
11.4 +- 0.5∗

CL-L-104 100 35 38 0
38.3 +- 1.5
38.3 +- 1.5
38.3 +- 1.5

21.6 +- 0.8∗
23.1 +- 0.4∗
19.9 +- 2.6∗

36.9 +- 4.1∗
22.1 +- 0.0∗
28.5 +- 9.1∗

46.4 +- 1.7
41.8 +- 0.5
40.5 +- 0.0

42.8 +- 0.8
37.9 +- 0.2∗
39.9 +- 3.4

39.5 +- 1.0
37.9 +- 0.8∗
38.3 +- 0.2

10.9 +- 2.6∗
9.7 +- 0.0∗
7.9 +- 0.1∗

CL-M-102 100 63 60 0
68.3 +- 5.6
66.1 +- 3.4
70.7 +- 3.1

29.9 +- 10.5∗
19.1 +- 0.4∗
24.2 +- 3.6∗

56.9 +- 3.9∗
43.2 +- 22.1∗
27.9 +- 17.1∗

66.8 +- 5.1∗
45.2 +- 10.9∗
33.1 +- 6.7∗

82.8 +- 0.9
75.2 +- 6.0
74.6 +- 8.0

63.6 +- 12.7∗
24.8 +- 7.9∗

46.0 +- 13.5∗

10.1 +- 2.6∗
8.9 +- 2.3∗
9.3 +- 0.4∗

CL-M-103 100 63 60 0
63.3 +- 8.0
57.4 +- 7.6
68.2 +- 0.0

24.4 +- 3.5∗
20.2 +- 0.7∗
24.3 +- 0.9∗

58.5 +- 6.2∗
35.5 +- 17.8∗
61.4 +- 5.1∗

75.0 +- 0.6
58.2 +- 0.7
74.3 +- 3.3

74.2 +- 1.2
74.9 +- 1.0
70.2 +- 3.0

77.7 +- 12.5
76.2 +- 13.6
70.2 +- 2.3

10.8 +- 1.4∗
9.0 +- 0.1∗
9.0 +- 0.3∗

CL-M-104 100 63 60 0
59.4 +- 15.8
37.1 +- 0.0
70.0 +- 0.0

22.1 +- 6.6∗
13.1 +- 0.0∗
13.0 +- 0.0∗

56.7 +- 2.9∗
55.3 +- 7.1

41.6 +- 21.7∗

77.1 +- 1.4
60.9 +- 2.6
67.4 +- 9.4∗

75.4 +- 0.6
75.3 +- 0.7
72.4 +- 1.9

58.7 +- 18.7∗
15.5 +- 0.3∗

45.7 +- 21.4∗

10.1 +- 1.4∗
10.9 +- 0.8∗
7.3 +- 0.7∗

CL-H-102 100 94 95 0
110.5 +- 6.8
105.1 +- 5.0
110.5 +- 6.8

31.6 +- 13.8∗
12.3 +- 0.1∗
30.4 +- 3.7∗

88.2 +- 5.9∗
24.5 +- 1.1∗

66.8 +- 30.3∗

100.8 +- 2.4∗
49.2 +- 7.6∗
74.0 +- 27.1∗

119.3 +- 4.8
109.5 +- 10.1
109.7 +- 12.4∗

112.9 +- 6.4
117.4 +- 0.8
81.8 +- 44.1∗

11.9 +- 0.8∗
10.2 +- 1.0∗
9.9 +- 0.9∗

CL-H-103 100 94 95 0
106.7 +- 1.6
108.0 +- 0.0
105.6 +- 1.7

37.5 +- 11.5∗
26.0 +- 0.3∗
27.7 +- 2.2∗

91.7 +- 9.3∗
20.7 +- 0.1∗

83.5 +- 23.1∗

104.7 +- 5.7∗
84.6 +- 4.2∗

102.6 +- 5.0∗

114.2 +- 2.2
104.6 +- 3.9∗
107.8 +- 2.7

110.7 +- 3.8
75.6 +- 9.1∗
106.3 +- 5.2

9.9 +- 0.7∗
8.2 +- 0.3∗
8.5 +- 0.4∗

CL-H-104 100 94 95 0
98.5 +- 12.4
89.9 +- 12.5
107.5 +- 0.0

47.1 +- 18.2∗
46.7 +- 1.2∗
68.1 +- 1.6∗

92.5 +- 8.7∗
18.5 +- 0.0∗
97.4 +- 0.5∗

107.2 +- 7.3
68.9 +- 0.5∗
100.6 +- 4.7∗

113.0 +- 2.8
111.5 +- 0.0
113.3 +- 4.0

79.9 +- 44.8∗
19.1 +- 0.7∗

94.5 +- 25.6∗

10.8 +- 2.7∗
9.9 +- 0.0∗
8.8 +- 0.4∗
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