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Abstract

Sequential recommendation requires the recommender to capture the evolving1

behavior characteristics from logged user behavior data for accurate recommen-2

dations. However, user behavior sequences are viewed as a script with multiple3

ongoing threads intertwined. We find that only a small set of pivotal behaviors can4

be evolved into the user’s future action. As a result, the future behavior of the user5

is hard to predict. We conclude this characteristic for sequential behaviors of each6

user as the Behavior Pathway. Different users have their unique behavior pathways.7

Among existing sequential models, transformers have shown great capacity in8

capturing global-dependent characteristics. However, these models mainly provide9

a dense distribution over all previous behaviors using the self-attention mechanism,10

making the final predictions overwhelmed by the trivial behaviors not adjusted to11

each user. In this paper, we build the Recommender Transformer (RETR) with a12

novel Pathway Attention mechanism. RETR can dynamically plan the behavior13

pathway specified for each user, and sparingly activate the network through this14

behavior pathway to effectively capture evolving patterns useful for recommenda-15

tion. The key design is a learned binary route to prevent the behavior pathway from16

being overwhelmed by trivial behaviors. We empirically verify the effectiveness of17

RETR on seven real-world datasets and RETR yields state-of-the-art performance.18

1 Introduction19

Recommender systems [16, 24, 42] have been widely adopted in real-world industrial applications20

such as E-commerce and social media. Benefiting from the increase in computing power and model21

capacity, some recent efforts formulate recommendation as a time-series forecasting problem, known22

as sequential recommendation [18, 31, 6]. The core idea of this field is to infer upcoming actions23

based on user’s historical behaviors, which are reorganized as time-ordered sequences. This intuitive24

modeling of recommendation is proved time-sensitive and context-aware to make precise predictions.25

Recent advanced sequential recommendation models, such as SASRec [18], Bert4Rec [31] and26

SMRec [6], have achieved significant improvements. Transformers enable these models to recognize27

global-range sequential patterns, and to model how future behaviors are anchored in historical ones.28

The self-attention mechanism does make it possible to explore all previous behaviors of each user,29

with the whole neural network activated. However, misuse of user information, regardless of whether30

they are informative or not, floods models with trivial ones, makes models dense and inefficient, and31

results in key behaviors losing voice. And this clearly contradicts with the way our brain works.32

The human being has many different parts of the brain specialized for various tasks, yet the brain only33

calls upon the relevant pieces for a given situation [40]. To some extent, user behavior sequences can34

be viewed as a script with multiple ongoing threads intertwined. And only key clues suggest what will35

happen next. In sequential recommendation, we find that only a small part of pivotal behaviors can36

be evolved into the user’s future action. And we conclude this characteristics of sequential behaviors37

as the Behavior Pathway.38
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Figure 1: Three main characteristics of the behavior pathway for different users, making sequential
recommendation extremely hard. The behavior pathway is outlined by the red boxes.

Different users have their unique behavior pathways and they can be grouped into three categories:39

• Correlated Behavior Pathway: A user’s behavior pathway is closely associated with40

behaviors at a certain period. As shown in the first line of Figure 1, the mouse is clicked41

many times recently, leading to the final decision to buy a mouse.42

• Casual Behavior Pathway: A user’s behavior pathway is interested in a specific item at43

casual times. As shown in the second line of Figure 1, the backpack is randomly clicked44

sequentially.45

• Drifted Behavior Pathway: A user’s behavior pathway in a particular brand might drift46

over time. As shown in the third line of Figure 1, the user was initially interested in a47

keyboard, but suddenly became interested in buying a phone at last.48

It’s challenging to capture these aspects dynamically for each user to make precise recommendations.49

Motivated by the Pathways [8], a new way of thinking about AI, which builds a single model that is50

sparsely activated for all tasks with small pathways through the network called into action as needed,51

we propose a novel Recommender Transformer (RETR) with a Pathway Attention mechanism. RETR52

dynamically explores behavior pathways for different users and then captures evolving patterns53

through these pathways effectively. To be specific, the user-dependent pathway attention, which54

incorporates a pathway router, determines whether or not a behavior token will be maintained in the55

behavior pathway. Technically, the pathway router generates a customized binary route for each token56

based on their information redundancy. Recommender Transformers are stacked, and successive57

pathway routers constitute a hierarchical evolution pathway of user behaviors. To enable the pathway58

router modules to be end-to-end optimized, we adopt the Gumbel-Softmax [17] sampling strategy to59

overcome the non-differentiable problem of sampling from a Bernoulli distribution.60

To effectively capture the evolving patterns via the behavior pathway, our pathway attention mecha-61

nism makes our RETR mainly attend to the obtained pathway. We force the model to focus on the62

most informative behaviors by using the query routed through the behavior pathway. We cut off the63

interaction from the off-pathway behaviors of the query. Compared with using all previous behaviors,64

our pathway attention mechanism is obviously more effective and can avoid the most informative65

tokens being overwhelmed by trivial behaviors. To validate the effectiveness of our approach, we66

conduct experiments on seven real-world competitive datasets for sequential recommendations and67

RETR achieves state-of-the-art performance. Our main contributions can be summarized as follows:68

• Our work is the first to propose the concept of behavior pathway for sequential recommen-69

dation. We find the key to the recommender is to dynamically capture the behavior pathway70

for each user.71

• We propose the novel recommender transformer (RETR) with a novel pathway attention72

mechanism, which can generate the behavior pathway hierarchically and capture the evolving73

patterns dynamically through the pathway.74

• We validate the effectiveness of RETR on seven real-world datasets of different scales across75

different scenarios for sequential recommendations and achieve state-of-the-art performance.76
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2 Related Work77

Traditional recommendation approaches. Capturing evolving behavior characteristics is crucial78

for many online applications, such as advertising, social media and E-commerce, and it is the key79

challenge for sequential recommendation [1, 18, 7, 39, 11, 26, 5, 45, 23]. Traditional recommendation80

approach, such as the collaborative filtering (CF) [15] based on matrix approximation [20, 21], always81

assumes that the user’s behavior is static. However, in practice, user behaviors often change over time82

due to various reasons, making the CF deteriorate in a real-world application.83

Sequential recommendation approaches. To overcome this challenge, some methods, such as84

FPMC [14] and HRM [34], use Markov chains to capture sequential patterns by learning user-85

specific transition matrices. Higher-order Markov Chains assume the next action is related to several86

previous actions. Benefit from this strong inductive bias, MC-based methods [14, 13] show superior87

performance in capturing short-term patterns. At the same time, there is a potential state space88

explosion problem when these approaches are faced with different possible sequences [35]. In recent89

years, many works have been using the deep neural network for sequential recommendation. The90

GRU4Rec [16] and the RepeatNet [27] adopt the recurrent network to capture dynamic patterns from91

the user behaviors dependent on sequence positions. The RNN-based models achieve competitive92

performance in capturing short-term behavior patterns but cannot capture long-term behavior patterns93

effectively. The CNN-based model, such as Caser [33], applies convolutional operations to extract94

transitions while tending to overlook the intrinsic relationship across user behaviors. The GNN-95

based methods, such as SRGNN [37], GCSAN [38], Jodie [22] and TGN [28] model behavior96

sequences as graph-structured data and incorporate an attention mechanism for a session-based97

recommendation. In addition, DIN [43] uses the gate mechanism to weight different user behaviors.98

However, concatenating all behaviors makes these models overlook the sequential characteristics.99

Attention-based models for Sequential Recommendation. The attention-based models like SINE100

[32] have the strong capacity to capture behavior patterns via the attention mechanism, achieving101

state-of-the-art performance while involving many parameters. Especially, SASRec [18], BertRec102

[31], S3-Rec [44], TGSRec [10], LightSANs [9] and SSE-PT [36] introduce the transformer archi-103

tecture into sequential recommendation, which might lead to the over-parameterized architecture104

of Transformer-based methods. These models capture the evolving patterns by the self-attention105

mechanism, interacting with all previous behaviors. However, dense interactions will make the106

model not adapt to different users and overwhelm behavior pathways. To tackle this challenge, our107

paper builds the Recommender Transformer (RETR) with a new Pathway Attention mechanism that108

is dynamically activated for the behavior pathway of all users. Distinct from the previous routing109

architecture like Switch Transformer [12] using the MoE [30] structure for natural language tasks, our110

RETR is designed explicitly for sequential recommendation. Our RETR uses the pathway router to111

adaptively route the sequential behavior of each user rather than routing the experts of feed-forward112

networks in switch transformer.113

3 Method114

Suppose that we have a set of users and items, denoted by U and I respectively. In the task of115

sequential recommendation, chronologically-ordered behaviors of a user u ∈ U could be represented116

by a user-interacted item sequence: {i1, · · · , in}. Formally, given a user u with her or his behavior117

sequence {i1, · · · , in}, the goal of sequential recommendation is to predict the next item the user u118

would interact with at the (n+ 1)-th step, denoted as p (in+1 | i1:n).119

As aforementioned, we highlight the key to sequential recommendation as the exploration of user-120

tailored behavior pathways, through which evolving characteristics could be learned. Motivated by121

this, we propose a novel Recommender Transformer (RETR) with a new Pathway Attention, the core122

subassembly of which is a pathway router. Besides the modification of architecture, we additionally123

introduce a hierarchical update strategy for the behavior pathway in the feed-forward procedure.124

3.1 Recommender Transformer125

Considering the limitation of Transformers [4] for sequential recommendation, we renovate the vanilla126

architecture to the Recommender Transformer (Figure 2) with a Pathway Attention mechanism.127
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Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK ) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)
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sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
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substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.
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Figure 2: Recommender Transformer architecture (right). Pathway Attention (left) explores the
behavior pathway by the pathway router (orange module) and captures the evolving sequential
characteristics by the multi-head attention.

Model inputs. To obtain the model inputs, we follow the sliding window practice and transform the128

user’s behavior sequence into a fixed-length-N sequence s = (s1, s2, . . . , sN ). Then we produce129

an item embedding matrix EI ∈ R|I|×d, where d is the embedding dimensionality. We perform130

a look-up operation from EI to retrieve the input embedding matrix Es ∈ RN×d for sequence s.131

Besides, we also add a learnable position embedding Ps ∈ RN×d for sequence s. Finally, we can132

generate the input embedding of each behavior sequence s as Xs = Es + Ps ∈ RN×d.133

Overall architecture. Recommender Transformer is characterized by stacking the Pathway Attention134

blocks and feed-forward layers alternately, containing L blocks. This stacking structure is conducive135

to learning behavior representations hierarchically. The overall equations of block l are formalized as:136

137

Ẑ l,Rl = Path-MSA (Z l−1,Rl−1)

Ẑ l = LN (Ẑ l + Z l−1)

Z l = LN (FFN (Ẑ l) + Ẑ l),

(1)

where Z l ∈ RN×d, l ∈ {1, · · · , L} denotes the output of the l-th block. The initial input Z0 = Xs ∈138

RN×d represents the raw behavior embedding. Rl−1 is the previous route from the block l − 1 and139

we initialize all elements in the route R0 to 1. Path-MSA(·) is to conduct the pathway attention. LN(·)140

is to conduct layer normalization [3] and FFN represents the point-wise feed-forward network [4].141

3.1.1 Pathway Attention142

Note that the single-branch self-attention mechanism [4] in vanilla transformer cannot model the143

behavior pathway dynamically, resulting in key behaviors being overwhelmed by these non-pivotal144

ones. To solve this problem, we propose the Pathway Attention mechanism, as shown in Figure 2,145

which can dynamically attend to the behavior pathway of pivotal behavior tokens.146

Pathway router. The pathway attention employs a sequence-adaptive pathway router to custom-tailor147

behavior pathway routes for users. The router generates a binary route Rl ∈ {0, 1}N to determine148

whether a behavior token would be part of the behavior pathway or not. Each router takes the149

pre-order route Rl−1 and user behavior tokens Z l−1 ∈ RN×d of the block l − 1 as its inputs. All150

elements in the route are initialized by 1 and are updated progressively in training.151

Foremost, to suppress the potential disturbance to the model caused by the local drifted interest152

(Figure 1), it is crucial to incorporate the global information in the route generation. We apply153

the average pooling to all the preserved behavior tokens routed by Rl−1, and produce the global154

sequential representation via a multilayer perceptrons (MLP) module. Then, we combine this global155

representation with the inputs and employ a residual connection to maintain the original input156

information. Finally, we feed them to another MLP layer to predict the probabilities of keeping or157
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dropping the behavior tokens. The above procedure can be formulated as follows:158

Z l
emb = Z l−1 + Z l−1 ⊙ MLP

(∑N
i=1 Rl−1

i Z l−1
i∑N

i=1 Rl−1
i

)
π = Softmax (MLP(Z l

emb)) ∈ RN×2,

(2)

where ⊙ is the Hadamard product. For t ∈ {1, 2, · · · , N}, we let πt = [1− αt, αt] , where the logit159

αt denotes the probability that the t-th behavior token is kept for the behavior pathway.160

Gumbel-Softmax sampling from π for router. Our goal is to generate the binary route from161

π. However, sampling from π directly is non-differentiable, and it will impede the gradient-based162

training. Thus, we apply the Gumbel-Softmax [17] technique to such sample. Gumbel-Softmax is163

an effective way to approximate the original non-differentiable sample from a discrete distribution164

with a differentiable sample from a Gumbel-Softmax distribution. Instead of directly sampling a165

keep-or-drop decision R̂l
t for the t-th behavior token from the distribution πt, we generate it as:166

R̂l
t = argmax

j∈{0,1}
(log πt(j) +Gt(j)) , (3)

where Gt = − log(− logUt) is a standard Gumbel distribution, and Ut is sampled i.i.d. from a167

uniform distribution Uniform(0, 1). To remove the non-differentiable argmax operation in Eq 3, the168

Gumbel-Softmax uses the reparameterization trick [17] as a differentiable approximation to relax169

one-hot R̂l
t ∈ {0, 1} to vt ∈ R2:170

vt(j) =
exp((log πt(j) +Gt(j))/τ)∑

i∈{0,1} exp((log πt(i) +Gt(i))/τ)
, j ∈ {0, 1}, (4)

where τ is the temperature parameter of the Softmax, which is commonly set to 1 in deep networks.171

Hierarchical update strategy for router. The preliminary route R̂l, sampled from π, is not a final172

decision. In our design, once a token fails to be routed in a certain block, it would permanently lose173

the privilege to be part of the behavior pathway in the following feed-forward procedure, constituting174

a hierarchical pathway router strategy. Thus finally we formulate the route Rl as the Hadamard175

product of R̂l and the pre-order route Rl−1 in the block l − 1:176

Rl = R̂l ⊙Rl−1. (5)

Multi-head pathway attention. The standard self-attention mechanism retrieves sequential177

characteristics exploiting all behavior tokens, making the behavior pathway overwhelmed by the178

trivial behaviors. In the new pathway attention, the pathway router would be firstly applied to the input179

behavior tokens to route information. The pathway router would not pare down the number of tokens,180

but only the interactions between the off-pathway and on-pathway tokens, as these off-pathway181

tokens may also convey contextual information.182

Specifically, for the query, key, and value in the pathway attention: the query is routed by the pathway183

router, to prevent the pathway from being overwhelmed and to force the pathway attention to attend184

to the behavior pathway; the key and value are the original input behavior tokens, to ensure that the185

contextual information from off-pathway behavior tokens can be captured as well:186

Qm,Km,Vm = (Z l−1 ⊙Rl)W l
Qm

,Z l−1W l
Km

,Z l−1W l
Vm

Ẑ l
m = Softmax

(
QmKT

m√
d/h

)
V l
m,

(6)

where m ∈ {1, 2, · · · , h} is the index of head in the multi-head self-attention; W l
Qm

,W l
Km

,W l
Vm

∈187

Rd×d/h are transformation matrices learned from data. Finally, the outputs
{
Ẑ l

m ∈ RN×d/h
}
1≤m≤h

188

of multiple heads are concatenated into Ẑ l ∈ RN×d. We use Ẑ l,Rl = Path-MSA (Z l−1,Rl−1) to189

summarize the above pathway attention. Its output is further transformed by Eq. (1) to form the final190

output of the l-th block Z l ∈ RN×d.191

Causality. In the prediction of the (t+ 1)-th behavior, only the first t observable behaviors should192

be taken into account. To avoid a future information leak and ensure causality, a look-ahead mask is193

employed and all links between Qj and Ki (j > i) are removed.194
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3.2 Prediction Layer and Training Objective195

Prediction layer. In the final layer of our RETR, we calculate the user’s preference score for the196

item k in the step (t + 1) in the context of user behavior history as p (it+1 = k | i1:t) = ek · ZL
t ,197

where ek is the representation of item k from item embedding matrix EI , and ZL
t is the output of the198

L-th RETR blocks at step t (L is the number of RETR blocks).199

Training objective. We adopt the pairwise ranking loss to optimize the model parameters as:200

L = −
∑
u∈U

n∑
t=1

log σ(p(it+1 | i1:t)− p(i−t+1 | i1:t)), (7)

where we pair each ground-truth item it+1 with a randomly sampled negative item i−t+1. In each201

epoch, we randomly generate one negative item for each time step in each sequence. This pairwise202

ranking loss is widely adopted in previous literature of sequential recommendation [18, 45].203

4 Experiments204

We extensively evaluate the proposed Recommender Transformer on seven real-world benchmarks.205

Table 1: Statistics of the datasets.

Dataset Users Items Actions

Netflix 463,435 17,769 57,000,000
MSD 571,355 41,140 34,000,000
Taobao 987,994 4,162,024 100,150,807
Yelp 30,431 20,033 316,354
MovieLens-1M 6,040 3,416 1,000,000
Tmall 66,909 37,367 427,797
Steam 334,730 13,047 3,700,000

Datasets. Here are descriptions of the seven206

datasets: (1) Netflix: Netflix dataset is a large-207

scale movie rating dataset released by Netflix.208

(2) MSD: The Million Song Dataset (MSD) is209

a large-scale, metadata-rich and open-source210

dataset on Kaggle. (3) Taobao: Taobao dataset211

[32] contains user behaviors in Taobao’s recom-212

mender system. In experiments, we only use the213

click behaviors. (4) Yelp [2]: Yelp is a dataset214

for business recommendation. We only use the215

transaction records after January 1st, 2019. (5)216

Tmall: Tmall contains users’ shopping logs on217

Tmall online shopping platform, which is from the IJCAI-15 competition. (6) Steam [18]: Steam218

dataset is collected from a large online video game distribution platform. This dataset includes219

2,567,538 users, 15,474 games and 7,793,069 English reviews from October 2010 to January 2018.220

(7) MovieLens: this is a widely used benchmark dataset for evaluating collaborative filtering algo-221

rithms. The version we use is MovieLens-1M, which includes 1 million user ratings. The statistics of222

the seven datasets are summarized in Table 1. All datasets are widely used in the recommendation223

task. It is notable that Netflix, MSD, Taobao and Steam are large-scale recommendation datasets.224

We group the interaction records by users or sessions for all datasets and sort them by the timestamps225

in ascending order. We follow the operation in SASRec [18] and split the historical sequence for each226

user into three parts: (1) the most recent behavior for testing, (2) the second most recent behavior for227

validation, and (3) all remaining behaviors for training. During testing, the input sequences contain228

training behaviors and validation behaviors. We filter less popular items and inactive users with fewer229

than five interaction records.230

Evaluation metrics. Following the previous literature [41, 45, 18], we apply top-k Hit Ratio231

(HR@k), top-k Normalized Discounted Cumulative Gain (NDCG@k) and Mean Reciprocal Rank232

(MRR) for evaluation. We report HR@10, NDCG@10 and MRR of the results. Besides, following233

the standard strategy in SASRec [18], we pair the ground-truth item with 100 randomly sampled234

negative items that the user has not interacted with. All metrics are calculated according to the235

ranking of the items and we report the average score.236

Baseline methods. We compare our RETR with GRU4Rec [16], a simple baseline that applies237

GRU to model item sequences, and state-of-the-art sequential recommendation models: SASRec238

[18], BertRec [31], SMRec [6]. S3-Rec [44], SINE [32], TGSRec [10] and LightSANs [9]. These239

methods adopt the attention mechanism to make precise recommendations. Besides, we also compare240

our RETR with state-of-the-art graph-based sequential recommendation methods: Jodie [22] and241

TGN [28]. All baseline methods are configured using default parameters of the original paper or242

optimal parameters which can produce their best results through a grid search.243
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Implementation details. Our model is supervised by the pairwise rank loss in Equ 7, using the244

ADAM [19] optimizer with an initial learning rate of 0.001. Batch size is set to 512. The maximum245

number of training epochs for all methods is set to 200. All hyperparameters are tuned on the246

validation set. The training process is early stopped within 10 epochs. Our RETR has L = 2 layers,247

and each layer has h = 4 heads (the ablation study of multi-head attention can be found in the248

appendix A) and d is set to be 256. The maximum sequence length N is set to 200 for MovieLens-1m249

and 100 for the other six datasets. All experiments are repeated three times, implemented in PyTorch250

[25], and conducted on a single NVIDIA 3090 GPU.251

Table 2: Performance comparison to state-of-the-art models: GRU4Rec [16], BERTRec [31], SASRec
[18], SMRec [6], S3-Rec [44], SINE [32], TGSRec [10], LightSANs [9], Jodie [22], TGN [28].

Datasets Meric GRU4Rec BERT4Rec SASRec SMRec S3-Rec SINE TGSRec LightSAN Jodie TGN RETR

Netflix
HR@10 0.4358 0.4792 0.4622 0.4848 0.4917 0.4902 0.4887 0.4852 0.4813 0.4802 0.5142
NDCG@10 0.2912 0.3330 0.3202 0.3492 0.3571 0.3601 0.3512 0.3441 0.3368 0.3318 0.3725
MRR 0.2431 0.2652 0.2519 0.2725 0.2819 0.2796 0.2778 0.2785 0.2687 0.2612 0.3134

MSD
HR@10 0.3546 0.4819 0.4766 0.5083 0.5315 0.5264 0.5137 0.4994 0.4825 0.4782 0.5912
NDCG@10 0.3772 0.4891 0.4831 0.5112 0.5381 0.5304 0.5279 0.5163 0.4872 0.4832 0.5981
MRR 0.2503 0.3120 0.3079 0.3302 0.3494 0.3667 0.3612 0.3451 0.3224 0.3102 0.3901

Taobao
HR@10 0.0788 0.1261 0.1182 0.1272 0.1336 0.1580 0.1537 0.1590 0.1447 0.1421 0.1768
NDCG@10 0.0182 0.0425 0.0391 0.0631 0.0827 0.0873 0.0745 0.0694 0.0582 0.0571 0.1195
MRR 0.0273 0.0489 0.0436 0.0721 0.0919 0.0934 0.0802 0.0741 0.0628 0.0603 0.1117

Yelp
HR@10 0.7265 0.7597 0.7373 0.7548 0.7597 0.7564 0.7533 0.7552 0.7492 0.7473 0.7730
NDCG@10 0.4375 0.4778 0.4642 0.4789 0.4937 0.4902 0.4887 0.4863 0.4792 0.4784 0.5136
MRR 0.3630 0.4026 0.3927 0.4023 0.4107 0.4093 0.4072 0.4086 0.3997 0.3985 0.4354

MovieLens
HR@10 0.5581 0.8269 0.8233 0.8302 0.8352 0.8311 0.8303 0.8294 0.8277 0.8259 0.8467
NDCG@10 0.3381 0.5965 0.5936 0.6079 0.6172 0.6134 0.6081 0.6119 0.6009 0.5998 0.6351
MRR 0.3002 0.5614 0.5573 0.5703 0.5812 0.5801 0.5734 0.5791 0.5651 0.5627 0.5921

Tmall
HR@10 0.6432 0.6196 0.6275 0.6476 0.6687 0.6512 0.6506 0.6399 0.6384 0.6362 0.7138
NDCG@10 0.5169 0.5025 0.5049 0.5192 0.5423 0.5411 0.5372 0.5415 0.5307 0.5198 0.6103
MRR 0.4975 0.4026 0.4804 0.4934 0.5194 0.5147 0.5121 0.5119 0.5003 0.4997 0.5822

Steam
HR@10 0.4190 0.8656 0.8729 0.8792 0.8813 0.8765 0.8773 0.8832 0.8780 0.8731 0.9001
NDCG@10 0.2691 0.6283 0.6306 0.6408 0.6573 0.6502 0.6491 0.6519 0.6451 0.6399 0.6795
MRR 0.2402 0.5883 0.5925 0.6011 0.6135 0.5972 0.6003 0.6104 0.5873 0.5798 0.6326

4.1 Main Results252

The results of different methods on seven datasets are shown in Table 2. We can easily find that253

attention-based models, SASRec [18], BertRec [31], SMRec [6], S3-Rec [44], SINE [32], TGSRec254

[10] and LightSANs [9], achieve better performance than RNN-based model GRU4Rec [16] on most255

datasets. It indicates that the attention mechanism is crucial for sequential recommendation, making256

the model have a better capacity to capture sequential characteristics. These models can capture the257

interaction information between all previous user behaviors via the attention mechanism. Besides,258

the graph-based models like Jodie [22] and TGN [28] also achieve competitive performance. Besides,259

our RETR can achieve state-of-the-art performance by a large margin on most datasets compared260

with all baseline models.261

Results on Yelp, MovieLens1M and Tmall. Specifically, our RETR achieves competitive perfor-262

mance on the Yelp and Tmall. These datasets are sparse, containing less action information. Thus263

they have lots of noisy logged information. By effectively capturing the behavior pathway, our264

RETR is not affected by this trivial behavior information and captures the most informative behavior265

representation to achieve better performance. Note that under the Tmall benchmark, RETR gains 7%266

HR@10, 12% NDCG@10 and 14% MRR against the strongest baseline SMRec [6]. Besides, for267

the MoveLens1M, our RETR also achieves the best performance among all competing baselines.268

Results on large-scale datasets. Our RETR can consistently achieve state-of-the-art results on269

large-scale datasets (Netflix, MSD, Taobao, and Steam). These datasets are challenging and difficult270

to capture pivotal behavior pathway useful for precise recommendation from the rich but noisy user’s271

behaviors. Especially for the Taobao dataset, our RETR gains relative improvements of 12% HR@10,272

37% NDCG@10 and 20% MRR against the strongest baseline SINE [32]. It provides evidence that273

our RETR can achieve competitive performance in both small- and large-scale datasets.274

The substantial performance gains of our RETR indicate that focusing more on the behavior pathway275

enables RETR to capture sequential characteristics more efficiently and effectively than the vanilla276

self-attention mechanism, which considers all previous user behaviors.277
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4.2 Ablation Study278

Effectiveness of each model component. In the left column of Table 3, we analyze the efficacy279

of each component in RETR on the Yelp dataset and have the following observations. First, we280

remove the pathway router module and randomly choose whether it can be maintained or dropped281

for each input behavior token. Removing the pathway router decreases the prediction performance a282

lot (MRR: 0.4354 → 0.3887), showing the necessity of learning behavior pathway effectively based283

on a data-dependent module. Second, discarding the hierarchical update strategy for the behavior284

pathway also decreases the prediction performance, suggesting that this strategy is crucial for RETR285

to get a more accurate behavior pathway.286

Number of blocks. In the right column of Table 3, we adjust the number of blocks for RETR on287

Yelp. We find that the performance first increases rapidly with the growth of the block number and288

achieves the best performance at L = 2. We perform a similar grid search on other datasets.289

Table 3: Ablation study of (Left) the effectiveness of each model component and (Right) the number
of blocks for each RETR block. Experiments are conducted on the Yelp Dataset.

Model MRR Model (# number of blocks) MRR

RETR 0.4354 RETR (L = 1) 0.4197
RETR w/o Pathway Router 0.3887 RETR (L = 2) 0.4354
RETR w/o hierarchical update 0.4234 RETR (L = 3) 0.4342
SASRec 0.3927 RETR (L = 4) 0.4340

Table 4: Ablation study of (Left) the effectiveness of different temperatures; Comparison Parameters
and GFLOPs (Right). All ablation study experiments are conducted on the Yelp Dataset.

Model (temperature) MRR Model Parameters (M) GFLOPs MRR

RETR (τ = 0.4) 0.4312 RETR 5.021 9.558 0.4354
RETR (τ = 0.8) 0.4354 SASRec [18] 4.916 9.552 0.3927
RETR (τ = 1) 0.4292 SINE [32] 5.112 9.741 0.4011
RETR (τ = 2) 0.4183 SMRec [6] 5.173 9.864 0.4023

Effectiveness of temperature. In the left column of Table 4, we analyze the efficacy of different290

temperatures for Gumbel-Softmax sampling in RETR on the Yelp dataset. We observe that the perfor-291

mance first increases rapidly with the growth of the temperature and achieves the best performance292

when τ = 0.8, while the performance degenerates a lot when τ > 1. The temperature τ softens293

the softmax with τ > 1. However, when τ → ∞, the Gumbel-Softmax distribution pτ (yt) → 0.5294

becomes more smooth, leading to the maximum uncertainty. To make the sampling results more295

convincing, we apply the temperature calibration τ < 1 during training to avoid overconfident296

predictions. These results show that Gumble-Softmax sampling with lower temperature (τ < 1)297

avoids overconfident predictions, leading to better performance.298

Evaluation on efficiency. The efficiency is compared between SASRec [18], SINE [32] and SMRec299

[6] on the Yelp dataset. The computation cost is measured with gigabit floating-point operations300

(GFLOPs) on the self-attention module with position encoding. Meanwhile, the model scale measured301

with parameters is also presented. As shown in Table 4, our RETR has almost the same number of302

parameters or GFLOPs, compared with SASRec, indicating that our pathway router is a light-weight303

module. Our pathway attention does not bring more costs. It’s worth noticing that the parameter304

scales and GLOPs of other competing transformers (apart from SASRec) are larger than RETR, but305

our RETR achieves higher performance. This result shows that our RETR is more efficient and306

effective than other competing attention-based models.307

4.3 Case study308

Setups. We also provide qualitative visualizations for our RETR, and SASRec [18]. Technically, we309

use the GradCAM [29] to generate behavior heatmaps of the output of the last layer in each model.310

Three random examples of users’ historical behaviors in the Steam dataset are shown in sequential311

order through subplots (a)–(c) in Figure 3. We provide attention heatmaps of each example at the last312
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ten time steps. We can observe three main behavior pathway characteristics corresponding to three313

behavior sequences respectively: (a) Casual behavior pathway: RPG games are randomly clicked by314

the user, while the user has a continuing interest in RPGs. (b) Correlated behavior pathway: The315

user has recently been interested in indie games. (c) Drifted behavior pathway: The user has recently316

been interested in simulation games but chooses an indie game at last.317

Visualization results. We elaborate the three representative categories of behavior pathway in318

recommender systems with model-learned attention heatmaps. (1) Casual behavior pathway: As319

shown in Figure 3(a), the RGB game is randomly clicked at casual times. Our RETR can capture320

all the RPG casual behavior pathways, while the SASRec focuses on the incorrect recent adventure321

games. The SASRec cannot capture the early clicked RPG game. This phenomenon proves that322

our RETR can deal with the casual behavior pathway effectively. (2) Correlated behavior pathway:323

For the correlated behavior pathway, we also provide an example which is shown in Figure 3(b).324

The indie game is clicked many times recently, leading to the final decision to an indie game. Our325

RETR can effectively capture the correlated behavior pathway. However, the SASRec provides higher326

attention scores on the recent RPG games. On the contrary, our RETR pays no attention to these327

wrong results, showing that it has a greater ability to cope with the correlated behavior pathway.328

(3) Drifted behavior pathway: As shown in Fig 3(c). The user was initially interested in the indie329

game, but suddenly became interested in simulation games recently and chose an indie game at last.330

Our RETR captures the drifted behavior pathway for the indie game and has not concentrated on331

the old drifted pathway – simulation games, while the SASRec is affected by the trivial behaviors332

of simulation games. These visualization results strongly show that our RETR can capture various333

behavior pathways dynamically for each user.334

RPGRPGRPG AdventureAdventureActionActionVRAdventure RPG

RETR
SASRec

Target: RPG 

0.65 0.70 0.75 0.80 0.900.85 0.95

Figure 3: Policy Visualization and Task Correlation. (a) We visualize the learned policy logits A in Tiny-
Taskonomy 5-Task learning. The darkness of a block represents the probability of that block selected for the
given task. We also provide the select-and-skip decision U from our AdaShare. In (b), we provide the task
correlation, i.e. the cosine similarity between task-specific dataset. Two 3D tasks (Surface Normal Prediction
and Depth Prediction) are more correlated and so as two 2D tasks (Keypoint Detection and Edge Detection).

order to improve the performance of Semantic Segmentation. In contrast, our approach is still able
to improve the segmentation performance instead of suffering from the negative interference by
the other two tasks. The same reduction in negative transfer is also observed in Surface Normal
Prediction in Tiny-Taskonomy 5-Task Learning. However, our proposed approach AdaShare still
performs the best using less than 1/5 parameters of most of the baselines (Table 4).

Moreover, our proposed AdaShare also achieves better overall performance across the same task
on different domains. For image classification on DomainNet [42], AdaShare improves average
accuracy over Multi-Task baseline on 6 different visual domains by 4.6% (62.2% vs. 57.6%), with the
maximum 16% improvement in quickdraw domain. For text classification task, AdaShare outperforms
the Multi-Task baseline by 7.2% (76.1% vs. 68.9%) in average over 10 different NLP datasets [8]
and maximally improves 27.8% in sogou_news dataset.

Figure 4: Task Correlation in
DomainNet. Similar tasks are
more correlated, such as real is
closer to painting than quickdraw.

Policy Visualization and Task Correlation. In Figure 3: (a), we
visualize our learned policy distributions (via logits) and the feature
sharing policy in Tiny-Taskonomy 5-Task Learning (more visual-
izations are included in supplementary material). We also adopt the
cosine similarity between task-specific policy logits as an effective
representation of task correlations (Figure 3: (b), Figure 4). We have
the following key observations. (a) The execution probability of
each block for task k shows that not all blocks contribute to the task
equally and it allows AdaShare to mediate among tasks and decide
task-specific blocks adaptive to the given task set. (b) Our learned
policy prefers to have more blocks shared only among a sub-group of
tasks in ResNet’s conv3_x layers, where middle/high-level features,
which are more task specific, are starting to get captured. By having
blocks shared by a sub-group of tasks, AdaShare encourages the
positive transfer and relieves the effect of negative transfer, resulting
in better overall performance. (c) We clearly observe that Surface
Normal Prediction and Depth Prediction, two different 3D tasks, are
more correlated, and that Keypoint prediction and Edge detection,
two different 2D tasks are more correlated (see Figure 3: (b)). Similarly, Figure 4 shows that the
domain real is closer to painting than quickdraw in DomainNet. Both results follow the intuition
that similar tasks should have similar execution distribution to share knowledge. Note that the cosine
similarity purely measures the correlation between the normalized execution probabilities of different
tasks, which is not influenced by the different optimization uncertainty of different tasks.

Computation Cost (FLOPs). AdaShare requires much less computation (FLOPs) as compared to
existing MTL methods. E.g., in Cityscapes 2-task, Cross-stitch/Sluice, NDDR, MTAN, DEN, and
AdaShare use 37.06G, 38.32G, 44.31G, 39.18G and 33.35G FLOPs and in NYU v2 3-task, they use
55.59G, 57.21G, 58.43G, 57.71G and 50.13G FLOPs, respectively. Overall, AdaShare offers on
average about 7.67%-18.71% computational savings compared to state-of-the-art methods over all
the tasks while achieving better recognition accuracy with about 50%-80% less parameters.
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SASRec

Target: Indie 

Ground
Truth

(a)  Casual Behavior Pathway
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Figure 3: Visualizations of behavior heatmaps for RETR and SASRec of three random users in Steam
dataset. They are corresponding to casual, correlated and drifted behavior pathways respectively.

5 Conclusion335

A sequential recommender is designed to make accurate recommendations based on users’ historical336

behaviors. The sequential recommendation system has benefited many practical applications such as337

online advertising. However, the users’ behaviors are dynamic and come in a continually evolving338

manner. A user’s current decision may only call upon the interest from the certain relevant behaviors339

of the past. We conclude these sequential characteristics as the behavior pathway. Previous models340

cannot capture the behavior pathway dynamically. We propose the Recommender Transformer341

(RETR) with a novel pathway attention mechanism to tackle these challenges. The pathway attention342

develops a pathway router to dynamically get the behavior pathway for each user and capture the343

evolving patterns. Our RETR achieves state-of-the-art performance on seven real-world datasets for344

sequential recommendation. The visualization results also show that our RETR can dynamically345

capture the behavior pathway for each user.346
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