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ABSTRACT

To create useful reinforcement learning (RL) agents, step zero is to design a suit-
able reward function that captures the nuances of the task. However, reward
engineering can be a difficult and time-consuming process. Instead, human-in-
the-loop (HitL) RL methods hold the promise of learning reward functions from
human feedback. Despite recent successes, many of the HitL RL methods still
require numerous human interactions to learn successful reward functions. To
improve the feedback efficiency of HitL RL methods (i.e., require less human in-
teraction), this paper introduces Sub-optimal Data Pre-training, SDP, an approach
that leverages reward-free, sub-optimal data to improve scalar- and preference-
based HitL RL algorithms. In SDP, we start by pseudo-labeling all low-quality
data with the minimum environment reward. Through this process, we obtain re-
ward labels to pre-train our reward model without requiring human labeling or
preferences. This pre-training phase provides the reward model a head start in
learning, enabling it to recognize that low-quality transitions should be assigned
low rewards. Extensive experiments with both simulated and human teachers re-
veal that SDP can at least meet, but often significantly improve, state-of-the-art
HitL RL performance across a variety of simulated robotic tasks.

1 INTRODUCTION

In reinforcement learning (RL), an agent’s objective is to interact with an environment and maximize
its total (discounted) expected reward. The reward hypothesis further maintains that a well-specified
reward function is sufficient for an agent to learn to solve a task (Sutton & Barto, 2018). However,
defining a reward function that precisely captures all task complexities is often tedious and non-
trivial (Booth et al., 2023). There have been notable examples of reward misspecification, in which
RL agents discovered and exploited unintended shortcuts in the reward function (Skalse et al., 2022).
One notorious example is the CoastRunners game, in which the goal should be to finish a boat race
as fast as possible — an RL agent instead gained the most reward by spinning its boat in a circle
despite concurrently catching on fire and crashing into other boats (Clark & Amodei, 2016).

A promising alternative is to learn reward functions directly from human feedback. In this paradigm,
humans can provide feedback in the form of preferences or scalar signals, which can then be used
to learn a reward function that is consistent with human desires (Daniel et al., 2014; Christiano
et al., 2017). Despite recent progress, existing preference- and scalar-based RL methods still suffer
from high human labeling costs that can require thousands of human queries to learn an adequate
reward function (Christiano et al., 2017). Prior work attempts to mitigate this issue through several
mechanisms, including active learning (Lee et al., 2021a), data augmentation (Park et al., 2022),
semi-supervised learning (Park et al., 2022), and meta-learning (Hejna III & Sadigh, 2023).

Alternatively, our work draws on recent advances in offline RL that have demonstrated the value
of low-quality data (Yu et al., 2021). However, its potential in HitL RL remains unexplored. As
low-quality data is often readily accessible or easy to obtain, this work addresses this gap by asking
the question:

Can we leverage sub-optimal, unlabeled data to improve learning in HitL RL methods?

To that end, we present Sub-optimal Data Pre-training, SDP, a tool for HitL RL algorithms to in-
crease human feedback efficiency. SDP leverages sub-optimal trajectories by pseudo-labeling all
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transitions with the minimum environment reward. The now pseudo-labeled sub-optimal data serves
two purposes. First, we pre-train a regression-based reward model by applying standard supervised
learning to minimize the mean squared loss. Intuitively, this pre-training provides the reward model
a head start, biasing it towards assigning lower reward values to these low-quality transitions. Sec-
ond, we initialize the RL agent’s replay buffer with the sub-optimal data and make learning updates
to the RL agent. This process changes the RL agent’s policy and provides different behaviors for the
human to provide feedback on (relative to learning with no initial sub-optimal data). This ensures
that when the human teacher provides feedback, their time is used efficiently, avoiding redundant
feedback on the existing sub-optimal data. Afterward, we follow the standard preference- or scalar-
based RL protocol.

This paper’s core contribution is showing that we can harness the availability of low-quality, reward-
free data for HitL RL approaches by pseudo-labeling it with minimum rewards and treating it as a
prior for learning reward models. We first validity the utility of SDP in extensive simulated teacher
experiments, combining it with four scalar- and preference-based RL algorithms. These experiments
show that SDP significantly improves the efficiency of feedback in complex tasks from both the
DeepMind Control (Tassa et al., 2018) and Meta-World (Yu et al., 2020) suites. Crucially, we further
highlight the real-world applicability of SDP by demonstrating its success with human teachers in a
16-person user study. Overall, this work takes an important step toward considering how HitL RL
approaches can take advantage of readily-available sub-optimal data.

2 RELATED WORK

Human-in-the-Loop RL Several approaches in HitL RL allow agents to leverage human feedback
to adapt or learn new behavior. Learning from demonstration is one such methodology that allows
a human to provide examples of desired agent behavior (Argall et al., 2009). Human demonstration
data has been used to shape the environment’s reward function (Brys et al., 2015), develop a reward
function from scratch (Abbeel & Ng, 2004), and bias the agent’s policy towards certain actions
(Taylor et al., 2011). Although demonstrations can be a rich source of feedback, they are often
expensive to obtain and may require domain experts (Dragan & Srinivasa, 2012).

Another approach is learning from preference-based feedback where a teacher provides preferences
between two or more sets of agent behavior (Christiano et al., 2017). Preference learning has been
popularized in recent years as it can require less effort and expertise compared to providing demon-
strations. To further reduce the amount of human interaction required, several strategies have been
introduced. This has included combining preferences with demonstrations (Ibarz et al., 2018; Bıyık
et al., 2022), unsupervised pre-training (Lee et al., 2021a), bi-level optimization (Liu et al., 2022),
semi-supervised learning (Park et al., 2022), data augmentation (Park et al., 2022), uncertainty-based
exploration (Liang et al., 2022), meta-learning (Hejna III & Sadigh, 2023), and active learning ap-
proaches (Hu et al., 2024). Despite its popularity, some argue that comparison feedback might not
capture the full intricacies of human preferences, as oftentimes the human is limited to choosing
between two options (Daniel et al., 2014; White et al., 2024).

As a result, another body of work focuses on learning from scalar feedback where human teachers
can provide scalar signals to evaluate an agent’s behavior (Knox & Stone, 2009; Griffith et al., 2013;
Loftin et al., 2016; MacGlashan et al., 2017; White et al., 2024). Several works use scalar feedback
to either learn a reward model (Daniel et al., 2014; Cabi et al., 2020) or an action-value function
(Knox & Stone, 2009; 2013; Warnell et al., 2018) via regression.

Learning from Sub-Optimal Data SDP aims to leverage sub-optimal data for scalar- and
preference-based RL algorithms. However, learning from low-quality data or negative examples has
been applied in other areas of RL and imitation learning (Chen et al., 2021; Tangkaratt et al., 2021).
In standard RL, several works use sub-optimal demonstrations to initialize a policy (Taylor et al.,
2011; Hester et al., 2018; Gao et al., 2019). In goal-conditioned RL, Hindsight-Experience-Replay
uses failed episodes by treating them as a success with respect to a different goal (Andrychowicz
et al., 2017). In inverse reinforcement learning (IRL), Shiarlis et al. (2016) proposed a constrained
optimization formulation that can accommodate both successful and failed demonstrations. Brown
et al. (2019) makes use of ranked demonstrations to learn a reward function in IRL. Later work in
IRL automatically generates ranked trajectories by adding increasing amounts of noise to a learned
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policy (Brown et al., 2020). Lastly, in offline RL, Singh et al. (2020) leverages sub-optimal transi-
tions from multiple tasks and assigns reward labels according to the reward function. Our work is
most closely related to offline RL work by Yu et al. (2022). This prior work leverages reward-free,
sub-optimal data by pseudo-labeling all transitions with zero and adding them to the RL agent’s
replay buffer. However, we found that directly applying this approach to the HitL RL setting was
ineffective (See Appendix D.5).

3 BACKGROUND

In the RL paradigm, agents interact with an environment to maximize the total (discounted) expected
reward it can achieve. This interaction process is modeled as a Markov Decision Process (MDP)
which consists of ⟨S,A, T, r, γ⟩. At every time-step t, the agent receives a state st ∈ S from the
environment and chooses an action at ∈ A. The environmental transition function, T , determines
the probability of transitioning to state st+1 and receiving reward rt+1, given the agent was in state
st and executed action at. The environment then provides the agent rt+1. The agent attempts to
learn a policy, π : S → A, that maximizes the expected return E[G] =

∑∞
k=0 γ

krt+k+1, which is
defined as the expected sum of discounted future rewards with discount factor γ ∈ [0, 1).

3.1 REWARD LEARNING FROM HUMAN FEEDBACK

This paper assumes that we are in a reward-free paradigm, an MDP/R setting, where our goal is
to (1) learn a reward function, r̂, from human feedback and (2) learn a policy that maximizes the
total expected r̂. We follow the standard reward learning framework that uses supervised learning
to learn a parameterized reward function, r̂θ, with parameters θ (Christiano et al., 2017). In both
scalar- and preference-based feedback settings, we consider trajectory segments σ, where σ consists
of a sequence of states and actions: {st, at, st+1, at+1, ..., st+k, at+k}, with k as the segment size.

Preference-based Reward Learning In preference-based learning, two segments, σ0 and σ1, are
compared by a teacher, yielding y ∈ { 0, 0.5, 1}. Specifically, if the teacher preferred segment σ1

over segment σ0, then y is set to 1, and if the converse is true y is set to 0. If both segments are
equally preferred, then y is set to 0.5. As feedback is collected, it is stored as tuples (σ0, σ1, y) in
the reward model data set DRM . In general, if σi > σj , then the segment σi is preferred by the
teacher over segment σj . We follow the Bradley-Terry model (Bradley & Terry, 1952) to define a
preference predictor using the reward function r̂θ:

Pθ(σ
1 > σ0) =

exp(
∑

t r̂θ(s
1
t , a

1
t ))∑

i∈{0,1} exp(
∑

t r̂θ(s
i
t, a

i
t))

(1)

Intuitively, this model assumes that the probability of the teacher preferring a segment depends
exponentially on the total sum of predicted rewards along the segment. To train the reward function,
we can use supervised learning where the teacher provides the labels y. More specifically, we update
r̂θ by minimizing the standard binary cross-entropy objective:

LCE(θ,D) = − E(σ0,σ1,y)∼D

[
(1 − y) logPθ(σ

0 > σ1) + y logPθ(σ
1 > σ0)

]
(2)

Scalar-based Reward Learning The primary difference between scalar and preference-based re-
ward learning is that in scalar-based learning, the human teacher assigns numerical ratings to trajec-
tory segments. In this setting, the comparisons between segments are implicit. More concretely, a
teacher assigns a scalar value y to a segment σi, and as feedback is collected, it is stored as tuples
(σi, y) in the reward model data set DRM . We then apply standard regression and update r̂θ by
minimizing the mean squared error:

LMSE(θ,D) = E(σi,y)∼D

[
(y −

∑
t

r̂θ(s
i
t, a

i
t))

2
]

(3)

Human Studies in Human in the Loop RL To evaluate HitL RL algorithms, a common protocol
is the use of simulated teachers, where feedback is provided according to a ground truth reward
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function. This can be useful, as it offers an efficient and controlled evaluation setting. However, we
argue that it is essential to evaluate HitL RL algorithms with real human feedback. This is especially
important in light of recent work finding discrepancies between preference learning algorithms when
using simulated teacher feedback versus human feedback (Metcalf et al., 2024).

4 SUB-OPTIMAL DATA PRE-TRAINING

In this section, we present SDP, a tool that leverages sub-optimal trajectories to improve the feedback
efficiency for HitL RL. We refer to sub-optimal trajectories as sequences of (s, a) pairs such that:

r(st, at)− rmin < ϵ ∀t ∈ [t, t+ k] for some small ϵ > 0, (4)

where rmin is the minimum possible environment reward. Equation 4 essentially expresses that the
rewards achieved along a sub-optimal trajectory should be close to rmin. However, it is important
to note that in practice we do not have access to the true reward. This prevents us from directly
identifying sub-optimal trajectories using equation 4. Instead, we rely on selecting trajectories that
we estimate will align with this criterion, such as gathering trajectories via a random policy.

Once sub-optimal trajectories are collected, we take the approach of pseudo-labeling all transitions
with rmin. The goal of SDP is then to use this pseudo-labeled data to create a prior for rewards
models in HitL RL methods (see Figure 1). Its simplicity enables SDP to be used in conjunction
with any off-the-shelf HitL RL algorithm that learns a reward function from feedback.

SDP comprises two phases: (1) the reward model pre-training phase and (2) the agent update phase.
In the reward model pre-training phase, we first gather a data set, Dsub, of N sub-optimal state,
action transitions. We then pseudo-label all transitions in Dsub with rewards of rmin, resulting in
Dsub = {si, ai, rmin}Ni=1. Dsub is then used to optimize the reward model r̂θ with the mean squared
loss in Equation 3. As a result, the reward model r̂θ learns to associate all sub-optimal transitions
with a low reward. Without such a prior, the reward model would initially have random estimates
for these transitions; while the only way to improve such estimates is to obtain feedback from a
teacher. Therefore, the reward model pre-training phase provides a valuable reward initialization
without requiring any feedback.

Next, in the agent update phase, we initialize the RL agent’s replay buffer Dagent with Dsub. The RL
agent then briefly interacts with its environment and performs gradient updates according to its loss
functions. The agent update process changes the RL agent’s policy and generates new transitions,
which are then stored in both the agent’s replay buffer Dagent and the reward model’s data set DRM.
It is important to note that in standard scalar- and preference-based reward learning, we query the
teacher for feedback on trajectory segments sampled from DRM. Therefore, adding new transitions
into DRM during the agent update phase is necessary to ensure that the teacher does not provide
redundant feedback to the original sub-optimal transitions (as DRM was empty prior to the agent
update phase). When it is time for the teacher to provide their first set of feedback, the feedback can
cover a different region of the state and action space, relative to the original sub-optimal data. In Ap-
pendix D.1, Figure 8 we empirically show that the agent update phase changes the RL agent’s policy
by performing policy rollouts and analyzing the differences in state distributions. See Algorithm 1
for the complete pseudocode.

At first glance, labeling sub-optimal transitions with an incorrect reward may seem problematic,
as incorrect labels does introduce statistical bias into the reward model and the RL agent’s value
network. However, as the transitions are sub-optimal, we observed that the bias for using an incorrect
reward is low (see Figure 9 in Appendix D.2). Moreover, by using the sub-optimal transitions, we
increase the overall amount of data used by both models, which can decrease the models’ variance,
as shown in the offline RL setting (Yu et al., 2022).

5 EXPERIMENTS

This section considers the following four research questions (RQ’s):

RQ 1: Can SDP improve upon existing scalar- and preference-based RL methods?

4
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RQ 2: Can SDP effectively leverage sub-optimal trajectories from different tasks to improve per-
formance on a target task?

RQ 3: Can SDP be used with real human feedback?

RQ 4: How sensitive is SDP to various hyperparameters?

take action 

Agent update
phase

get

Reward
model

Agent
replay buffer

Reward model
pre-training

phase

Figure 1: Overview of SDP: After obtaining sub-optimal trajectories, we pseudo-label this data with
rewards of rmin = 0. We then pre-train the reward model r̂θ using this data set. During the agent
update phase, we initialize the RL agent’s replay buffer with the same pseudo-labeled data set. The
agent then interacts in the environment and makes learning updates to obtain new behaviors for a
teacher to give feedback.

Algorithm 1 SDP
Require: Reward model r̂θ ← θ randomly initialized, Reward model data set DRM ← ∅, RL agent
with replay buffer Dagent ← ∅, Sub-optimal data set Dsub with reward labels rmin

1: // REWARD MODEL PRE-TRAIN PHASE
2: for each gradient step do
3: Optimize r̂θ on Dsub with LMSE (equ. 3)
4: end for
5: // AGENT UPDATE PHASE
6: Dagent ← Dsub
7: for each time-step t do
8: Collect st+1 by taking action at ∼ π(st)
9: Store (st, at, r̂θ, st+1) in Dagent

10: Store (st, at) in DRM
11: Update RL agent with Dagent
12: end for
13: Begin scalar- or preference-based RL using pre-trained r̂θ, RL agent, and Dagent, DRM

5.1 EXPERIMENTAL DESIGN

To demonstrate the versatility and effectiveness of SDP, we apply SDP to both preference and scalar-
based RL approaches. However, as preference feedback can be less time-consuming than scalar
feedback, we primarily concentrate on preference-based RL in our experiments, exploring scalar
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feedback in a smaller capacity. For the preference-based experiments, we combine SDP with four
contemporary preference-based algorithms: PEBBLE (Lee et al., 2021a), RUNE (Liang et al., 2022),
SURF (Park et al., 2022), and MRN (Liu et al., 2022). We benchmark the performance of the four
algorithms augmented with SDP against their original versions without SDP, as well as against
SAC. We treat SAC (Haarnoja et al., 2018) as an oracle (i.e., upper bound) because it learns while
accessing the true reward function, which is unavailable to the other algorithms. For the scalar-
based experiments, we combine SDP with R-PEBBLE (a regression variant of PEBBLE (Lee et al.,
2021a)). We compare SDP + R-PEBBLE against R-PEBBLE, Deep TAMER (Warnell et al., 2018)
(a scalar feedback RL algorithm), and the (oracle) SAC. We note that SAC is the core RL algorithm
used across all baselines.

Implementation Details For SDP, we collected sub-optimal trajectories via a random policy
(50,000 state, action transitions for all Section 5.2 experiments). Note that we do not require ex-
plicit access to a sub-optimal policy; we only require state, action transitions from said policy.
Moreover, all reward model hyperparameters remained the same during both SDP phases (i.e., the
reward model pre-train and agent update phases) as well as during the standard scalar- or preference-
based RL that followed. As for feedback budgets, we maintained equal budgets for all algorithms
within each environment. However, the budget itself was adjusted across environments to reflect
their difficulty levels. Refer to Appendix A for a complete overview of the implementation process
and specific hyperparameters for all algorithms.

Evaluation We show average offline performance (i.e., freeze the policy and evaluate it with no ex-
ploration) over ten episodes using either the ground truth reward function (DMControl experiments)
or the success rate (Meta-World experiments). It is important to note that only SAC has access to the
true reward function. We perform this evaluation every 10,000 training steps. To systemically evalu-
ate performance, we use a simulated teacher that provides either a scalar rating of a single trajectory
segment or preferences between two trajectory segments according to the true reward function. To
thoroughly test the effectiveness of SDP, we perform evaluations on four robotic locomotion tasks
from the DMControl Suite: Walker-walk, Cheetah-run, Quadruped-walk, and Cartpole-swingup,
and five robotic manipulation tasks from Meta-World: Hammer, Door-unlock, Door-lock, Drawer-
open, and Window-open. In our experiments, the results are averaged over five seeds with shaded
regions or error bars indicating 95% confidence intervals. To test for significant differences in final
performance (i.e., the undiscounted return) and learning efficiency (i.e., the total area under the re-
turn curve, AUC), we perform Welch t-tests (equal variances not assumed) with a p-value of 0.05.
See Appendix D, Tables 9-14 for a summary of final performance and AUC across all experiments.

5.2 LOCOMOTION AND MANIPULATION RESULTS

Preference Feedback Experiments We first address RQ 1 by evaluating the utility of SDP in the
preference-based RL setting. Considering all four preference-based algorithms in the nine environ-
ments, SDP significantly (p < 0.05) improved learning (i.e., either final performance or AUC) in 23
out of the 36 experiments (see Figure 2). In the remaining experiments, there were no significant
differences in the performance between SDP and the baseline algorithms. The addition of SDP (i.e.,
SDP + base algorithm) never statistically hurt performance.

Scalar Feedback Experiments Continuing our investigation into RQ 1, we now evaluate the
performance of SDP in the scalar-based RL setting. We performed evaluations in Walker-walk,
Cheetah-run, and Quadruped-walk. In Figure 3, we found that SDP (purple curve) significantly im-
proves either the final performance or AUC compared to R-PEBBLE (navy curve) and Deep TAMER
(yellow curve). More impressively, we found that SDP achieves comparable final performance to
SAC (red curve), which uses the ground truth reward function, using as little as 60 feedback queries.

Leveraging Different Task Data in SDP Our previous experiments showed that SDP can lever-
age sub-optimal data from the target task to improve HitL RL methods. Now, addressing RQ 2, we
investigate whether SDP can similarly use sub-optimal data from related tasks to improve perfor-
mance on the target task. We perform three preference learning experiments, comparing PEBBLE
with SDP + PEBBLE, using sub-optimal data from a different prior task that has the same virtual
robot: (1) Walker-stand for Walker-walk, (2) Quadruped-walk for Quadruped-run, and (3) Drawer-
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Figure 2: Preference feedback experiments in DMControl and Meta-World suites. The bar plots
show AUC +/- 95% confidence intervals. * indicates that SDP + the base preference learning algo-
rithm achieves a statistically greater score (p < 0.05) than the base preference learning algorithm.

Figure 3: Scalar feedback experiments. In all DMControl experiments, SDP significantly outper-
forms R-PEBBLE and Deep TAMER (p < 0.05) and achieves comparable performance to SAC.

open for Door-open. To obtain the sub-optimal data for the prior tasks, we gathered transitions
from partially trained policies as opposed to using random policies. Each partially trained policy
achieved a final score of approximately 15-20% of that achieved by a fully trained policy. This
ensured that the distribution of sub-optimal data differed between the prior and target tasks. See Ap-
pendix A.2 for further details on the experiment setup. Figure 4 demonstrates that in all three tested
environments, SDP can successfully leverage sub-optimal data from related tasks (green curve) as it
achieved similar performance to SDP when leveraging target task data (purple curve).

5.3 PREFERENCE LEARNING WITH HUMAN FEEDBACK

To evaluate HitL RL algorithms, we argue that it is critical to understand their efficacy with human
teachers. However, human user studies do not appear to be widely adopted in the current literature.
To empirically investigate this, we conducted a survey of 45 preference learning studies from 2012
to 20241 to understand the prevalence of human user studies in the preference learning literature. We
found that fewer than 50% tested their proposed algorithms with human participants who were not
also the authors. Moreover, of those studies that did involve human participants, only 41% included
non-expert individuals, while none provided sufficient demographic information about their partic-

1See Appendix B.2 for more details.
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Figure 4: These figures highlight that SDP can leverage sub-optimal data from different prior tasks
as it performed comparable to SDP when using target task data.

ipants (e.g., gender, race/ethnicity, level of education). These limitations raise significant concerns
about whether and how current preference learning algorithms generalize to different populations.

To that end, we now address RQ 3 and evaluate the efficacy of SDP with real human feedback. We
conduct an ethics-approved human-subject study of 16 participants (9 male, 7 female). Age ranges
were collected: 18-24 (6), 25-30 (7), and 50-70 (3). Participants self-identified their membership
in racial groups: South Asian (6), East Asian (3), White (4), Middle Eastern or North African (2),
and multi-racial (1). The participants’ highest educational attainments were: high school diploma
(3), Bachelor’s degrees (8), and Master’s degrees (5), and their expertise varied across AI/ML (12),
other computer science topics (1), and non-computer science fields (3). This highlights the diversity
of our participants in terms of demographics and expertise.

This user study compares the performance of SDP and PEBBLE in two DMControl environments:
Pendulum-swingup (with 7 participants) and Cartpole-swingup (with 12 participants). We focused
our comparison to PEBBLE as it performed comparably to the other preference learning baselines
in Section 5.2. We use a between-subjects experimental design — each participant provides prefer-
ences for a single seed of both SDP and PEBBLE algorithms. The preference budgets for Pendulum-
swingup and Cartpole-swingup were 40 and 48, respectively. We selected these environments specif-
ically because they could be solved with fewer preferences, aiming to reduce the overall time com-
mitment required from participants. Each trial for a single environment lasted approximately 1-1.5
hours. See Appendix B for more details including user instructions and interface.

We visualize both algorithms’ final performance and AUC in Figure 5. We found that in both en-
vironments SDP (purple plots) maintains significant (p < 0.05) performance gains over PEBBLE
(blue plots) in terms of either final performance or AUC. In Cartpole-swingup, we also observed
consistent performance from SDP regardless of whether the teacher was human or simulated. This
suggests that our prior results with simulated teachers can generalize to settings where human feed-
back is provided. Moreover, we observed no significant differences in SDP’s effectiveness across
demographic factors, including gender, age, educational, and computer science background (see
Appendix C, Tables 7 and 8). This finding is particularly encouraging for the potential real-world
deployment of SDP, highlighting its usability for non-expert users across diverse demographics.

5.4 ABLATION AND SENSITIVITY STUDIES

To further understand the effectiveness of SDP, we perform further analysis of SDP across three
dimensions: (1) the phases of SDP, (2) the number of feedback queries, and (3) the amount of
sub-optimal data. This analysis aims to address RQ 4 and provide a deeper understanding of the
factors influencing SDP’s performance. For these experiments, we focus on SDP + R-PEBBLE in
the Walker-walk environment. Supplementary results for Cheetah-run can be found in Appendix D.

SDP Component Analysis First, we evaluate the effect of each phase of SDP individually, the
reward model pre-train phase and the agent update phase. Figure 6–leftmost demonstrates the im-
portance of using both phases in SDP for scalar-based RL approaches. We found that the SDP
variants that only use one of the phases (green and gray curves) result in worse performance than
the full SDP (purple curve).
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*
* *

Figure 5: This figures demonstrate that SDP can significantly outperform PEBBLE in terms of both
AUC (left) and final performance (right) even when human teachers are providing preferences.

Figure 6: These figures show ablation and sensitivity studies of SDP in Walker-walk .

Effect of Feedback Amount We evaluate SDP and R-PEBBLE with feedback budgets of 60, 100,
and 200 to analyze the impact of feedback quantity on performance. As shown in Figure 6 (middle),
SDP (purple curves) consistently outperforms R-PEBBLE (navy curves), further demonstrating its
effectiveness across varying feedback levels.

Effect of Sub-Optimal Data Amount We evaluate the performance of SDP using varying
amounts of sub-optimal transitions: 5000, 15000, and 50000. Figure 6 (rightmost) indicates that
while 5000 transitions (gray curve) led to the poorest performance, increasing this amount to 15000
or 50000 (green and purple curves) yielded comparable or improved results, suggesting that more
sub-optimal data can benefit SDP.

6 CONCLUSION

In this work, we present SDP, an approach that improves the feedback efficiency for HitL RL al-
gorithms. SDP is specifically designed to leverage reward-free, sub-optimal data for scalar- and
preference-based HitL RL approaches. By pseudo-labeling low-quality data with the minimum en-
vironment rewards, we can pre-train the reward model without the need for human labeling. This
provides the reward model with a head start in learning. This head start allows the reward model to
learn to associate low-quality transitions with low reward values, even before receiving any actual
human feedback. Our simulated teacher experiments in DMControl and Meta-World suites demon-
strate that SDP can significantly improve a variety of preference- and scalar-based reward learning
algorithms. Importantly, we further validite the real-world applicability of SDP by demonstrating
its success in a 16-person user study. This work takes an important step towards considering how
sub-optimal data can be leveraged for HitL RL.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

The goal of preference and scalar-based RL is to learn reward functions that encode human prefer-
ences. However, this necessitates interaction with human users, raising concerns about potential bi-
ases in the collected preferences. If these preferences are primarily drawn from a non-representative
group, the resulting RL system may unfairly prioritize the desires or needs of that group over others.
To that end, we performed a human subject study that was reviewed and approved by an external
ethics committee. This ensured the responsible and ethical collection of human preferences. In ad-
dition, we took care to gather participants from a wide range of both demographic and educational
backgrounds, which we detail in Section 5.3.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a link to our anonymous downloadable
source code: https://anonymous.4open.science/r/SDP_ICLR-C23F/. We also pro-
vide pseudocode in Section 4. Moreover, we outline extensive training and evaluation details in
Section A and Appendix A.2. We also outline all hyperparameters used for all algorithms and envi-
ronments in Appendix A.2, Tables 1− 5. Lastly, for the human subject study, we provide details on
the instructions provided to the participants in Appendix B as well as a description of the preference
interface used. In our released codebase, we also provide the specific code files used to run the
experiments in the user study. In addition, an anonymized version of the human subject data will be
released, as stated in our ethics approval.
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APPENDIX

A SIMULATED EXPERIMENT DETAILS

A.1 BENCHMARKS

PEBBLE PEBBLE has two primary components: unsupervised exploration and off-policy learn-
ing with relabeling. The purpose of the unsupervised exploration phase is to collect diverse expe-
riences for a human teacher to provide feedback on. More specifically, PEBBLE optimizes state
entropy to explore the environment. Furthermore, PEBBLE uses off-policy reinforcement learning
to learn a policy. PEBBLE specifically uses an off-policy RL algorithm as they are more sample
efficient compared to their on-policy counterparts. Then as the reward model changes, PEBBLE
relabels all transitions in the RL agent’s replay buffer with the latest reward model. This is integral
as the reward model is non-stationary, and relabeling the transitions stabilizes the learning process.

To adapt PEBBLE to the scalar feedback setting, we make one minor change to the reward model.
In the scalar feedback setting, we use a scripted teacher that provides a scalar rating of a single
trajectory segment. Therefore, the only update to PEBBLE is with respect to the loss function.
Instead of using the cross-entropy loss in Equation 2, we use the mean-squared error loss in Equation
3.

RUNE RUNE is a preference learning algorithm (built on top of PEBBLE) that uses an
uncertainty-based exploration strategy to improve feedback efficiency. To encourage exploration
for the SAC agent, RUNE adds an intrinsic reward component based on the standard deviation in
the reward model.

SURF SURF is another preference learning algorithm (built on top of PEBBLE) that improves
feedback efficiency by using semi-supervised and data augmentation approaches. To incorporate
semi-supervised learning, SURF generates pseudo-labels for unlabeled trajectories by querying the
learned reward model. If the reward model confidently (e.g., low output standard deviation) pre-
dicts the pseudo-label, then the trajectory, label pair is added to the reward model training data set.
Further, SURF proposes a new data augmentation technique that crops sub-sequences of trajectories.

MRN MRN is a preference learning algorithm also integrated with PEBBLE. Unlike other PbRL
algorithms, MRN is a bi-level optimization algorithm in which the actor and critic are updated in the
inner loop, and the reward model is updated in the outer loop. Importantly, the reward model takes
into account the performance of the critic on the preference data.

Deep TAMER In our scalar feedback experiments, we also consider the Deep TAMER bench-
mark. In Deep TAMER, scalar feedback is used to learn a human reward function via regression.
Then the agent acts greedily with respect to this reward function. Furthermore, the original im-
plementation of Deep TAMER was built on top of DQN. Therefore, there was no separate actor-
network. In addition, Deep TAMER only used discrete feedback ∈ [−1, 0, 1].
To make Deep TAMER a fair benchmark, we made a few adjustments. To start, we allow Deep
TAMER to learn from real-valued feedback as done in the other scalar-based experiments. However,
instead of using the ground truth reward function as feedback, we use the state-action values from a
fully-trained SAC agent. We do this because, in TAMER (and Deep TAMER), the teacher is intended
to provide feedback representative of the return. Secondly, in Deep TAMER, feedback is provided
per (state, action) pair. Therefore, to make sure Deep TAMER received the same amount of feedback
as the other baselines, we used trajectory segment size × feedback amount for Deep TAMER only.
The other benchmarks receive a scalar feedback value that is the sum of rewards along a trajectory
segment. Third, to learn the reward model we use standard regression as described in Section 3.1.
Lastly, as our testing environments are continuous state and action, we learn a separate actor policy,
similarly done in (Vien et al., 2013).
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A.2 TRAINING DETAILS

In all of our experiments, we use the hyperparameters in Table 1 for the reward models used in all
benchmarks. For the agent update phase of SDP, an additional hyperparameter is associated with the
number of environment interactions made before the standard preference/scalar feedback learning
loop begins. However, for simplicity, we kept the same value as the existing feedback frequency
hyperparameter, as feedback frequency also dictates the number of environment interactions made
between feedback sessions

Furthermore, we use most of the existing reward model hyperparameters used in PEBBLE, however,
we adjusted the following four hyperparameters: feedback frequency, amount of feedback per ses-
sion, trajectory segment size (only for Meta-world), and activation function for the final NN layer.
We adjusted the first two hyperparameters because PEBBLE originally used a significantly larger
feedback budget, therefore we wanted the feedback schedule to better reflect a smaller feedback
budget. We used a different trajectory segment size for Meta-world because we wanted to keep
the segment sizes the same across both the DMControl and Meta-world environments. Moreover,
we found that the output activation function could significantly affect learning, therefore we tested
all benchmarks using both Tanh (original activation used) and Leaky-ReLU and chose the reward
model that achieved better final performance. For the RUNE and SURF baselines, we use any hy-
perparameters associated with their specific algorithm according to the original paper (see Table 2).
For a fair comparison with SDP, we provide all HiTL baselines (e.g., PEBBLE, R-PEBBLE, Deep
TAMER, RUNE, and SURF) with the sub-optimal data set to be used in both the reward model and
by the RL agent.

Furthermore, to select trajectory segments for the teacher to provide feedback on, we use uniform
sampling in the DMControl tasks and disagreement sampling in the Meta-world tasks. Disagreement
sampling is a popular active learning approach in which trajectories with higher uncertainty (based
on an ensemble of neural networks) are more likely to be sampled (Christiano et al., 2017). As for
the SAC hyperparameters, we use the values found in Tables 3-4.

For the experiments in which we leveraged sub-optimal data from a different task (i.e., Walker-stand,
Quadruped-walk, Drawer-open), we gathered 50,000 transitions from partially trained policies. We
note that for these experiments, we purposely did not use transitions gathered from a random policy.
In these experiments, the prior and target tasks were environments in which the simulated robot was
identical. The only difference is the environmental reward. Therefore, the random policy for both
environments would be the same. To truly demonstrate transfer, we wanted to ensure we obtained
low-quality transitions of the prior task that were different from the target task.

Each partially trained policy achieved a final score of approximately 15-20% of that achieved by a
fully trained policy. More specifically, we used the following procedure to train the SAC policies.
First, for Walker-stand, we trained a SAC policy for 5,000 time steps, and the average final perfor-
mance was approximately 194. Second, for Quadruped-walk, we trained a SAC policy for 100,000
timesteps, and the average final performance was approximately 184. Lastly, for Drawer-open, we
trained a SAC policy for 50,000 time steps, and the average final success rate was approximately
14%.
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Table 1: Hyperparameters for the reward model used in all experiments (both preference and scalar
feedback variants).

Hyperparameter Value

segment size 50
number of random steps (i.e., sub-optimal data transitions) 50000
number of unsupervised exploration steps 9000

consider unsupervised explorations as sub-optimal False (Walker-walk, Cartpole-swingup, Quadruped-walk – PbRL)
True (others)

frequency of feedback 20000 (DMControl)
10000 (Window-open, Door-unlock, Door-lock)
5000 (Hammer, Drawer-open)

feedback budgets in ablations 2000 (Door-open)
1000 (Cheetah-run, Walker-walk)

number of feedback queries per session 50 (Hammer, Drawer-open)
8 (Cartpole-swingup)
20 (others)

sampling scheme disagreement sampling (Metaworld)
uniform sampling (DMControl)

number of training epochs 200 (Window-open, SURF and SDP + SURF)
50 (others)

learning rate 3 ×10−4

intermediate neural network activation Leaky ReLU
batch size 128
number of hidden layers 4
number of neurons per hidden layer 128

loss function Mean Squared error (Scalar feedback)
Cross Entropy loss (Preference feedback)

optimizer Adam (Kingma & Ba, 2015)

For Reward Model Pre-training Phase in SDP
last layer neural network activation Tanh

For Human-in-the-Loop Alg
last layer neural network activation Leaky ReLU (PEBBLE, RUNE, SURF)

Tanh (SDP – Hammer, Drawer-open, Walker-walk)
Leaky ReLU (SDP – others)

Table 2: Baseline Specific Hyperparameters

Hyperparameter Value
Specific RUNE Hyperparameters

beta schedule linear decay
beta init 0.05
beta decay 10−5

Specific SURF Hyperparameters
threshold λ 0.99
unlabeled batch ratio 4
loss weight 1
min/max length of cropped segment [45, 55]
segment length before cropping 60

Specific MRN Hyperparameters
num meta steps 1000 (Walker-walk)

3000(Quadruped-walk)
10000 (Door-open)
5000 (others)
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Table 3: Hyperparameters for SAC that were shared by all algorithms. SAC is the standard RL
algorithm that learns from the environment’s true reward signal, not via preference learning.

Hyperparameter Value
optimizer Adam (Kingma & Ba, 2015)
discount 0.99
alpha learning rate 10−4

actor betas 0.9, 0.999
critic betas 0.9, 0.999
alpha betas 0.9, 0.999
target smoothing coefficient 0.005
actor update frequency 1
critic target update frequency 2
init temperature 0.1
network type MLP
nonlinearity ReLU
number of gradient updates per step 1

Table 4: Specific SAC hyperparameters that were tuned for the DMControl and Metaworld experi-
ments. The majority of these hyperparameters were selected from PEBBLE repo (Lee et al., 2021a).

Hyperparameter Value
DMControl

batch size 512 (Cartpole-swingup)
1024 (others)

number of hidden layers 2
number of neurons per hidden layer 256 (Cartpole-swingup)

1024 (others)

actor/critic learning rate 5× 10−5 (Cheetah-run preference feedback)
10−4 (Cheetah-run scalar feedback)
5× 10−4 (Walker-walk)
10−4 (others)

number of training steps 0.5× 106 (Walker-walk, Cartpole-swingup)
106 (others)

Metaworld
batch size 512
number of hidden layers 3
number of neurons per hidden layer 256
actor/critic learning rate 3× 10−4

number of training steps 0.5× 106 (Door-lock and Window-open)
106 (others)

Table 5: Tuned hyperparameters for human feedback experiments.

Hyperparameter Value
SAC

number of training steps 0.3× 106

batch size 1024
number of hidden layers 2
number of neurons per hidden layer 1024
actor/critic learning rate 10−4

number of training steps 2.5× 105

Reward Model
consider unsupervised explorations as sub-optimal False
frequency of feedback 20000

number of feedback queries per session 10 (Pendulum-swingup)
8 (Cartpole-swingup)

sampling scheme uniform sampling
batch size 128
last layer neural network activation Leaky ReLU
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B HUMAN SUBJECT STUDY DETAILS

Our study was approved by an external ethics committee. In total, 16 users participated in our study,
3 of which participated in both Pendulum-swingup and Cartpole-swingup tasks. As for the amount
of participation per task, 7 users provided preferences in Pendulum-swingup and 12 users provided
preferences in Cartpole-swingup. During the timeline of our user study, we initially had participants
interacting in Pendulum-swingup, however we found that it was very simple, therefore we decided
to include Cartpole-swingup, as a more difficult task. Each participant provided preferences for a
single run of the environment, as each session took approximately 1 to 1.5 hours. Table 5 shows the
specific hyperparameters used.

B.1 PROTOCOL STEPS

The study took place in person, where the participant was first provided the consent from to review
and sign. Then, participants and the researcher, together, reviewed the instructions outlining the
objective of the study. The instructions had two components. First, they outlined participant’s goal
in the study. Second, as done in Christiano et al. (2017), we provided a guide on what constitutes
good and bad behavior in each domain.

Pendulum-swingup The first set of instructions for the study are as follows:

1. Objective: for the pole to swing up and balance.
2. Agent controls how much torque (or force or twist) to apply
3. It does not matter which way the pole swings, left or right, as long as the pole balances.
4. Your task: You will see two clips of behaviors, and your job is to select the clip you think

is better given the above objective. If you think both clips are identical in behavior, you can
select equally preferable.

The second set of instructions (i.e., advice) for the study are as follows:

1. The first priority is for the pole to begin swinging back and forth (i.e., picking up momen-
tum). Therefore, the video clip where the pole has swung higher is better. Even if the agent
is not behaving well in either clips, if you can tell that the pole is higher in one clip than
the other, it is better to prefer that clip.

2. In general, if the pole is swinging rapidly in a circle (e.g., complete 360), then this is usually
worse behavior than if the pole is barely moving.

Cartpole-swingup The first set of instructions for the study are as follows:

1. Pole is attached to a cart.
2. Agent can move the cart left and right.
3. Goal is for the agent to move the cart such that the pole swings up and balances
4. Your task: You will see two clips of behaviors, and your job is to select the clip you think

is better given the above objective. If you think both clips are identical in behavior, you can
select equally preferable.

The second set of instructions (i.e., advice) for the study are as follows:

1. The first priority is for the pole to begin swinging back and forth (i.e., picking up momen-
tum). Therefore, the video clip where the pole has swung higher is better. Even if the agent
is not behaving well in either clips, if you can tell that the pole is higher in one clip than
the other, it is better to prefer that clip.

2. In general, if the pole is swinging rapidly in a circle (e.g., complete 360), then this is usually
worse behavior than if the pole is barely moving.

3. If the pole is balancing then falls over, then is is better behavior than if the pole is barely
moving.
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During the instruction period, participants also watched video clips of what successful and unsuc-
cessful behavior looks like. In addition, participants were able to ask questions about the environ-
ment’s objective.

Once the instruction period was complete, participants completed a practice round in providing
preferences. This was included so users could gain familiarity with the interface. Figure 7 shows
a screenshot of the interface used. Participants would use keyboard input to move from one video
clip to the next. Then, participants had the opportunity to rewatch either clips as many times as they
liked. Afterwards, participants chose which clip they preferred (or equally preferred) via keyboard
input. Each video clip consisted of a 50 step segment, which was approximately 2 seconds long.
The total study time was ∼ (1 − 1.5) hours. After the study was complete, participants filled out a
demographic survey which included questions pertaining to their age, race/ethnicity, education level
completed, and area of expertise.

Figure 7: This shows the user interface used for the human subject study. Participants would view
each video clip, sequentially, then decide which clip they preferred.
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B.2 PREFERENCE LEARNING SURVEY DETAILS

Table 6 provides a list of all papers included in our preference learning survey. We now describe
the criteria for inclusion and exclusion in our survey. To find papers, we used Google Search with
key words: preference learning, reinforcement learning from human feedback, and preference based
reinforcement learning. We also found papers by reviewing those that cited popular preference
learning works. This included Christiano et al. (2017) and Lee et al. (2021a), as these were two of
the first papers that popularized preference learning. We included conference, journal and workshop
papers in our survey. We did not include papers that were strictly on Arxiv. To keep the survey within
scope, we did not include any preference learning works related to large language or foundation
models. We also did not include any works that were entirely theoretical (e.g., no empirical results
were provided).
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Table 6: Articles used in Preference Learning Survey from Section 5.3. NA indicates no information
was provided.

Paper Reference Human Users(Non-Author) Number of Users

(Myers et al., 2023) Yes 22
(Metcalf et al., 2024) Yes 50
(Myers et al., 2022) Yes 50
(Christiano et al., 2017) Yes NA
(Hejna III & Sadigh, 2023) Yes 4
(Hwang et al., 2023b) Yes 5
(Biyik & Sadigh, 2018) Yes 10
(Hwang et al., 2023a) Yes 5
(Bıyık et al., 2020) Yes 10
(Wilde et al., 2021) Yes 18
(Bıyık et al., 2022) Yes 15
(Ibarz et al., 2018) Yes NA
(Knox et al., 2023) Yes 143
(Holk et al., 2024) Yes 32
(Metcalf et al., 2023) Yes 40
(Marta et al., 2024) Yes NA
(Marta et al., 2023a) Yes 70
(Marta et al., 2023b) Yes 20
(Ren et al., 2022) Yes NA
(Mehta & Losey, 2024) Yes 15
(White et al., 2024) Yes 20
(Wang et al., 2022) Yes 10
(Wang et al., 2023) No
(Zhang & Kashima, 2024) No
(Lee et al., 2021a) No
(Liang et al., 2022) No
(Park et al., 2022) No
(Hu et al., 2024) No
(Liu et al., 2022) No
(Liu et al., 2023) No
(Xue et al., 2024) No
(Daniels-Koch & Freedman, 2022) No
(Verma et al., 2023) No
(Barnett et al., 2023) No
(Verma & Metcalf, 2024) No
(Metcalf et al., 2023) No
(Swamy et al., 2024) No
(Lee et al., 2021b) No
(Wang et al., 2021) No
(Maxence Hussonnois & Rana, 2023) No
(Wilson et al., 2012) No
(Liu et al., 2024) No
(Giovanelli et al., 2024) No
(Zhu et al., 2024) No
(Cheng et al., 2024) No
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C ADDITIONAL HUMAN TEACHER RESULTS

Task Feedback Background AUC P Value Final Performnce P Value

Cartpole-swingup 48 Non-CS
CS

8258.44 ± 1898.47
10208.11 ± 2311.16 0.183 648.88 ± 35.17

614.14 ± 114.81 0.692

Pendulum-swingup 40 Non-CS
CS

7677.84 ± 3540.70
10188.70 ± 3858.94 0.258 327.65 ± 407.80

641.68 ± 237.76 0.23

Table 7: This table shows the AUC and final performance of SDP (mean +/- 95% confidence inter-
vals) for CS and non-CS participants in the human subject study.

Task Feedback Demographic AUC P Value
Cartpole-swingup 48 Female 8720.03 ± 3185.4 0.085

Male 11770.22 ± 1669.96
Pendulum-Swingup 40 Female 8587.13 ± 2772.96 0.331

Male 10134.67 ± 4822.22
Cartpole-swingup 48 Age 18-30 10109.54 ± 2370.61 0.313

Age 50-70 10923.05 ± 1292.83
Pendulum-Swingup 40 Age 18-30 8619.07 ± 3381.48 0.318

Age 50-70 10607.93 ± 5249.72
Cartpole-swingup 48 Education: Bachelors or higher 11044.55 ± 1783.25 0.794

Education: High school diploma 6247.99 ± 5186.47
Pendulum-Swingup 40 Education: Bachelors or higher 10188.88 ± 3858.95 0.742

Education: High school diploma 7677.85 ± 3540.7

Table 8: This table shows the AUC of SDP (mean +/- 95% confidence intervals) for different de-
mographic conditions. This table highlights that SDP can be effective irrespective of demographic
background (gender, age, and educational background).

Tables 7-8 highlight that there is no significant difference in the performance of SDP when human
teachers have differing backgrounds. This includes a background in CS, educational level, age,
and gender. We note that we did not perform statistical analysis comparing racial groups as some
experiments had only one participant of a particular racial background, making comparisons less
meaningful.

D ADDITIONAL SIMULATED TEACHER RESULTS

For simplicity, in all additional experiments in this section, we only compare SDP + PEBBLE with
PEBBLE (or R-PEBBLE).

D.1 STUDY OF AGENT UPDATE PHASE

Figure 8 emphasizes how the agent update phase does result in new transitions, therefore the teacher
provides feedback to transitions that are different from the original sub-optimal transitions used for
pre-training.
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Figure 8: Door open, preference learning exp. These plots show how the agent’s policy has changed
from the reward model pre-training phase (purple histograms) to the agent update phase (blue his-
tograms), thereby resulting in a different distribution for the state features.

D.2 TRUE REWARD VALUES OF RANDOM POLICY

Figure 9 shows the true reward values for sub-optimal data gathered through a random policy in the
DMControl suite. This emphasizes that the true reward value is close to the value we pseudo-label
the sub-optimal transitions with (i.e., zero), therefore SDP should not yield a large incorrect reward
bias.

D.3 ZERO WEIGHT STUDY

To understand the effect of each component of SDP, we performed two additional ablations. First,
in the reward model pre-training phase, the goal is for the reward model to learn to output zero.
However, a trivial means to achieve an output of zero is to set all weights and biases in the neural
network to zero. Therefore, we compare the full SDP to SDP using a zero-weight initialization as
a replacement for the reward model pre-training. We found that using a zero-weight initialization
for the reward model in place of the pre-training phase results in significantly degraded performance
(see the green curve in Figure 10–right). This is not surprising, as previous works have found that
a zero-weight initialization can negatively affect the training of neural networks (Blumenfeld et al.,
2020; Zhao et al., 2022). In addition, Figure 11 demonstrates that the reward model pre-training
phase does not produce reward model weights of zero, emphasizing why we do not experience the
same performance degradation that occurs if we use a zero-weight initialization.

D.4 FAKE INPUT STUDY

Second, SDP makes use of state, action transitions that are gathered through a sub-optimal policy.
Therefore, these are transitions that an agent experiences while interacting with its environment.
However, as previously noted, the goal of the reward model pre-training phase is for the reward
model to learn to output zero. Therefore, is it necessary for the reward model to pre-train on inputs
that are real environment transitions? Instead, can we pre-train the reward model on transitions that
did not result from an agent-environment interaction? To test this, we created “fake” inputs of size
dim(state) + dim(action), and for each input dimension, we randomly sampled a value fromN (0, 1).
We obtained 50,000 “fake” transitions and used this data for the reward model pre-training phase.
In this experiment, our goal is to understand the effect of the type of inputs on the reward model
pre-training phase, therefore we kept the agent update phase as is (i.e., provided the true sub-optimal
data for this phase). We then compared SDP using true transitions to SDP using “fake” transitions in
Figures 10–left and 12. We found that the full SDP (purple curve) in which we pre-train the reward
model on true sub-optimal transitions yields significantly greater final performance than SDP using
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Figure 9: Distribution of true reward values for transitions obtained with a random policy

“fake” transitions (green curve). This highlights the importance of using true sub-optimal transitions
in SDP.
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Figure 10: Zero weights and fake input studies in Walker-walk

(a) Scalar feedback experiment in Walker-walk.

Figure 11: This figure shows the reward model weights of SDP after the reward model pre-training
phase. This demonstrates that the reward model pre-train phase of SDP does not result in zero neural
network weights.
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Figure 12: Fake Input Study in Cheetah Run Preference Learning

D.5 SDP COMPONENT STUDIES

Figure 13 shows additional phase ablations in the preference learning experiments done on the
Cheetah-run environment. This highlights the importance of using both phases in SDP. In addition,
we ran an experiment in Walker-walk where we directly apply the procedure Yu et al. (2022) uses
for leveraging sub-optimal data in the offline RL setting. They simply store the sub-optimal transi-
tions in the RL agent’s replay buffer with the pseudo reward label of 0 and follow standard offline
RL. We repeated this with the other difference of following standard preference learning (PEBBLE)
afterwards. We found that the average final performance was 104.32 with a 95% confidence interval
of 46.12, which is close to 4 times less than the final performance of SDP.

Figure 13: Phase Ablation Study in Cheetah Run Preference Learning

Figure 14 shows an additional ablation over the amount of prior data used in SDP. We observed
similar performance gains as described in section 5.4.

D.6 EFFECT OF RELABELLING REPLAY BUFFER

SDP is combined with four preference learning algorithms, PEBBLE, RUNE, SURF, and MRN.
A core feature of these algorithms is that every time the reward model is updated, all transitions
inside the RL agent’s replay buffer are updated using the latest reward model. Figure 15 shows the
effects of not relabeling the sub-optimal data (i.e., the reward labels) with the latest learned reward
model. This means the reward labels remain frozen at zero throughout the entire training process.
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Figure 14: Prior Data Amount Study in Cheetah Run Preference Learning

This ablation was to demonstrate that if the sub-optimal data in the agent’s replay buffer is not
updated with the latest reward model, then performance will suffer. This is likely the case because
the incorrect reward bias from the pseudo-labeling process persists, whereas when we relabel the
transitions with the updated reward model, the incorrect reward bias may reduce over time.

Figure 15: Relabeling sub-opt data study: Walker-walk, scalar feedback

D.7 EFFECT OF TRANSITION QUALITY IN SDP

Moreover, we show that the effectiveness of SDP relies on the use of sub-optimal data transitions. If
we use high-quality data transitions (i.e., transitions that came from a fully trained RL agent policy),
SDP will fail (see Figure 16). This unsurprising result confirms that pseudo-labeling high-reward
transitions with zero can significantly hurt the reward model and the agent’s performance
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Figure 16: Using high-quality data in SDP study: Cheetah-run, preference feedback

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D.8 SCALAR-BASED EXPERIMENT STATISTICS

Tables 9 and 10 provide a summary of the mean final performance and the mean area under the
curve for all environments and benchmarks in the scalar feedback setting

Learning from scalar feedback

SDP R-PEBBLE Deep TAMER
Walker-walk 931.31 ± 36.59 362.99 ± 181.23* 33.10 ± 11.10*
Cheetah-run 862.72 ± 49.13 522.10 ± 238.87* 30.71 ± 16.26*
Quadruped-walk 777.38 ± 156.74 543.92 ± 193.21* 73.74 ± 48.38*

Table 9: This table shows the mean final performance plus and minus the 95% confidence interval.
* indicates SDP achieves a significantly greater mean final performance.

Learning from scalar feedback

SDP R-PEBBLE Deep TAMER
Walker-walk 34981.65 ± 1559.24 13147.1 ± 6102.31* 1823.42 ± 578.48*
Cheetah-run 55144.89 ± 4266.94 33557.58 ± 15185.47* 2459.23 ± 1226.34*
Quadruped-walk 58370.85 ± 10759. 37076.52 ± 11968.48* 7365.68 ± 3556.27*

Table 10: This table shows the mean area under the learning curve (AUC) plus and minus the 95%
confidence interval. * indicates SDP achieves a significantly greater AUC.
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D.9 PREFERENCE LEARNING EXPERIMENT STATISTICS

Tables 11-14 provide a summary of the mean final performance and the mean area under the curve
for all environments and benchmarks in the preference feedback setting

Task Feedback Method Final Return P Value

Cartpole-swingup 48

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

226.4 ± 136.35
533.94 ± 57.71
263.48 ± 176.2
561.77 ± 108.17
83.12 ± 44.53
324.19 ± 179.8
151.05 ± 76.31
644.03 ± 57.99

0.007*

0.021*

0.039*

0.0*

Walker-walk 100

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

173.9 ± 100.26
490.07 ± 50.07
160.6 ± 61.85
575.71 ± 104.52
202.1 ± 95.17
435.99 ± 39.45
215.14 ± 58.09
672.3 ± 85.53

0.001*

0.0*

0.005*

0.0*

Cheetah-run 200

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

582.51 ± 67.62
704.63 ± 102.27
681.59 ± 68.05
616.78 ± 279.34
642.52 ± 84.3
682.34 ± 65.08
728.36 ± 38.69
748.99 ± 55.59

0.062

0.645

0.266

0.305

Quadruped-walk 500

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

350.24 ± 228.91
753.18 ± 104.79
363.65 ± 163.93
704.1 ± 102.16
550.51 ± 211.19
767.78 ± 140.67
200.12 ± 63.04
733.83 ± 62.87

0.017*

0.009*

0.089

0.0*

Table 11: This table shows the final performance (mean +/- 95% confidence intervals) for all DM-
Control preference learning experiments. * indicates significant differences.
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Task Feedback Method AUC P Value

Cartpole-swingup 48

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

8248.14 ± 2148.59
21519.9 ± 2435.02
8817.21 ± 3534.57
20970.54 ± 4643.96
5593.44 ± 1099.56
10288.22 ± 4584.16
6774.95 ± 1783.95
22564.32 ± 3846.6

0.0*

0.004*

0.074

0.0*

Walker-walk 100

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

7571.79 ± 2903.09
18458.81 ± 1224.69
6525.52 ± 2566.88
21059.76 ± 3056.28
7675.24 ± 2857.99
16700.51 ± 1449.62
7711.05 ± 1295.46
25184.26 ± 3071.65

0.001*

0.0*

0.001*

0.0*

Cheetah-run 200

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

39245.94 ± 5189.16
51121.68 ± 3488.87
45824.63 ± 4459.04
37202.31 ± 16330.83
40522.18 ± 2989.22
42777.1 ± 3775.07
47569.45 ± 2191.57
49968.24 ± 2187.97

0.006*

0.792

0.218

0.106

Quadruped-walk 500

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

20584.95 ± 9814.49
42044.34 ± 11183.84
22861.89 ± 9861.31
32664.79 ± 3929.32
30884.8 ± 11660.52
44176.44 ± 8404.76
14805.07 ± 1860.39
35209.32 ± 6225.09

0.018*

0.082

0.074

0.002*

Table 12: This table shows the AUC (mean +/- 95% confidence intervals) for all DMControl prefer-
ence learning experiments. * indicates significant differences.
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Task Feedback Method Final Return P Value

Hammer 7500

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

10.0 ± 13.58
66.0 ± 21.18
4.0 ± 7.01
68.0 ± 17.0
0.0 ± 0.0
36.0 ± 25.16
4.0 ± 7.01
46.0 ± 27.5

0.003*

0.001*

0.033*

0.027*

Door-unlock 500

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

42.0 ± 34.35
80.0 ± 15.68
26.0 ± 22.59
36.0 ± 38.65
20.0 ± 35.06
80.0 ± 22.17
48.0 ± 38.17
56.0 ± 37.02

0.066

0.354

0.02*

0.399

Door-lock 500

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

38.0 ± 30.06
80.0 ± 7.84
62.0 ± 32.51
40.0 ± 30.87
70.0 ± 31.85
60.0 ± 13.58
66.0 ± 26.93
78.0 ± 17.88

0.035*

0.793

0.684

0.268

Drawer-open 1000

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

4.0 ± 7.01
36.0 ± 25.16
0.0 ± 0.0
66.0 ± 14.24
20.0 ± 35.06
80.0 ± 14.67
20.0 ± 35.06
56.0 ± 40.21

0.045*

0.001*

0.018*

0.136

Window-open 200

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

34.0 ± 37.44
54.0 ± 26.35
12.0 ± 21.04
38.0 ± 24.42
14.0 ± 20.44
66.0 ± 26.35
46.0 ± 32.61
68.0 ± 31.06

0.234

0.098

0.014*

0.208

Table 13: This table shows the final performance (mean +/- 95% confidence intervals) for all Meta-
world preference learning experiments. * indicates significant differences.
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Task Feedback Method AUC P Value

Hammer 7500

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

424.0 ± 175.18
2222.0 ± 1009.47
490.0 ± 300.85
2520.0 ± 627.47
482.0 ± 215.59
3042.0 ± 1073.54
494.0 ± 311.76
2494.0 ± 1108.52

0.017*

0.001*

0.006*

0.016*

Door-unlock 500

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

2142.0 ± 1738.06
4838.0 ± 1251.13
1272.0 ± 1275.71
1836.0 ± 2063.68
1580.0 ± 2462.83
4802.0 ± 1537.81
3082.0 ± 2232.43
3842.0 ± 2230.38

0.031*

0.348

0.047*

0.342

Door-lock 500

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

876.0 ± 647.87
2300.0 ± 135.0
1342.0 ± 590.05
884.0 ± 633.87
1892.0 ± 842.85
1986.0 ± 184.83
1966.0 ± 751.51
2236.0 ± 479.9

0.008*

0.809

0.429

0.306

Drawer-open 1000

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

314.0 ± 533.02
1702.0 ± 1706.12
38.0 ± 49.71
3794.0 ± 1306.6
696.0 ± 1167.88
4078.0 ± 1839.07
1550.0 ± 2690.98
3206.0 ± 2114.16

0.117

0.004*

0.015*

0.211

Window-open 200

PEBBLE
SDP + PEBBLE
RUNE
SDP + RUNE
SURF
SDP + SURF
MRN
SDP + MRN

794.0 ± 1015.04
1698.0 ± 822.8
230.0 ± 334.14
948.0 ± 631.92
242.0 ± 248.44
2048.0 ± 867.93
1252.0 ± 796.8
1728.0 ± 666.48

0.131

0.064

0.01*

0.223

Table 14: This table shows the area under the curve (mean +/- 95% confidence intervals) for all
Metaworld preference learning experiments. * indicates significant differences.
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