
Adaptive Sharpness-Aware Pruning for Robust Sparse
Networks

Anna Bair1 Hongxu Yin2 Maying Shen2 Pavlo Molchanov2 Jose M. Alvarez2
1Carnegie Mellon University 2NVIDIA

abair@cmu.edu, {dannyy, mshen, pmolchanov, josea}@nvidia.com

Abstract

Robustness and compactness are two essential attributes of deep learning models
that are deployed in the real world. The goals of robustness and compactness
may seem to be at odds, since robustness requires generalization across domains,
while the process of compression exploits specificity in one domain. We introduce
Adaptive Sharpness-Aware Pruning (AdaSAP), which unifies these goals through
the lens of network sharpness. The AdaSAP method produces sparse networks that
are robust to input variations which are unseen at training time. We achieve this
by strategically incorporating weight perturbations in order to optimize the loss
landscape. This allows the model to be both primed for pruning and regularized for
improved robustness. AdaSAP improves the robust accuracy of pruned models on
classification and detection over recent methods by up to +6% on OOD datasets,
over a wide range of compression ratios, pruning criteria, and architectures.

1 Introduction

Figure 1: Robustness of pruned models trained on
ImageNet degrades on ImageNet-C at high spar-
sities for many SOTA pruning methods. AdaSAP
reduces the degradation in robust performance rel-
ative to validation performance. We approach the
dashed line, which indicates equal rates of degra-
dation of robust and standard performance.

Robustness to out of distribution (OOD) data
and efficiency are two important requirements
for modern deep learning models. In this work,
we focus on efficiency via network compression,
in particular network pruning. Pruning retains
neurons deemed important over the training dis-
tribution, so pruned networks can have reduced
OOD generalization, as observed in [29, 40].

Our goal is to produce compact and robust neu-
ral networks. We emphasize robustness to input
variations that are unseen at training time. Our
method leverages a new flatness-based optimiza-
tion procedure that both primes the network for
pruning and improves network robustness. Flat-
ness can mitigate the loss in performance during
the pruning procedure and regularize the net-
work towards improved robustness. AdaSAP
significantly improves the relative robustness
over prior pruning art, seen in Figure 1.1 Our
contributions are:

1Relative robustness in Fig. 1 refers to the ratio between the accuracy on corrupted images and the standard
validation accuracy at a given prune ratio. A dense model in this setup retains 55% of its validation performance
when given corrupted images (location of grey dashed line).

Workshop on Distribution Shifts, 37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 2: AdaSAP is a three step process that takes as input a dense pretrained model and outputs a
sparse robust model. The process can be used with any pruning method.

• We introduce Adaptive Sharpness-Aware Pruning (AdaSAP), a method to jointly optimize for
sparsity and robustness in deep networks.

• We propose novel adaptive weight perturbations that prepare a network for both pruning and
robustness to OOD inputs. This strategy actively manipulates the flatness of the loss surface so as
to minimize the impact of removing neurons with lower importance scores.

• We demonstrate state-of-the-art performance compared to prior art by noticeable margins across
a wide range of setups, covering (i) two tasks (classification and detection), (ii) two OOD types
(image corruption and distribution shift), (iii) four networks (ResNet50 and MobileNet V1/V2 for
classification, SSD512 for detection), (iv) two pruning paradigms (parameter-based and latency-
based), and (v) sparsity ratios spanning from around 20% to 80%.

2 Related Works

Robustness. In this work we primarily focus on robustness to corrupted images [24, 49] due to
its application in real-world settings rather than other forms of robustness, such as adversarial
robustness [2, 5, 6, 24, 25, 44, 54, 56]. Several prior works examine the robustness of sparse networks
[11, 17, 51]. However, almost all current pruning methods still lead to sparse networks having worse
performance on OOD data than dense networks, a result we replicate in Figure 1 [29, 40].

Efficiency. Efforts to improve network efficiency include pruning, distillation, quantization, and
adaptation [3, 8, 16, 18, 20, 21, 26, 28, 37, 38, 45–47, 52, 57, 59, 63, 65, 66]. In the current work,
we focus on structured channel-wise pruning due to the easily obtained speedups. By pruning larger
structural elements within a network, such as kernels or filters, rather than individual weights, the
pruned elements can be removed and more directly lead to speed gains [1, 46, 52].

Flat minima. The relationship between flat minima and generalization has been studied for many
years [4, 7, 19, 27, 32–35, 55, 61, 62]. Flat minima are generally correlated with improved general-
ization, but flatness can also be metric-dependent [12]. Sharpness-Aware Minimization (SAM) [15] is
a way to optimize for finding flatter minima and leads to better generalization. Recent work improves
the efficiency, performance, and applicability of SAM [13, 36, 42, 48] The present work is inspired by
SAM and its use in model compression [15, 48] but differs in its use of adaptive weight perturbations
and its emphasis on the robustness of pruned models. In this work we use the formulation introduced
in ASAM [36] due to its improved performance over that of SAM.

3 Method

Flat minima are minima within relatively large regions of the parameter space that have low loss.
Optimizing for flatter minima improves generalization and adversarial robustness in deep networks
and generalization in sparse networks [15, 48, 55]. Based on these observations, we hypothesize that
optimizing for flatter minima during pruning can also enhance robustness.

(Step 1) Adaptive Weight Perturbations. Our procedure performs gradient updates which are
informed by the local flatness in order to best prepare the network for pruning. We follow the
intuition that important weights are worth adding some sharpness to our model, while unimportant
weights can have stronger regularization [46]. Unlike previous flatness-based optimization methods
[15, 32, 36, 50] which apply regularization uniformly, we adapt the size of allowable perturbations
based on the likelihood of each weight to be pruned: weights with low importance scores have large
perturbation balls which enforce that they lie within flatter regions and vice versa.

The complete derivation of our gradient update is in Appendix 7, but we briefly review it here:
Consider a network whose parameters are grouped into I partitions, where each partition i includes

2



the set of weights wi. Consider training loss LS(w) of the network over the training dataset S,
and a set of perturbation ball radius sizes ρ, with each ρi corresponding to the size of allowable
perturbations for neuron wi. Our objective, which places unimportant neurons in flatter regions, is:

min
w

max
{∥T−1

w ϵi∥≤ρi}I
i=1

LS(w + ϵ). (1)

where Tw and its inverse T−1
w are transformations that can reshape the perturbation region (i.e.,

not necessarily a ball) [36]. The values ρi are a function of each neuron’s importance score. This
objective essentially finds the maximal (transformed) perturbation ϵi (transformed to T−1

w ϵi) within
the range of allowable sizes ρi for each neuron wi. We then perturb all weights w with the set of
perturbations ϵ and minimize the loss over the perturbed weights.

Our enhanced gradient update optimizes for finding a minimum that also lies in a region of low loss.
Beginning with our objective in Eq. 1, we perform a series of approximations in order to find the
most adversarial perturbations ϵ = {ϵi} (i.e., highest loss near the minimum) which we can apply to
the neurons w = {wi} in our network. Our final flatness-informed gradient update is

∇wiLS,w(wi) ≈ ∇wiLS,w(wi)|wi+ϵ̂i

where

ϵ̂i = ρi
T 2
w∇wi

LS,w(wi)

∥∇wi
LS,w(wi)∥2

.

We use this gradient update in place of the standard gradient update during the warmup phase of our
pruning procedure before neuron removal. This sets up our network so that when pruning begins, we
have a model that is closer to a flat minima.

(Step 2) Neuron Removal. We use structured channel-wise pruning in order to obtain latency and
size reductions. AdaSAP can work with a range of pruning methods. The method could also be
applied to unstructured pruning, although we do not explore this in the present work.

(Step 3) Robustness Encouragement. We regularize weights uniformly since pruning is complete
and we now enforce robustness for the entire network. This uniform (i.e. non-adaptive) weight
regularization is equivalent to using the optimization procedure SAM [15].

3.1 Final Comments

AdaSAP is not a pruning method but rather an optimization paradigm that performs robustness-aware
pruning. Our method can be used in conjunction with any existing pruning criteria. Additionally, we
note that our method differs from robust pruning methods such as [51, 58, 67] since we consider a
setting in which the model may be exposed to novel types of corruptions at test time. We demonstrate
results on OOD datasets in an attempt to demonstrate the versatility of our method: despite only
training on ImageNet data, we can still expect the models to be robust to unseen input variation.

4 Results

4.1 Experiment Details

Full details can be found in Appendix 6.

Pruning criteria. We evaluate our method on two types of pruning: parameter-based, which reduces
the number of paramenters, and latency-based, which optimizes for faster inference. We refer to our
two variants as AdaSAPP (parameter-specific) and AdaSAPL (latency-specific). We use ℓ2 norm
magnitude pruning for AdaSAPP and HALP for AdaSAPL.

Metrics. We report the Top1 accuracy of the pruned models on ImageNet (validation), ImageNet
C, and ImageNet V2. Additionally, we report two robustness ratios: RC and RV 2, defined as the
ratio in Top1 accuracy on the robustness dataset to the Top1 accuracy on the validation set. That is,
RC = accC/accval and RV2 = accV2/accval.

Optimization. We use ASAM [36], a recent improvement upon SAM.

Baselines. We compare to Taylor pruning, [46] HALP [52], GR-eg [60], EagleEye [39],
ABCPruner [41], SMCP [31], and magnitude pruning [21].

3



4.2 Classification

Table 1: ResNet50 - Parameter Reduction.

Method Size ↓ Val RV2 RC IN-V2 IN-C

ResNet50
Dense 1 77.32 0.83 0.55 64.79 42.46

Magnitude 0.20 73.80 0.83 0.48 61.40 35.27
Taylor 0.20 73.56 0.82 0.46 60.56 33.93
EagleEye 1G 0.27 74.13 0.83 0.47 61.30 34.84
AdaSAPP 0.20 74.63 0.83 0.50 62.08 37.30

Magnitude 0.44 76.83 0.85 0.51 64.92 39.27
Taylor 0.42 75.85 0.84 0.50 63.51 37.84
Greg-1 0.43 73.72 0.82 0.48 60.47 35.04
Greg-2 0.43 73.84 0.83 0.48 61.05 35.39
ABCPruner 0.44 73.52 0.82 0.50 60.46 36.64
AdaSAPP 0.40 77.27 0.83 0.53 64.51 41.23

Greg-1 0.62 75.16 0.82 0.49 61.82 36.88
Greg-2 0.62 75.36 0.82 0.49 62.06 37.09
ABCPruner 0.71 74.84 0.83 0.51 61.73 38.35
AdaSAPP 0.62 77.99 0.84 0.52 65.49 42.68

Magnitude 0.76 77.32 0.84 0.53 65.20 40.73
Taylor 0.76 77.05 0.84 0.52 64.53 39.68
Greg-1 0.77 76.25 0.83 0.51 63.61 38.96
EagleEye 3G 0.78 77.07 0.84 0.53 64.84 40.67
AdaSAPP 0.77 78.29 0.84 0.55 66.14 43.22

Table 2: ResNet50 - Latency Reduction.

Method Speedup ↑ Size ↓ Val RV2 RC IN-V2 IN-C

ResNet50
Dense 1 1 77.32 0.838 0.55 64.79 42.46

HALP 2.6 0.43 74.46 0.82 0.47 61.21 35.03
AdaSAPL 2.6 0.41 75.37 0.83 0.50 62.61 37.93

HALP 1.6 0.68 76.55 0.83 0.51 63.62 39.13
SMCP 1.7 0.60 76.62 0.83 0.51 63.86 38.72
AdaSAPL 1.6 0.65 77.28 0.85 0.54 65.35 41.63

HALP 1.2 0.87 77.45 0.84 0.53 64.88 40.77
SMCP 1.2 0.87 77.57 0.84 0.53 65.02 40.91
AdaSAPL 1.1 0.82 77.93 0.84 0.55 65.53 42.92

Parameter reduction.

Table 1 shows how
AdaSAP compares fa-
vorably to other pruning
methods at a variety
of pruning ratios for
ResNet50. Our method
performs strongly across
all accuracy and ro-
bustness ratio metrics.
MobileNet V1 and V2
results show a similar
trend and are included in
Appendix 8.

Latency Reduction.

Table 2 shows that using
AdaSAP with HALP out-
performs top prior works
across all metrics.

4.3 Object Detection

Results and training details
can be found in Appendix
6 and 8. Across two prun-
ing levels, AdaSAP con-
sistently outperforms the
HALP baseline by notice-
able margins.

4.4 Ablations

Sensitivity to importance
metrics. Although ℓ2
norm leads to the best per-
formance in the parameter-based setting, AdaSAP can work with other saliency metrics, such as
Taylor importance, and outperform baselines, as seen in Appendix 9.

Adaptive perturbations. Using adaptive weight perturbations in the first step leads to improved
performance over using uniform weight perturbations (i.e. SAM) by helping the network achieve a
more prunable state, as seen in Appendix 9.

4.5 Sharpness Analysis

We measure sharpness of the model directly before and after pruning. Full results are in Appendix 8.
Using AdaSAP leads to flatter models both before and after pruning. This can help explain why our
method leads to improved generalization.

5 Conclusion

We introduce the Adaptive Sharpness-Aware Pruning method (AdaSAP) which optimizes for both
accuracy and robust generalization during the pruning procedure. The method consists of three
steps: application of our novel adaptive weight perturbations, pruning, and flatness-based robustness
encouragement. AdaSAP outperforms a variety of SOTA pruning techniques on clean and robust
performance and relative robustness in both image classification and object detection.

4



References
[1] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional

neural networks. ACM Journal on Emerging Technologies in Computing Systems (JETC),
13(3):1–18, 2017.

[2] Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to
small image transformations? arXiv preprint arXiv:1805.12177, 2018.

[3] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training
of neural networks. Advances in neural information processing systems, 31, 2018.

[4] Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-
stability tradeoff in neural network pruning. Advances in Neural Information Processing
Systems, 33:20852–20864, 2020.

[5] Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial examples.
arXiv preprint arXiv:1607.04311, 2016.

[6] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th ACM workshop on artificial intelligence and
security, pages 3–14, 2017.

[7] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
and Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural
Information Processing Systems, 34:22405–22418, 2021.

[8] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat
Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, et al. Chamnet: Towards efficient network
design through platform-aware model adaptation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11398–11407, 2019.

[9] Pau de Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS Torr, Gregory Rogez, and Puneet K
Dokania. Progressive skeletonization: Trimming more fat from a network at initialization. arXiv
preprint arXiv:2006.09081, 2020.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[11] James Diffenderfer, Brian Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya Kailkhura.
A winning hand: Compressing deep networks can improve out-of-distribution robustness.
Advances in Neural Information Processing Systems, 34:664–676, 2021.

[12] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pages 1019–1028. PMLR,
2017.

[13] Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent YF Tan, and Joey Tianyi Zhou. Sharpness-aware
training for free. arXiv preprint arXiv:2205.14083, 2022.

[14] M. Everingham, L. Van Gool, C. KI Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. IJCV, 88:303–308, 2009.

[15] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
mization for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

[16] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[17] Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, and Yingyan Lin.
Drawing robust scratch tickets: Subnetworks with inborn robustness are found within randomly
initialized networks. Advances in Neural Information Processing Systems, 34:13059–13072,
2021.

5



[18] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

[19] Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Expandnets: Linear over-
parameterization to train compact convolutional networks. Advances in Neural Information
Processing Systems, 33:1298–1310, 2020.

[20] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[21] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in neural information processing systems, pages
1135–1143, 2015.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[23] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 784–800, 2018.

[24] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[25] Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin Gimpel. Using trusted data
to train deep networks on labels corrupted by severe noise. Advances in neural information
processing systems, 31, 2018.

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

[28] J. Hoffmann, S. Agnihotri, T. Saikia, and T. Brox. Towards improving robustness of compressed
cnns. In ICML UDL Workshop, 2021.

[29] Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do
compressed deep neural networks forget? arXiv preprint arXiv:1911.05248, 2019.

[30] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[31] Ryan Humble, Maying Shen, Jorge Albericio Latorre, Eric Darve, and Jose Alvarez. Soft
masking for cost-constrained channel pruning. In European Conference on Computer Vision,
pages 641–657. Springer, 2022.

[32] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

[33] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

[34] Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt Kusner. When do flat minima optimizers
work? In Advances in Neural Information Processing Systems.

[35] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

6



[36] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International
Conference on Machine Learning, pages 5905–5914. PMLR, 2021.

[37] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. NeurIPS, 1989.

[38] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations,
2019.

[39] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for
efficient neural network pruning. In European conference on computer vision, pages 639–654.
Springer, 2020.

[40] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in
pruning: The effects of pruning neural networks beyond test accuracy. Proceedings of Machine
Learning and Systems, 3:93–138, 2021.

[41] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and Yonghong Tian.
Channel pruning via automatic structure search. arXiv preprint arXiv:2001.08565, 2020.

[42] Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and
scalable sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12360–12370, 2022.

[43] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and
Jian Sun. Metapruning: Meta learning for automatic neural network channel pruning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3296–3305,
2019.

[44] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[45] Pavlo Molchanov, Jimmy Hall, Hongxu Yin, Jan Kautz, Nicolo Fusi, and Arash Vahdat. Lana:
latency aware network acceleration. In European Conference on Computer Vision, pages
137–156. Springer, 2022.

[46] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance
estimation for neural network pruning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11264–11272, 2019.

[47] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

[48] Clara Na, Sanket Vaibhav Mehta, and Emma Strubell. Train flat, then compress: Sharpness-
aware minimization learns more compressible models. arXiv preprint arXiv:2205.12694, 2022.

[49] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In International Conference on Machine Learning, pages
5389–5400. PMLR, 2019.

[50] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? Advances in neural information processing systems, 31, 2018.

[51] V. Sehwag, S. Wang, P. Mittal, and S. Jana. Hydra: Pruning adversarially robust neural networks.
NeurIPS, 33:19655–19666, 2020.

[52] Maying Shen, Pavlo Molchanov, Hongxu Yin, and Jose M Alvarez. When to prune? a policy
towards early structural pruning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12247–12256, 2022.

[53] Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao, Jianna Liu, and Jose Alvarez. Structural
pruning via latency-saliency knapsack. In Advances in Neural Information Processing Systems,
2022.

7



[54] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning
attacks. Advances in neural information processing systems, 30, 2017.

[55] David Stutz, Matthias Hein, and Bernt Schiele. Relating adversarially robust generalization to
flat minima. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 7807–7817, 2021.

[56] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[57] E. Tartaglione, A. Bragagnolo, A. Fiandrotti, and M. Grangetto. Loss-based sensitivity regular-
ization: towards deep sparse neural networks. NN, 2022.

[58] Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Sreetama Sarkar, Qi Zhao,
Sabine Kuhn, Lukas Frickenstein, Anmol Singh, Christian Unger, Naveen-Shankar Nagaraja,
et al. Adversarial robust model compression using in-train pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 66–75, 2021.

[59] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

[60] Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization.
arXiv preprint arXiv:2012.09243, 2020.

[61] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust
generalization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

[62] Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning: Perspec-
tive of loss landscapes. arXiv preprint arXiv:1706.10239, 2017.

[63] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne
Sze, and Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile
applications. In Proceedings of the European Conference on Computer Vision (ECCV), pages
285–300, 2018.

[64] Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for channel
numbers. arXiv preprint arXiv:1903.11728, 2019.

[65] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural
networks. In International Conference on Learning Representations, 2019.

[66] S. Yu, Z. Yao, A. Gholami, Z. Dong, S. Kim, MW Mahoney, and K. Keutzer. Hessian-aware
pruning and optimal neural implant. In WACV, 2022.

[67] Qi Zhao and Christian Wressnegger. Holistic adversarially robust pruning. In The Eleventh
International Conference on Learning Representations, 2022.

[68] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-
level structured pruning using polarization regularizer. Advances in neural information process-
ing systems, 33:9865–9877, 2020.

8



Supplementary Material

6 Experiment Details

6.1 Datasets

We conduct image classification experiments on the ImageNet dataset [10]. To evaluate the general-
ization ability of pruned models, we also evaluate models on ImageNet-C [24] and ImageNet-V2 [49]
datasets. The former consists of the validation images from the ImageNet dataset, but with nineteen
types of corruptions applied with five different levels of severity. The latter is a dataset created in
the same manner as the original dataset, but consisting of different images. Therefore, it is intended
to measure out of distribution performance of models. This ImageNet-V2 dataset includes three
different sets, each one with a slightly different sampling strategy. We focus our experiments on
the MatchedFrequencies dataset, but include evaluation all three datasets in Table 3 and see that
our method consistently outperforms the baseline. Results do not use ASAM.

We conduct object detection experiments on the Pascal VOC dataset [14]. We additionally create a
Pascal VOC-C dataset, in which we apply the ImageNet-C corruptions to the Pascal VOC test set. We
only use one severity level. We evaluate the model on the Pascal VOC test set as well as our VOC-C
dataset. We report mean average precision (mAP) and a robustness ratio RC = mAPC/mAPval.

6.2 Additional Robustness Datasets

As described above, we choose the ImageNet V2 Matched Frequencies dataset to perform our main set
of experiments, but there are two other ImageNet V2 datasets: Threshold 0.7 and Top Images. These
three datasets vary in terms of selection criteria for included images. Matched Frequencies attempts
to match the image selection frequency of MTurk workers in the original ImageNet validation set.
Threshold 0.7 samples from among images with a selection frequency of at least 0.7. Top Images
includes the images with the highest selection frequency within each class. We provide the pruned
model robustness comparison on these the additional ImageNet V2 datasets in Table 3.

6.3 Network Architectures

In our experiments we prune three different networks for the classification task: ResNet50, MobileNet
V1 and MobileNet V2 [22, 30]. We use a pretrained model trained for 90 epochs with a cosine
learning rate as in HALP [53] and EagleEye [39]. For object detection, we follow the experimental
setup in HALP [53] to prune an SSD512 model with ResNet50 as the backbone. We perform
Distributed Data Parallel training across 8 V100 GPUs with batch size 128 for all experiments.

6.4 Pruning Schedule.

Given a pre-trained model, for any architecture, we run the warm up for 10 epochs, and then we
follow the same pruning schedule as in [9]: we prune every 30 iterations and, in each iteration, we
prune away a pr fraction of neurons so that the final network is pruned by a fraction p (resulting in a
network of size 1− p). To determine the pr fraction, we follow an exponential decay schedule. Let
k = 1− p and let kr be the number of neurons remaining after r pruning iterations, where the total
number of pruning iterations is R. Let m be the number of neurons in the dense network, and define
α = r

R . Then, kr = exp{α log k + (1− α logm)}. We fine-tune the pruned model for another 79
epochs (to reach 90 epochs total).

6.5 Optimization Hyperparameters

The base optimizer is SGD with cosine annealing learning rate with a linear warmup over 8 epochs, a
largest learning rate of 1.024, momentum of 0.875, and weight decay 3.05e− 05. Unless otherwise
stated we use ρmin = 0.01 and ρmax = 2.0 for all experiments – we observe these values scale
well across networks and tasks. For robustness encouragement we use ρ = 2.0 in line with prior
work [36]. For some ablation experiments, the original SAM [15] optimizer is sufficient and in these
cases we reduce ρmax = 0.1 and use constant ρ = 0.05 for finetuning.

9



Table 3: Our AdaSAP method outperforms the Taylor pruning baseline on the additional ImageNet
V2 datasets. Additionally, the AdaSAP model pruned to 76% outperforms the dense model across all
three datasets. Results without ASAM.

Method Size ↓ Matched Frequences Threshold 0.7 Top Images

Dense 1 64.80 73.79 79.00

Taylor 0.20 60.56 69.74 75.53
AdaSAPP 0.20 62.03 70.83 76.62
Taylor 0.40 63.51 72.54 77.83
AdaSAPP 0.40 64.62 73.75 78.87
Taylor 0.76 64.53 73.32 78.72
AdaSAPP 0.76 66.00 74.70 79.66

Algorithm 1 AdaSAP Pruning Procedure
Input: Pretrained model weights w partitioned into neurons wi, pruning importance criteria ϕ, ρ bounds (ρmin,
ρmax)
Let train_iter = Algorithm 2
for epoch in warmup_epochs do ▷ Adaptive Weight Perturbation

for each iteration do
Sample training batch b
w = train_iter (w, b, ρmin, ρmax)

end for
end for
for epoch in pruning_epochs do ▷ Pruning

for each iteration do
Sample training batch b
w = train_iter (w, b, ρmin, ρmax)
if iteration % prune_frequency = 0 then

s = ϕ(w) ▷ Score all neurons
idxs = rank(s)[: prune_num] ▷ Neurons with lowest score
widxs = 0 ▷ Prune neurons

end if
end for

end for
for epoch in finetune_epochs do ▷ Robustness encouragement

for each iteration do
Sample training batch b
w = train_iter (w, b, ρmin = ρmax = constant) ▷ SAM

end for
end for
return w

Output: Pruned and finetuned model

Algorithm 2 AdaSAP Optimization Iteration
Input: model weights w partitioned into neurons wi, training batch b, ρ bounds (ρmin, ρmax), loss L, score

function ψ, learning rate η
for each neuron wi do

si = ψ(wi) ▷ Score
Compute ρi as in Eq. 3 ▷ Determine perturbation ball size
Compute ϵ̂i as in Eq. 6 ▷ Optimal perturbation
gi ≈ ∇wiLb,w(wi)|wi+ϵ̂i ▷ Gradient approximation

end for
w = w − ηg
return w

10



Figure 3: (Left) Before pruning, encourage neurons that will be pruned to lie within a flat minimum,
since their removal will affect the loss less. (Right) After pruning, promote robustness by encouraging
flatness across the network.

7 Full Derivation of Gradient Update

Setup. We derive the gradient update for training. Consider a network whose parameters are grouped
into I partitions, where each partition i includes the set of weights wi. In our setting, since we
consider channel-wise pruning, each channel constitutes a partition. For simplicity, throughout this
paper we refer to a channel-wise group of weights as a neuron. We use wi to refer to a single neuron
and w to refer to the collection of all neurons {wi}Ii=1.

Perturbation regions. Consider training loss LS(w) of the network over the training dataset S. In
order to quantify our weight perturbation, we consider a set of perturbation ball radius sizes ρ, with
each ρi corresponding to the size of allowable perturbations for neuron wi. Given this notation, the
goal of our warmup procedure is to optimize for a network in which unimportant neurons lie in flatter
minima prior to pruning via the following objective

min
w

max
{∥T−1

w ϵi∥≤ρi}I
i=1

LS(w + ϵ). (2)

where Tw and its inverse T−1
w are transformations that can be applied during optimization so as to

reshape the perturbation region (i.e., not necessarily a ball). This strategy was studied in [36] in order
to allow for greater perturbation exploration and leads to improved performance. We determine the
values ρi based on computing an importance score for each neuron, similar to a pruning criterion.
Consider a neuron importance score function ψ(·), such as the ℓ2 norm of the neuron weight, the
Taylor importance score [46], or other scores that are some function of weights, gradients, and higher
order terms [38, 52, 59, 66]. Given the score for each neuron as si = ψ(wi), we can now compute
the perturbation ball size ρi that maps the score for a given neuron to be within the desired range of
perturbation sizes

ρi = ρmax −
si − smin

smax − smin
(ρmax − ρmin), (3)

Scores smin and smax are obtained empirically at each gradient step, but ρmax and ρmin are global
algorithm hyperparameters that are set ahead of time and we find them to scale across various
experiment settings. Due to the progress in pruning literature, neuron importance estimates ψ(·) can
be evaluated during training with little additional computational overhead.

Optimal gradient update. Our enhanced gradient update optimizes for finding a minimum that
also lies in a region of low loss. Beginning with our objective in Eq. 2, we perform a series of
approximations in order to find the most adversarial perturbations ϵ = {ϵi} (i.e., highest loss near
the minimum) which we can apply to the neurons w = {wi}Ii=1 in our network in order to obtain a
flatness-informed gradient update.

We use a first order Taylor expansion around each neuron i with respect to ϵ around 0 (in line with
[15]) to approximate the inner maximization in Eq. 2. This gives us ϵ∗, the optimal ϵ we can use to
inform our gradient update. Define ϵ̃i = T−1

w ϵi. For simplicity we denote the conditional loss due to
weight perturbations as the function LS,w(·). Then we derive our optimal update as follows for each

11



neuron:

ϵ̃∗i =∥ϵ̃i∥2≤ρi
LS,w(wi + Tw ϵ̃i),

≈∥ϵ̃i∥2≤ρi
LS,w(wi) + ϵ̃⊤i Tw∇wiLS,w(wi),

=∥ϵ̃i∥2≤ρi
ϵ̃⊤i Tw∇wiLS,w(wi), (4)

∥ · ∥2 being the ℓ2 norm. We can then approximate ϵ̃∗ by rescaling the gradient associated with each
neuron so that its norm is ρi through

ϵ̃∗i = ρi
sign(∇wi

LS,w(wi))|Tw∇wi
LS,w(wi)|

(∥Tw∇wiLS,w(wi)∥22)1/2
. (5)

Since we were originally approximating ϵ̃i = T−1
w ϵi, we recover our approximation of ϵ∗ as

ϵ̂i = ρi
T 2
w∇wi

LS,w(wi)

∥∇wiLS,w(wi)∥2
. (6)

Approximating the optimal gradient update. We then find an approximation to our desired gradient.
Referring to Eq. 2, we can find the gradient of the inner maximization in order to derive a sharpness-
aware gradient update. We use the inner maximization and plug in our approximation ϵ̂ for each
individual neuron during adjacent pruning steps, defined as

∇wi
max

∥T−1
w ϵi∥2≤ρi

LS,w(wi + ϵi) ≈ ∇wi
LS,w(wi + ϵ̂i)

=
d(wi + ϵ̂i)

dwi
∇wiLS,w(wi)|wi+ϵ̂i

= ∇wi
LS,w(wi)|wi+ϵ̂i +

dϵ̂i
dwi

∇wi
LS,w(wi)|wi+ϵ̂i

≈ ∇wi
LS,w(wi)|wi+ϵ̂i , (7)

where we drop the second order terms for efficiency. This leads us to our final gradient update
approximation between adjacent pruning steps as ∇wi

LS,w(wi) ≈ ∇wi
LS,w(wi)|wi+ϵ̂i .

We use this gradient update in place of the standard gradient update during the warmup phase of our
pruning procedure before neuron removal. This sets up our network so that when pruning begins, we
have a model that is closer to a flat minima. Optimization details are in Algorithm 2.

8 Additional Results

8.1 MobileNet Results

We include results on MobileNet V1 and MobileNet V2 in Tables 4 and 5. These parallel our
main results in the main paper, in which we evaluated AdaSAPP and AdaSAPL on ResNet50 and
compared them against other pruning methods. Here, we perform a similar comparison, where Table 4
includes our results on AdaSAPP and Table 5 includes our results on AdaSAPL. We compare against
Taylor importance [46], EagleEye [39], and PolarReg [68] for AdaSAPP and against HALP [53],
SMCP [31], MetaPruning [43], AutoSlim [64], AMC [23], and EagleEye [39] for AdaSAPL. Results
here do not use ASAM. We can observe that AdaSAP performs strongly compared to baselines,
particularly in the parameter-based setting.

8.2 Object Detection Results

As summarized in the main paper, AdaSAP improves performance on object detection in addition to
image classification. Results are in Table 6.

8.3 Margin of Improvement in Classification

Figure 4 shows the margin of performance on various corruption types for the classification task.
AdaSAP outperforms a Taylor pruned model on all corruptions, across three different sparsities. We
can see that it tends to particularly improve performance on several corruptions that may be important
for the autonomous driving application, such as pixelated images, fog, and snow.

12



Table 4: MobileNet-V1/V2 - Parameters. Top1 Accuracy as a function of the pruning ratio.

Method Size ↓ Val RV2 RC IN-V2 IN-C

MobileNet-V1
Dense 1 72.63 0.82 0.45 59.30 32.79

Taylor 0.40 69.61 0.80 0.42 55.90 29.51
AdaSAPP 0.39 71.05 0.82 0.44 58.08 31.06

Taylor 0.52 71.21 0.81 0.43 57.65 30.92
AdaSAPP 0.52 71.58 0.82 0.44 58.75 31.77

EagleEye 0.56 70.86 0.80 0.42 56.88 29.98
AdaSAPP 0.56 72.05 0.82 0.45 58.94 32.24

MobileNet-V2
Dense 1 72.10 0.81 0.45 58.50 32.40

Taylor 0.72 70.49 0.81 0.43 56.87 30.22
AdaSAPP 0.72 72.06 0.82 0.45 58.73 32.63

PolarReg 0.87 71.72 0.82 0.45 58.46 32.04
Taylor 0.88 71.93 0.82 0.45 58.75 32.21
AdaSAPP 0.88 72.34 0.82 0.45 59.28 32.80

Table 5: MobileNet-V1/V2 - Latency. Top1 accuracy for latency constrained pruning for various
speedup ratios. “–” indicates that we could not evaluate the model due to unavailable code or models.

Method Speedup ↑ Val RV2 RC IN-V2 IN-C

MobileNet-V1
Dense 1 72.63 0.82 0.45 59.30 32.79

MetaPruning 2.06 66.1 – – – –
AutoSlim 2.27 67.9 – – – –
HALP 2.32 68.30 0.80 0.41 54.95 28.15
SMCP 2.39 68.34 0.80 0.42 54.38 28.68
AdaSAPL 2.33 68.45 0.81 0.41 55.42 28.29

0.75 MobileNetV1 1.37 68.4 – – – –
AMC 1.42 70.5 – – – –
MetaPruning 1.42 70.9 – – – –
EagleEye 1.47 70.86 0.80 0.42 56.88 29.98
HALP 1.68 71.31 0.81 0.43 57.38 30.77
SMCP 1.72 71.00 0.81 0.44 57.20 31.02
AdaSAPL 1.70 71.48 0.82 0.44 58.23 31.35

MobileNet-V2
Dense 1 72.10 0.81 0.45 58.50 32.40

HALP 1.84 70.42 0.81 0.45 57.21 31.69
AdaSAPL 1.81 71.35 0.81 0.46 57.85 32.63

HALP 1.33 72.16 0.81 0.46 58.53 33.04
AdaSAPL 1.39 72.19 0.82 0.46 59.36 32.91

8.4 Margin of Improvement in Object Detection

Similarly to our result on classification, we include margins of performance improvement on various
corruption types for the object detection task in Figure 5.

13



Table 6: Object Detection. mAP on validation images and ImageNetC style corruptions on the
Pascal VOC dataset.

Method Size ↓ Val Corrupted RC

HALP 0.4 0.774 0.583 0.753
AdaSAP 0.4 0.795 0.620 0.780

HALP 0.2 0.770 0.580 0.753
AdaSAP 0.2 0.793 0.616 0.776

snow

spatter

glass blur

elastic transform

Figure 4: Performance difference on various ImageNet C corruption types on models of varying
sparsity. Accuracy improvement is the Top1 accuracy on a model trained with AdaSAP minus that of
a Taylor pruned model.

8.5 Relative Robustness

In Figure 6 we show that AdaSAP outperforms baselines on each of the constituent elements of the
relative robustness metric. Recall that relative robustness is robust accuracy divided by standard
validation accuracy. In addition to outperforming baselines on relative robustness, AdaSAP also
outperforms on ImageNet validation accuracy and ImageNet C robust accuracy.

8.6 Sharpness

Consider the sharpness defined in [15] as max∥ϵ∥2≤ρ LS(w + ϵ) − LS(w) This measures the
maximum amount that the loss could change if the weights are perturbed within a ball of radius ρ. We
measure sharpness directly before and after pruning, to evaluate how sharpness prepares the network
to be optimally pruned, as well as how pruning affects the model sharpness. Table 7 shows that using
AdaSAP leads to flatter models both before and after pruning. In line with previous results that found
an association between flatness and generalization, this result can help explain why our models have

14



0.00 0.01 0.02 0.03 0.04 0.05
mAP Improvement

brightness

fog
elastic

 transform
jpeg compressio

n
spatter

saturatezoom blur
contrastdefocus blurspeckle noise

frostgaussia
n blur

pixelate
snowshot noisegaussia

n noiseimpulse noisemotion blur

C
or

ru
pt

io
n 

T
yp

e

60% pruned model
80% pruned model
average

Figure 5: Pascal VOC-C dataset. Performance improvement per corruption as the difference
between a model trained using AdaSAP minus that of a HALP pruned model.

Table 7: Sharpness before and after pruning without finetuning. Lower sharpness values indicates
a flatter loss landscape. AdaSAP achieves flatter minima both directly before and after pruning,
before any finetuning.

Sharpness Sharpness
Method Size ↓ pre pruning post pruning

Taylor 0.423 0.039 0.044
AdaSAPP 0.403 0.037 0.039
Taylor 0.760 0.039 0.041
AdaSAPP 0.759 0.037 0.038

better generalization and robust generalization performance. See Figure 3 for a visual explanation of
the benefits of sharpness in both pruning and robustness.

8.7 Confidence Intervals

We include confidence intervals over three repeats in Table 8. AdaSAP does lead to significant
performance improvement over other methods.

15



Figure 6: ImageNet Validation and ImageNet C performance on AdaSAP vs. baselines. Contains
the same data as used to produce Figure 1 but demonstrates that AdaSAP additionally dominates
baselines on both components of the relative robustness metric.

Table 8: Confidence intervals over three repeats. EagleEye checkpoints are obtained from the
official repository with only one seed.

Method Size ↓ Val IN-V2 IN-C

Magnitude 0.20 73.71± 0.12 61.21± 0.17 35.33± 0.18
Taylor 0.20 73.42± 0.19 60.36± 0.19 33.97± 0.12
EagleEye 0.27 74.13 61.30 34.84
AdaSAPP 0.20 74.54± 0.09 62.21± 0.13 37.30± 0.19

Magnitude 0.76 77.32± 0.06 65.18± 0.27 40.64± 0.20
Taylor 0.76 77.05 64.53 39.68
EagleEye 0.78 77.07 64.84 40.67
AdaSAPP 0.77 78.23± 0.06 65.98± 0.32 43.43± 0.20

9 Additional Ablations

9.1 Performance change after pruning

In Table 9 we show how the loss and accuracy change over the course of pruning. Our hypothesis is
that our method sets up the network for better pruning, so that the performance drop over the course
of pruning is minimized. In most cases, our method has the best validation loss and accuracy both
before and after pruning. This indicates that our method sets up the model to be pruned well, and
also preserves performance well throughout the pruning process.

9.2 Sensitivity to Pruning Criteria

Table 10 shows that AdaSAP can also be used with other pruning criteria, such as Taylor importance.
Although ℓ2 norm magnitude (AdaSAPP ) performs the best, AdaSAP with Taylor pruning still
outperforms Taylor pruning with SGD optimization.

9.3 Varying the length of the adaptive weight perturbation step.

Throughout the main set of experiments we set to 10 the number of epochs used for the adaptive
weight perturbation step. This delineates how long we use the AdaSAP optimizer for, as well as
how soon into the procedure we begin pruning. In this experiment, we analyze the sensitivity of the
approach to this parameter. We report results for this experiment in Table 11. We can observe that as
we make this period longer, validation accuracy and ImageNet C accuracy both drop slightly, while

16



Table 9: Validation Loss and Accuracy directly before and after pruning (before additional fine-
tuning). Across several pruning levels, our method generally reaches the lowest validation loss and
accuracy both before and after pruning. Results do not use ASAM.

Method Size ↓ Val Loss Before Val Loss After Val Acc Before Val Acc After

Taylor 0.2 2.245 3.315 67.798 42.915
Mag 0.2 2.416 3.288 63.843 43.21
SAM 0.2 2.255 3.2 67.577 45.802
AdaSAPP 0.2 2.293 3.146 66.555 46.313
Taylor 0.63 2.284 2.69 66.67 57.046
Mag 0.63 2.408 2.587 63.844 59.275
SAM 0.63 2.327 2.676 65.541 57.449
AdaSAPP 0.63 2.251 2.574 67.473 59.962
Taylor 0.76 2.441 2.42 63.389 63.711
Mag 0.76 2.292 2.406 66.714 64.087
SAM 0.76 2.401 2.379 64.019 64.589
AdaSAPP 0.76 2.213 2.347 68.463 65.393

Table 10: Sensitivity to pruning criteria. AdaSAP performs best when combined with magnitude
pruning, but is flexible enough to be used with other criteria, such as Taylor importance. Here we see
that AdaSAP with Taylor pruning matches or outperforms SGD with Taylor pruning. Results do not
use ASAM.

Method Size ↓ Val RV2 RC IN-V2 IN-C

Taylor + SGD 0.42 75.85 0.84 0.50 63.51 37.84
AdaSAPP,Taylor 0.43 76.26 0.84 0.50 63.77 38.07
AdaSAPP 0.41 76.93 0.84 0.52 64.49 39.64
Taylor + SGD 0.76 77.05 0.84 0.52 64.53 39.68
AdaSAPP,Taylor 0.76 77.42 0.84 0.52 65.24 40.27
AdaSAPP 0.76 77.86 0.85 0.53 66.00 41.30

Table 11: Effects of varying number of epochs of adaptive weight perturbation. Increasing the
number of epochs leads to smaller models but slightly worse validation and ImageNet C performance.

Num epochs Size ↓ Val RV2 RC IN-V2 IN-C

5 0.48 73.89 0.83 0.48 61.29 35.65
10 0.46 73.82 0.83 0.48 60.91 35.59
20 0.44 73.63 0.84 0.48 61.48 35.25
30 0.43 73.47 0.83 0.48 60.72 35.04

Table 12: Comparison of various weight perturbation strategies during robustness encouragement.

Perturbation Type Val IN-C IN-V2

No weight perturbations 73.98 35.84 62.00
Adaptive weight perturbations 74.10 35.72 61.94
Uniform weight perturbations 74.39 35.86 62.03

ImageNet V2 seems to have no discernible pattern. Ratios RC and RV 2 also stay consistent across
the experiment.

17



Table 13: Comparison of AdaSAP to SAM optimizer. AdaSAP outperforms SAM and SGD on
standard validation performance and ImageNet-C performance, but slightly trails SAM on ImageNet-
V2 when both methods are augmented with ASAM.

Method Size ↓ Val RV2 RC IN-V2 IN-C

SGD
Dense 1 77.32 0.84 0.54 64.79 42.46

Taylor + SGD 0.20 73.56 0.82 0.46 60.56 33.93

AdaSAP vs. SAM (without ASAM)
Taylor + SAM 0.20 73.62 0.83 0.47 61.37 34.49
AdaSAPP 0.20 74.38 0.83 0.48 62.03 35.86

Taylor + SGD 0.42 75.85 0.84 0.50 63.51 37.84
Taylor + SAM 0.43 76.27 0.84 0.50 63.81 37.72
AdaSAPP 0.40 77.03 0.84 0.51 64.62 39.57

Taylor + SGD 0.76 77.05 0.84 0.52 64.53 39.68
Taylor + SAM 0.76 77.29 0.84 0.52 64.84 40.07
AdaSAPP 0.76 77.86 0.85 0.53 66.00 41.30

AdaSAP vs. SAM (with ASAM)
SAM + ASAM 0.19 73.93 0.84 0.50 61.76 36.66
AdaSAPP + ASAM 0.19 74.63 0.83 0.50 62.08 37.30

SAM + ASAM 0.41 77.10 0.84 0.53 64.94 40.90
AdaSAPP + ASAM 0.40 77.27 0.83 0.53 64.51 41.23

9.4 Robustness Encouragement

As mentioned in the main text, we consider various ablations to determine the necessity of various
steps of the AdaSAP procedure. In the third step of our procedure, robustness encouragement, we
choose to apply uniform perturbations across all weights in the network. This differs from the first
step, in which we apply adaptive weight perturbations. In Table 12, we examine the effects of different
weight perturbation strategies during the robustness encouragement phase. We can see that while all
three strategies lead to relatively close final performance across the three datasets, uniform weight
perturbations perform slightly better, suggesting that our choice of applying them in our procedure
may be slightly benefitting the performance.

9.5 Importance of Adaptive Weight Perturbations

In Table 13 we extend an ablation from the main paper in which we compare AdaSAP to SAM,
effectively evaluating the importance of warmup with adaptive weight perturbations. Here, we
perform the comparison on a wider range of sparsities and observe that a similar pattern emerges.

18


	Introduction
	Related Works
	Method
	Final Comments

	Results
	Experiment Details
	Classification
	Object Detection
	Ablations
	Sharpness Analysis

	Conclusion
	Experiment Details
	Datasets
	Additional Robustness Datasets
	Network Architectures
	Pruning Schedule.
	Optimization Hyperparameters

	Full Derivation of Gradient Update
	Additional Results
	MobileNet Results
	Object Detection Results
	Margin of Improvement in Classification
	Margin of Improvement in Object Detection
	Relative Robustness
	Sharpness
	Confidence Intervals

	Additional Ablations
	Performance change after pruning
	Sensitivity to Pruning Criteria
	Varying the length of the adaptive weight perturbation step.
	Robustness Encouragement
	Importance of Adaptive Weight Perturbations


