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Abstract

Offline reinforcement learning (RL) aims at learning a good policy from a batch
of collected data, without extra interactions with the environment during training.
However, current offline RL benchmarks commonly have a large reality gap,
because they involve large datasets collected by highly exploratory policies, and
the trained policy is directly evaluated in the environment. In real-world situations,
running an overly exploratory policy is prohibited to ensure system safety, the data
is commonly very limited, and a trained policy should be carefully evaluated before
deployment. In this paper, we present a Near real-world offline RL benchmark,
named NeoRL, which contains datasets from various domains with controlled
sizes, and extra test datasets for offline policy evaluation. We evaluate recent SOTA
offline RL algorithms on NeoRL, through both online evaluation and purely offline
evaluation. The empirical results demonstrate that the tested offline RL algorithms
become less competitive to BC on many datasets, and the current offline policy
evaluation methods can hardly select truly effective policies. We hope this work
will shed some light on future research and draw more attention when deploying
RL in real-world systems.

1 Introduction

Recent years have witnessed the great success of machine learning, especially deep learning systems,
in computer vision, and natural language processing tasks. These tasks are usually based on a large
dataset and are divided into training and test phases. The deep learning algorithm updates its model
and tunes its hyper-parameters on the training dataset. In general, the trained model will be evaluated
on the unseen test dataset before deployment. On the contrary, reinforcement learning (RL) agents
interact with the environment and collect trajectory data online to maximize the expected return.
Combined with deep learning, RL shows impressive ability in simulated environments even without
human knowledge [1}2]. However, beyond the scope of cheap simulated environments, current RL
algorithms are hard to leverage in real-world applications, because the lack of a simulator makes it
unrealistic to train an RL agent in critical applications. Fortunately, the running systems will produce
data, which come from expert demonstrations, human-designed rules, learned prediction models,
etc. A recent trend to alleviate the online trial-and-error cost is offline RL (batch RL) [3]], which
aims to learn an optimal policy from these static data, without extra online interactions. Thus, it is
a promising approach to scale RL to more real-world applications, such as industrial control and
quantitative trading, where online training may incur safety, and ethical problems.

Data limitation in reality. The literature of offline RL usually assumes a large batch of data at hand
[4.15]. However, the requirements of a large dataset limit the use of offline RL, because collecting
enough data will be both time-consuming and costly for some real-world systems, e.g., the numbers
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of trajectories are often less than 100 in the traditional industry. Therefore, the out-of-data problem is
more challenging in the low-data regime for offline RL, and it is crucial for an RL policy to apply.
Current offline RL methods are often pessimistic about the out-of-data distribution, by constraining
the RL agent to be close to the offline data [6-8]], or reconstructing an environment to learn from and
only trusting it when the uncertainty about the generated data is low [9} [10]]. This constraint obscures
the distinction of naive behavioral cloning (BC). It is widely believed that the naive BC approach can
hardly outperform the behavior policy that produced the offline data, and because the behavior policy
is sub-optimal in general, BC is seldom applied in practice. An intuitive solution to the out-of-data
problem is trying to cover the decision space (state-action space), e.g., collecting data from random
policy or using replay buffer data [6, 4} 5]]. The reality is that the real-world system commonly allows
a working policy only to guarantee the system performance, thus the collected data are conservative,
rather than exploratory.

Evaluation protocol can be unprac-
tical. Another critical issue is about
evaluating the trained policy and se-
lecting the best of them before de-
ployment. Figure [I| summarizes the
pipeline of training and deploying of-
fline RL. Analogous to a supervised
learning task, it is necessary to val-
idate the trained RL agent and fin-
ish the policy selection before deploy-
ment (we call it evaluation in this
work), rather than directly running it
in the real environment. In current lit-
erature, online policy evaluation is the
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mainstream approach, which refers to
directly running the trained policy in
the original environment, thus the val-
idation phase has not been taken seri-
ously. On the other hand, online eval-
uation is overly optimistic towards
the trained policy since it allows per-
fect evaluation beforehand, thus is un-
realistic to apply in the real world.
Furthermore, online policy selection,

Figure 1: The pipeline of training and deploying offline RL,
including training, validation (offline test before deployment),
and test (deploying) phases. In the validation phase, (a) uses
the online environment to validate the trained policy. (b) uses
offline policy evaluation models on training data. (c) uses
offline policy evaluation method on an extra offline test data
or uses a test environment, where the test environment can be
learned from test data or uses other cheap simulators instead.
After validating, an optimal policy is obtained and deployed
in the online environment.

which corresponds to utilizing the test

dataset to select a model in supervised learning, will raise the ideal performance of an algorithm
and result in misleading conclusions. Offline evaluation uses the dataset to assess a policy, without
running in the environment [[11H13]]. Current benchmarks may use OPE methods on the training data
(131, as in Figure[I[b) or perform online selection [[14]. It will be more compelling to conduct OPE
on an unseen test dataset or an unseen cheap test environment.

To tackle the above issues (we name them reality gap), we propose NeoRL, a suite of near real-world
benchmarks for offline RL. The datasets include robotics, industrial control, finance trading and city
management tasks with real-world properties. We provide three-level sizes of datasets, three-level
quality of data collected from corresponding simulators, and benchmark recent model-free and model-
based offline RL methods as a reference. The online and offline evaluations are both performed
for policy selection based on each training algorithm. Moreover, the running system commonly
involves a deterministic working policy and we slightly perturbed this policy to collect data from
simulators, thus the performance of the perturbed behavior policy, i.e., the reward on the dataset
decreases. So offline RL methods are also compared with the deterministic behavior policy, and it
appears competitive to recent offline RL methods. The comparison results suggest that many of the
current offline RL methods do not exceed this deterministic behavior policy significantly. Although
offline evaluation before deployment is crucial, using current OPE methods can be hard to select a
training algorithm or a trained policy that matches the online performance. We hope these findings
will facilitate the design of offline RL algorithms for real-world applications.
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2 Offline Reinforcement Learning

Traditional RL algorithms need to interact with the environment to collect trajectories with the current
policy and update it, where the environment is treated as a black-box function. The RL agent needs
to explore in the environment and then learn to get a high episode return.

In the offline RL setting, the environment is not provided during training, and only a batch of static
data is accessible, thus the agent is unable to explore in the environment. Real-world tasks also involve
issues such as action delays and non-stationarities [[15]. The data can be gathered by sub-optimal
expert policies with noise. For simplicity, we denote the policy that collected the data as the behavior
policy 7. Although off-policy algorithms can be readily applied to a static replay buffer, running an
off-policy RL algorithm on a static buffer can sometimes diverge, due to issues like the distribution
shift [[16]. To learn a robust policy, recent offline RL algorithms explicitly or implicitly prevent
the training policy from being too disjoint with 7 [6, (17, [7, 8]]. Besides, the absence of a cheap
environment also makes it untamed to evaluate a training policy. Offline policy evaluation (OPE)
is subtly different from off-policy policy evaluation [18]], where the latter may have access to the
behavior policy, thus novel techniques should be proposed to tackle the issue of offline evaluation.
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Figure 2: The distribution of state-action pairs. UMAP is the projection method.

3 Previous Benchmarks

Recently, some offline RL benchmarks have been proposed to facilitate the research and evaluation of
offline RL algorithms. These benchmarks include multiple aspects of offline tasks and datasets, and
also the performance of prior offline algorithms on these tasks [4, 5, [19]. Previously, the celebrated
Atari 57 games and Gym-MuJoCo tasks (or DeepMind Control Suite [20]) have been widely used
to benchmark online and offline RL methods. Besides these two domains, D4RL [3]] also releases
offline datasets of maze environments, FrankaKitchen [21]], and offline CARLA [22], etc. These
datasets in D4RL are designed to cover a range of challenging properties in real-world scenarios,
including narrow and biased data distributions, multi-task data, sparse rewards, sub-optimal data.
RL Unplugged [4] includes datasets from Atari and DM control suite, where the properties of these
tasks range from different action spaces, observation spaces, partial observability, the difficulty
of exploration, and real-world challenges [15]. Despite the properties of tasks are well covered,
the properties of the real-world dataset are underexplored. To guarantee the system stability and
performance, datasets from real-world running systems cannot be too exploratory. Recent works
utilize the training data to assess RL algorithms [[14. 16} 16] or sample from the training data to collect
datasets [4} 5] Intuitively, a wider data distribution weakens the exploration challenge, thus may
overestimate the offline RL algorithms.

D4RL and RL Unplugged both noticed online policy selection is not allowed in a strict offline setting
and proposed an evaluation protocol where they used a similar domain for policy selection and then
trained with the optimal hyper-parameters from that similar domain. This protocol blurs the boundary
of offline RL and transfer learning (or meta-learning), since we can learn from that domain and adapt
to the online environment 23| [24]]. DOPE benchmark [[13] is designed to measure the performance
of OPE methods and tested on RL Unplugged and D4RL. Offline training and OPE are conducted
separately, yet have not been combined to select optimal policy before deployment.
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4 The Reality Gap

Very few production environments are paired with a simulator in practice, and building a high-fidelity
simulator comes at high expenses, e.g., it takes domain experts years of work to build a simulator in
complex industrial tasks, while the devices may have aged and updated during this period, so that
the simulator need to rebuild from scratch. The production environment is often risk-sensitive and
the candidate policies must be evaluated before deployment. Besides, the data are directly logged
from the production environment, so the data are often conservative and limited. Thus, the reality
gap exists in the following forms:

Offline evaluation before deployment: In supervised learning, the trained models are evaluated
on an unseen test set before deployment to assess the possible performance. Current offline RL
algorithms are directly evaluating and selecting policy in an online manner [6, |16} [7, |9], which
may cause unaffordable costs in real-world systems. Recent benchmarks have proposed a protocol
to conduct evaluation through a different simulated environment that has similar dynamics [5} |4].
However, this evaluation approach somewhat contradicts the offline setting. If we had access to
a cheap simulator that has similar dynamics, we could benefit more from this simulator, e.g., to
pre-train a policy, and the offline RL problem reduces to transfer learning. Besides, it is unlikely to
conduct such validation providing only the production environment is available. Nevertheless, offline
policy selection and evaluation is compulsory for RL to apply in real-world domains.

Conservative data: Because of the cost and potential risks of random exploration, the human
operators or designed rules in the production environment usually take conservative actions that stick
to domain knowledge passed from generation to generation. This will result in a less diverse dataset
than current benchmarks. These datasets can have different quality.

Limited available data: Although previous works assume that a large amount of logged data are
easily obtained, it only holds for large-scale or streaming applications, such as recommendation
systems. Datasets containing dozens of trajectories are common in traditional industry.

Non-stationary environments: The real-world systems appear to be non-stationary (highly stochas-
tic, evolving through time, etc.). They may constantly evolve themselves and contain confounders
that are not controllable.

Although previous benchmarks provide diverse datasets and useful tools for evaluating the perfor-
mance of offline RL algorithms, the reality gap hinders the selection of the appropriate algorithm
to train or the best policy to deploy in real-world systems. Considering the above gaps, we provide
various datasets and tasks to fill these gaps and explore what can achieve with current offline RL
algorithms under such limitations.

Table 1: An overview of existing benchmarks with respect to real-world properties. The principal
differences are listed below, while some common features such as high state and action spaces are
omitted. SP and All mean the benchmark provided this property for a small portion or all of their
tasks and domains respectively.

. Domain Policy
Data properties property selection
Benchmark Limited Conservative Contain overly N on- Offline policy
data data exploratory data stationarity selection
RL Unplugged SP SP v v X
D4RL SP SP v X X
NeoRL (Ours) All All X v v

5 Near Real-World Benchmarks

To address the above issues, we construct datasets with near real-world properties. In real-world
systems, the working policies can be various and unknown, no matter whether they are trained,
designed rules, or human demonstrations. We only assume that the working policies are sub-optimal
and conservative, which are often common in realistic applications but are not well embodied in
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previous benchmarks. Therefore, we produce policies to have these two properties. Most importantly,
we follow the complete training and validation pipeline, conducting OPE for policy selection. The
schematic comparisons with two existing benchmarks are listed in Table[T]

5.1 Near Real-World Environments

Compared to existing environments such as Gym-MuJoCo, in real-world environments, the state
and action space can be relatively large and the transition functions are complex, with stronger
stochasticity. Hence, we select tasks that are both high dimensional and with high stochasticity.
i.e., industrial controlling, financial marketing, and city energy management scenarios. In real
scenarios, the rewards may be calculated based on predefined quantifiable goals, e.g., a function
of two successive states. Therefore, we encapsulate the reward function for each environment and
provide an interface to use it, while for benchmarking, our default datasets contain the original
environment rewards. By using tasks that capture the nature of real-world environments, it could help
offline RL step further towards the real world.

5.2 Multi-Level Policy and Dataset Sizes

The historical interaction data collected from the real world are often produced by expert policies,
rather than from a random policy or replay buffer. Note that these policies may not be optimal, and we
have no knowledge of how sub-optimal they are. To simulate the real-world data collection scenarios,
for each environment, we use SAC [23] to train on the environment until convergence and record a
policy at every epoch. We denote the policy with the highest episode return during the whole training
as the expert policy. Another three levels of policies with around 25%, 50%, 75% expert performance
are stored to simulate multi-level sub-optimal policies, denoted by low, medium, and high respectively.
For each level, 4 policies with similar returns are selected, among which three policies are randomly
selected to collect the training data used for offline RL policy training, and the left one produces the
test data. The size of the test data is 1/10 of the training data for each task. The extra test dataset
can be used to design the offline evaluation method for the model selection during training and
hyper-parameter selection. Because of human manipulation or sensory errors, demonstrations are
noisy in general, to reproduce this phenomenon, with probability 20%, we sample from the trained
Gaussian policies to execute, otherwise, use the mean of Gaussian to execute. Previous work [3]]
collects the data by sampling from the policy output distribution, which collects more explorative
data. Besides the limited data setting, to help verify the impact of different amounts of data, for each
task, we provide training data with a maximum of 104 trajectories and three-level sizes of 102, 102,
and 10* trajectories by default. An interface is available to slice and shuffle the data set arbitrarily to
meet specific demands. It should be noted that the samples in domains with terminal functions may
be less than #Trajectories x Max_Timesteps. See Appendix[A]for detailed sample sizes.

We use UMAP [26] to project the (s, a) tuple onto a 2D plane for the seemingly closest datasets in
the data collection process from D4RL and NeoRL, i.e., the 3 Gym-MuJoCo medium tasks on D4RL
and the corresponding 3 medium tasks on NeoRL. The samples of the D4ARL HalfCheetah-medium
task and the NeoRL HalfCheetah-medium-1000 task are the same, so they can directly be used with
UMAP. For Hopper and Walker2d, we use the first 387,466 and 768,249 samples from D4RL to make
the size of samples the same. Figure 2] visualizes the data distribution of DARL medium tasks and the
NeoRL medium task, which demonstrates DARL presents a wider data distribution, especially on
HalfCheetah and Walker2d.

5.3 Benchmarks with Online and Offline Policy Selection

We benchmark some recent offline RL algorithms on the proposed datasets, with both online and
offline policy selection. The online selection is contained because the performance via online selection
can reflect the upper bound of an algorithm, and would help once OPE or other approaches can
select the optimal policy without interacting with the environment. We also follow the fully offline
training pipeline and benchmark these algorithms, where the policy model is selected by offline
policy evaluation (OPE) methods. Especially, since data are collected with a perturbed 7, which can
degrade the dataset reward, we provide comparisons with the deterministic version of 7.
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6 Tasks and Datasets

Despite the tasks vary a lot, we provide a unified API on our datasets. Each item of a dataset consists
of (s, at, 7, S¢41) tuples, and a unified interface for calling the reward calculation function and the
terminal function for each task. Besides the provided reward for benchmarking, users can define their
reward function for their purpose.

Gym-MuJoCo The Gym-MuJoCo is based on MuJoCo [27] engine, and its continuous control tasks
are the standard testbeds for online RL algorithms. We select three environments and construct the
offline RL tasks, i.e., HalfCheetah-v3, Walker2d-v3, and Hopper-v3. The subtle difference is that
we include the first dimension of the position. Because part of the reward function of these three
environments is the distance moved forward, so adding the location information simplifies the reward
calculation for the current step. The 3 selected tasks are widely used in existing benchmarks, so we
introduce the conservative and limited data properties into these tasks to investigate the impact on
previous benchmarking results.

IB The industrial benchmark (IB) [28] is an RL benchmark environment motivated to simulate the
characteristics presented in various industrial control tasks, such as wind or gas turbines, chemical
reactors, etc. It includes problems commonly encountered in real-world industrial environments,
such as high-dimensional continuous state spaces, delayed rewards, complex noise patterns, and high
stochasticity of multiple reactive targets. Since the IB environment is high-dimensional and highly
stochastic, we use the mean of Gaussian policy when collecting data, rather than sample from it.

FinRL The FinRL environment [29] provides a way to build a trading simulator that replicates the
real stock market and supports backtesting with important market frictions such as transaction costs,
market liquidity, investor risk aversion, and so on. In FinRL, per trading day can trade once for the
stocks in the pool (30 stocks). The reward function is the difference in the total asset value between
the end of the day and the day before. The environment may evolve itself as time elapsed. Because
the dataset of 10* trajectories is too large, we only provide 102 and 10? trajectories for FinRL.

CityLearn The CityLearn (CL) environment [30] reshapes the aggregation curve of electricity
demand by controlling energy storage in different types of buildings. The objective is to coordinate
the control of domestic hot water and chilled water storage by the electricity consumers (i.e., buildings)
to reshape the overall curve of electricity demand. This environment is highly stochastic and with
high-dimensional space.

For each domain, NeoRL contains 9 tasks (3 kinds of behavior policy performances and 3 kinds of
sizes) except for FinRL environment. So currently, NeoRL contains 6 domains with 51 tasks in total.
Detailed features of IB, FinRL, and CityLearn environment can be found in the Appendix @

7 Experiments

To make fair comparisons for all the offline RL algorithms, a copy of codes with good quality
(reproducibility, running time, resource demands, etc.) is the first to consider. However, publicly
available codes are usually implemented with specific frameworks, and these algorithms are heavily
coupled with specific frameworks. To focus on the algorithms and be easy to call them by a unified
interface, we re-implement several algorithms (codes can be found in supplementary materials). The
re-implementation has been verified on Gym-MuJoCo-medium tasks from D4RL dataset and matches
the result (see Table[6). We roughly divide these algorithms into two categories: model-based and
model-free. Since offline RL algorithms are sensitive to the choice of hyper-parameters, we conduct
a grid search on hyper-parameter space to choose the best policy. Details of the hyper-parameters
settings are in Appendix [D}

7.1 Comparing Methods
7.1.1 Baselines

Expert We run SAC until convergence in each environment to choose the policy with the highest
returns and call it expert. Expert is used as a reference of a good policy. However, it does not imply
that the expert is optimal.
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Deterministic Policy Commonly, the running system involves a working deterministic policy. We
take the deterministic behavior policy as the deterministic policy in our experiments.

Behavior Policy The behavior policy is used to collect the data. If the offline data collection process
has no randomness injected, the behavior policy equals the deterministic policy. However, in many
situations, we randomize the deterministic policy to mimic the stochasticity by systematical error.

7.1.2 Model-Free Methods

Most algorithms in current offline RL favor a model-free fashion, especially, by extending from
off-policy algorithms. Since offline RL is learning from a fixed static dataset, directly utilizing
off-policy algorithms will suffer from distribution shift [31] or extrapolation error [6], where the
training policies try to reach out-of-data states and actions. For this reason, model-free algorithms
usually explicitly or implicitly constrain the learned policy to be close to the offline data [6} 17} 7].

BC Behavioral cloning trains a policy to imitate the behavior policy from the data. We treat BC as a
baseline of learning methods.

BCQ [6] learns a state-conditioned generative model G, (s), i.e., VAE, to mimic the behavior policy
on the dataset, and a perturbation network £4(s, a, ®) to generate actions {a; = a;+&,(s’, a;, )} 4,
where {a; ~ G,,(s’)}7_, and the perturbation {, (s, a, ®) lies in the range [—®, ®]. Controlling the
perturbation amount by a hyper-parameter ®, the learned policy is constrained near the original data.

PLAS [17]] is an extension of BCQ. Instead of learning a perturbation model on the action space,
PLAS learns a deterministic policy on the latent space of VAE and assumes that the latent action
space implicitly defines a constraint over the action output, thus the policy selects actions within the
support of the dataset during training. In PLAS architecture, actions are decoded from latent actions.
An optional perturbation layer can be applied in the PLAS architecture to improve the out-of-data
generalization, akin to the perturbation model in BCQ.

CQL [[7] penalizes the value function for states and actions not supported by the data to prevent
overestimation of the training policy. By introducing an extra term under the offline data distribution
(EsnD,aniy(s,a) [Q(s,a)]), CQL learns a conservative Q function. The authors have also proved this
additional term helps achieve a tighter lower bound on the expected Q-value of the training policy 7.

CRR [8] can be viewed as weighted BC which uses critic function f to weight logm(als) to
discourage 7 from taking actions that are outside the offline data. Similar approaches include BAIL
[32] and ABM [33]]. We choose CRR as the representative due to its good performance and robustness
to OPE-based offline selection [12].

7.1.3 Model-Based Methods

Although model-free methods perform well in offline RL algorithms and are easy to use, an overly con-
strained policy can hinder stronger results, especially when the data is collected by low-performance
behavior policies. On the other hand, model-based methods learn the transition function of the
environment, which depends less on the quality of the behavior policy 7. The transition model
takes (s, a) pair as input and outputs next state s’, thus online RL algorithms can use these models to
perform rollout or plan. However, a learned imperfect model without any safeguards against model
inaccuracy can result in model exploitation 34, 133].

BREMEN [36] uses BC to initialize the policy and uses TRPO [37] to update the policy with
ensemble models. The authors proved the total variation of the learned policy and BC initialization
grows linearly in terms of TRPO iteration, thus the policy search on a controllable space. Although
BREMEN is not tailored towards purely offline, it reduces to purely offline by setting deployment
times equal to 1. In this case, it is a straightforward model-based approach.

MOPO [9] constructs a pessimistic MDP from the transition models. MOPO uses the ensemble of
models to estimate the uncertainty of model predictions. When generating rollouts from the transition
models, the reward is penalized by the uncertainty term to encourage the policy to explore states that
the transition models are certain about. The similar spirit appears in MOReL [[10] which truncates the
trajectory when the uncertainty becomes high.



317

318
319
320
321
322

324
325

327
328
329
330

331
332
333
334
335
336
337
338
339
340
341

342

344
345
346
347
348

350
351

Table 2: Average ranks over 51 tasks of online, FQE, WIS policy selection results.

Name Det. Behavior oo dom BC BCQ PLAS CQL CRR BREMEN MOPO
policy policy
Online | 4.80 5.67 892 494 615 533 217 308 5.5 7.76
FQE 3.29 3.02 861 322 620 661 443 453 6.20 8.00
WIS 371 143 861 365 590 569 451 443 6.24 784
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Figure 3: Average normalized score of each algorithm on 51 tasks by online evaluation and OPE.

7.2 Evaluation Protocol

Online Evaluation. Although not practical, the online selection score is important because it is
indicative of performance given perfect offline selection methods while it favors algorithms with
more hyper-parameters (also noted in [4]). We keep the policy at the last epoch for each hyper-
parameter configuration and seed, except for BC (see Appendix. [D)). Each trained policy interacts
with the environment for 1,000 episodes to get a score. The final performance is reported for the best
hyper-parameter with the highest average score over 3 seeds.

Offline Policy Selection. A not evaluated policy is strongly forbidden to run in real-world systems, so
offline evaluation is crucial for real-world applications, to know about the candidate policy in advance
and to select the best policy for deployment. In our settings, we use off-policy evaluation (OPE) on
the extra test dataset to select the best policy among policies trained by different hyper-parameters
and seeds, then we report their online performance. To select the best model, an effective OPE
method only needs to tell the relative performance between policies, rather than approximating the
ground-truth performance to some extent.

In general, we only have one or two chances to deploy trained policies in real-world systems, even
though the trained policies only differ in random seeds, they will be treated as different policies.
Thus, we stored the policy from each hyper-parameter and each random seed to form the candidate
policy set. Specifically, we choose two OPE methods: fitted Q evaluation (FQE) [38]] and weighted
importance sampling (WIS) [39]]. FQE takes a policy as input and performs policy evaluation on the
fixed dataset by Bellman backup. After learning the Q function of the policy, the performance is
measured by the mean Q values on the initial states from the dataset and actions by the policy. WIS
is a canonical variant of important sampling (IS). IS only uses the ratio between target policy and
behavioral policy to weight the episodic reward in the dataset, while WIS can further reduce the IS
variance. Both methods are run with 3 seeds on the candidate policy set. The three non-learning
baselines do not need to go through OPE process.

7.3 Results

We calculate an average rank and average normalized scores respectively. The rank of an algorithm
or baseline is determined by the score on each task, and the final average rank is computed over
the 51 tasks. The average rank of each algorithm is shown in Table 2} and the average normalized
scores are shown in Figure 3] for online and offline evaluation respectively. Detailed raw scores
and normalized scores of each task are deferred to Appendix. [F]due to the page limitation. The

normalization 100 x e}fpz"ns°s°croer;£ar“:xf£,;cs°croere is also adopted in our evaluation.

In online evaluation, CQL achieves the highest rank of 2.17, which greatly outperforms other
algorithms. BC matches the performance of the deterministic policy, which indicates that BC
recovered the deterministic behavior policy from the datasets. Interestingly, results of BC form
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Table 3: The difference of the normalized scores between each algorithms and the behavior policy on
Gym-MuJoCo medium tasks.

Task Name BCQ PLAS CQL MOPO

HalfCheetah-D4RL 6.6 8.1 10.3 6.1
HalfCheetah-NeoRL 4.6 4.8 8.6 16.3

Hopper-D4RL 22.5 4.9 54.6 —5.5
Hopper-NeoRL 5.7 19.2 225 —-41.0
Walker2d-D4RL 423  56.1  63.7 3.2

Walker2d-NeoRL 18.7 -84 143 —-3.1

very strong baselines: the other six offline RL algorithms fail to outperform BC in 152 out of 306
comparisons (note that we have set the quality of datasets to three levels where BC is believed to
perform poorly in the low-quality dataset). Using the Nemenyi test [40], the critical difference of 10
comparing methods over 51 tasks with confidence level 95% is 1.8970. Therefore, if we take BC as
the reference, only CQL is significantly better than BC, while Random and MOPO are significantly
worse. The result is the same if we take the deterministic policy as the reference. The winning rates
against behavior policy, the deterministic policy, and BC for each compared baselines can be found
in Table 211

For model-based approaches, the overall performance is worse than model-free methods, but they
can bring remarkable improvements in some domains. For instance, on HalfCheetah-Low and
HalfCheetah-Medium tasks, BREMEN and MOPO can outperform other algorithms and baselines
by a large margin, which reveals the potential of model-based offline RL approaches. However, the
dataset can be less diverse as the quality improves, which may incur bias in environment learning and
lead to poorer performance on high-quality datasets. To investigate how the conservative data affect
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Figure 4: Average normalized score of each algorithms with respect to the number of trajectories.
BCQ performed badly and even worse than random on IB domains, thus its average score is low.

the evaluation of offline RL, we calculate the difference of normalized score between the comparing
algorithm (online performance) and the dataset reward (behavior policy performance) in Table 3]
The performance on D4RL is directly adopted from the D4ARL results or the original paper. It can
be observed from Table[B] 10 out of 12 results are overestimated when compared with the behavior
policy. We also evaluate the performance of each algorithm with respect to the number of trajectories
used in training. As shown in Figure ] for 5 out of 7 algorithms, the performance grows as the
training number increases from 100 to 1000. However, only performances of BCQ, CQL, CRR
increase when the training trajectories further increased to 10000. We notice that the BCQ performs
badly on IB, which degrades its overall average score. The reason may lie in the highly stochastic
nature of IB so that BCQ needs more carefully hyper-parameter tuning to achieve a decent score.

However, the result of offline evaluation favors BC. From Table and Figure|§|, for both OPE methods,
the average rank and average normalized score of BC become the best. That means if we follow a
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strict offline setting and fully offline training pipeline, current offline RL algorithms are no better
than the naive BC and the deterministic policy. Except CQL and CRR, other learning algorithms
significantly fall behind BC (see Table 22]and 23| for winning rates). From the normalized scores
over three evaluations, on over a half of tasks, online evaluation, and two OPE could not reach an
agreement on the best algorithms and policies (see Appendix [F|for detailed score). We conjecture this
disagreement of online and offline evaluation is due to the performance of candidate policies; if the
candidate set contains many extremely low-performance policies, FQE and WIS cannot distinguish
them (see correlation figure in Appendix [E| FQE and WIS can give both extremely high or low
evaluation to a policy with very low online performance). Empirically, we may benefit from OPE if
we can preclude these poor policies with little effort, e.g., preclude a policy when the value function
loss explodes.

8 Conclusion

NeoRL. In this paper we present NeoRL, a near real-world benchmark for offline RL. Since real-
world datasets are usually very limited and collected with conservative policies to ensure system
safety. For real-world considerations, NeoRL focuses on conservative actions, limited data, non-
stationary dynamics, and especially offline policy evaluation before deployment, which are ubiquitous
and crucial in real-world decision-making scenarios. So far, NeoRL has included Gym-MuJoCo
tasks, industrial control, financial trading, and city management tasks, where the training and test
datasets are collected from these domains with different sizes.

Findings. We benchmark some state-of-the-art offline RL algorithms on NeoRL tasks, including
model-free and model-based algorithms, in both online and offline policy evaluation manner. Sur-
prisingly, the experimental results demonstrate that these compared offline RL algorithms fail to
outperform neither the simplest behavior cloning method nor the deterministic behavior policy on
NeoRL, only except CQL. With constraints to be close to the data or a pessimistic MDP, their
performance may be extremely bounded by the data.

Our experiment results further show that model-based offline RL approaches are overall worse than
model-free approaches. However, model-based approaches may have better potential to achieve the
out-of-data generalization ability. Meanwhile, we have noticed that better model-learning approaches
based on adversarial learning [41-43]] could help. We will test these approaches in the future.

Lessons learned. For real-world applications, the trained policy must be evaluated before deployment.
We recommend using offline policy evaluation methods on an unseen test dataset (or using a cheap
learned simulator) to evaluate the trained policy. Despite the importance of offline evaluation in
real-world scenarios, it can be inferred from the experiments that current offline policy evaluation
methods (FQE and WIS in the experiments) may hardly help improve the policy selection and favor
algorithms that are not sensitive to different hyper-parameters. We argue that offline RL algorithms
should pay more attention to real-world restrictions and offline evaluation, and recommend using
extra test datasets to conduct offline policy evaluation, which leads to a great challenge for existing
offline RL methods.

Future work. In the future, we will step further towards real-world scenarios and investigate more
real-world offline RL challenges, by constantly providing new near real-world datasets and tasks. We
also hope the NeoRL benchmark will shed some light on future research and draw more attention to
real-world RL applications.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes], , Oor
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section .

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work?
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]
3. If you ran experiments (e.g., for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix. [C]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? Our datasets don’t contain personal or user information.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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A Task Description

Table 4: Configuration of environments.

Environment Observation Action Have ’ Max
Shape Shape Done Timesteps

HalfCheetah-v3 18 6 False 1000

Hopper-v3 12 3 True 1000

Walker2d-v3 18 6 True 1000

IB 180 3 False 1000

FinRL 181 30 False 2516

CL 74 14 False 1000

Table 5: Number of samples contained in Hopper and Walker2d datasets.

Tasks Training Set  Test Set
Hopper-v3-Low-10? 19259 1979
Hopper-v3-Low-103 192346 19790
Hopper-v3-Low-10* 1918370 198188
Hopper-v3-Medium-10? 39219 2843
Hopper-v3-Medium-103 387466 33435
Hopper-v3-Medium-10* 3885950 315728
Hopper-v3-High-10? 42142 4086
Hopper-v3-High-103 413793 46981
Hopper-v3-High-10* 4168323 471693
Walker2d-v3-Low-102 55353 5521
Walker2d-v3-Low-103 543557 49426
Walker2d-v3-Low-10* 5455589 502659
Walker2d-v3-Medium-10? 77738 8605
Walker2d-v3-Medium-103 768249 86776
Walker2d-v3-Medium-10* 7688849 867596
Walker2d-v3-High-102 80880 7767
Walker2d-v3-High-103 806876 83334
Walker2d-v3-High-10* 7963782 837832

Gym-MuJoCo We set EXCLUDE_CURRENT_POSITIONS_FROM_OBSERVATION to false to
include the first dimension of the position in HalfCheetah-v3, Walker2d-v3, and Hopper-v3. We use
Gym-MuJoCo: https://gym.openai.com/envs/#mujoco.

IB IB [28] simulates the characteristics presented in various industrial control tasks, such as wind or
gas turbines, chemical reactors, etc. The raw system output for each time step is a 6-dimensional
vector including velocity, gain, shift, setpoint, consumption, and fatigue. To enhance the Markov
property, the authors stitch the system outputs of the last K timesteps as observations (KX = 30 by
default). The action space is three-dimensional. Each action can be interpreted as three proposed
changes to the three observable state variables called current steerings. Original codes can be found
athttps://github.com/siemens/industrialbenchmark.

FinRL FinRL [29]] contains 30 stocks in the pool and the trading histories over the past 10 years.
Each stock is represented as a 6-dimensional feature vector, where one dimension is the number
of stocks currently owned, another five dimensions are the factor information of that stock. The
observation has one dimension of information representing the current account cash balance. The
dimension of the action space is 30, corresponding to the transactions of each of the thirty stocks.
Original codes can be found athttps://github.com/AI4Finance-LLC/FinRL-Library. For

CityLearn The CityLearn (CL) environment [30] reshapes the aggregation curve of electricity
demand by controlling energy storage in different types of buildings. Domestic hot water (DHW) and
solar power demands are modeled in the CL environment. High electricity demand raises the price of
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614 electricity and the overall cost of the distribution network. Flattening, smoothing, and narrowing the
615 electricity demand curve help to reduce the operating and capital costs of generation, transmission,
616 and distribution. The observation encodes the states of buildings, including time, outdoor temperature,
617 indoor temperature, humidity, solar radiation, power consumption, charging status of the cooling and
618 heating storage units, etc. The action is to control each building to increase or decrease the amount
619 of energy stored in its own heat storage and cooling equipment. Original codes can be found at
620 https://github.com/intelligent-environments-lab/CityLearn,

621 The state and action spaces of all environments are summarized in Table[d] Have Done means the
622 respective environment provides a terminal function that will finish the episode before reaching
623 the maximum timesteps. For tasks without the terminal function, the number of samples in the
624 dataset is Traj_Numbers * Max_Timesteps. On the other hand, for tasks with a terminal function, i.e.
625 Hopper-v3 and Walker2d-v3, the samples can be less. The accurate sample numbers of these two
626 tasks are summarized in Table [5|For domains that provide terminal function, the sample sizes may be
627 less than #Trajectories x Max_Timesteps, so we list the detailed number of samples for these
628 domains in Table

s29 B The Verification of Re-implementation

630 The reproducibility issue is critical in offline RL. Even if using codes from the original authors, we
631 may have difficulty reproducing the results for some algorithms on previous benchmarks. Random
632 seeds and which model to keep seem to matter a lot. Since we aim to use the same training workflow,
633 we re-implement compared baselines and have verified our re-implementations on D4RL MuJoCo-
63+ medium tasks. The hyper-parameters are set to the recommended values in the original papers. The
635 results are shown in Table@ Note that, in order to make a fair comparison between BREMEN and
636  MOPO, we use the same implementation of stochastic ensemble models. However, we do notice
637 that the original implementation of BREMEN adopted deterministic models, which may cause a
638 discrepancy in the results.

Table 6: Normalized scores of the re-implementations on D4RL. Values in the brackets state the
reported score in the original papers (except for CRR whose scores on D4RL are not available). The
difference between two scores greater than 10 are in bold.

Task Name CQL PLAS BCQ CRR BREMEN  MOPO
Walker2d-medium 785 (58.0) 70.9 (66.9) 69.0(53.1) 302 29.8(59.6) 27.6(14.0)
Hopper-medium 78.3(79.2) 34.2(36.9) 32.0(54.5) 533 29.7(69.3) 21.9(26.5)

HalfCheetah-medium  41.5 (44.4) 409 (42.2) 432 (40.7) 39.8 50.2(55.0) 39.3 (40.2)

s3s C Computation Resources

640 We run all the experiments on the local clusters with multiple NVIDIA Telsa V100 GPUs (10 times
641 CPU cores). By rough calculation, training all the offline policies require 21,420 GPU hours, and
642 evaluating them with OPEs requires 15,300 GPU hours.

sss D Choice of Hyper-parameters

644 'To make a fair comparison, all the policies and value functions are implemented by the same
645 network structure, i.e., an MLP with 2 hidden layers and 256 units per layer. Because network
e46 architecture search (NAS) consumes large computation resources, especially in offline RL, since it
647 takes a long time to train a policy and the ground-truth performance replies on online interactions.
e4¢ Thus, we directly use the same network architecture as the behavior policy that produced the
649 datasets, and they do learn something in the online training process. We hope future work will
es50 enrich the property network architecture for offline RL. The output of the policies is transformed
651 by tanh function to ensure the actions are within the range. For model-based approaches, the
652 transition model is represented by an ensemble of Gaussian models, i.e., for each model, s;11 ~
653 N (st + Ag(st,at),00(st,at)), where Ag and oy are implemented by an MLP with 4 hidden layers
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and two heads. For Gym-MoJuCo tasks, we use 256 units in each hidden layer, for other tasks with
higher input dimensions, we use 1024 units. Each transition model is trained by Adam optimizer via
maximum likelihood until the MSE plateaus on the test dataset.

For BC, the policies are trained by Adam optimizer with a learning rate of le-3 for 100K steps
with a batch size of 256, and it is early stopped with the lowest MSE on the test dataset to prevent
overfitting. Although the best policy may get from the middle of the training process, except for BC,
there does not exist a decent criterion to early stop. Thus, we only consider the finally trained policy
for evaluation.

For BREMEN, we follow the original settings to treat 25 TRPO steps as an epoch and train for 250
epochs. For other methods, we treat 1000 learning steps as an epoch and then train BCQ, PLAS,
CRR, MOPO for 200 epochs and train CQL for 300 epochs (The original CQL used 3000 epochs,
but it spends too much time and the best performance can occur before 300 epochs).

Except for BC, offline RL algorithms can be very sensitive to the choice of hyper-parameters. To
evaluate the performance of these algorithms, we conduct grid searches for the important hyper-
parameters noted by the original papers. The search space of these algorithms is summarized in Table
and the hyper-parameters used in the reported results are summarized in Table [§] For parameters
not mentioned, their values are the same as the original papers.

Table 7: The search space of hyper-parameters.

Algorithms Search Space
BCQ ® € {0.05,0.1,0.2,0.5}
PLAS ® € {0,0.05,0.1,0.2,0.5}
variant € {H, p}
CQL a € {5,10}

7€ {-1,2,5,10}

advantage mode € {max, mean}

CRR weight mode € {exp, binary}
h € {250, 1000}
BREMEN exploration mode € {sample, static}
uncertainty type € {aleatoric, disagreement}
MOPO he{l1,5}

A€ {05,1,2,5}

For BCQ, the action is decoded from VAE plus a perturbation, i.e., « = @ + ® tanh(£4(s, a)). Here,
® controls the maximum deviation allowed for the learned policy from the behavior policy. We search
for ® € {0.05,0.1,0.2,0.5}.

For PLAS, the default setting is to learn a deterministic policy in the latent space of VAE. The authors
mentioned that a similar perturbation layer as BCQ can be applied to the output action to improve its
generalization out of the dataset. Thus, we search for the value of ® € {0,0.05,0.1,0.2,0.5}, where
® = 0 stands for the perturbation is not applied.

For CQL, we mainly consider three parameters mentioned in the original paper:

* Variant: The paper proposed two variants of CQL algorithms, i.e., CQL(#) and CQL(p).
The former uses entropy as the regularizer, whereas the latter one uses KL-divergence.

* Q-values penalty parameter a:: In the formulation of CQL, « stands for how large penalty
will be enforced on the Q function. As suggested in the paper, we search for a € {5,10}.

* 7: Since « can be hard to tune, the authors also introduce an auto-tuning trick via dual
gradient-descent. The trick introduces a threshold 7 > 0. When the difference between
Q-values is greater than 7, o will be auto-tuned to a greater value to make the penalty more
aggressive. As suggested by the paper, we search 7 € {—1,2,5,10}. 7 = —1 indicates
removing this trick.
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Table 8: Hyper-parameters for reported results.

Task Name BCQ | PLAS CQL CRR ] BREMEN ] MOPO
o o Variant | o | r Advantage | Weight A Exploration | Uncertainty nloa
Mode Mode ) Mode Type

HalfCheetah-L-10% 0.05 0.05 H 5 2 mean exp 250 sample aleatoric 5110
HalfCheetah-L-103 0.2 0.05 H 10 | 10 mean exp 250 sample aleatoric 51 1.0
HalfCheetah-L-10% 0.5 0.05 H 5110 max binary | 250 sample disagreement | 1 | 1.0
HalfCheetah-M-102 | 0.05 0.0 p 10 | -1 mean binary | 1000 sample aleatoric 51 1.0
HalfCheetah-M-103 | 0.05 0.0 p 5 (-1 mean binary | 250 sample aleatoric 5120
HalfCheetah-M-10* | 0.05 0.0 H 10| 5 mean binary | 250 sample disagreement | 1 | 5.0
HalfCheetah-H-10% | 0.05 0.0 P 5|10 max exp 1000 sample aleatoric 5150
HalfCheetah-H-10% | 0.05 0.0 p 5|10 mean binary | 1000 sample aleatoric 5120
HalfCheetah-H-10* | 0.05 0.0 p 10 | -1 mean binary | 1000 static aleatoric 1]1.0
Hopper-L-10 0.1 0.1 H 5|10 max binary | 250 static aleatoric 1]1.0
Hopper-L-103 0.1 0.5 H 5|10 mean exp 250 static disagreement | 5 | 5.0
Hopper-L-10* 0.2 0.2 H 5|10 max exp 250 static disagreement | 1 | 0.5
Hopper-M-102 0.1 0.0 P 10 | 10 mean binary | 1000 static aleatoric 1]5.0
Hopper-M-10° 0.05 0.1 H 10 | -1 max exp 250 static disagreement | 5 | 5.0
Hopper-M-10* 0.05 0.05 H 5|10 mean exp 250 static aleatoric 5110
Hopper-H-102 0.05 0.0 p 5|10 mean exp 250 static aleatoric 1105
Hopper-H-103 0.2 0.0 p 10 | -1 mean binary | 250 static aleatoric 1150
Hopper-H-10* 0.05 0.0 H 5 ] -1 mean binary | 1000 static disagreement | 1 | 0.5
Walker2d-L-10% 0.05 0.0 p 10| 2 mean exp 1000 static disagreement | 1 | 0.5
Walker2d-L-103 0.2 0.0 H 5 (10 mean binary | 1000 static aleatoric 1150
Walker2d-L-10* 0.05 0.0 H 10| 5 max exp 1000 static aleatoric 1105
Walker2d-M-10? 0.1 0.0 H 5| -1 max binary | 1000 static aleatoric 5150
Walker2d-M-10° 0.2 0.0 H 10 | 2 mean binary | 1000 static aleatoric 5150
Walker2d-M-10* 0.05 0.0 p 5 |-1 mean binary | 1000 static aleatoric 5120
Walker2d-H-10% 0.05 0.0 p 5 |- mean exp 1000 static disagreement | 1 | 2.0
Walker2d-H-103 0.2 0.0 p 5| -1 mean binary | 1000 static disagreement | 1 | 2.0
Walker2d-H-10* 0.1 0.0 p 10 | -1 mean binary | 250 static disagreement | 5 | 1.0
1B-L-10? 0.5 0.05 p 10 | 10 mean exp 1000 sample aleatoric 5150
IB-L-10° 0.5 0.2 p 515 mean exp 250 sample disagreement | 5 | 5.0
IB-L-10* 0.5 0.05 p 10 | -1 mean binary | 250 static aleatoric 5120
1B-M-10? 0.5 0.5 H 10| 2 mean exp 250 static aleatoric 1|20
IB-M-10° 0.2 0.0 H 5 5 max exp 1000 static aleatoric 1105
IB-M-10* 0.5 0.0 H 5 2 max binary | 250 static disagreement | 1 | 1.0
IB-H-10? 0.5 0.2 p 10| 5 mean exp 250 static disagreement | 5 | 2.0
IB-H-10? 0.05 0.5 p 5 2 mean exp 250 static aleatoric 1110
IB-H-10* 0.1 0.05 p 10| 5 mean exp 250 static aleatoric 5120
FinRL-L-10? 0.5 0.5 H 5 2 mean binary | 250 static aleatoric 1105
FinRL-L-103 0.5 0.2 H 10 | -1 max exp 250 sample aleatoric 1105
FinRL-M-10? 0.1 0.5 p 10| 2 mean binary | 250 static aleatoric 1105
FinRL-M-10° 0.5 0.0 P 10 | 10 max exp 1000 sample aleatoric 5105
FinRL-H-102 0.5 0.0 H 5 (10 max exp 250 sample aleatoric 5105
FinRL-H-103 0.5 0.2 P 10 | -1 mean exp 250 sample aleatoric 1105
CL-L-10? 0.05 0.0 H 10 | 10 mean binary | 1000 static disagreement | 1 | 5.0
CL-L-103 0.2 0.05 H 10 | -1 mean binary | 250 static disagreement | 1 | 2.0
CL-L-10* 0.1 0.1 H 10 | -1 mean exp 1000 sample aleatoric 5110
CL-M-10? 0.2 0.05 p 10 | 10 mean exp 250 static disagreement | 5 | 0.5
CL-M-10? 0.2 0.0 H 10| 2 max binary | 1000 sample aleatoric 1105
CL-M-10* 0.05 0.1 H 10 | 10 max exp 250 static aleatoric 1150
CL-H-10? 0.05 0.0 p 10| 2 mean exp 250 static disagreement | 5 | 0.5
CL-H-10% 0.1 0.0 H 10 | 10 mean exp 250 static aleatoric 5110
CL-H-10* 0.05 0.0 H 10 | 2 mean exp 250 static aleatoric 5150

Note that, there is an approximate-max backup trick mentioned in the original paper. By default, the
bellman backup is computed with double Q, i.e., y = r + min;—1 2 Q;(s’,a’), where @’ ~ 7(s’). In
addition, the authors propose a approximate-max backup, which use 10 samples to approximate the
max Q-values, where the backup is computed by y = r + min;—1,2 maxy; o/ ~x(s) Qi(s’;a'). In
the former experiments, we found this trick impairs the performance. Thus, we keep the double-Q
target to reduce the search space.

In CRR, the policy is learned via argmax, E(, o)~p [f(Qg, 7, s,a)logm(als)], where f is the
weight function that is non-negative and monotonous in Q value. The authors mainly use the
advantage function to compute f. There are mainly two design choices that effect f:

» Advantage mode: The original paper gives two methods to estimate the advantage func-

tion, i.e., Amean(s,a) = Qp(s,a) — Ly Qo(s,a;) and Amax(s,a) = Qq(s,a) —
max;—1. .m Qo(s,a;), where a; ~ m(als). The former one is termed as mean while the later
one is termed max.
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* Weight mode: The original paper gives two ways to compute weight given advantage, i.e.,
f==1 [A(s, a) > 0} and f := exp(A(s,a)/B). The former one is termed as binary while
the later one is termed exp. For the exp method, the /3 is set to 1 to be align with the original
paper.

For BREMEN, we consider two parameters mentioned in the original paper:

* Rollout horizon h: BREMEN uses the transition models to generate imaginary rollouts
whose length is controlled by parameter h. As suggested in the original paper, we search for
h € {250,1000}.

» Exploration Mode: In the original paper, the authors conducted an ablation study on the
exploration strategy when generating rollouts. They found using a stationary Gaussian noise
with ¢ = 0.1 other than sampling from the policy can significantly boost the performance.
However, in our experiment, we observe that using stationary noise does not always help.
Thus, we perform a search on this strategy. The term sample is referred to directly sample
from the policy, while static is referred to the stationary noise suggested by the authors.

For MOPO, we consider three parameters mentioned in the original paper:

* Uncertainty type: In the default setting, MOPO uses the maximum Ls-norm of the output
standard deviation among ensemble transition models, i.e., max;—1._n ||o}(s,a)||3, as
the uncertainty measure. Since the learned variance can theoretically recover the true
aleatoric uncertainty [44} 9]], we denote this type of uncertainty as aleatoric. Another
variant that uses the disagreement between ensemble transition models is also included, i.e.,
max;—1..n [|Aj(s,a) — % >, Ab(s, a)||3. We refer to this variant as disagreement.

* Rollout horizon A: MOPO uses a branch rollout trick that rollouts from states in the dataset
with a small length. & determines the length of the rollout. As suggested in the paper, we
search for h € {1,5}.

* Uncertainty penalty weight A\: The main idea of MOPO is to penalize the reward function
with the uncertainty term, i.e., 7 = r — Au(s,a). Here, A control the amplitude of the
penalty. As suggested in the original paper, we search for A € {0.5,1,2,5}.

E Details of Offline Policy Evaluation

This section describes implementation details and hyper-parameters for offline evaluation and provides
additional results. Corresponding to supervised learning, all the OPE methods are conducted on the
holdout test dataset with a discount factor v = 0.99.

For FQE, we follow the hyper-parameters in [[12]. The critic network is implemented with an MLP
of 4 layers with 1024 units per layer and is trained for 250K steps by Adam optimizer with a batch
size of 256. In the experiment, we observe that FQE is inclined to explode to extremely large
values. Therefore, we use a value clipping trick on the target of bellman backups. The max and min
values are computed by the rewards from the dataset with 40% enlargement of the interval. That s,
Umax = (1.27max — 0.2rmin) /(1 — ) and vmin = (1.27min — 0.2rmax ) /(1 — 7).

IS based methods rely on the probability density function of policies to compute the important ratio

p= 7::7((2'\?) However, the behavior policy 7, (a|s) is unknown in the offline setting, and the target

policy 7(als), i.e., the one trained by offline RL algorithms, can also be deterministic or stochastic
with implicit distribution, as in BCQ and PLAS. Thus, we adopt BC to estimate the density function of
the respective policy. For the behavior policy, BC is directly applied to the raw dataset. For the target
policy, we first relabel the dataset by the output of the target policy, then apply BC on the relabeled
dataset. We follow [45] to implement the WIS. The policy is implemented as a TanhGaussian
distribution in BC with an MLP of 2 layers and 256 units per layer.

In addition to directly select the best policy according to the OPE estimations, we also consider other
two metrics to evaluate the OPE methods as in [12} [13]]:

Rank Correlation Score (RC Score): RC score indicates how the OPE produces the same rank as
the ground-truth in the online evaluation. It is computed as Spearman correlation coefficient between
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Figure 5: Scatter plot of OPE results for HalfCheetah-Low tasks.

coefficient.
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Ground Truth le2

r stands for the correlation

the two rankings produced by OPE and online evaluation respectively. RC score lies in [—1, 1], and if
the rank is uniformly random, the score will be 0.

Top-K Score: Top-K score represents the relative performance of the chosen K policies via OPE.
To compute this score, the real online performance of each policy is first normalized to a score within
[0, 1] by the min and max values over the whole candidate policy set of all the algorithms. Let 7%

denote the k-th ranked policy by the offline evaluation, then we use +
the mean and max top-K score respectively. We report the scores with K € {1,3,5}.

Zk 1 7Toff and maxk{ﬂoff} as

In addition, we report the average performance of the candidate policies as Policy Mean Score. Note
that, it also represents the expectation of the top-1 score for a random selection method. All the
metrics are shown from Table 9] to[20] for each domain and corresponding OPE method.

We also show additional correlation figures of each task on whole candidate policies below. The
scatter plots compare the estimated values from OPEs against the ground truth values for every policy.
The ground truth is estimated by the online performance, i.e., vy =
maximum horizon of the environment. Dots on the dashed line indicates the OPE methods perfectly
predict the online performance. We found the FQE and WIS estimation can be far from the real
online performance in most tasks. Especially, we can identify a vertical line on the left in most of the
scatter plots of FQE, which indicates FQE fails to evaluate policies with very bad performance.

a

f’;i";,"f where hy. denotes the

Table 9: FQE performance on the policies from HalfCheetah tasks. L, M, H stands for low, medium

and high quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy
Task Score Mean Mean Mean Max Max Max Mean
Score Score Score Score Score Score Score
HalfCheetah-L-102  —.122+.007 .8344.007 .7874.000 .7714.000 .834+.007 .839+.000 .839 +.000 0.701
HalfCheetah-L-10? 306 +£.036 586 +.000 .804 £ .001 .7854.065 .586+.000 .936 £.003 .980 £ .028 0.724
HalfCheetah-L-10* 631 +.052 .6214.439 .697+.275 .730+.124 621+ .439 .9324+.000 .932=£.000 0.700
HalfCheetah-M-102  —.636 +.009 .730 +.000 .7414.041 .724+.085 .7304.000 .884+.021 .899 4 .000 0.649
HalfCheetah-M-10? 024 +.030 .640+.195 .620+.105 .5814.043 .640+.195 .807+.134 .807+.134 0.683
HalfCheetah-M-10* 3824 .016 .449+.007 481 +£.030 .499+.017 .4494.007 .537+.083 .622 £ .046 0.634
HalfCheetah-H-102  —.295 +.021 518 +£.190 .4184.079 .4594.065 .518+.190 .653+.001 .738 +.059 0.468
HalfCheetah-H-10°  —.207 +.028 .760 &+.103 4414 .146 .429+.145 .7604.103 .795+.089 .795 4+ .089 0.533
HalfCheetah-H-10* 2044+ .005 .363+£.000 .333+£.015 .316+.008 .363+.000 .363+£.000 .363 4 .000 0.467
Average 0324 .369 .611+.226 .591 £.202 588 £ .179 .611+.226 .750+£.193 .775+.187 .618+.096
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Figure 6: Scatter plot of OPE results for HalfCheetah-Medium tasks. r stands for the correlation
coefficient.
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Figure 7: Scatter plot of OPE results for HalfCheetah-High tasks. r stands for the correlation
coefficient.

Table 10: IS performance on the policies from HalfCheetah tasks. L, M, H stands for low, medium
and high quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy

Task Mean Mean Mean Max Max Max Mean
Score

Score Score Score Score Score Score Score

HalfCheetah-L-10> 039 £.242 689 £.044 .729+.053 .732+£.058 .689+.044 .855+.133 .9154.062 0.701
HalfCheetah-L-10>  —.309 £.034 .658 £.069 .649+.052 .6424.006 .6584.069 .7184.017 .7424.000 0.724
HalfCheetah-L-10*  —.446 +.015 .457+.333 .4184+.045 .5114.026 .4574.333 .6544+.094 .746 +.067 0.700
HalfCheetah-M-102 215+£.068 7644 .100 .653 +£.116 .664 4 .104 .764 £.100 .789+.083 .802 £ .080 0.649
HalfCheetah-M-10? 218 £.099 540 £.254 633 £.126 .642+.057 .540+.254 .8294.050 .829 % .050 0.683
HalfCheetah-M-10* .108 £.017 .001 £.000 .001+£.000 .072+.100 .001+.000 .0014.000 .1844 .258 0.634
HalfCheetah-H-10> .061 £.184 .147 4 .064 .207 £.087 .2054.060 .147 £.064 .3514.231 417 £.176 0.468
HalfCheetah-H-10°  —.192+.103 .105+.059 .1004.020 .1254.028 .1054.059 .1914+.089 .321 +.118 0.533
HalfCheetah-H-10* 346 £.029 .8804.000 .870+£.008 .8704.023 .880£.000 .9164.025 948 £.035 0.467

Average .004 £.275 471+£.333 473+£.297 496+ .279 471+ .333 589+ .326 .656 % .287 .618 £ .096
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Figure 8: Scatter plot of OPE results for Hopper-Low tasks. r stands for the correlation coefficient.
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Figure 9: Scatter plot of OPE results for Hopper-Medium tasks. r stands for the correlation coefficient.

Table 11: FQE performance on the policies from Hopper tasks. L, M, H stands for low, medium and
high quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy

Task Mean Mean Mean Max Max Max Mean
Score

Score Score Score Score Score Score Score

Hopper-L-102  —.101£.059 .586 +.359 .416+.141 .3774+.029 .586+.359 .8304.015 .844 +.005 0.619
Hopper-L-103 .085+£.071  .0224.029 .057 £.029 .0534.011 .022£.029 .104+.038 .1124+.031 0.386
Hopper-L-10* 223 4+.152 260 £.331 267 +£.211 .189+.130 .260£.331 .551 £.361 .551 +.361 0.491
Hopper-M-10>  —.086 +.065 .104+.107 .215+.054 .131+£.032 .1044+.107 .404+.093 .404 & .093 0.383
Hopper-M-10®  —.005+.177 .001 +.001 .002+.000 .0024.000 .001+.001 .0024.001 .002 +.000 0.359
Hopper-M-10*  —.112+.113 .001 +£.000 .002+£.000 .0024.000 .001 £.000 .0024.000 .002 <+ .000 0.344
Hopper-H-102  —.246 +.060 .054+.074 .020+£.024 .012+.015 .054+.074 .055=+.073 .055+.073 0.402
Hopper-H-10®  —.437+£.028 .002+.000 .001+.000 .003+.002 .002=.000 .002.000 .005.005 0.387
Hopper-H-10¢  —.201 £.063 .001+.001 .008+£.009 .005+.006 .0014+.001 .0214.027 .0214+.027 0.409

Average —.098 +£.206 .115+.250 .110+£.168 .086+.129 .115+.250 .2194 .314 .222+.316 .4204.080
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Figure 10: Scatter plot of OPE results for Hopper-High tasks. r stands for the correlation coefficient.
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Figure 11: Scatter plot of OPE results for Walker2d-Low tasks. r stands for the correlation coefficient.

Table 12: IS performance on the policies from Hopper tasks. L, M, H stands for low, medium and

high quality of dataset.
RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy
Task Score Mean Mean Mean Max Max Max Mean
Score Score Score Score Score Score Score
Hopper-L-102 098 £.091 378 +.304 .375+.208 .3234.142 378 £.304 .545+.157 .626 £+ .179 0.619
Hopper-L-103 161 +£.037 2874 .236  .406 £.024 .338+.037 .287£.236 .587 +.023 .609 £ .027 0.386
Hopper-L-10* 138 £.113  .653+.000 .558 £.106 .417+.120 .653 £.000 .700=+.066 .700 £ .066 0.491
Hopper-M-102  —.430 +.158 .3384+.187 .273+.084 .2634.107 .338+.187 .4364.122 .468 +.138 0.383
Hopper-M-103  —.620 +.045 .0024.000 .001 £.000 .001£.000 .002+.000 .0024.000 .002 4 .000 0.359
Hopper-M-10*  —.442+.030 .000 +.001 .001 £.000 .0054.003 .000£.001 .0024.000 .023 £.016 0.344
Hopper-H-102  —.439+.134 .0374+.050 .036+.024 .0724.017 .037+.050 .0904.065 .219 +.054 0.402
Hopper-H-103  —.209 +.051 .0024.000 .007 +.006 .0084.005 .002+.000 .0104.008 .029 +.023 0.387
Hopper-H-10*  —.016 +.052 .0134.000 .013+.000 .0304.031 .013+.000 .0134.000 .074 +.086 0.409
Average —.195+.296 .190+.264 .185+.222 162+ .177 190+ .264 .265+.288 .305+.289 .420 £ .080
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Figure 12: Scatter plot of OPE results for Walker2d-Medium tasks. r stands for the correlation

coefficient.
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Figure 13: Scatter plot of OPE results for Walker2d-High tasks. r stands for the correlation coefficient.

Table 13: FQE performance on the policies from Walker2d tasks. L, M, H stands for low, medium

and high quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy
Task Score Mean Mean Mean Max Max Max Mean
Score Score Score Score Score Score Score
Walker2d-L-10>  —.287+.020 .0724.057 .127+.013 .1264.013 .072+.057 .1824.023 .2124.045 0.345
Walker2d-L-103 .025£.045 .161+.113 .102+.035 .156+.102 .161+.113 .218+£.087 .454 4 .356 0.418
Walker2d-L-10* 267 £.136  .035+.018 .036 £.008 .040 +£.007 .0354.018 .063+.014 .073 4 .011 0.487
Walker2d-M-102  —.220 +.037 2624 .183 2394 .115 .245+.088 .262+.183 461 +.124 .535+.063 0.497
Walker2d-M-103  —.036 +.044 .0444+.027 .1334.140 .215+.146 .044 +£.027 .292+.325 .562 +.213 0.497
Walker2d-M-10*  —.101£.130 .1074+.073 .155+.043 .1434.030 .107+.073 .2494.043 .249+.043 0.496
Walker2d-H-10>  —.306 +.124 .0514.000 .093 +.054 .1294.039 .051+.000 .188+.097 .275+.035 0.435
Walker2d-H-103  —.171+.052 .0314.034 .052+.049 .1064.035 .031+.034 .1454.147 .322+4.037 0.534
Walker2d-H-10* 150 £.093 077 4+ .047 .087 £.017 .069 4 .002 .077 £.047 .137+.004 .137 £.004 0.516
Average —.075+£.205 .093£.108 .114+.089 .136+.092 .093+.108 .2154.172 .313+.215 .469 4+ .056
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Figure 14: Scatter plot of OPE results for IB-Low tasks. r stands for the correlation coefficient.
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Figure 15: Scatter plot of OPE results for IB-Medium tasks. 7 stands for the correlation coefficient.

Table 14: IS performance on the policies from Walker2d tasks. L, M, H stands for low, medium and
high quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy

Task Mean Mean Mean Max Max Max Mean
Score

Score Score Score Score Score Score Score

Walker2d-L-102 064 £.094 .167+.051 .164+.013 .165+.006 .1674.051 .220+.021 .246 4 .016 0.345
Walker2d-L-10°  —.5154+.051 .094 +.030 .060 £.019 .041+.009 .094=£.030 .115=+.000 .115=.000 0.418
Walker2d-L-10*  —.3264.027 .011+.002 .018£.007 .016+.004 .011+£.002 .030=+.023 .030+.023 0.487
Walker2d-M-10? 161 +£.166 .020£.018 .256 £.111 .3614+.092 .020£.018 .5714.186 .734 £.078 0.497
Walker2d-M-10®  —.021£.038 .009 4+.001 .009 £.000 .0724.048 .009 £.001 .0104.000 .306 + .245 0.497
Walker2d-M-10*  —.036 £.036 .298 +.229 450 +.250 .3344.134 .298+.229 .7524.161 .790 +.147 0.496
Walker2d-H-102 441 4.055  .364+.297 .519£.088 528 £.099 .364 £.297 .858 £.058 .878+.033 0.435
Walker2d-H-10°  —.044 +.065 .093 +£.124 .160+.078 .221+£.072 .093£.124 .436=+.188 .649+.235 0.534
Walker2d-H-10* 215+£.070  .1174£.092 108 £.041 .101£.006 .117£.092 .1914.070 .241 £.000 0.516

Average —.007+.279 .130£.182 .194+.199 204+ .177 .130+.182 354+ .316 .443+.326 .469 £ .056
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Figure 16: Scatter plot of OPE results for IB-High tasks. r stands for the correlation coefficient.
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Figure 17: Scatter plot of OPE results for FinRL-Low tasks. 7 stands for the correlation coefficient.

Table 15: FQE performance on the policies from IB tasks. L, M, H stands for low, medium and high
quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy
Task Score Mean Mean Mean Max Max Max Mean
Score Score Score Score Score Score Score
IB-L-10? 282+ .027 .060 £.000 .645+.000 .511+.088 .060+.000 .9404+.000 .940 =+ .000 0.847
IB-L-10° —.0134.121 .967+.012 .3224.004 .3204.088 .967+.012 .9674.012 .967 +.012 0.862
IB-L-10* —.1364.091 .935+.014 .8954.020 .802+.176 .9354.014 .968+.020 .982+.020 0.850
IB-M-10? 170 +£.047 .781+£.000 .834 4+ .067 .828+£.038 .781+.000 .922+.057 .966 + .012 0.873
IB-M-103 182+.009 .863+.067 .9024.002 .919+.001 .863+.067 .948+.007 .953 +.007 0.842
IB-M-104 243+ .015 .000£.000 .632+.005 .756=+.003 .000+£.000 .953+.015 .953+£.015 0.881
IB-H-10? 098 +.015 .452+.303 .708 +.106 .640+.037 .452+.303 .9144.000 .926 £.017 0.715
IB-H-10% 102 +.034 .879+.058 .871+.031 .855+.052 .879+.058 .911+.041 .911+.042 0.732
IB-H-10* 007 +.025 .889+.119 .928+.034 .858+.034 .889+.119 .9824.009 .982+.009 0.694
Average 104 £ .138  .647+£.377 7494 .190 .721+.200 .647+.377 .945+.035 .953+.029 .811+.070
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Figure 18:
coefficient.
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Scatter plot of OPE results for FinRL-Medium tasks. r stands for the correlation
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Figure 19: Scatter plot of OPE results for FinRL-High tasks. r stands for the correlation coefficient.

Table 16: IS performance on the policies from IB tasks. L, M, H stands for low, medium and high
quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy
Task Score Mean Mean Mean Max Max Max Mean
Score Score Score Score Score Score Score
IB-L-10> —.3754.129 .867+.091 .837+.045 .843+.048 .867+.091 .9324.002 .934 +.005 0.847
IB-L-10°  —.5194.120 3174 447 3174 447 308 £ .436 317+ .447 317+ .447 317+ .447 0.862
IB-L-10* —.3754+.016 .980+.018 .8614.150 .771+.270 .9804+.018 .993 +.000 .993 & .000 0.850
IB-M-10? 195+£.294 962 £ .025 .963 +.015 .908+.103 .962+.025 .980+.026 .995 =+ .005 0.873
IB-M-10° —.2504.045 .877+.094 .888+4.041 .885+.043 .8774.094 .944+.001 .944 +.000 0.842
IB-M-10*  —.3414.036 .251+.355 .571+£.005 .7224+.002 .2514.355 .9604.014 .9724.008 0.881
IB-H-10? 053 £.099 .8204.004 .789+.122 861 £.067 .820+.004 .993+.000 .993+.000 0.715
IB-H-10> —.1704+.018 .822+.002 .8104.014 .814+.008 .8224.002 .822+.002 .822+.002 0.732
IB-H-10* 097 £.006 .8194.000 .819+.000 .819+.000 .8194+.000 .8194.000 .819+.000 0.694
verage —. = +. 5. 5 . .
Averag 187+ .263 746 £ .320 .762 4 .248 770+ .247 746 £.320 .862 £ .252 .866 +.253 .811+.070
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Figure 20: Scatter plot of OPE results for CL-Low tasks. r stands for the correlation coefficient.
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Figure 21: Scatter plot of OPE results for CL-Medium tasks. r stands for the correlation coefficient.

Table 17: FQE performance on the policies from FinRL tasks. L, M, H stands for low, medium and

high quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy

Task Score Mean Mean Mean Max Max Max Mean

Score Score Score Score Score Score Score

FinRL-L-10>  —.0124.080 .701 +.421 .800+.140 .5104.093 .7014.421 .999 4 .001 1999 + .001 0.285

FinRL-L-10°  —.0154+.030 .2094.010 .266+.040 .353+.063 .2094.010 .349 +.071 .685 £ .232 0.313

FinRL-M-10? —.042+.058 .1124.000 .257+.084 .4164.044 .1124.000 .442+.178 1.000 =+ .000 0.248

FinRL-M-10° —.005+.068 .400 4 .246 .385+.043 .3774.121 .400+.246 .821+.126  .911+.126 0.195

FinRL-H-10>  —.056 & .121 .165+.042 .108 £.012 .1924+.029 .1654.042 .1964.037  .484 +.068 0.291

FinRL-H-10°>  —.0424.149 .385+.160 .337+.168 .387+.126 .3854.160 .4404.210 .721 +.208 0.384
Average —.029+.095 .329+.289 .359+.237 .372+.129 .329+.289 .541+.306 .800+.234 .286+.058
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Figure 22: Scatter plot of OPE results for CL-High tasks. 7 stands for the correlation coefficient.

Table 18: IS performance on the policies from FinRL tasks. L, M, H stands for low, medium and
high quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy

Task Mean Mean Mean Max Max Max Mean
Score

Score Score Score Score Score Score Score

FinRL-L-102 066 £.109 267 +.147 264 £.022 247+ .027 267+ .147 489 +.035 489+ .035 0.285
FinRL-L-10°  —.041+.032 .333+.047 .361+.035 .301+.018 .333+£.047 .406=+.029 .406 =+ .029 0.313
FinRL-M-102 1034112 .162+.051  .263£.089 .279£.090 .162+£.051 426 £.210 428+ .212 0.248
FinRL-M-10° .056 £.077 537+ .328 297 £.097 .289+£.080 .537 4 .328 .548 £.319 .687 % .276 0.195
FinRL-H-102 —.046 +.065 .283+.042 .286+.067 .304+.077 .283+£.042 .348+.108 .4114+.144 0.291
FinRL-H-10% 111 £.027 458 +.080 398 £.007 404 +£.011 458 +.080 .458 £.080 477+ .074 0.384

Average .042£.100 .340+.198 .312+.081 .304+.077 .340+.198 .446+.178 483+ .185 .286 £.058

Table 19: FQE performance on the policies from CL tasks. L, M, H stands for low, medium and high
quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy

Task Mean Mean Mean Max Max Max Mean
Score

Score Score Score Score Score Score Score

CL-L-10? 144 £.056 270 £.012 296 £.028 294+ .024 270+ .012 .358 £ .065 411 £.047 0.443
CL-L-10° 479 £.013 5114303 533 £.163 476+ .091 .511 £.303 807 £.014 807 £.014 0.504
CL-L-10* .641+£.048 .710£.005 .738+£.019 .7504.009 .710 £.005 798 £.056  .847 £.027 0.494
CL-M-10? 288 +£.250 .2314+.100 .242+.058 .1834.088 .231£.100  .396+.098  .396 & .098 0.414
CL-M-10° 429 £.038 780 £.155 .812+£.004 .725+.018 .780+.155 1.0004.000 1.000 = .000 0.405
CL-M-10* .638 £.031 220 £.138 .297+£.002 .440+£.068 .220+.138 414 £.000 798 £.076 0.486
CL-H-10> —.116 £.145 .626+.422 .508+.347 .486+.345 .626 4 .422 627 £.420 645 £ .428 0.423
CL-H-10° 584 +£.029 621 4.082 .697£.065 7714 .044 .621 £.082 843 +£.088 907 £.027 0.487
CL-H-10* 618 £.044 1154+ .006 .221+.116 .4054.065 .115+£.006 .450 £ .352 979 £ .030 0.483

Average 4124 .267 454+ .301 483 £.256 .503 £+ .233 454+ .301 .633 £.293 .754 £.260  .460 & .036
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Table 20: IS performance on the policies from CL tasks. L, M, H stands for low, medium and high
quality of dataset.

RC Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Policy
Task Scor Mean Mean Mean Max Max Max Mean
core Score Score Score Score Score Score Score

CL-L-10° —.341+.128 .079+.015 .0684.011 .0724.007 .0794.015 .083+.009 .092 =+ .006 0.443
CL-L-10° 292 £.081 5634 .113  .575£.158 .653£.097 .563 £.113 .705+£.110 .8154.013 0.504
CL-L-10* 301 £.108 757+ .077 .775£.010 .767+.011 .757£.077 .866 £ .000 .866 4 .000 0.494
CL-M-102 —.284+.225 .2694+.172 .1994.066 .275+.073 .269+.172 .344+.075 .503 +.227 0.414
CL-M-10? 079 +£.091 .0144+.004 .014£.002 .014+.001 .014+.004 .017+.000 .017 4 .000 0.405
CL-M-10* 108 £.316  .260 £.341 .289£.386 .380£.326 .260 £.341 337+ .448 592+ .405 0.486
CL-H-10? 217 £.078 4144 .366  .331£.180 .3014+.153 414 £.366 .595+£.316 .679 4 .298 0.423
CL-H-10° .615£.066 .8834.035 .914£.042 .9124+.037 .883£.035 .969+£.029 .969 & .029 0.487
CL-H-10* 678 £.096 9434 .055 .872£.020 .863+.019 .943£.055 958 +.035 .958 £ .035 0.483

Average 185 £.362 465 £ .371 448 £.360 471+ .343 465+ .371 542+ .391 610+ .380 .460 % .036

7 F Additional Tables

7e8  In this section, we provide the winning rates table, raw and normalized scores that are not fitted in the
769 main paper.

Table 21: Ratio of winning the 3 baselines over the 51 tasks by online evaluation.

Baseline BCQ PLAS CQL CRR BREMEN MOPO
Det. Policy 353% 43.1% 86.3% 64.7% 41.2% 13.7%
Behavior Policy 41.2% 529% 92.2% 74.5% 49.0% 15.7%
BC 412% 45.1% 882% 70.6% 39.2% 15.7%

Table 22: Ratio of winning the 3 baselines over the 51 tasks by FQE evaluation.

Baseline BCQ PLAS CQL CRR BREMEN MOPO
Det. Policy 157% 11.8% 31.4% 39.2% 23.5% 11.8%
Behavior Policy 21.6% 13.7% 43.1% 41.2% 21.6% 7.8%
BC 11.8% 15.7% 412% 39.2% 15.7% 7.8%

Table 23: Ratio of winning the 3 baselines over the 51 tasks by IS evaluation.

Baseline BCQ PLAS CQL CRR BREMEN MOPO
Det. Policy 23.5% 29.4% 392% 49.0% 19.6% 15.7%
Behavior Policy 27.5% 31.4% 569% 52.9% 17.6% 13.7%
BC 25.5% 27.5% 392% 47.1% 19.6% 13.7%
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Table 24: Normalized score for HalfCheetah tasks. For each task, three lines indicate the results
of online evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best
result for each task, while numbers marked by * indicate results worse than BC. The task name is
composed of the specific task, the quality of dataset, and the number of trajectories. L, M, and H
stands for low, medium, high respectively. Det. is abbreviation of deterministic.

Expert  Det.  Behavior

Task Name Policy  Policy Policy

Random BC BCQ PLAS CcQL CRR BREMEN MOPO

29.1+-0.3 30.2+-03 28.8 +- 0.4* 326+-03  29.0+-02" 376+ 1.8 420+ 1.8
HalfCheetah-L-10? 100 27 25 0 289+-0.3 29.6 +- 0.0 25.5+-3.5% 315+ 08 29.0+-0.0 36.5+- 0.3 363+ 19
294+4-00 266+ 1.6 28.0+-0.2* 302+ 1.6  28.0+-0.7" 343+-34 353+-43

29.1 +-0.2 34.1+-04 30.6 + 0.0 382+-0.5 29.2+-0.2 39.6 +- 1.8 40.1+-0.9
HalfCheetah-L-10° 100 27 25 0 29.0 + 0.0 34.4+-0.0 30.5+-0.0 36.6+-0.7 28.6+-0.6* 23.6+-0.0° 249 +-19.3"
29.1 +-0.2 31.7+-0.2 29.3 + 0.0 27.3+-3.5%  29.0+-0.3* 22.2+-0.3" 33.5+-2.0

289 +-0.1 36.7+- 0.7 30.6 +- 0.2 398+ 14 293+-0.5 39.1+-0.3 37.7+-03
HalfCheetah-L-10* 100 27 25 0 29.0+- 0.0 357+ 1.1 30.1+-0.5 39.0+-1.2  289+-02* 389+-0.0 240+ 18.7"
28.8 +-0.1 32.1+-0.7 29.8 +- 0.7 263 +-4.3°  292+-0.3 19.4 +-3.4* -2.4+-0.0*

489+-08 432+ 1.5°  46.7+ 1.0" 51.6+-04 272+-0.6* 523+-50 63.1 +- 0.5
HalfCheetah-M-10? 100 50 46 0 483+-0.0 120+ 7.9* 342 +-0.0"  248+-3.6" 172+ 13* 47.1+-0.0" 52.1+-0.4
495+-0.7 429+ 1.2% 458 +-22" 402+ 114" 247 +-47% 438+ 112 519+ 1.3

49.0+- 0.6 50.6 +- 0.1 50.8 +- 0.4 546+-03  432+-26"  554+-3.0 623 +- 1.1
HalfCheetah-M-10° 100 50 46 0 49.54+-0.0 424+-53% 284 +-0.0" 194 +-0.0*  272+-6.7" 57.0+-0.0 369+ 27.8*
489+-0.5  451+-7.2% 509 + 0.4 48.7+-3.6* 21.2+-02* 348+- 151" 554+ 1.7

50.0+-04  49.6+- 0.9* 50.8 +- 0.2 55.8+-09 440+ 1.7* 558 +-3.2 43.7+-0.9%
HalfCheetah-M-10* 100 50 46 0 499+-0.0  31.0+ L.I* 33.7 +-6.2* 552+4-1.6 255+-04* 46.0+-9.7* 452 +-0.8%
49.6+-0.0 414+ 8.6 50.9 +- 0.0 44.1+-32%  42.0+-0.0 55.7 +- 0.0 -2.3+-0.0%

472+-31.8  57.6+-3.1 64.2+- 0.7 740 +- 1.5 240+ 1.6 29.0+-22.7  47.8+-8.2
HalfCheetah-H-102 100 74 64 0 69.6 +-0.0 479 +-0.0" 16.4 +-3.3* 1.6 +- 0.4* 8.9+-7.8°  47.2+-0.0" 42+-0.8*
69.7 +-0.1  28.6+-20.0" 43.9+-21.5° 21.9+-27.9* 164+-56" 265+ 18.7* 239+ 18.4*

71.3+-0.5 724 +-0.3 74.1 +-0.8 774+-13  625+-19* 548+-17.1* 659 +-10.3*
HalfCheetah-H-10° 100 74 64 0 71.7 +- 0.1 17.7 +- 0.0* 31.0 +- 1.9% 0.2 +-0.1% 9.3 +-0.0* 59.0 +- 8.3* 3.5+-4.2%
71.7+-0.0  67.2+- 34" 74.6 +- 0.8 2.3 +-1.0* 28.0+- 5.8 29.4+-2.5* 11.0 +-2.4*

66.7 +-2.7 733+ 1.4 75.4 +-0.6 77.2 +- 0.9 69.6 +-04 157 +-2.8* 7.6 +- 6.3*

HalfCheetah-H-10* 100 74 64 0 69.0 +- 0.0  24.5+-0.0% 18.8 +-4.7% 1.3+-0.0"  254+-05" 263+-0.0" 1.2 +-0.0*
68.4+-0.0 522+-21.5% 747 +-0.0 70.1 +-3.5 69.5+-04  11.7+-3.3* -2.4+-0.0*

Table 25: Normalized score for Hopper tasks. For each task, three lines indicate the results of online
evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result for
each task, while numbers marked by * indicate results worse than BC. The task name is composed of
the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Expert  Det.  Behavior
Policy  Policy Policy

Task Name Random BC BCQ PLAS CcQL CRR BREMEN MOPO

16.1+-0.6 153 +-0.3" 156+ 0.3*  16.5+- 0.5 164 +- 1.3 154 +-09* 5.0+ 6.1"
Hopper-L-10% 100 15 15 0 16.1+-0.6  11.1+-2.2* 7.0 +-5.8% 15.0+-0.3* 157+ 0.0 10.7 +- 6.3* 1.4 +-0.1%
16.1+-0.6  12.1 +-0.0" 9.8 +-2.9* 159 +-0.8*  16.0 +-0.2* 1.1 +-0.0* 1.0 +-0.7*

15.1+-0.7 18.1+-0.2 193+ 1.6 16.0+- 0.1 16.8 +- 0.6 214+-76 6.2+-3.1
Hopper-L-10% 100 15 15 0 15.1+-0.7 14.9 +-3.8* 18.2+- 1.6 154 +-0.2 17.1+-22 2.1+-04* 0.5 +-0.9*
14.6 +- 0.6 174 +- 1.0 16.1+-2.6 156 +- 04 175+ 1.9 1.3+-0.2* 3.7+-0.0*

155+-0.3 18.7+ 1.4 174+ 15 15.7+- 0.0 20.9 +-4.3 153+ 1.5 74+-23
Hopper-L-10* 100 15 15 0 156+ 04 144 +-29* 150+ L.1*  15.1+-0.7% 175+ 0.6 104 +-84* 0.3 +-0.5"
15.7+-0.3 17.3 +- 1.9 165+-0.0 142+ 0.1* 162 +- 1.5 8.2 +-0.0" 0.6 +- 0.6

280+-11.4 409+ 15 50.0 +- 3.4 63.2+-94 41.5+-9.8 285+-6.3 1.8 +- 2.6
Hopper-M-10? 100 46 42 0 28.7+-109 21.0+-15.6* 30.6+-7.0 43.0 +- 8.4 29.8 +- 1.1 6.3 +-4.2* 1.0+-0.7*
36.4+-10.9 29.1 +-142*  30.6+-7.0°  69.8 +- 8.2 36.4+-2.0 59+-24* 2.3+4-2.3*

51.3+-272 477+ 11.1*  61.2+-258 64.5+-7.0 478+-10.5° 247+ 55* 1.0 +- 1.5*
Hopper-M-10° 100 46 42 0 71.1+-26.2 33.0+- 13.8* 323 +-6.8" 573+ 14" 388+ 151" 213+ 0.0* -0.1+-0.1*
30.2+-0.0 333+-77  28.0+-29.0" 53.5+-02 421+-119 213+-00° -0.0+-0.0"

544 +-148 56.6+-7.8 62.9+-17.0 8L6+-13.1 49.1+-22* 461+ 141" 1.1+ 0.9*
Hopper-M-10* 100 46 42 0 56.8+-0.0 298 +-3.2* 143+-0.0* 437+ 65" 3514195 15.0+-2.8" -0.1+-0.0*
61.6 +- 6.8 309+ 0.9 73+-49* 408 +-25% 4.6+ 0.0* 16.6 +3.9*  -0.1+-0.1*

444 +-124 357 +- 6.5 574 +-6.9 69.7+-8.6 656+ 128 285+-11.6* 7.6+ 84"
Hopper-H-10? 100 69 47 0 39.0+-143 133+ 145" 10.8+-2.8* 441+-151 424+-0.6 0.0 +- 0.0* -0.0 +- 0.1*
29.0+- 0.0 8.6 +- 0.0* 143 +- 6.8  46.0+-11.6 384 +-163 0.0 +- 0.0* 0.5 +-0.8%

43.1+-83  513+-102 76.0 +-4.5 76.6 +- 1.3 550+-2.0 32.8+-14.5° 11.5+-58*
Hopper-H-10? 100 69 47 0 43.1+-83  248+-21.9* 26.1+-9.3* 51.9+-232 138+-3.7" 17.1+-0.3*  0.0+-0.0*
41.3+-93  265+-0.6*  241+-1.6" 692+-4.5 264+ 150" 315+ 155 0.0+ 0.0*

49.5+-14.1  28.1+-53* 661+ 100 816+ 7.3 62.4+-50 473+-273% 57+ 78"
Hopper-H-10* 100 69 47 0 50.3+- 135 132+-18.1%  27.1+-62* 743+-17.3 29.7+-34.1* 152+-0.0* -0.0+-0.1*
50.3+-13.5 22.8+-0.0" 40.6+-155° 87.6+-4.6 383 +-286 129+ 0.0 1.0 +- 0.0*
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Table 26: Normalized score for Walker2d tasks. For each task, three lines indicate the results of
online evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result
for each task, while numbers marked by * indicate results worse than BC. The task name is composed
of the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Task Name Expert  Det.  Behavior oo, BC BCQ PLAS QL CRR BREMEN MOPO
Policy Policy  Policy
291+-35 222+-03°  330+-51 303+ 10 364+ 48 218+ 208 97+ 9.1
Walker2d-L-102 100 30 24 0 291+4-35 206+-05° 107+ 05 163+ 12.8° 27.1+-42°  34+-29° 45+ 37
286+-0.0 74+-02°  105+-25 844122  283+-73* 72+ 17° 38+ 15°
285+-19  380+45 421+-103  447+-27 341+ 18  324+87 116+ 1417
Walker2d-L-10° 100 30 24 0 27.14-0.1 268+-49° 166+22.1" 458+ 1.6 194+-10.6° 88+-50° 0.7+ 1.2°
299+4-1.9 293+-99° 45+ 1.6° 316+ 13  63+-61"  124+-48 09+ 0.7
31.9+-24  391+36 3L1+65 402+ 14 332+ 73  294+-48° 115+ 139°
Walker2d-L-10 100 30 24 0 327400 296+63° 0.1+ 06  39.0+00 297+ 10° 14+ 04 02+ 00
300+-19  386+-0.0 14+ 16°  331+00 303+ IL1 24+ 12°  -03+0.1*
502+-40 4204-10° 516417  5324-25 395448 37.6+-265 20.1+ 155"
Walker2d-M-102 100 49 43 0 50.2+4-40 87406 262+ 18.1% 372493  361+-70° 153+ 112° 89+ 7.1
4744-0.1  394+-29° 537400  479+31  335+-7.6° 141+20.1* 05+-12°
487+ 19  6L7+-05 346+ 132" 573+ 1.0 447+-69° 375+ 166" 39.9+ 2.0
Walker2d-M-10° 100 49 43 0 47.6+-21 473+ 104*  03+-00° 458+ 06" 342+-37° 30+ 04 122+ 7.1
487+-19  527+-98  02+-0.1"  486+-7.8° 101+ 114° 246+ 141"  -0.1+ 0.0*
544+-35 602414 475+ 15  586+-12  548+-25  4154-23" 3194203
Walker2d-M-101 100 49 43 0 561+-15 51.6+-11.3* 02403 108+ 64" 386+-26" 100+ 15 54+ 77
5514-0.0 586446 1.0+ 1.7°  469+-39" 398+ 11° 190+ 155" 184+ 2317
64.1+-49 47.6+-45  656+-06 743+ 03  148+-6.1° 243+ 319" 232+ 36
Walker2d-H-102 100 69 57 0 67.0+-54 195+ 158 47+45 T34+ L1  11.6+42°  34+00° 148+ 97
61.2+-13 383+ 126° 658+-05  59.6+-39°  121+-38° 65+ 44" 116+ 28"
72.6+-42  766+-28 57.0+-94° 753419 671496 480+-20.6" 18.0+-3.0"
Walker2d-H-10° 100 69 57 0 7444-00  69.7+-72°  03+-00" 33.1+-124" 57.9+4-113" 1824-92°  -02+-00
719+-35 728+ 17  214+-308° 60.9+-10.1* 620+ 11.0° 327+ 164*  -0.2+-0.0"
583+-84 77.9+-14 363+ 45 749+ 08 717+ 70 480+ 95  17.7+ 08"
Walker2d-H-101 100 69 57 0 60.1+-93 516+ 163*  1.5+2.5°  431+-200° 149+-212° 46+ 38 1.3+ 33"
66.7+-00 793+-01 18+ 00° 740+ 13  738+80 19+ 00" 7.8+ 7.5

Table 27: Normalized score for IB tasks. For each task, three lines indicate the results of online
evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result for
each task, while numbers marked by * indicate results worse than BC. The task name is composed of
the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,

medium, high respectively. Det. is abbreviation of deterministic.

ert

Det.

Behavior

Ex
TaskName  pe80 p e policy  Random BC BCQ PLAS cQL CRR BREMEN MOPO
198+ 1.6 2875+ 1555 349+ 236" 25+-32 534144 3454247 1810+ 1627
B-L-10° 100 -19 -19 0 192418 680+-00"  -68.0+ 0.0° 652+ 0.0° 179439 -15988+-00° 17039+ 0.5*
192+ 18 AIL2+-0.0° 1828+ 1625 <1502+ 160.9°  -153.6+- 813" 97.0+-446" 2408+ 1402°
17724 155.1° 305+ 26.6° -0.4+-45 534171 373+-216" 1634+ 1777
IB-L-10° 100 -19 -19 0 68.0+-03"  68.14-00°  -5384-27.7°  2174-102°  -1934-62°  -17041+-03"
682+ 03" -68.1+00° <1790+ 139.9°  -14.6+-182 2839+ 00°  -11589+ 7716"
1776+ 1554 1465+ 1879° 62+ 139 A5+-119  1226+-463° 1717+ 17L1°
IB-L-10° 100 -19 -19 0 682+-0.01° 681402  -1354+-995°  4794+-21.6"  -1013+-232*  -11584+-7712°
679402 1825+ 1624° 37+-28 -174+-0.0 -68.6 + 0.0° 20+-00
92+-469 177741552 2917+ 1604°  244+-49 256+-38 978+ 1041"  -598+-57°
IB-M-102 100 25 25 0 182400 679400  -1826+-1620°  -27.9+-21.5° 211+ 0.0 349.4+-00° 2246+ 14097
257+-53 <1826+ 1622° 2978+ 1625° 1256+ 187.0°  3.0+417°  2147+3149° 6126+ 7713°
27.1+-04 1816+ 161.0° 1827+ 161.9° 252+ 1.6° 28.9 +-2.9 160+-326° 11924857
IB-M-10° 100 25 25 0 266+-00  677+02°  67.6+00° 2372+ 0.0° 87+00° 2073+ 171° 673+ 00"
273402 2973+ 162.1°  4120+-03°  -1679.1+00° 272+ 12" 41415 -123.1 +- 802
277427 1815+ 163.1° 1826+ 16237 269+ 6.4° 30.4+-04 16+ 18.4° 488 +-262°
B-M-10° 100 25 25 0 294407 678+-01"  -677+00°  -56.1+-13.0° 313 +-0.0 278 +-03° -1704.2 +-0.0°
273423 677403 617+00° -148+-322° 285+ 2.8 395.9+-00° 17042+ 0.0°
578+-30.5  2886+-77.0° -1785+-785  32.9+-27.0° 732+ 0.1 89.1+-1085°  -77.0+-70.0°
IB-H-102 100 70 70 0 72.04-0.0 8423 +-600.1° -183.1+-1623* -140.5+-192.0°  -493.7+-8017% -10550 +-457.8"  -269.4 +- 146.2°
624+-332  2413+02°  5945+-7446° 251+ 67.9° 728+01  811.5+6953 1161+ 77.7°
94+-880 2979+ 807" 1714+ 1464 155+ 489 69.7 +-0.1 315+ 11347 975+-89.6°
IB-H10P 100 70 70 0 316+-779  3984+-00°  -68.01+-02°  -165.7 + 86.4° 69.6+-0.0 1148+ 850"  -158.6+ 114.9°
9414297 2415+-00°  2977+-803"  -5757+3315°  7224-05 11459+ 687.5°  -230.1+-32°
34241113 -183.1+-814°  -I847+821° 3424341 617 +-15.6 5.6+ 115 -127.2+- 84.8°
IB-H10' 100 70 70 0 9441246 4120+00°  A41214-01"  -1306+89.0°  504+-15.2 214467 3090+ 1355°
1856400  2412+07°  2402+0.0°  -12208+-681.9°  39.6+-0.0 04+ 00 241.0 +- 0.0
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Table 28: Normalized score for FinRL tasks. For each task, three lines indicate the results of online
evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result for
each task, while numbers marked by * indicate results worse than BC. The task name is composed of
the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Task Name EXP,”‘ Det.  Behavior ¢ jom BC BCQ PLAS QL CRR BREMEN MOPO
olicy  Policy Policy

348+-602 232+-7.9% 242+-42* 48.3 +-3.5 7.5+ 1.0* 34.8 +-60.3 18.6 +- 5.7*
FinRL-L-10% 100 -13 -12 0 37.5+-582  329+- 14  242+-42* 304+ 17.1* 6.7+ 0.0 119.9 +- 0.1 18.6 +- 5.7*
348+-602 268+-9.0° 244 +-49* 494 +-49 0.6+ 104" 78.8 +-583  18.8+-5.5*

18.9+-10.0  30.4+-6.8 62.6 +- 20.1 66.2 +-2.3 24.7+-12.3 51.7+-49.5 17.6 +- 6.5*

FinRL-L-10% 100 -13 -12 0 11.6 +-9.8 37.0+- 2.0 73.6 +-25.3  55.5+-15.0 16.1 +- 1.0 9.6 +- 1.4* 164 +-7.8
26.1+-0.5 34.7+-4.6 56.7 +-24.3 11.9+-9.5* 263+ 105 21.7 +- 3.4* 13.9 +- 1.8*
77.3+-745 213+ 1.8 33.1+-19.6" 842+-278 372+-9.5° 773+-745  21.1+-6.2%
FinRL-M-10? 100 22 35 0 64.1+-82.1  20.1+- 1.4 242+-224* 71.8+-37.1 24.6+-10.9* 6.0 +- 0.0 252 +-5.9%

77.3+-745  20.5+-2.2%  29.6+-20.3" 362+ 17.0° 19.6+-12.6* 102.1+-72.2 229 +-4.5*

6.4+-9.7 29.1+-145 509 +-12.6 569 +-25.7 33.0+-9.3 150.3 +-100.0  20.5+-59
FinRL-M-10? 100 22 35 0 1.4+-4.0 36.2+- 104  11.8+-15.1 31.7+-233 19.4 +-22.0 87.5 +- 68.8 248 +-5.7
142 +-7.1 31.6+- 120 424+ 18.1 38.9 +-29.1 222+4-222 148.5+-1024 18.1+-8.0

48.5+-262 16.6+-19.7" 42.0+-27.6* 57.6+-27.0 432+-20.3° 70.6+-639  19.8+- 6.0
FinRL-H-10% 100 55 50 0 69.9 +-14.6 04 +-9.1 418+ 157" 488+ 14.0° 154+ 14.0* 5.6 +-7.5* 16.8 +- 1.8*
374+-303  9.7+-18.0° 229+-29.1" 298+ 3.7* 12.7 +- 1.4% 58.9+-30.2 16.8+-1.8*

142 +-26.7 223+-198 529+ 16.1 51.4+-204  35.9+-23.0 69.8 +- 65.9 19.2 +-6.9

FinRL-H-10% 100 55 50 0 27.6+-30.5 20.0+-17.8*  46.2+-2.0 45.0+- 1.3 34.4 +-19.7 6.0 +- 30.6" 159 +-2.9*
08+ 11.5 194+-182 475+ 114 26.3+-5.1 274+ 172 32.8+-33.8 25.1+-4.4

Table 29: Normalized score for CL tasks. For each task, three lines indicate the results of online
evaluation, FQE evaluation, WIS evaluation respectively. Bold numbers indicate the best result for
each task, while numbers marked by * indicate results worse than BC. The task name is composed of
the specific task, the quality of dataset, and the number of trajectories. L, M, and H stands for low,
medium, high respectively. Det. is abbreviation of deterministic.

Task Name ~LXpert  Det. . Behavior o oo BC BCQ PLAS CQL CRR BREMEN MOPO
Policy  Policy Policy

303+-10.1  17.3+-3.6* 351+-34 40.1+- 1.4 4.7 +- 0.8 27.8+-9.5%  10.8 +- 1.6

CL-L-10% 100 35 38 0 16.9 +- 0.0 203+ 1.0 12.3 +- 0.0 21.7+-0.0 423 +-2.7 17.6 +- 0.4 9.4 +-1.4*
251+-11.6 173+ 3.6* 30.5+-7.3 320+-7.8 39.7 +-3.4 16.1 + 1.5 10.2 +-0.6*
386+-1.8 250+ 14  358+-25* 46.9 +- 1.5 41.3+-2.0 40.1+-1.3 10.8 +- 1.7*
CL-L-10% 100 35 38 0 37.3+-0.1 226+-0.7° 254 +-0.0" 39.3+-0.0 39.0 +- 3.3 36.5+-4.6° 11.7+-0.3*
386+-1.8 229+-38% 272+ 26" 38.8 +-2.7 37.7 +- 0.6* 33.9+-49*  114+-05*
383+-1.5 216+ 0.8° 369+ 4.1* 46.4 +- 1.7 42.8+-0.8 395+ 1.0 109 +- 2.6
CL-L-10* 100 35 38 0 383+-1.5 231+ 04 22.1+-0.0* 418 +- 0.5 37.9+-0.2% 379+-0.8*  9.7+-0.0°

383+ 1.5 19.9 +-2.6* 285+ 9.1 40.5 +- 0.0 399+ 34 383+-0.2 7.9+ 0.1

68.3+-5.6 299+ 105 569 +-3.9* 66.8 +-5.1* 82.8 +- 0.9 63.6 +- 127" 10.1 +- 2.6*
CL-M-10? 100 63 60 0 66.1+-3.4 19.1+-04%  432+-22.1% 452+ 10.9* 75.2 +- 6.0 24.8 +-7.9* 8.9 +-2.3%
70.7 +- 3.1 2424-3.6 279+ 17.1"  33.1+-6.7" 74.6 +- 8.0 46.0 +-13.5% 93 +-04*

63.3+-8.0 244+ 35 585+ 62" 75.0 +- 0.6 742 +-1.2 777 +-12.5 108 +- 1.4*
CL-M-10* 100 63 60 0 574+-76 202+ 0.7% 355+-17.8°  582+-0.7 74.9 +- 1.0 76.2+-13.6 9.0+ 0.1
682+-0.0 243+-09* 61.4+-51* 74.3 +- 3.3 70.2 +-3.0 702 +-2.3 9.0 +-0.3*

59.44-158 22.1+-6.6* 56.7 +-2.9* 77.1+-14 754 +-0.6 587 +-18.7"  10.1 +- 1.4*

CL-M-10* 100 63 60 0 37.1+-0.0 13.1+-0.0* 553+ 7.1 60.9 +- 2.6 75.3+-0.7 155+-0.3* 109 +-0.8*
70.0 +- 0.0 13.0+-0.0%  41.6+-21.7* 674+ 94" 724+ 19 45.7+-214% 73 +-0.7F
110.5+- 6.8 31.6+ 13.8* 88.2+-5.9" 1008 +-2.4* 119.3 +-4.8 1129+ 64 119+ 0.8*
CL-H-10% 100 94 95 0 105.1+-5.0 123 +-0.1" 245+ 1.1" 492+ 7.6* 109.5 +-10.1 1174 +-08 102 + 1.0*

110.5+-6.8 304 +-3.7*  66.8 + 30.3* 74.0+-27.1* 109.7 +-12.4* 818 +44.1" 9.9+-0.9"

106.7+- 1.6 37.5+-11.5  91.7+-9.3* 1047 +-5.7* 1142 +-2.2 110.7+-38  9.9+-0.7*
CL-H-10% 100 94 95 0 108.0 +- 0.0  26.0+-0.3*  20.7+-0.1* 84.6 +-4.2% 104.6+-3.9* 756+ 9.1 8.2+-0.3"
105.6+- 1.7 27.7+-22* 835+-23.1" 102.6 +-5.0* 107.8 +- 2.7 1063 +-52  8.5+-04*

98.5+- 124 47.1 +182*  92.5+-8.7" 107.2+-7.3 113.0 +-2.8 799 +-44.8* 108 +-2.7*
CL-H-10* 100 94 95 0 899+ 12.5 467+ 1.2* 185+-0.0* 689+ 05" 1115 +- 0.0 19.1+-0.7 9.9 +-0.0*
107.5+-0.0 68.1 +- 1.6  97.4+-0.5* 100.6 +-4.7* 113.3 +-4.0  94.5+-25.6 8.8+ 04"
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