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ABSTRACT

Neural surface reconstruction aims to reconstruct accurate 3D surfaces based on
multi-view images. Previous methods based on neural volume rendering mostly
train a fully implicit model with MLPs, which typically require hours of training
for a single scene. Recent efforts explore the explicit volumetric representation
to accelerate the optimization via memorizing significant information with learn-
able voxel grids. However, existing voxel-based methods often struggle in recon-
structing fine-grained geometry, even when combined with an SDF-based volume
rendering scheme. We reveal that this is because 1) the voxel grids tend to break
the color-geometry dependency that facilitates fine-geometry learning, and 2) the
under-constrained voxel grids lack spatial coherence and are vulnerable to local
minima. In this work, we present Voxurf, a voxel-based surface reconstruction
approach that is both efficient and accurate. Voxurf addresses the aforementioned
issues via several key designs, including 1) a two-stage training procedure that
attains a coherent coarse shape and recovers fine details successively, 2) a dual
color network that maintains color-geometry dependency, and 3) a hierarchical
geometry feature to encourage information propagation across voxels. Extensive
experiments show that Voxurf achieves high efficiency and high quality at the
same time. On the DTU benchmark, Voxurf achieves higher reconstruction qual-
ity with a 20x training speedup compared to previous fully implicit methods.

1 INTRODUCTION

Neural surface reconstruction based on multi-view images has recently seen dramatic progress. In-
spired by the success of Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) on Novel View
Synthesis (NVS), recent works follow the neural volume rendering scheme to represent the 3D ge-
ometry with a signed distance function (SDF) or occupancy field via a fully implicit model (Oechsle
et al., 2021; Yariv et al., 2021; Wang et al., 2021). These approaches train a deep multilayer per-
ceptron (MLP), which takes in hundreds of sampled points on each camera ray and outputs the
corresponding color and geometry information. Pixel-wise supervision is then applied by measur-
ing the difference between the accumulated color on each ray and the ground truth. Struggling
with learning all the geometric and color details with a pure MLP-based framework, these methods
require hours of training for a single scene, which substantially limits their real-world applications.

Recent advances in NeRF accelerate the training process with the aid of an explicit volumetric rep-
resentation (Sun et al., 2022a; Yu et al., 2022; Chen et al., 2022). These works directly store and
optimize the geometry and color information via explicit voxel grids. For example, the density of a
queried point can be readily interpolated from the eight neighboring points, and the view-dependent
color is either represented with spherical harmonic coefficients (Yu et al., 2022) or predicted by shal-
low MLPs that take learnable grid features as auxiliary inputs (Sun et al., 2022a). These approaches
achieve competitive rendering performance at a much lower training cost (< 20 minutes). However,
their 3D surface reconstruction results cannot faithfully represent the exact geometry, suffering from

BCorresponding authors. Our code is available at https://github.com/wutong16/Voxurf.
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(b) NeuS at 5.5 hours. (d) Ours at 15mins.(a) DVGO at 4mins.Ground Truth (c) DVGO+NeuS at 12mins.
Figure 1: Comparisons among different methods for surface reconstruction and novel view synthesis.
(a) DVGO (v2) (Sun et al., 2022a;b) benefits from the fastest convergence but suffers from a poor surface; (b)
NeuS (Wang et al., 2021) produces decent surfaces after a long training time, while high-frequency details are
lost in both the geometry and the image; (c) the straightforward combination of DVGO and NeuS produces
continuous but noisy surfaces; (d) our method achieves around 20x speedup than NeuS and recovers high-
quality surfaces and images with fine details. All the training times are tested on a single Nvidia A100 GPU.

conspicuous noise and holes (Fig. 1 (a)). It is due to the inherent ambiguity of the density-based vol-
ume rendering scheme, and the explicit volumetric representation introduces additional challenges.

In this work, we aim to take advantage of the explicit volumetric representation for efficient training
and propose customized designs to harvest high-quality surface reconstruction. A straightforward
idea for this purpose is to embed the SDF-based volume rendering scheme (Wang et al., 2021; Yariv
et al., 2021) into explicit volumetric representation frameworks (Sun et al., 2022a). However, we
find this naı̈ve baseline model not working well by losing most of the geometry details and producing
undesired noise (Fig. 1 (c)). We reveal several critical issues for this framework as follows. First, in
fully implicit models, the color network takes surface normals as inputs, effectively building color-
geometry dependency that facilitates fine-geometry learning. However, in the baseline model, the
color network tends to depend more on the additional under-constrained voxel feature grid input,
thus breaking color-geometry dependency. Second, due to a high degree of freedom in optimizing a
voxel grid, it is hard to maintain a globally coherent shape without additional constraints. Individual
optimization for each voxel point hinders the information sharing across the voxel grid, which hurts
the surface smoothness and introduces local minima. We’ll unveil these effects and introduce the
insight for our architecture design via an empirical study in Sec. 4

To tackle the challenges, we introduce Voxurf, an efficient pipeline for accurate Voxel-based surface
reconstruction: 1) We leverage a two-stage training process that attains a coherent coarse shape and
recovers fine details successively. 2) We design a dual color network that is capable of representing
a complex color field via a voxel grid and preserving the color-geometry dependency with two sub-
networks that work in synergy. 3) We also propose a hierarchical geometry feature based on the
SDF voxel grid to encourage information sharing in a larger region for stable optimization. 4) We
introduce several effective regularization terms to boost smoothness and reduce noise.

We conduct experiments on the DTU (Jensen et al., 2014) and BlendedMVS (Yao et al., 2020)
datasets for quantitative and qualitative evaluations. Experimental results demonstrate that Voxurf
achieves lower Chamfer Distance on the DTU (Jensen et al., 2014) benchmark than a competitive
fully implicit method NeuS (Wang et al., 2021) with around 20x speedup. It also achieves remark-
able results on the auxiliary task of NVS. As illustrated in Fig. 1, our method is shown to be superior
in preserving high-frequency details in both geometry reconstruction and image rendering compared
to the previous approaches. In summary, our contributions are highlighted below:

1. Our approach enables around 20x speedup for training compared to the SOTA methods,
reducing the training time from over 5 hours to 15 minutes on a single Nvidia A100 GPU.

2. Our approach achieves higher surface reconstruction fidelity and novel view synthesis qual-
ity, which is superior in representing fine details for both surface recovery and image ren-
dering compared to previous methods.
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3. Our study provides insightful observations and analysis of the architecture design of the
explicit volumetric representation framework for surface reconstruction.

2 RELATED WORKS

Multi-view 3D reconstruction Recently, implicit representations that encode the geometry and
appearance of a 3D scene by neural networks have gained attention (Park et al., 2019; Chen &
Zhang, 2019; Lombardi et al., 2019; Mescheder et al., 2019; Sitzmann et al., 2019b; Saito et al.,
2019; Atzmon et al., 2019; Jiang et al., 2020; Zhang et al., 2021; Toussaint et al., 2022). Among
them, a plethora of papers have explored neural surface reconstruction from multi-view images.
Methods based on surface rendering (Niemeyer et al., 2020; Yariv et al., 2020; Liu et al., 2020b;
Kellnhofer et al., 2021) regard the color of an intersection point of the ray and the surface as the
final rendered color, while requiring accurate object masks and careful weight initialization. Recent
approaches (Wang et al., 2021; Yariv et al., 2021; Oechsle et al., 2021; Darmon et al., 2022; Zhang
et al., 2022; Liu et al., 2020a; Sitzmann et al., 2019a) based on volume rendering (Max, 1995) for-
mulate the radiance fields and implicit surface representations in a unified model, thereby achieving
the merits of both techniques. However, encoding the whole scene in pure MLP networks requires a
long training time. In a departure from these works, we leverage learnable voxel grids and shallow
color networks for quick convergence, as well as pursue fine details in surfaces and rendered images.

Explicit volumetric representation Despite the success of implicit neural representations in 3D
modeling, recent advances have integrated explicit 3D representations, e.g., point clouds, voxels, and
MPIs (Mildenhall et al., 2019), and received growing attention (Wizadwongsa et al., 2021; Xu et al.,
2022; Lombardi et al., 2019; Wang et al., 2022; Fang et al., 2022). Instant-ngp (Müller et al., 2022)
uses multi-resolution hashing for efficient encoding and implements fully-fused CUDA kernels.
Plenoxels (Yu et al., 2022) represent a scene as a sparse 3D grid with spherical harmonics and are
optimized two orders of magnitude faster than NeRF (Mildenhall et al., 2020). TensoRF (Chen
et al., 2022) considers the full volume field as a 4D tensor and factorizes it into multiple compact
low-rank tensor components for efficiency. The method most related to ours is DVGO (Sun et al.,
2022a), which adopts a hybrid architecture design including voxel grids and a shallow MLP. Despite
their remarkable results on novel view synthesis, none of them is designed to faithfully reconstruct
the geometry of the scene. In contrast, we target at not only rendering photo-realistic images from
novel viewpoints but also reconstructing high-quality surfaces with fine details.

3 PRELIMINARIES

Volume rendering with SDF representation. NeuS (Wang et al., 2021) represents a scene as an
implicit SDF field parameterized by an MLP. The ray emitting from the camera center o through an
image pixel in the viewing direction v can be expressed as {p(t) = o + tv|t ≥ 0}. The rendered
color for the image pixel is integrated along the ray with volume rendering (Max, 1995), which is
approximated by N discrete sampled points {pi = o+ tiv|i = 1, ..., N, ti < ti+1} on the ray:

Ĉ(r) =

N∑
i=1

Tiαici, Ti =

i−1∏
j=1

(1− αj), (1)

where αi is the opacity value, and Ti is the accumulated transmittance. The key difference between
NeuS and NeRF is the formula of αi. In NeuS, αi is formulated as:

αi = max

(
Φs(f(p(ti)))− Φs(f(p(ti+1)))

Φs(f(p(ti)))
, 0

)
. (2)

Here, f(x) is the SDF function, and Φs(x) = (1 + e−sx)−1 is the Sigmoid function, where the s
value is learned or manually updated during training.

Explicit volumetric representation. DVGO (Sun et al., 2022a) represents the geometry with
explicit density voxel grids V (density) ∈ R1×Nx×Ny×Nz . It applies a hybrid architecture for
color prediction that comprises a shallow MLP parameterized by Θ and a feature voxel grid
V (feat) ∈ RC×Nx×Ny×Nz . Given a 3D position p and the viewing direction v, the volume den-
sity σ and color c are estimated with:

σ = interp(p, V (density)), (3)
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Figure 2: Reconstruction results from different architecture designs. The surface normal n and learnable
feature f are both optional inputs to the color network. We show results of two cases under four settings on the
left, and we zoom in to analyze the surfaces, normal fields, and feature fields on the right. Case (1) (a, c) and
(b, d) show that the feature f helps maintain a coherent shape, while case (2) (b, d) reveal that it discourages
the reconstruction of geometry details since it disturbs the color-geometry dependency built by the normal n.

c = MLPΘ(interp(p, V
(feat)), p, v), (4)

where ‘interp’ denotes the trilinear interpolation. Following NeRF (Mildenhall et al., 2020; Tancik
et al., 2020), the positional encoding for both p and v is applied in Eqn. 4.

Naı̈ve Combination. A straightforward combination of the two techniques is to replace the volume
rendering in DVGO with the SDF-based volume rendering scheme as in Eqn. 1 and Eqn. 2. It serves
as the naı̈ve baseline in this work, which can hardly produce satisfactory results, as shown in Fig. 1
(c). We will cast light on this phenomenon via an empirical study in the next section.

4 STUDY ON ARCHITECTURE DESIGN FOR GEOMETRY LEARNING

In this section, we carry out some prior experiments with variants of the baseline model, aiming to
figure out the key factors for architecture design in this task. Specifically, we employ an SDF voxel
grid V (sdf) and apply Eqn. 2 for α calculation with a manually defined schedule for s. We start with
a shallow MLP as the color network, where 1) the local feature f interpolated from V (feat) and 2)
the normal vector n calculated by V (sdf) are both optional inputs. A decent surface reconstruction
is expected to possess a coherent coarse structure, accurate fine details, and a smooth surface. We
will next focus on these factors and analyze the effects of different architecture designs.

The key to maintaining a coherent coarse shape. Intuitively, the capacity of a shallow MLP
is limited, and it can hardly represent a complex scene with different materials, high-frequency
textures, and view-dependent lighting information. When the ground truth image encounters a rapid
color-shifting, the volume rendering integration over an under-fitted color field results in a corrupted
geometry, as shown in Fig. 2 case (1) (a) and (b). Incorporating the local feature f enables fast
color learning and increases the representation ability of the network, and the problem is noticeably
alleviated, as shown in Fig. 2 case (1), the differences between (a) and (c), (b) and (d).

The key to reconstructing accurate geometry details. We then introduce another case in Fig. 2
case (2). Its texture changes moderately, and the color is largely correlated with the surface normal
due to diffuse reflection. Although the geometry still collapses given neither normal n or feature f
as input in Fig. 2 case (2) (a), we can observe a reasonable reconstruction even with some geometry
details in Fig. 2 case (2) (b) with only n as the input. Incorporating the feature f does not further
reduce the Chamfer Distance (CD); instead, geometry details are missing since the learnable feature
f disturbs the geometry-color dependency, i.e., the relationship built between the color and the
surface normal, as shown in Fig. 2 case (2), the differences between (b) and (d). Considering the
cons and pros of the learnable local feature, it is valuable to design a framework that leverages it for
coherent shape and keeps color-geometry dependency for fine details.
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Figure 3: Overview of key components in our model. We adopt an explicit volumetric representation with
an SDF voxel grid V (sdf) and a feature voxel grid V (feat). In the middle, we show the design for our dual color
network, where ffeat

i is the interpolated feature from V (feat) at point pi, and fgeo
i denotes the hierarchical

feature constructed on the right. Here we show the multi-level sampling scheme and the region of grids that is
affected by one point during optimization with different settings of levels.

The reason for noisy surfaces. For all the cases above, the results suffer from obvious noise on the
surface. Compared with learning an implicit representation globally, the under-constrained voxel
grids lack spatial coherence and are vulnerable to local minima, which hurts the continuity and
smoothness of the surface. An intuitive idea is leveraging geometry cues from a region rather than a
local point, which can be introduced in model inputs, network components, and loss functions.

5 METHODOLOGY

Inspired by the insight revealed in Sec. 4, we propose several key designs: 1) we adopt a two-
stage training procedure that attains a coherent coarse shape (Sec. 5.1) and recovers fine details
(Sec. 5.2) successively; 2) we propose a dual color network to maintain color-geometry dependency
and recover precise surfaces and novel-view images; 3) we design a hierarchical geometry feature
to encourage information propagation across voxels for stable optimization; 4) we also introduce
smoothness priors, including a gradient smoothness loss for better visual quality (Sec. 5.3).

5.1 COARSE SHAPE INITIALIZATION

We initialize our SDF voxel grid V (sdf) with an ellipsoid-like zero level set inside a prepared
region for reconstruction as in (Sun et al., 2022a). We then perform coarse shape optimiza-
tion with the aid of V (feat) as introduced in Sec. 4. Specifically, we train a shallow MLP
with both normal vector n and local feature f as inputs, along with the embedded position p
and viewing direction v. To encourage a stable training process and smooth surface, we pro-
pose to conduct the interpolation on a smoothed voxel grid rather than the raw data of V (sdf).
In particular, we denote G(V, kg, σg) as applying 3D convolution on the voxel grid V with
a Gaussian kernel, whose weight matrix follows a Gaussian distribution: Ki,j,k = 1/Z ×
exp

(
−((i− ⌊kg/2⌋)2 + (j− ⌊kg/2⌋)2 + (k− ⌊kg/2⌋)2)/2σ2

g

)
, i, j, k ∈ {0, 1, ..., kg − 1}, where

Z denotes a normalization term, kg denotes the kernel size, and σg denotes the standard deviation.
Querying a smoothed SDF value d′ of an arbitrary point p thus becomes:

d′ = interp(p,G(V (sdf), kg, σg)). (5)

We use d′ for the ray marching integration following Eqn. 1 and Eqn. 2 and calculate the reconstruc-
tion loss. We also apply several smoothness priors as to be introduced in Sec. 5.3

5.2 FINE GEOMETRY OPTIMIZATION

At this stage, we aim to recover accurate geometry details based on the coarse initialization. We note
that the challenges are two-fold: 1) The study in Sec. 4 reveals a trade-off introduced by the feature
voxel grid, i.e., the representation capacity of the color field is improved at the sacrifice of color-
geometry dependency. 2) The optimization of the SDF voxel grid is based on trilinear interpolation
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to query a 3D point. The operation brings in fast convergence, while it also limits information
sharing across different locations, which may lead to local minima with degenerate solutions and a
sub-optimal smoothness. We propose a dual color network and a hierarchical geometry feature to
address these two issues, respectively.

Dual color network. The observation in Sec. 4 encourages us to design a dual color network that
takes advantage of the local feature ffeat

i interpolated from the learnable feature voxel grid V (feat)

without losing the color-geometry dependency. As shown in Fig. 3, we train two shallow MLPs
with different additional inputs besides the embedded position and view direction. The first MLP
ggeo takes the hierarchical geometry feature fgeo

i , which will be introduced later, to build the color-
geometry dependency; the second one gfeat takes both a simple geometry feature (i.e., the surface
normal ni) and the local feature ffeat

i as inputs to enable a faster and more precise color learning,
which will in turn benefit the geometry optimization. The two networks are combined in a residual
manner with detaching operations: the output of ggeo, denoted by c0, is detached before input to
gfeat, and the output is added back to a detached copy of c0 to get the final color prediction c.

Outputs of both ggeo and gfeat are supervised by a reconstruction loss between the ground truth
image and the integrated color along the ray. Specifically, the rendered colors from them are denoted
as C0(r) and C(r), and the overall reconstruction loss is formulated as:

Lrecon =
1

R
∑
r∈R

(
||C(r)− Ĉ(r)||22 + λ0||C0(r)− Ĉ(r)||22

)
, (6)

where Ĉ(r) denotes the ground truth color, and λ0 denotes a loss weight. V (feat) and the MLP
gfeat fit the scene field rapidly, while the MLP ggeo fits the scene at a relatively slower pace. The
detaching operations promote a stable optimization of ggeo guided by the reconstruction loss of
itself, which helps preserve color-geometry dependency.

Hierarchical geometry feature. Using the surface normal n as the geometry feature for the color
networks is a straightforward choice, while it takes in information only from adjacent grids of
V (SDF ). In order to enlarge the perception area and encourage information propagation across
voxels, we propose to look at a larger region of the SDF field and take the corresponding SDF
values and gradients as an auxiliary condition to the color networks. Specifically, for a given 3D
position p = (x, y, z), we take half of the voxel size vs as the step size and define its neighbours
along the X,Y, Z axis on both sides. Taking the X axis as an example, the neighbouring coordi-
nates are defined as pl−x = (xl−, y, z) and pl+x = (xl+, y, z), where xl− = max(x − l ∗ vs, 0),
xl+ = min(x + l ∗ vs, v

m
x ), l ∈ [0.5, 1.0, 1.5, ...] denotes the ‘level’ of neighbour area, and vmx

denotes the maximum of the voxel grid on x axis. We then extend the definition to a hierarchical
manner by concatenating the neighbours from different levels together as formulated below:

dlk = [dl−k , dl+k ] = [interp(pl−k , V (sdf)), interp(pl+k , V (sdf))], k ∈ {x, y, z},
fsdf
p (l) = [d0, d0.5x , d0.5y , d0.5z , · · ·, dlx, dly, dlz]T ,

(7)

where dlx denotes the SDF values queried from V (sdf) at locations pl−x and pl+x . When l = 0,
fsdf
p (0) = d0, which is exactly the SDF value at the location p itself. Then, we also incorporate

the gradient information into the geometry feature. Specifically, we can obtain the gradient vector
δlx = (dl+x − dl−x )/(2 ∗ l ∗ vs). We normalize the [δlx, δ

l
y, δ

l
z] to a L2-norm of 1, denoted as nl ∈ R3.

The hierarchical version of the normal is formulated as:
fnormal
p (l) = [n0.5, · · ·, nl]. (8)

Finally, the hierarchical geometry feature at point p for a predefined level l ∈ [0.5, 1.0, 1.5, ...] is to
combine the information above by:

fgeo
p (l) = [fsdf

p (l), fnormal
p (l)]. (9)

As shown in Fig. 3, fgeo
p (l) is input to the MLP ggeo to assist geometry learning.

5.3 SMOOTHNESS PRIORS

We incorporate two effective regularization terms to facilitate surface smoothness during training.
(1) First, we adopt a total variation (TV) regularization (Rudin & Osher, 1994):

LTV (V ) =
∑
d∈[D]

√
∆2

x(V, d) + ∆2
y(V, d) + ∆2

z(V, d), (10)
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Table 1: Quantitative evaluation on DTU dataset.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 mean

NeRF(Mildenhall et al., 2020) 1.83 2.39 1.79 0.66 1.79 1.44 1.50 1.20 1.96 1.27 1.44 2.61 1.04 1.13 0.99 1.54
IDR(Yariv et al., 2020) 1.63 1.87 0.63 0.48 1.04 0.79 0.77 1.33 1.16 0.76 0.67 0.90 0.42 0.51 0.53 0.90
DVGO(Sun et al., 2022a) 1.83 1.74 1.70 1.53 1.91 1.91 1.77 2.60 2.08 1.79 1.76 2.12 1.60 1.80 1.58 1.85
PointNeRF(Xu et al., 2022) 0.87 2.06 1.20 1.01 1.01 1.39 0.80 1.04 0.92 0.74 0.97 0.76 0.56 0.90 1.05 1.02
NeuS(Wang et al., 2021) 0.83 0.98 0.56 0.37 1.13 0.59 0.60 1.45 0.95 0.78 0.52 1.43 0.36 0.45 0.45 0.77
DVGO + NeuS 1.24 0.87 0.74 0.48 1.20 1.41 1.113 1.96 1.44 0.98 1.13 1.99 1.62 0.77 0.62 1.13
Ours 0.65 0.74 0.39 0.35 0.96 0.64 0.85 1.58 1.01 0.68 0.60 1.11 0.37 0.45 0.47 0.72

Table 2: An overall comparison on surface reconstruction, novel view synthesis, and training time on DTU.

PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ Time (Nvidia A100)

DVGO (Sun et al., 2022a) 31.64 0.916 0.159 1.85 4 mins
NeuS (Wang et al., 2021) 29.63 0.892 0.199 0.77 5.5 hours
Ours 32.16 0.929 0.144 0.72 15 mins

where ∆2
x(V, d) denotes the squared difference between the value of dth channel in voxel v :=

(i; j; k) and the dth value in voxel (i + 1; j; k), which can be analogously extended to ∆2
y(V, d)

and ∆2
z(V, d). We apply the TV term above to the SDF voxel grid, denoted by LTV (V

(sdf)), which
encourages a continuous and compact geometry.

(2) We also assume the surface to be smooth in a local area, and we follow the definition of the
Gaussian convolution in Sec. 5.1 and introduce a smoothness regularization formulated as:

Lsmooth(V ) = ||G(V, kg, σg)− V ||22, (11)

We apply the smoothness term above to the gradient of SDF voxel grid for a gradient smoothness
loss, denoted by Lsmooth(∇V (sdf)). It encourages a smooth surface and alleviates the issue of noisy
points in the free space. Notice that we can also naturally conduct post-processing on the SDF field
after training, thanks to its explicit representation. For example, applying the Gaussian kernel above
before extracting the geometry can further boost surface smoothness for better visualization.

Finally, the overall training loss is formulated as:

L = Lrecon + λtvLTV (V
(sdf)) + λsLsmooth(∇V (sdf)), (12)

where λtv and λs denote the weights for the corresponding loss terms.

6 EXPERIMENTS

Experimental setup. We use the DTU (Jensen et al., 2014) dataset for quantitative and qualitative
comparisons and show qualitative results on several challenging scenes from the BlendedMVS (Yao
et al., 2020) dataset. We include several baselines for comparisons: 1) IDR (Yariv et al., 2020),
2) NeuS (Wang et al., 2021), 3) NeRF (Mildenhall et al., 2020), 4) DVGO (Sun et al., 2022a), 5)
Point-NeRF (Xu et al., 2022). The results of 1), 2), and 3) are taken from the original papers (Yariv
et al., 2020; Wang et al., 2021); for 5), we use the neural point for evaluation. We provide a clean
background for all the methods for a fair comparison. Experimental results with non-empty back-
grounds and comparisons with more methods (Schönberger et al., 2016; Oechsle et al., 2021; Yariv
et al., 2021) are included in the supplementary materials. Please also refer to the supplementary
materials for further descriptions of the datasets, baseline methods, and implementation details.

6.1 COMPARISONS

The quantitative results for surface reconstruction on DTU are reported in Table 1. Quantitative
experimental results show that we achieve lower Chamfer Distances than previous methods under
the same setting. We conduct qualitative comparisons on both DTU and BlendedMVS in Fig. 4
and Fig. 5, respectively. DVGO shows poor reconstruction quality with noise and holes since it is
designed for novel view synthesis rather than surface reconstruction. NeuS and ours show accurate
and continuous surface recovery in a variety of cases. In comparison, NeuS, as a fully implicit
model, naturally benefits from the intrinsic continuity and encourages smoothness in local areas,
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Figure 4: Qualitative comparisons on the DTU dataset. See more scenes in supplementary materials.
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Figure 5: Qualitative comparisons on the BlendedMVS dataset. See more scenes in supplementary materials.

while it sometimes fails to recover very thin geometry details due to over-smoothing. In contrast,
our method is superior in recovering fine geometry details thanks to our designs in Sec. 5.

We further perform a more extensive evaluation of our method on surface reconstruction, novel view
synthesis, and training time in Table 2. Our method outperforms DVGO and NeuS on both surface
reconstruction and novel view synthesis by a clear margin on all the metrics. Notably, our method
achieves around 20x speedup compared to NeuS for producing high-quality surface reconstruction.

6.2 ANALYSIS

In this section, we carry out a series of ablation studies to evaluate each technical component.

The effect of the dual color network and a hierarchical geometry feature. As shown in Table 3,
both techniques individually work well on the baseline model, and a combination of them produces
the best result. 1) The effect of dual color network can be directly sensed in the improvement
of image rendering quality, as can be seen from the comparison of roof textures in Fig. 6. An
accurate color field and the color-geometry dependency will promote geometry learning, as can be
observed from the comparison of roof geometries (viewed in normal images) in Fig. 6. Experimental
results in Table 4 also validate the effectiveness of the design introduced in Sec. 5.2, including
the residual color and detachment. 2) Hierarchical geometry feature directly promotes an accurate
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GT (test view) w/o dual color network w/o geometry feature Full model

Figure 6: The dual color network learns the color field for complex scenes well and preserves color-geometry
dependency, which facilitates geometry learning (see the roofs); the hierarchical geometry feature promotes
accurate surface reconstruction (see the windows).

Table 3: Ablation over the effect of dual color
network and hierarchical geometry feature.

CD 0.91 0.79 0.77 0.72

Dual ✓ ✓
Hierarchical ✓ ✓

Table 4: Ablation over the Residual and Detach
designs of the dual color network (Sec. 5.2).

CD 0.77 0.75 0.75 0.72

Residual ✓ ✓
Detach ✓ ✓

surface reconstruction, as demonstrated by results in Table 3 and the difference between normal
images of Fig. 6. We also explore different design details, including the level selection and the
effects of gradient and SDF value in supplementary materials.

Ablation over smoothness priors. We make efforts to encourage the continuity and smoothness
of the reconstructed surface at different stages. As shown in Fig. 7 (a), during the coarse shape ini-
tialization stage, the naive solution produces holes and noises. Applying the Gaussian convolution
substantially alleviates the problem and leads to a more compact geometry. Regularization terms
including the TV and our gradient smoothness loss would further encourage a clean and smooth
surface to provide a good initialization for the next stage. Fig. 7 (b) shows that during the fine geom-
etry optimization stage, the regularization terms also help maintain surface smoothness. Finally, as
shown in Fig. 7 (c), post processing on a trained model can promote surface smoothness for a better
visualization quality and maintain an accurate structure at the same time. An ablation study on the
effects of the SDF TV term and our gradient smoothness loss is in the supplementary materials.

baseline w\ Gaussian w\ Gaussian +
regularization

w\o SDF-TV &
Gradient smoothness loss

w\o post
processing

w\ post
processing

(a) Training stage-1 (c) Inference stage(b) Training stage-2

w\ SDF-TV &
Gradient smoothness loss

Figure 7: Studies on technical components that encourage surface smoothness during the (a) coarse shape
initialization, (b) fine geometry optimization, and (c) post-processing stage.

7 CONCLUSION

This paper proposes Voxurf, a voxel-based approach for efficient and accurate neural surface recon-
struction. It includes several key designs: the two-stage framework attains a coherent coarse shape
and recovers fine details successively; the dual color network helps maintain color-geometry de-
pendency, and the hierarchical geometry feature encourages information propagation across voxels;
effective smoothness priors including a gradient smoothness loss further improve the visual quality.
Extensive experiments show that Voxurf achieves high efficiency and high quality at the same time.
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