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Abstract

Sequential recommendation requires the recommender to capture the evolving
behavior characteristics from logged user behavior data for accurate recommen-
dations. However, user behavior sequences are viewed as a script with multiple
ongoing threads intertwined. We find that only a small set of pivotal behaviors can
be evolved into the user’s future action. As a result, the future behavior of the user
is hard to predict. We conclude this characteristic for sequential behaviors of each
user as the Behavior Pathway. Different users have their unique behavior pathways.
Among existing sequential models, transformers have shown great capacity in
capturing global-dependent characteristics. However, these models mainly provide
a dense distribution over all previous behaviors using the self-attention mechanism,
making the final predictions overwhelmed by the trivial behaviors not adjusted to
each user. In this paper, we build the Recommender Transformer (RETR) with a
novel Pathway Attention mechanism. RETR can dynamically plan the behavior
pathway specified for each user, and sparingly activate the network through this
behavior pathway to effectively capture evolving patterns useful for recommenda-
tion. The key design is a learned binary route to prevent the behavior pathway from
being overwhelmed by trivial behaviors. We empirically verify the effectiveness of
RETR on seven real-world datasets and RETR yields state-of-the-art performance.

1 Introduction

Recommender systems [[16} 24, 142] have been widely adopted in real-world industrial applications
such as E-commerce and social media. Benefiting from the increase in computing power and model
capacity, some recent efforts formulate recommendation as a time-series forecasting problem, known
as sequential recommendation [18, 31, 16]]. The core idea of this field is to infer upcoming actions
based on user’s historical behaviors, which are reorganized as time-ordered sequences. This intuitive
modeling of recommendation is proved time-sensitive and context-aware to make precise predictions.

Recent advanced sequential recommendation models, such as SASRec [18], Bert4Rec [31] and
SMRec [6], have achieved significant improvements. Transformers enable these models to recognize
global-range sequential patterns, and to model how future behaviors are anchored in historical ones.
The self-attention mechanism does make it possible to explore all previous behaviors of each user,
with the whole neural network activated. However, misuse of user information, regardless of whether
they are informative or not, floods models with trivial ones, makes models dense and inefficient, and
results in key behaviors losing voice. And this clearly contradicts with the way our brain works.

The human being has many different parts of the brain specialized for various tasks, yet the brain only
calls upon the relevant pieces for a given situation [40]]. To some extent, user behavior sequences can
be viewed as a script with multiple ongoing threads intertwined. And only key clues suggest what will
happen next. In sequential recommendation, we find that only a small part of pivotal behaviors can
be evolved into the user’s future action. And we conclude this characteristics of sequential behaviors
as the Behavior Pathway.
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Figure 1: Three main characteristics of the behavior pathway for different users, making sequential
recommendation extremely hard. The behavior pathway is outlined by the red boxes.

Different users have their unique behavior pathways and they can be grouped into three categories:

* Correlated Behavior Pathway: A user’s behavior pathway is closely associated with
behaviors at a certain period. As shown in the first line of Figure[I] the mouse is clicked
many times recently, leading to the final decision to buy a mouse.

* Casual Behavior Pathway: A user’s behavior pathway is interested in a specific item at
casual times. As shown in the second line of Figure[T] the backpack is randomly clicked
sequentially.

* Drifted Behavior Pathway: A user’s behavior pathway in a particular brand might drift
over time. As shown in the third line of Figure [T} the user was initially interested in a
keyboard, but suddenly became interested in buying a phone at last.

It’s challenging to capture these aspects dynamically for each user to make precise recommendations.

Motivated by the Pathways [8]], a new way of thinking about AI, which builds a single model that is
sparsely activated for all tasks with small pathways through the network called into action as needed,
we propose a novel Recommender Transformer (RETR) with a Pathway Attention mechanism. RETR
dynamically explores behavior pathways for different users and then captures evolving patterns
through these pathways effectively. To be specific, the user-dependent pathway attention, which
incorporates a pathway router, determines whether or not a behavior token will be maintained in the
behavior pathway. Technically, the pathway router generates a customized binary route for each token
based on their information redundancy. Recommender Transformers are stacked, and successive
pathway routers constitute a hierarchical evolution pathway of user behaviors. To enable the pathway
router modules to be end-to-end optimized, we adopt the Gumbel-Softmax [17]] sampling strategy to
overcome the non-differentiable problem of sampling from a Bernoulli distribution.

To effectively capture the evolving patterns via the behavior pathway, our pathway attention mecha-
nism makes our RETR mainly attend to the obtained pathway. We force the model to focus on the
most informative behaviors by using the query routed through the behavior pathway. We cut off the
interaction from the off-pathway behaviors of the query. Compared with using all previous behaviors,
our pathway attention mechanism is obviously more effective and can avoid the most informative
tokens being overwhelmed by trivial behaviors. To validate the effectiveness of our approach, we
conduct experiments on seven real-world competitive datasets for sequential recommendations and
RETR achieves state-of-the-art performance. Our main contributions can be summarized as follows:

* Our work is the first to propose the concept of behavior pathway for sequential recommen-
dation. We find the key to the recommender is to dynamically capture the behavior pathway
for each user.

* We propose the novel recommender transformer (RETR) with a novel pathway attention
mechanism, which can generate the behavior pathway hierarchically and capture the evolving
patterns dynamically through the pathway.

* We validate the effectiveness of RETR on seven real-world datasets of different scales across
different scenarios for sequential recommendations and achieve state-of-the-art performance.
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2 Related Work

Traditional recommendation approaches. Capturing evolving behavior characteristics is crucial
for many online applications, such as advertising, social media and E-commerce, and it is the key
challenge for sequential recommendation [[1; 18} 7,39 (1111261 5 !45}[23]]. Traditional recommendation
approach, such as the collaborative filtering (CF) [15] based on matrix approximation [20}21]], always
assumes that the user’s behavior is static. However, in practice, user behaviors often change over time
due to various reasons, making the CF deteriorate in a real-world application.

Sequential recommendation approaches. To overcome this challenge, some methods, such as
FPMC [14] and HRM [34], use Markov chains to capture sequential patterns by learning user-
specific transition matrices. Higher-order Markov Chains assume the next action is related to several
previous actions. Benefit from this strong inductive bias, MC-based methods [[14,|13] show superior
performance in capturing short-term patterns. At the same time, there is a potential state space
explosion problem when these approaches are faced with different possible sequences [35]]. In recent
years, many works have been using the deep neural network for sequential recommendation. The
GRU4Rec [16] and the RepeatNet [27] adopt the recurrent network to capture dynamic patterns from
the user behaviors dependent on sequence positions. The RNN-based models achieve competitive
performance in capturing short-term behavior patterns but cannot capture long-term behavior patterns
effectively. The CNN-based model, such as Caser [33], applies convolutional operations to extract
transitions while tending to overlook the intrinsic relationship across user behaviors. The GNN-
based methods, such as SRGNN [37]], GCSAN [38]], Jodie [22]] and TGN [28]] model behavior
sequences as graph-structured data and incorporate an attention mechanism for a session-based
recommendation. In addition, DIN [43] uses the gate mechanism to weight different user behaviors.
However, concatenating all behaviors makes these models overlook the sequential characteristics.

Attention-based models for Sequential Recommendation. The attention-based models like SINE
[32] have the strong capacity to capture behavior patterns via the attention mechanism, achieving
state-of-the-art performance while involving many parameters. Especially, SASRec [18]], BertRec
[31], S3-Rec [44], TGSRec [10], LightSANSs [9]] and SSE-PT [36] introduce the transformer archi-
tecture into sequential recommendation, which might lead to the over-parameterized architecture
of Transformer-based methods. These models capture the evolving patterns by the self-attention
mechanism, interacting with all previous behaviors. However, dense interactions will make the
model not adapt to different users and overwhelm behavior pathways. To tackle this challenge, our
paper builds the Recommender Transformer (RETR) with a new Pathway Attention mechanism that
is dynamically activated for the behavior pathway of all users. Distinct from the previous routing
architecture like Switch Transformer [[12] using the MoE [30] structure for natural language tasks, our
RETR is designed explicitly for sequential recommendation. Our RETR uses the pathway router to
adaptively route the sequential behavior of each user rather than routing the experts of feed-forward
networks in switch transformer.

3 Method

Suppose that we have a set of users and items, denoted by ¢/ and Z respectively. In the task of
sequential recommendation, chronologically-ordered behaviors of a user u € U could be represented
by a user-interacted item sequence: {i1,- - , %, }. Formally, given a user u with her or his behavior
sequence {i1, - ,i,}, the goal of sequential recommendation is to predict the next item the user u
would interact with at the (n + 1)-th step, denoted as p (in+1 | i1:n)-

As aforementioned, we highlight the key to sequential recommendation as the exploration of user-
tailored behavior pathways, through which evolving characteristics could be learned. Motivated by
this, we propose a novel Recommender Transformer (RETR) with a new Pathway Attention, the core
subassembly of which is a pathway router. Besides the modification of architecture, we additionally
introduce a hierarchical update strategy for the behavior pathway in the feed-forward procedure.

3.1 Recommender Transformer

Considering the limitation of Transformers [4] for sequential recommendation, we renovate the vanilla
architecture to the Recommender Transformer (Figure [2)) with a Pathway Attention mechanism.
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Figure 2: Recommender Transformer architecture (right). Pathway Attention (left) explores the
behavior pathway by the pathway router (orange module) and captures the evolving sequential
characteristics by the multi-head attention.

Model inputs. To obtain the model inputs, we follow the sliding window practice and transform the
user’s behavior sequence into a fixed-length-N sequence s = (s1, S, ..., Sx). Then we produce
an item embedding matrix &7 € RIZ1*?, where d is the embedding dimensionality. We perform
a look-up operation from &7 to retrieve the input embedding matrix £ € RY*< for sequence s.
Besides, we also add a learnable position embedding P, € RY*9 for sequence s. Finally, we can
generate the input embedding of each behavior sequence s as Xy = £ + P, € RVX4,

Overall architecture. Recommender Transformer is characterized by stacking the Pathway Attention
blocks and feed-forward layers alternately, containing L blocks. This stacking structure is conducive
to learning behavior representations hierarchically. The overall equations of block [ are formalized as:

Z! R! = Path-MSA (271, RI7Y)
ZL=LN (2! + 2171 (1)
Z! = LN (FFN (2% + Z1),

where Z! € RV*4 | ¢ {1,---, L} denotes the output of the [-th block. The initial input Z° = X, €
RV ¥4 represents the raw behavior embedding. R'~! is the previous route from the block I — 1 and
we initialize all elements in the route R to 1. Path-MSA(-) is to conduct the pathway attention. LN(-)
is to conduct layer normalization [3]] and FFN represents the point-wise feed-forward network [4].

3.1.1 Pathway Attention

Note that the single-branch self-attention mechanism [4] in vanilla transformer cannot model the
behavior pathway dynamically, resulting in key behaviors being overwhelmed by these non-pivotal
ones. To solve this problem, we propose the Pathway Attention mechanism, as shown in Figure 2]
which can dynamically attend to the behavior pathway of pivotal behavior tokens.

Pathway router. The pathway attention employs a sequence-adaptive pathway router to custom-tailor
behavior pathway routes for users. The router generates a binary route R! € {0, 1}V to determine
whether a behavior token would be part of the behavior pathway or not. Each router takes the
pre-order route R'~! and user behavior tokens Z/~! € RV >4 of the block | — 1 as its inputs. All
elements in the route are initialized by 1 and are updated progressively in training.

Foremost, to suppress the potential disturbance to the model caused by the local drifted interest
(Figure [T, it is crucial to incorporate the global information in the route generation. We apply
the average pooling to all the preserved behavior tokens routed by R!~!, and produce the global
sequential representation via a multilayer perceptrons (MLP) module. Then, we combine this global
representation with the inputs and employ a residual connection to maintain the original input
information. Finally, we feed them to another MLP layer to predict the probabilities of keeping or
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dropping the behavior tokens. The above procedure can be formulated as follows:

N -1 ~z1-1
S ORI Z
zl =214z o MLP (El—l i )

N i—
SR 2
7 = Softmax (MLP(2.,)) € RV*%
where © is the Hadamard product. For t € {1,2,--- , N}, we let w; = [1 — v, o , where the logit

o denotes the probability that the ¢-th behavior token is kept for the behavior pathway.

Gumbel-Softmax sampling from 7 for router. Our goal is to generate the binary route from
7. However, sampling from 7 directly is non-differentiable, and it will impede the gradient-based
training. Thus, we apply the Gumbel-Softmax [17] technique to such sample. Gumbel-Softmax is
an effective way to approximate the original non-differentiable sample from a discrete distribution
with a differentiable sample from a Gumbel-Softmax distribution. Instead of directly sampling a

keep-or-drop decision ﬁi for the ¢-th behavior token from the distribution 74, we generate it as:

7/@% = arg max (logm(j) + Gi(5)) , 3)
j€{0,1}
where G; = —log(—logUy) is a standard Gumbel distribution, and U; is sampled i.i.d. from a

uniform distribution Uniform(0, 1). To remove the non-differentiable argmax operation in Eq the
Gumbel-Softmax uses the reparameterization trick [17] as a differentiable approximation to relax

one-hot RL € {0,1} to v; € R2:

exp((log m(j) + G1(4))/7)
icq0,1y exP((log m (i) + G4(4))/7)
where T is the temperature parameter of the Softmax, which is commonly set to 1 in deep networks.

'Ut(j) = Z ,J € {05 1}7 “4)

Hierarchical update strategy for router. The preliminary route R, sampled from r, is not a final
decision. In our design, once a token fails to be routed in a certain block, it would permanently lose
the privilege to be part of the behavior pathway in the following feed-forward procedure, constituting
a hierarchical pathway router strategy. Thus finally we formulate the route R' as the Hadamard

product of R and the pre-order route R~ in the block [ — 1:
R =R'o R (5)

Multi-head pathway attention. The standard self-attention mechanism retrieves sequential
characteristics exploiting all behavior tokens, making the behavior pathway overwhelmed by the
trivial behaviors. In the new pathway attention, the pathway router would be firstly applied to the input
behavior tokens to route information. The pathway router would not pare down the number of tokens,
but only the interactions between the off-pathway and on-pathway tokens, as these off-pathway
tokens may also convey contextual information.

Specifically, for the query, key, and value in the pathway attention: the query is routed by the pathway
router, to prevent the pathway from being overwhelmed and to force the pathway attention to attend
to the behavior pathway; the key and value are the original input behavior tokens, to ensure that the
contextual information from off-pathway behavior tokens can be captured as well:

O, K Vi = (2o RYWS L 2wk 2w,

N kKT (6)
Z! = Softmax QKo VL,
Vd/h
where m € {1,2,--- , h} is the index of head in the multi-head self-attention; W§, Wi W, €

R*d/h are transformation matrices learned from data. Finally, the outputs {g,ln e RNxd/hY

of multiple heads are concatenated into Z! € R¥*4, We use Z!, R! = Path-MSA (21 RN o
summarize the above pathway attention. Its output is further transformed by Eq. (I)) to form the final
output of the I-th block Z! € RV*4,

Causality. In the prediction of the (¢ 4+ 1)-th behavior, only the first ¢ observable behaviors should
be taken into account. To avoid a future information leak and ensure causality, a look-ahead mask is
employed and all links between Q; and KC; (j > ) are removed.
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3.2 Prediction Layer and Training Objective

Prediction layer. In the final layer of our RETR, we calculate the user’s preference score for the
item % in the step (¢ + 1) in the context of user behavior history as p (i;11 = k | i1.¢) = ex - 2L,
where ey, is the representation of item k from item embedding matrix £z, and Z7 is the output of the
L-th RETR blocks at step ¢ (L is the number of RETR blocks).

Training objective. We adopt the pairwise ranking loss to optimize the model parameters as:

L=- Z Zlog o(p(iggr | i1:e) — Uiy | i), (7)

uel t=1

where we pair each ground-truth item ;11 with a randomly sampled negative item ¢, ;. In each
epoch, we randomly generate one negative item for each time step in each sequence. This pairwise
ranking loss is widely adopted in previous literature of sequential recommendation [18] 43]].

4 Experiments

We extensively evaluate the proposed Recommender Transformer on seven real-world benchmarks.

Datasets. Here are descriptions of the seven
datasets: (1) Netflix: Netflix dataset is a large- o
scale movie rating dataset released by Netflix. Table 1: Statistics of the datasets.
(2) MSD: The Million Song Dataset (MSD) is

. Dataset Users Items Actions

a large-scale, metadata-rich and open-source -
dataset on Kaggle. (3) Taobao: Taobao dataset ~ Netflix 463,435 17,769 57,000,000
contains user behaviors in Taobao’s recom- MSD 371,333 41,140 34,000,000
2 o * Taobao 987,994 4,162,024 100,150,807
mender system. In experiments, we only use the Yelp 30,431 20,033 316,354
click behaviors. (4) Yelp [2]]: Yelp is a dataset ~ MovieLens-1M 6,040 3,416 1,000,000
for business recommendation. We only use the ~ Tmall 66,909 37,367 427,197
Steam 334,730 13,047 3,700,000

transaction records after January 1st, 2019. (5)
Tmall: Tmall contains users’ shopping logs on
Tmall online shopping platform, which is from the IJCAI-15 competition. (6) Steam [18]]: Steam
dataset is collected from a large online video game distribution platform. This dataset includes
2,567,538 users, 15,474 games and 7,793,069 English reviews from October 2010 to January 2018.
(7) MovieLens: this is a widely used benchmark dataset for evaluating collaborative filtering algo-
rithms. The version we use is MovieLens-1M, which includes 1 million user ratings. The statistics of
the seven datasets are summarized in Table[I]} All datasets are widely used in the recommendation
task. It is notable that Netflix, MSD, Taobao and Steam are large-scale recommendation datasets.

We group the interaction records by users or sessions for all datasets and sort them by the timestamps
in ascending order. We follow the operation in SASRec [[18] and split the historical sequence for each
user into three parts: (1) the most recent behavior for testing, (2) the second most recent behavior for
validation, and (3) all remaining behaviors for training. During testing, the input sequences contain
training behaviors and validation behaviors. We filter less popular items and inactive users with fewer
than five interaction records.

Evaluation metrics. Following the previous literature [411, 45| [T8], we apply top-k Hit Ratio
(HR@k), top-k Normalized Discounted Cumulative Gain (NDCG @k) and Mean Reciprocal Rank
(MRR) for evaluation. We report HR@ 10, NDCG @10 and MRR of the results. Besides, following
the standard strategy in SASRec [[18]], we pair the ground-truth item with 100 randomly sampled
negative items that the user has not interacted with. All metrics are calculated according to the
ranking of the items and we report the average score.

Baseline methods. We compare our RETR with GRU4Rec [[16], a simple baseline that applies
GRU to model item sequences, and state-of-the-art sequential recommendation models: SASRec
[18]], BertRec [31]], SMRec [[6]. S3-Rec [44]], SINE [32], TGSRec [[10]] and LightSANS [O]]. These
methods adopt the attention mechanism to make precise recommendations. Besides, we also compare
our RETR with state-of-the-art graph-based sequential recommendation methods: Jodie [22]] and
TGN [28]. All baseline methods are configured using default parameters of the original paper or
optimal parameters which can produce their best results through a grid search.
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Implementation details. Our model is supervised by the pairwise rank loss in Equ [/} using the
ADAM [19] optimizer with an initial learning rate of 0.001. Batch size is set to 512. The maximum
number of training epochs for all methods is set to 200. All hyperparameters are tuned on the
validation set. The training process is early stopped within 10 epochs. Our RETR has L = 2 layers,
and each layer has h = 4 heads (the ablation study of multi-head attention can be found in the
appendix A) and d is set to be 256. The maximum sequence length N is set to 200 for MovieLens-1m
and 100 for the other six datasets. All experiments are repeated three times, implemented in PyTorch
[25]], and conducted on a single NVIDIA 3090 GPU.

Table 2: Performance comparison to state-of-the-art models: GRU4Rec [[16], BERTRec [31]], SASRec
[18]], SMRec [[6]], S3-Rec [44]], SINE [32]], TGSRec [[10], LightSANSs [9]], Jodie [22], TGN [28]].

Datasets Meric GRU4Rec BERT4Rec SASRec SMRec S3-Rec SINE TGSRec LightSAN Jodie TGN RETR
HR@10 0.4358 04792  0.4622 0.4848 0.4917 0.4902 0.4887  0.4852 0.4813 0.4802 0.5142
Netflix NDCG@10 0.2912 0.3330  0.3202 0.3492 0.3571 0.3601 0.3512  0.3441 0.3368 0.3318 0.3725
MRR 0.2431 0.2652 02519 0.2725 0.2819 0.2796 0.2778  0.2785 0.2687 0.2612 0.3134
HR@10 0.3546 0.4819 04766 0.5083 0.5315 0.5264 0.5137  0.4994 0.4825 0.4782 0.5912
MSD NDCG@10 0.3772 0.4891 0.4831 0.5112 0.5381 0.5304 0.5279  0.5163 0.4872 0.4832 0.5981
MRR 0.2503 03120  0.3079 0.3302 0.3494 0.3667 0.3612  0.3451 0.3224 0.3102 0.3901

HR@10 0.0788 0.1261 0.1182 0.1272 0.1336 0.1580 0.1537  0.1590 0.1447 0.1421 0.1768
Taobao NDCG@10 0.0182 0.0425 0.0391 0.0631 0.0827 0.0873 0.0745  0.0694 0.0582 0.0571 0.1195

MRR 0.0273 0.0489  0.0436 0.0721 0.0919 0.0934 0.0802  0.0741 0.0628 0.0603 0.1117
HR@10 0.7265 0.7597 0.7373  0.7548 0.7597 0.7564 0.7533  0.7552  0.7492 0.7473 0.7730
Yelp NDCG@10 0.4375 0.4778 0.4642 0.4789 0.4937 0.4902 0.4887  0.4863 0.4792 0.4784 0.5136
MRR 0.3630 0.4026  0.3927 0.4023 0.4107 0.4093 0.4072  0.4086 0.3997 0.3985 0.4354
HR@10 0.5581 0.8269  0.8233 0.8302 0.8352 0.8311 0.8303  0.8294 0.8277 0.8259 0.8467
MovieLens NDCG@10 0.3381 0.5965 0.5936 0.6079 0.6172 0.6134 0.6081  0.6119 0.6009 0.5998 0.6351
MRR 0.3002 0.5614  0.5573 0.5703 0.5812 0.5801 0.5734  0.5791 0.5651 0.5627 0.5921
HR@10 0.6432 0.6196  0.6275 0.6476 0.6687 0.6512 0.6506  0.6399 0.6384 0.6362 0.7138
Tmall NDCG@10 0.5169 0.5025 0.5049 0.5192 0.5423 0.5411 0.5372  0.5415 0.5307 0.5198 0.6103
MRR 0.4975 0.4026  0.4804 0.4934 0.5194 0.5147 0.5121  0.5119 0.5003 0.4997 0.5822
HR@10 0.4190 0.8656  0.8729 0.8792 0.8813 0.8765 0.8773  0.8832 0.8780 0.8731 0.9001
Steam NDCG@10 0.2691 0.6283 0.6306 0.6408 0.6573 0.6502 0.6491  0.6519 0.6451 0.6399 0.6795
MRR 0.2402 0.5883 0.5925 0.6011 0.6135 0.5972 0.6003  0.6104 0.5873 0.5798 0.6326

4.1 Main Results

The results of different methods on seven datasets are shown in Table 2] We can easily find that
attention-based models, SASRec [18]], BertRec [31]], SMRec [6], S3-Rec [44], SINE [32], TGSRec
[10] and LightSANs [9], achieve better performance than RNN-based model GRU4Rec [16]] on most
datasets. It indicates that the attention mechanism is crucial for sequential recommendation, making
the model have a better capacity to capture sequential characteristics. These models can capture the
interaction information between all previous user behaviors via the attention mechanism. Besides,
the graph-based models like Jodie [22] and TGN [28]] also achieve competitive performance. Besides,
our RETR can achieve state-of-the-art performance by a large margin on most datasets compared
with all baseline models.

Results on Yelp, MovieLens1M and Tmall. Specifically, our RETR achieves competitive perfor-
mance on the Yelp and Tmall. These datasets are sparse, containing less action information. Thus
they have lots of noisy logged information. By effectively capturing the behavior pathway, our
RETR is not affected by this trivial behavior information and captures the most informative behavior
representation to achieve better performance. Note that under the Tmall benchmark, RETR gains 7%
HR@10, 12% NDCG@10 and 14% MRR against the strongest baseline SMRec [6]. Besides, for
the MoveLens1M, our RETR also achieves the best performance among all competing baselines.

Results on large-scale datasets. Our RETR can consistently achieve state-of-the-art results on
large-scale datasets (Netflix, MSD, Taobao, and Steam). These datasets are challenging and difficult
to capture pivotal behavior pathway useful for precise recommendation from the rich but noisy user’s
behaviors. Especially for the Taobao dataset, our RETR gains relative improvements of 12% HR @10,
37% NDCG@10 and 20% MRR against the strongest baseline SINE [32]. It provides evidence that
our RETR can achieve competitive performance in both small- and large-scale datasets.

The substantial performance gains of our RETR indicate that focusing more on the behavior pathway
enables RETR to capture sequential characteristics more efficiently and effectively than the vanilla
self-attention mechanism, which considers all previous user behaviors.



290
291
292
293
294

296
297
298

299
300
301
302
303
304
305
306
307

308

309

311
312

4.2 Ablation Study

Effectiveness of each model component. In the left column of Table|3] we analyze the efficacy
of each component in RETR on the Yelp dataset and have the following observations. First, we
remove the pathway router module and randomly choose whether it can be maintained or dropped
for each input behavior token. Removing the pathway router decreases the prediction performance a
lot (MRR: 0.4354 — 0.3887), showing the necessity of learning behavior pathway effectively based
on a data-dependent module. Second, discarding the hierarchical update strategy for the behavior
pathway also decreases the prediction performance, suggesting that this strategy is crucial for RETR
to get a more accurate behavior pathway.

Number of blocks. In the right column of Table 3] we adjust the number of blocks for RETR on
Yelp. We find that the performance first increases rapidly with the growth of the block number and
achieves the best performance at L = 2. We perform a similar grid search on other datasets.

Table 3: Ablation study of (Left) the effectiveness of each model component and (Right) the number
of blocks for each RETR block. Experiments are conducted on the Yelp Dataset.

Model MRR | Model (# number of blocks) MRR
RETR 0.4354 RETR (L =1) 0.4197
RETR w/o Pathway Router 0.3887 RETR (L =2) 0.4354
RETR w/o hierarchical update 0.4234 RETR (L = 3) 0.4342
SASRec 0.3927 RETR (L =4) 0.4340

Table 4: Ablation study of (Left) the effectiveness of different temperatures; Comparison Parameters
and GFLOPs (Right). All ablation study experiments are conducted on the Yelp Dataset.

Model (temperature) MRR \ Model Parameters (M) GFLOPs MRR
RETR (r = 0.4) 0.4312 RETR 5.021 9.558 0.4354
RETR (7 = 0.8) 0.4354 SASRec [18] 4916 9.552 0.3927
RETR (7 =1) 0.4292 SINE [32] 5.112 9.741 0.4011
RETR (1t = 2) 0.4183 SMRec [6] 5.173 9.864 0.4023

Effectiveness of temperature. In the left column of Table[d] we analyze the efficacy of different
temperatures for Gumbel-Softmax sampling in RETR on the Yelp dataset. We observe that the perfor-
mance first increases rapidly with the growth of the temperature and achieves the best performance
when 7 = 0.8, while the performance degenerates a lot when 7 > 1. The temperature 7 softens
the softmax with 7 > 1. However, when 7 — oo, the Gumbel-Softmax distribution p (y:) — 0.5
becomes more smooth, leading to the maximum uncertainty. To make the sampling results more
convincing, we apply the temperature calibration 7 < 1 during training to avoid overconfident
predictions. These results show that Gumble-Softmax sampling with lower temperature (7 < 1)
avoids overconfident predictions, leading to better performance.

Evaluation on efficiency. The efficiency is compared between SASRec [18]], SINE [32]] and SMRec
[6] on the Yelp dataset. The computation cost is measured with gigabit floating-point operations
(GFLOPs) on the self-attention module with position encoding. Meanwhile, the model scale measured
with parameters is also presented. As shown in Tabled] our RETR has almost the same number of
parameters or GFLOPs, compared with SASRec, indicating that our pathway router is a light-weight
module. Our pathway attention does not bring more costs. It’s worth noticing that the parameter
scales and GLOPs of other competing transformers (apart from SASRec) are larger than RETR, but
our RETR achieves higher performance. This result shows that our RETR is more efficient and
effective than other competing attention-based models.

4.3 Case study

Setups. We also provide qualitative visualizations for our RETR, and SASRec [18]]. Technically, we
use the GradCAM [29] to generate behavior heatmaps of the output of the last layer in each model.
Three random examples of users’ historical behaviors in the Steam dataset are shown in sequential
order through subplots (a)—(c) in Figure J] We provide attention heatmaps of each example at the last
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ten time steps. We can observe three main behavior pathway characteristics corresponding to three
behavior sequences respectively: (a) Casual behavior pathway: RPG games are randomly clicked by
the user, while the user has a continuing interest in RPGs. (b) Correlated behavior pathway: The
user has recently been interested in indie games. (c) Drifted behavior pathway: The user has recently
been interested in simulation games but chooses an indie game at last.

Visualization results. We elaborate the three representative categories of behavior pathway in
recommender systems with model-learned attention heatmaps. (1) Casual behavior pathway: As
shown in Figure B a), the RGB game is randomly clicked at casual times. Our RETR can capture
all the RPG casual behavior pathways, while the SASRec focuses on the incorrect recent adventure
games. The SASRec cannot capture the early clicked RPG game. This phenomenon proves that
our RETR can deal with the casual behavior pathway effectively. (2) Correlated behavior pathway:
For the correlated behavior pathway, we also provide an example which is shown in Figure 3[b).
The indie game is clicked many times recently, leading to the final decision to an indie game. Our
RETR can effectively capture the correlated behavior pathway. However, the SASRec provides higher
attention scores on the recent RPG games. On the contrary, our RETR pays no attention to these
wrong results, showing that it has a greater ability to cope with the correlated behavior pathway.
(3) Drifted behavior pathway: As shown in Fig[3[c). The user was initially interested in the indie
game, but suddenly became interested in simulation games recently and chose an indie game at last.
Our RETR captures the drifted behavior pathway for the indie game and has not concentrated on
the old drifted pathway — simulation games, while the SASRec is affected by the trivial behaviors
of simulation games. These visualization results strongly show that our RETR can capture various
behavior pathways dynamically for each user.
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[
Adventure VR RPG Action Action RPG Adventure Adventure B{G

e
Truth X
RETR I

SASRec

(a) Casual Behavior Pathway

RPG Strategy Adventure Action  Action RPG Indie Indie Indie Indie
Ground |, S = o, : i
Truth }

RETR | | [ | |

rget: Indie

= N
O

SASRec| | [ [ [ |
(b) Correlated Behavior Pathway
Action Indie RPG Casual Indie Simulate Simulate Simulate Indie Indie
Ground §TTT R BBy X g TE
Truth |

RETR
SASRec|

(c) Drifted Behavior Pathway

Figure 3: Visualizations of behavior heatmaps for RETR and SASRec of three random users in Steam
dataset. They are corresponding to casual, correlated and drifted behavior pathways respectively.

5 Conclusion

A sequential recommender is designed to make accurate recommendations based on users’ historical
behaviors. The sequential recommendation system has benefited many practical applications such as
online advertising. However, the users’ behaviors are dynamic and come in a continually evolving
manner. A user’s current decision may only call upon the interest from the certain relevant behaviors
of the past. We conclude these sequential characteristics as the behavior pathway. Previous models
cannot capture the behavior pathway dynamically. We propose the Recommender Transformer
(RETR) with a novel pathway attention mechanism to tackle these challenges. The pathway attention
develops a pathway router to dynamically get the behavior pathway for each user and capture the
evolving patterns. Our RETR achieves state-of-the-art performance on seven real-world datasets for
sequential recommendation. The visualization results also show that our RETR can dynamically
capture the behavior pathway for each user.
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