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ABSTRACT

A major challenge in self-supervised learning from visual inputs is extracting in-
formation from the learned representations to an explicit and usable form. This is
most commonly done by learning readout layers with supervision or using highly
specialized heuristics. This is challenging primarily because the self-supervised
pretext tasks and the downstream tasks that extract information are not tightly
connected in a principled manner—improving the former does not guarantee im-
provements in the latter. The recently proposed counterfactual world modeling
paradigm aims to address this challenge through a masked next frame predic-
tor base model which enables simple counterfactual extraction procedures for ex-
tracting optical flow, segments and depth. In this work, we take the next step and
parameterize and optimize the counterfactual extraction of optical flow by solv-
ing the same simple next frame prediction task as the base model. Our approach
achieves state of the art performance for motion estimation on real-world videos
while requiring no labeled data. This work sets the foundation for future methods
on improving the extraction of more complex visual structures like segments and
depth with high accuracy.

1 INTRODUCTION

Accurately estimating visual properties of the physical world from visual inputs is an essential ca-
pability for building intelligent embodied agents. Recently there has been significant progress in
achieving this goal using video data, as evidenced by developments in video vision language mod-
els (Wang et al., 2024a), generative video models (OpenAI, 2024; Blattmann et al., 2023; Yang et al.,
2024), and spatiotemporal self-supervised learning models (Bardes et al., 2024; Feichtenhofer et al.,
2022; Qian et al., 2021). These powerful models learn an implicit representation of a wide variety
of visual properties such as object motion, shape, material properties, and semantic relationships.
However, for these abilities to be practically useful, they require a means for explicitly extracting
such properties from the representation.

There are two main existing paradigms for explicitly extracting visual properties from representa-
tions: supervised and heuristic. In the supervised paradigm, base representations are fine-tuned to
support read-out layers using labeled datasets (Bardes et al., 2024; Feichtenhofer et al., 2021). This
is suboptimal because it requires costly labeled data for each task of interest. In contrast, heuristic
approaches exploit emergent feature-level correlations by applying various nearest neighbor or clus-
tering procedures (Jabri et al., 2020; Bian et al., 2022; Amir et al., 2022), or use strong task-specific
regularizations like smoothness (Jiang et al., 2024; Stone et al., 2021). The heuristic approach is
limited because the relationship between the desired property to be extracted and the heuristic cri-
terion is often indirect and only truly valid for a subset of data inputs. This makes it difficult to
improve heuristic methods in a principled way—getting a better loss on the pre-training or pretext
task is not guaranteed to yield better extractions.

This begs the question: Is there a paradigm that enables explicit extraction that is both principled, in
the sense that it is tightly connected with how the base model is trained, but that can also be improved
without labeled data? The Counterfactual World Modeling (CWM) paradigm (Bear et al., 2023) (see
Figure 1A and B) seeks to satisfy this requirement. It proposes a technique for self-supervised train-
ing on videos that enables the extraction of scene properties like optical flow, segmentation, and
depth with simple generic procedures. The base model in CWM is a sparse RGB-conditioned next
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Figure 1: (A) Counterfactual world models (CWM) learn to predict the next frame with a temporally
factored masking policy. (B) After training such a predictor, the motion of a point can be estimated
using a simple counterfactual “program”: the model predicts the next frame with and without a
colored patch placed on the point, and the difference between the predictions reveals the estimated
motion. (C) Hand-designed interventions are out of domain for the CWM predictor, causing in-
consistent motion estimates. We propose a technique for learning to predict learned interventions
without any labeled data, enabling state-of-the-art unsupervised object motion estimation.

frame predictor ΨRGB, a two-frame masked autoencoder with a temporally factored masking policy.
It learns to predict the pixels of the second frame based on the first frame and a small set of revealed
patches of the second frame. To solve this task the model has to implicitly learn about the physical
properties of objects and their dynamics. Scene properties are then explicitly extracted from from
the base model through simple counterfactual programs. Counterfactual programs start with coun-
terfactual interventions—simple changes to the predictor’s inputs, such as placing a visual marker
or moving an image patch, resulting in counterfactual predictions. Explicit properties are then de-
rived by further processing based on the difference between the clean (or factual) and counterfactual
predictions.

A key example of this concept is estimating optical flow. In the FLOW (Figure 1B) counterfactual
program for extracting object or scene motion, the intervention is a distinctive perturbation placed on
the point we want to track in the first frame. The RGB-conditioned predictor receives this perturbed
input frame along with a clean input frame and makes a prediction with and without the intervention.
FLOW then estimates motion by deriving where the predictor “carries” the perturbation by comparing
the clean and counterfactual predictions. Because this FLOW counterfactual essentially provides
an algorithmic definition for the “flow” concept, there is a principled direct connection between
minimizing the loss of the base model and the accuracy of the extraction procedure.

Bear et al. (2023) showed that initially promising with this approach, using bright colored patches
as the perturbation. These hand designed perturbations, however, can be unreliable, in part because
they are out of domain for the RGB-conditioned base predictor, sometimes leading to spurious pre-
dictions and inconsistent motion estimation. To improve the connection with ΨRGB and improve
extractions from FLOW, here we recast it as a differentiable program diffFLOW with learnable pa-
rameters by introducing a function that predicts the appearance of the markers used for intervention.
We propose to optimize diffFLOW’s parameters by connecting its outputs to a flow-conditioned
next frame predictor ΨFLOW and doing joint optimization. Forcing ΨFLOW to predict a future frame
based on a present frame flow creates an information bottleneck which guarantees useful gradients
for optimizing the parameters of diffFLOW. Through this approach, we are training an extraction
procedure through the same unsupervised next-frame prediction task as the base predictor. We focus
on optical flow because motion estimation is the most fundamental notion of visual correspondence,
from which higher-order properties like shape, object segments, and dynamics can be derived.
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We find that CWM with optimized counterfactual interventions outperforms state-of-the-art unsu-
pervised motion estimation methods that are purposely built for this task (Stone et al., 2021; Jiang
et al., 2024) when evaluated on a challenging real-world motion estimation benchmark (Doersch
et al., 2022). Learning an optimized counterfactual intervention results in large performance im-
provements relative to fixed interventions, revealing a promising direction for future work to im-
prove counterfactual extraction of other visual structures.

2 RELATED WORK

Self-Supervised learning from video Many prior works focus on developing self-supervised repre-
sentation learning objectives by leveraging the inherent spatio-temporal structure in videos targeting
downstream tasks like video action recognition or temporal correspondence. These methods can be
broadly categorized into predictive and contrastive. Predictive techniques learn by making predic-
tions about the temporal ordering of videos (Wei et al., 2018; Misra et al., 2016), predicting missing
information for a target frame given a context frame in pixel space (Vondrick et al., 2018; Recasens
et al., 2021), or in feature space (Bardes et al., 2023; 2024), or by following a spatio-temporal
masked autoencoding paradigm in pixel (Tong et al., 2022; Wang et al., 2023a; Feichtenhofer et al.,
2022) or feature (Wang et al., 2023b) space. Contrastive representations get trained by learning to
encode temporally close frames (Feichtenhofer et al., 2021; Qian et al., 2021; Xu & Wang, 2021)
or spatio-temporally close patches (Jabri et al., 2020; Bian et al., 2022; Li et al., 2019) with sim-
ilar features. Counterfactual world models are another class of video predictive models that use a
temporally-factored masking policy Bear et al. (2023) during training. Various vision structures can
be extracted using a single pre-trained model by defining them as counterfactuals. This extraction
process has parameters which need to be chosen by hand which leads to sub-optimal structure ex-
tractions. In this paper, we provide a recipe to improve the extraction procedure by designing the
counterfactuls in a way that supports differentiable optimization through the pre-trained predictor.

Self-supervised motion estimation These works specifically focus on learning how to estimate
short or long term motion in videos without any supervision. Some works are based on prior con-
trastive and predictive techniques (Bardes et al., 2023; Bian et al., 2022; Xu & Wang, 2021) or prior
optical-flow methods (Stone et al., 2021; Jiang et al., 2024).

Visual prompting With the success of few-shot in-context learning methods for language prompt
optimization in LLMs and VLMs, there has been increasing interest in understanding their ability
to recognize visual prompts ( Nasiriany et al. (2024)) which offer the advantage of visually cueing
the model with more granular control. Yang et al. (2023) does a comprehensive study on the ability
of VLMs to understand a wide variety of visual prompts. Works such as Shtedritski et al. (2023)
investigate whether visual prompt engineering can be used to extract meaningful predictions from
VLMs. Counterfactual World Models ( Bear et al. (2023)) use a form of visual prompting via
patch-level interventions that involve making modifications to the input patches to a masked video
prediction model. These interventions can be used to extract meaningful structures. In this work,
we explore whether the intervention can be optimized for better motion estimation using CWM,
drawing parallels to prompt-optimiziation in VLMs.

Self-supervised learning from images Caron et al. (2021) introduce a method of label free disti-
laltion of ViTs (DINO), demonstrating that semantic segmentation emerges in the attention maps of
Vision Transformers (ViTs) trained with a contrastive learning objective. Oquab et al. (2023) extend
this approach by scaling up contrastive pre-training across larger datasets and model architectures,
enhancing overall performance. Additionally, they find that other vision tasks, such as depth es-
timation, can be derived by training a linear probe on the model’s frozen features with minimal
data. A similar observation is reported in latent diffusion models such as Stable Diffusion Rom-
bach et al. (2022), where attention maps facilitate zero-shot extraction of semantic segmentation
information Tian et al. (2024). Recent works have also found that long-range dense point tracking
in videos can be extracted using test-time optimization, leveraging DINO’s pre-trained for learning
correspondences Tumanyan et al. (2024).
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Figure 2: Improving counterfactual extractions by next-frame prediction The counterfactual
program diffFLOW extracts motion from a frozen RGB-conditioned predictor ΨRGB through coun-
terfactual intervention (details in Figure 3). Its parameters are trained using gradients from a flow-
conditioned predictor Ψflow that is jointly trained to perform next-frame prediction. The Ψflow can
only learn to predict future frames if given correct flow vectors. This explicit information bottleneck
ensures useful gradients will get passed back to diffFLOW. This setup allows us to get better ex-
tractions from a pre-trained ΨRGB predictor by training another flow-conditoned predictor Ψflow.

3 METHOD

In this section, we first revisit the counterfactual world modeling paradigm (Bear et al., 2023).
We then present our approach for unsupervised learning of optimized counterfactual interventions.
Last, we discuss several inference-time techniques that are essential for practical applications of the
motion representations learned by CWM.

3.1 CWM: COUNTERFACTUAL WORLD MODELS

RGB-Conditioned Next Frame Predictor The first element of CWM is an RGB-conditioned
next frame predictor ΨRGB, consisting of an encoder ΨRGB

E and decoder ΨRGB
D , similar to a Video-

MAE (Tong et al., 2022), but trained with a temporally factored masking policy (see Figure 1A). Let
I1, I2 ∈ R3×H×W be the two images in a video frame pair, and define Mα as a masking function
that randomly masks some fraction, α, of patches in an image. Given a fully visible first frame I1
and a partially visible second frame Mα(I2), ΨRGB is trained to predict I2 by minimizing

L = MSE(Î2, I2) where Î2 = ΨRGB
(
I1,Mα(I2)

)
. (1)

Setting α = 0.9 creates a temporally factored masking policy. By predicting the second frame pixels
given a full first frame and some visible patches of the second frame, ΨRGB is forced to learn what
underlying scene transformations can explain what is revealed by the few visible patches.

Counterfactual Interventions for Structure Extraction The base predictor has a strong depen-
dence on the appearance and position of the revealed patches from I1 and I2. This allows for extract-
ing visual structure through applying counterfactual interventions: small changes to the appearance
or the position of visible patches. By measuring the predictor’s response to these counterfactuals,
we can easily extract useful information like object motion, segments or shape from its representa-
tion. For the specific case of motion estimation, as shown in Figure 1 for the FLOW procedure, we
can place a colored patch on a moving object and determine its motion by finding its location in the
predicted frame. Formally, let C : (I, p) 7→ I ′ be a counterfactual intervention function that takes
an image I and places a colored patch at pixel location p = (u, v) ∈ [0, H) × [0,W ) to output the
counterfactual input I ′. To track a pixel p1 we first get second frame predictions with and without
the counterfactual intervention

Î ′2 = ΨRGB
(
I ′1,Mα(I2)

)
= ΨRGB

(
C (I1, p1) ,Mα(I2)

)
, Î2 = ΨRGB

(
I1,Mα(I2)

)
. (2)

Subtracting these two predicted frames and taking an L1-norm across the color channels produces
the difference image, δ = |Î ′2 − Î2|c1 (where the superscript c indicates the L1-norm is only over the
channel dimension, so that δ retains its H and W dimensions). In turn, we retrieve the predicted
pixel location p̂2 by finding the peak in the difference image: p̂2 = (û2, v̂2) = argmax(u,v) δ. The
concept of extracting visual structure through counterfactual intervention of a generic base predictor

4
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Figure 3: Parameterizing counterfactual extraction into a function diffFLOW : (I1, I2, p1) 7→
φ̂. Building on a pre-trained RGB-conditioned predictor ΨRGB, we cast the counterfactual flow
extraction procedure as a feedforward differentiable function diffFLOW that can predict a forward
motion vector for any pixel in an image pair. The parameters of the counterfactual intervention
prediction MLPθ are trained using gradients from an upstream flow-conditioned predictor Ψflow.

is itself generic, allowing for extraction of other structures like segments and depth maps (for details
on these extraction procedures see Bear et al. (2023)).

3.2 OPTIMIZING COUNTERFACTUALS FOR MOTION ESTIMATION

What makes a good counterfactual intervention? The main requirement for a good counterfac-
tual intervention is for it to cause meaningful changes in the outputs of the base predictor. While
counterfactual interventions through colored patches can extract motion from ΨRGB, as evidenced
by Figure 1C., the appearance content of the patch can be suboptimal. While sometimes effective,
a bright colored patch is out of domain for the base predictor. For a moving object, this results in
failure cases like not appearing on the object in the second frame, not moving with the object, or
unwanted artifacts in the prediction. All of these lead to noisy difference images and incorrect mo-
tion estimations. Can the appearance of the counterfactual intervention be optimized to avoid these
failures and improve performance?

We propose a method for learning the parameters of a function that predicts the appearance of
counterfactual interventions (see Figure 2) without using labeled data. We jointly train a counter-
factual motion prediction function, diffFLOW, which estimates a set of flow vectors, and a flow-
conditioned predictor, Ψflow, which takes a single frame along with the flow vectors to predict the
next frame. We improve diffFLOW by passing its outputs as inputs to Ψflow and training end-
to-end using the RGB reconstruction loss of the predictions of Ψflow. The information bottleneck
at the input of Ψflow, namely that it has no access to any RGB patches from the second frame I2,
supervises diffFLOW to produce accurate flow predictions, as Ψflow can only minimize its loss
by incorporating this motion information.

3.2.1 A FUNCTION FOR PREDICTING COUNTERFACTUAL INTERVENTIONS

We re-formulate the motion extraction procedure from Section 3.1 to make it a parameterized dif-
ferentiable function and introduce the functional form of a sum of colored Gaussians as a natural
intervention class. Let diffFLOW : (I1, I2, p1) 7→ φ̂ be a per-pixel motion estimation function with
learnable parameters θ that takes an image pair (I1, I2) and a pixel location p1 = (u1, v1) in I1 and
outputs the predicted flow φ̂ = p̂2 − p1 = (û2, v̂2) − (u1, v1) ∈ R2. The function diffFLOW
consists of multiple components: the counterfactual intervention function, C, which now produces
counterfactual inputs with Gaussian interventions instead of solid-color squares; the pre-trained,
frozen, RGB-conditioned predictor, ΨRGB; and a “softargmax module” to predict a pixel location
using a differentiable approximation to the argmax function. Here, C uses the encoder ΨRGB

E from
the RGB-conditioned predictor, and also contains a small MLP (with parameters θ) that predicts the
parameters of the Gaussian intervention.

Gaussian Interventions The RGB-conditioned encoder ΨRGB
E (I1,Mα(I2)) outputs a sequence of

feature tokens from its last transformer block. Given a pixel location p1 = (u1, v1), we find its cor-
responding token t, and use it as an input to an MLP that outputs a parameter vector γ = MLPθ(t),
which is used to compute the Gaussian intervention. Then, the counterfactual intervention function

5
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average

Figure 4: Multi-mask inference results in reliable predictions: Given a frame pair, we compute
N difference images δ1, δ1, . . . , δN with different random second frame masks Mα(I2). Observe
the uncertainty in the difference images. Averaging the difference images into δMM allows us to
obtain a sharp peak and an accurate flow vector.

uses these parameters to compute one Gaussian PDF for each color channel to form the three-channel
Gaussian intervention, which it then adds to I1 to produce the counterfactual input I ′1.

We use Gaussians because this functional class presents a natural method of forming in-domain
counterfactual inputs. Instead of solid-colored squares, which have a sharp cutoff and strongly sat-
urated colors, Gaussians approach zero smoothly as distance from the mean increases, allowing for
small colored bump-like interventions, which smoothly blend into the input image. We then com-
pute the second frame prediction with and without the counterfactual intervention as in equation 2,
and use these to compute the difference image δ. Because diffFLOW needs to be differentiable,
we use a softargmax over δ.

Softargmax Module We follow the softargmax formulation proposed in Wang et al. (2020a). Given
a difference image, δ = |Î ′2 − Î2|c1, we first apply a temperature-scaled 2D softmax and then take
the expectation according to that softmax to find the predicted second frame pixel location p̂2 =
Ep2∼softmax(δ/τ)[p2]. For distributions with a fairly localised peak, this expectation is a differentiable
approximation of argmax. The predicted flow is computed as φ̂ = p̂2 − p1.

3.2.2 LEARNING TO PREDICT COUNTERFACTUAL INTERVENTIONS WITHOUT SUPERVISION

Given an image pair (I1, I2), we estimate the motion for a set of pixels P = {p(1)1 , p
(2)
1 , . . . , p

(n)
1 }

using diffFLOW, obtaining a set of estimated forward flow vectors F̂ = {φ̂(1), φ̂(2), . . . , φ̂(n)}.
Let Ψflow :

(
I1, F̂

)
7→ Î2 be a flow-conditioned next frame predictor with parameters ψ that

takes the first frame RGB input I1 and predicts the next frame Î2, conditioned on the flow in-
put F̂ . We jointly optimize θ and ψ, by minimizing an MSE next frame reconstruction loss
minθ,ψ LMSE(Î2, I2).

3.3 MULTI-MASK INFERENCE FOR MANAGING UNCERTAINTY

The base predictor’s reconstruction of the second frame is strongly conditioned by the small set of
visible patches. Next frame prediction has high uncertainty: even with a few revealed patches, there
are many valid ways to reconstruct the rest of the future frame. This can cause noisy extractions for
two reasons. First: because the reconstructed pixels will not necessarily be the same across different
random samplings of visible patches may vary as well—this is an issue, because there is only one
correct answer. Second, a patch may be revealed near the location of the motion we are trying to
predict, which causes the model to not predict the counterfactual intervention in the future frame.

We implement a multi-mask (MM) inference procedure (see Figure 4). For MM-N , we run N
forward passes of diffFLOW (with different randomly generated masks output from Mα) until the
difference image computation, with each forward pass producing difference image δn. The final
MM prediction is the peak in the average delta image δMM = 1

N

∑N
n=1 δn. In Table 3, we find that

this results in large performance improvements.
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Figure 5: Qualitative comparison with baselines on TAP-Vid DAVIS across various frame gaps
Compared with Doduo and SMURF, CWM can accurately estimate the motion of points on both
foreground and background objects with high object and camera motion, as shown in the leftmost
15- and 30-frame gap examples. On foreground objects, CWM and Doduo both outperform SMURF
in cases where SMURF loses the object entirely, while CWM more accurately predicts the locations
of points on the extremities of these objects.

3.4 DISTILLING THE CWM MOTION REPRESENTATION

The multi-mask procedure is essential for high motion estimation accuracy but makes inference
expensive—it takes up to 40 multi-mask iterations until the accuracy improvements start to diminish.
To improve the practical utility of the CWM motion representation, we propose to distill it into an
architecture purpose-built for optical flow estimation. We sparsely label a large video dataset with
5% visible patches per frame pair using our trained counterfactual motion prediction model. We use
this to train the SEA-RAFT Wang et al. (2024b) model, which results in a fast and efficient motion
estimation model trained without any labeled data.

3.5 IMPLEMENTATION DETAILS

The RGB-conditioned next frame predictor ΨRGB is pre-trained with AdamW (Loshchilov & Hutter,
2019) using a learning rate of 1.5e− 4 with cosine annealing after 40 epochs of linear warm up. We
use a batch size of 1024 and train for a total of 800 epochs. The pre-trained predictor is then frozen
and used to generate flow estimations through counterfactual interventions within diffFLOW. We
use a similar optimization configuration to train our flow-conditioned next frame predictor, Ψflow.
The model is trained with a batch size of 32 for 200 epochs. We set the temperature parameter τ for
our soft-argmax module (Section 3.2.1) to 1

200 .

Both the RGB-conditioned predictor ΨRGB and the flow-conditioned predictor Ψflow are trained
on Kinetics-400 (Kay et al., 2017). For pre-training ΨRGB, we sample frame pairs 150ms apart
with center crop augmentation and resize to an input resolution of 256× 256. We also fine-tune on
512×512 resolution with interpolated position embeddings as proposed by Dosovitskiy (2020).The
flow-conditioned predictor Ψflow was trained on frame pairs 500ms at 256 × 256 resolution. The
purpose of this larger frame gap is to create a stronger dependence of Ψflow on the quality of flow
estimations from diffFLOW. Code will be released upon acceptance.
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Table 1: Quantitative comparison on TAP-Vid DAVIS—VFG Our proposed approach, CWM
with a learned counterfactual prompt prediction function, obtains state-of-the-art performance when
compared with unsupervised baselines. U† indicates self-supervised training with object masks.

Methods Dataset AD↓ MD↓ < δxavg ↑

S SEA-RAFT Wang et al. (2024b) Sintel 27.46 11.39 56.09
SEA-RAFT KITTI 20.19 6.99 59.01
SEA-RAFT Spring 23.75 12.79 51.44

U† Doduo Jiang et al. (2024) Youtube-VOS 12.3 - 43.5

U Doduo w/o segment Youtube-VOS 13.0 - 39.8
SMURF Stone et al. (2021) Sintel 27.21 18.42 44.47
SMURF KITTI 41.48 33.25 34.54
SMURF Chairs 28.77 18.96 40.75
DINOv2 Oquab et al. (2023) LVD-142M 13.4 - 36.0

U CWM 512 MM-40 WBinit Kinetics 11.78 3.63 52.30
CWM 512 MM-40 Kinetics 12.45 4.62 47.50
CWM 256 MM-40 Kinetics 14.63 5.84 42.62

U CWM distilled into SEA-RAFT Kinetics 25.22 14.79 43.36

Table 2: Quantitative comparison on TAP-Vid DAVIS CFG with a gap of ∆ = 5 frames.
Our proposed approach CWM, with a learned counterfactual prompt prediction function, obtains
state-of-the-art performance when compared with unsupervised baselines purposely-made for opti-
cal flow. U† indicates self-supervised training with object masks

Methods Dataset AD↓ < δxavg ↑

S SEA-RAFT Wang et al. (2024b) Sintel 2.20 83.85
SEA-RAFT KITTI 1.61 84.98
SEA-RAFT Spring 2.12 79.45

U† Doduo Jiang et al. (2024) Youtube-VOS 1.77 72.62
U SMURF Stone et al. (2021) Sintel 2.69 79.64

SMURF KITTI 4.54 71.27
SMURF Chairs 3.10 76.44

U CWM 512 MM-40 WBinit Kinetics 2.09 69.18
CWM 512 MM-40 Kinetics 2.41 59.24
CWM 256 MM-40 Kinetics 2.67 56.93

U CWM distilled into SEA-RAFT Kinetics 3.02 76.51

4 EXPERIMENTS

4.1 EVALUATION PROTOCOL

TAP-Vid DAVIS—Variable Frame Gap (VFG) We follow the procedure for motion estimation
on real data from Doduo (Jiang et al., 2024) based on the TAP-Vid DAVIS dataset (Doersch et al.,
2022) point tracking dataset. For each point in the 30 videos, we take the first frame where it appears
as the source image, and every other frame where it is visible as the target image 1. This is more
challenging than optical flow estimation because it requires estimating the motion of a point under
greater scene variability due to the variable frame gaps.

TAP-Vid DAVIS—Constant Frame Gap (CFG) We propose an additional protocol with fixed
frame gaps. For each CFG evaluation run, we choose a frame gap ∆ set to either 5, 10 or 15. For
each TAP-Vid DAVIS video, we select all pairs of frames that are ∆ apart, and compute metrics
using all tracked points visible in both frames.

Metrics We use the average distance (AD) between the estimated pixel and ground truth pixel lo-
cations and < δxavg , which is the average percentage of predictions with an error of less than 1, 2,
4, 8 and 16 pixels. These metrics respectively measure the accuracy and precision of the predic-

1Unlike the original TAP-Vid (Doersch et al., 2022) procedure, but in line with the estimation done by
Doduo (Jiang et al., 2024), we do not predict or evaluate the handling of occlusion
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Figure 6: Evolution of counterfactual interventions across training epochs: We observe how
the predicted counterfactual interventions change as the model trains. The intervention starts as a
disjoint streak of colors and converges to a localised peak. This in turn increasingly concentrates the
difference image δ and leads to better flow prediction. Green is the ground truth flow obtained from
the TAP-Vid dataset, and blue is our model’s prediction.

tions. Following Jiang et al. (2024), the metrics are computed after rescaling to a 256× 256 image.
To make sure each baseline is performing optimally, the input resolution is either the native video
resolution or 256× 256 depending on what results in the best performance.

SMURF is an unsupervised method specifically designed for optical flow estimation. This work
tailors the RAFT (Teed & Deng, 2020) architecture so it can be trained using optical flow-specific
heuristics losses like photometric loss and smoothness regularization. SMURF specializes in esti-
mating motion in consecutive frames, with checkpoints trained on KITTI, Sintel, and FlyingChairs.

Doduo is a method for finding dense correspondence across images trained without any human
annotations on in-the-wild videos from Youtube-VOS (Xu et al., 2018). It uses photometric loss and
a feature-metric variant using DINO (Caron et al., 2021) features. Doduo is not strictly unsupervised,
as it uses off-the-shelf Mask2former segments (Cheng et al., 2022). For a fair comparison, we also
report their numbers from an ablation training run without these masks.

SEA-RAFT is a supervised optical flow method that builds upon the original RAFT (Teed & Deng,
2020) by adding additional pretraining on TartanAir (Wang et al., 2020b), a novel mixture of Laplace
loss and improve the initialization of the flow estimation.

4.2 BASELINES

We compare with the state-of-the-art supervised SEA-RAFT (Wang et al., 2024b) and unsupervised
optical flow methods SMURF (Stone et al., 2021) and Doduo (Jiang et al., 2024).

4.3 COMPARISON TO SOTA METHODS

We compare with baselines on TAP-Vid DAVIS, using both VFG in Table 1 and CFG in Table 2. Our
best performing models accept 512 resolution inputs and are evaluated with MM-40. On the VFG
protocol, CWM with learned interventions significantly outperforms SMURF on all metrics. Fur-
ther, our best performing model is able to outperform Doduo with supervised masks on all metrics
and when the masks are removed, making Doduo fully unsupervised, the gap increases. On the CFG
protocol, our best performing models are competitive with all baselines, regardless of supervision.
Our model shows particularly strong performance on the AD metric, outperforming SMURF.

We show qualitative results in Figure 5. CWM is able to accurately track a point’s movement
through long frame gaps and complex dynamics. SMURF fails to accurately compute flow when
there is large object or camera motion between frames. CWM qualitatively is more robust than
Doduo in handling extreme cases, often accurately tracking points on the extremities of foreground
objects or on rapidly shifting backgrounds.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Performance of optical flow methods as a function of frame gap. We evaluate CWM,
SMURF, Doduo, and SEA-RAFT on TAP-Vid DAVIS CFG with three choices of fixed frame gap
(5, 15, and 30), comparing their performance as the amount of motion in each frame pair increases.
Compared to SMURF and SEA-RAFT, CWM and Doduo are far more robust to larger frame gaps.

Table 3: Analysis of CWM variations on TAP-Vid DAVIS VFG. We compare our optimized
counterfactual interventions with the fixed counterfactuals introduced in previous works (Bear et al.,
2023). We demonstrate a clear improvement on all metrics, highlighting the need for bespoke, in-
distribution counterfactual interventions.

Resolution Counterfactual MM iters AD↓ MD↓ < δxavg ↑

256 learned 1 19.72 8.87 34.52
256 learned 40 14.63 5.84 42.62
512 red square 1 21.92 12.49 27.80
512 green square 1 17.66 8.22 34.90
512 learned 1 14.97 6.45 40.54
512 learned 40 12.45 4.62 47.50

4.4 ANALYSIS OF CWM DESIGN CHOICES

We present analysis across the input resolution of the RGB-conditioned predictor, ΨRGB, the number
of masking iterations used for MM, and the form of the counterfactual intervention function, C. The
best-performing models use a 512 input resolution with MM-40.

By default, C allows for a variety of possible gaussian counterfactual interventions, with the Gaus-
sian for each color channel optimized independently. We observe that with this structure and an
initialization to random Gaussians, the three different-colored gaussians tend to converge to a simi-
lar shape and location (see Figure 6). We implement an initialization procedure so that C produces
interventions with similar gaussians for each color channel. With overlapping gaussians of each
color, these initial interventions look like “white bumps” (WBinit). Models trained with WBinit
outperform all other (non-distilled) CWM-based models (see Tables 1, 2).

While our distilled model is relatively weak on the average distance (AD) metrics, especially in the
high-motion VFG setting, on the < δxavg metric (average points within a threshold) it is compet-
itive with SMURF in both VFG and CFG, and outperforms all other CWM models in CFG. This
demonstrates the effectivnes of our distillation procedure in the low frame gap setting.

We directly compared our optimized counterfactual interventions with the solid-color patches (Bear
et al., 2023) and found that learned interventions perform better (see Table 3). This demonstrates
not only that the CWM framework is highly effective at unsupervised motion estimation, but also
that learning the counterfactual interventions is critical for good performance. We also show here
(Table 3) that models with a larger input resolution outperform those with a smaller one, and that
our multi-masking procedure significantly improves VFG metrics.

5 CONCLUSION

We demonstrate how to improve the performance generic CWM framework by learning to predict
counterfactual interventions, and demonstrate the efficacy of this approach at estimating optical flow.
Our approach takes an important first step towards optimizing counterfactual interventions for other
visual structures like object segments and depth maps, while also improving upon state-of-the-art
results for unsupervised optical flow estimation. Our findings indicate that CWM flow from learned
counterfactual interventions is robust to various levels of object and camera motion compared to the
existing SOTA baselines. In the future, we aim to extend our results to other downstream tasks.
We plan to develop various differentiable counterfactual programs to extract higher-level visual
structures such as segmentation, depth, keypoints, and dynamics, working our way toward a deeper
learned understanding of the visual world.
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